Analysis of Multi-tier Uplink Cellular Networks with Energy Harvesting and Flexible Cell Association

Size: px
Start display at page:

Download "Analysis of Multi-tier Uplink Cellular Networks with Energy Harvesting and Flexible Cell Association"

Transcription

1 Analysis of Multi-tier Uplin Cellular Networs with Energy Harvesting and Flexible Cell Association Ahmed Hamdi Sar and Eram Hossain Abstract We model and analyze a K-tier uplin cellular networ with flexible cell association where all transmissions are powered by energy harvesting from ambient interference. Each cellular user transmits data to the corresponding base station (BS) only when the amount of energy harvested is sufficient to perform channel inversion towards the serving BS. Furthermore, the data transmitted can be successfully decoded only when the signal-to-interference-plus-noise ratio (SINR) at the receiver is above a predefined threshold. With flexible cell association, users are not necessarily associated with their nearest BS where a different bias factor is added to each networ tier. We use tools from stochastic geometry to evaluate the performance of the proposed system model in terms of the coverage probability of a generic user associated with the -th tier. We show that energy harvesting can be a reliable source to power cellular users with short-range communication, e.g., small cell users. In addition, we show that energy harvesting can achieve high coverage performance by optimizing different networ parameters such as the BS receiver sensitivity as well as the bias factors. Keywords: Energy harvesting, K-tier cellular networs, uplin transmission, flexible association, power control, coverage probability, stochastic geometry. I. INTRODUCTION Radio frequency (RF) energy harvesting in cellular networs has recently attracted significant attention to power wireless devices motivated by the issue of global greenhouse gas emissions increase ]. On the other hand, overlaying macrocells by different classes of smaller and lower-power base stations (BSs) such as femtocells and picocells is considered as one solution to improve the spectral efficiency of cellular networs, hence, it is called a multi-tier networ. In the context of ambient RF energy harvesting in wireless networs, the authors in ] use power beacons to power uplin transmissions where no power control is assumed under an outage constraint. In the cognitive radio networ in 3], the authors use the RF energy transmitted by primary users to power underlaying secondary users where all users transmit with the same power. The authors in 4] consider a deviceto-device networ that is powered by harvesting energy from the concurrent transmissions of a downlin cellular networ where all DD transmitters have a fixed power level. On the other hand, in the context of modeling uplin cellular A. H. Sar and E. Hossain are with the Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Canada ( s: Ahmed.Sar@umanitoba.ca, Eram.Hossain@umanitoba.ca). This wor was supported by a Strategic Project Grant (STPGP 4385) from the Natural Sciences and Engineering Research Council of Canada (NSERC). networs, the authors in 5] provide a framewor to model a single-tier networ in which all users perform fractional power control where users are assumed to constitute a Poisson Point Process (PPP) and each user has one BS in her vicinity. In 6], the authors present a general framewor for modeling uplin transmission in multi-tier networs where users use truncated channel inversion power control to satisfy a certain received power threshold. In this wor, we consider uplin transmission when all users are powered only by the harvested RF energy from the ambient interference that results from the concurrent downlin transmissions by all networ tiers. Channel inversion power control is used by all users to ensure that the power received at the corresponding BS is higher than the receiver s sensitivity. We also consider the case when users do not necessarily associate with the nearest BS for any reason such as the load per BS. That is, each networ tier has a specific bias factor that is added to the decision criterion of the association. Note that the idea of flexible cell association has been used for downlin networs, e.g., in 7]. After harvesting energy and associating with a certain BS, each user transmits only when power harvested is enough to perform channel inversion. Note that a user may suffer outage due to either insufficient harvested energy or low SINR received at the serving BS. We use statistical modeling based on stochastic geometry to capture the randomness of the networ topology, e.g., BSs and users locations 8], 9]. In particular, for analytical tractability, we use independent PPPs to model the locations of BSs and users. We evaluate the performance of our system model in terms of SINR coverage probability, transmission probability, and overall coverage probability. We show the effect of varying the different parameters of the networ on (such as receiver sensitivity and bias factors) on the performance metrics. The contributions of the paper can be summarized as follows: Using stochastic geometry, we provide a tractable analytical framewor to model and analyze the performance of energy harvesting in multi-tier uplin cellular networs with flexible cell association. Furthermore, we consider a practical system model in which users perform power control in order to mitigate the near-far problem. We show that energy harvesting can provide an acceptable performance for uplin transmissions in cellular networs especially for users with short-range communication lins. Furthermore, we show that adjusting networ

2 parameters increases the achievable gain by balancing the trade-off between the probability of harvesting sufficient power and the probability of transmitting with acceptable power level to satisfy a certain SINR threshold at the receiver. II. SYSTEM MODEL AND ASSUMPTIONS A. K-tier Cellular Networ Model We consider a K-tier cellular networ where the locations of BSs belonging to tier are modeled by an independent PPP Φ = {x i : i =,,... } with intensity λ where x i R denotes the location of the i-th BS. BSs belonging to the same tier have the same receiver sensitivity ρ and transmit power P. The complete set of users is also modeled by an independent PPP Φ u = {y i : i =,,... } with intensity λ u. In the uplin, each user performs channel inversion to adjust her transmit power to ensure that the average received power at the serving BS is equal to its receiver sensitivity. Orthogonal channel access is assumed to avoid intra-cell interference. B. Channel Model and User Association The networ is assumed to operate in the TDD mode such that the downlin and uplin transmissions are separated from each other in time. That is, there is no interference between the downlin networ and the uplin networ even though both networs use the same set of channels. The power of the signal transmitted on any channel decays at a rate of r where is the path-loss exponent and r is the propagation distance. In addition, the power envelope of each channel is modeled by an independent exponential random variable h with unit mean, i.e., Rayleigh fading assumption. In the uplin, flexible cell association is used such that association with BSs belonging to the same tier is biased with a positive bias factor β. That is, each user is assumed to be served in the uplin by the BS that offers the best biased average channel gain (i.e., average channel gain plus bias factor). For example, the bias factors can be chosen according to the receiver sensitivity of each tier in order to mae users biased to associate with the tier that requires lowest transmit power. Another scenario is when β = P in which each users is served by the same BS in both downlin and uplin. For a user located at y R, let x and x o denote the BS with the best biased channel gain from the -th tier and the serving BS, respectively. Hence, the flexible cell association criterion is described as x = arg max x Φ {β x y } () x o = arg max {β x y } () x {x :=,,...,K} where is the Euclidean distance. Without loss of generality, Fig. shows a realization of a downlin-uplin cellular networ with three different tiers, e.g., a macrocell networ tier, a picocell networ tier, and a femtocell networ tier. Fig.. A 3-tier cellular networ in an area of 3m 3m. A macro-tier (red squares) with intensity.5(5 π) BS/m is overlaid with lower-power and 3 times denser picocells (green circles) and 5 times denser femtocells (cyan diamonds). Solid lines show the coverage area of macro (tier ), pico (tier ), and femto (tier 3) BSs for biased uplin association criterion defined in () where β = 5, β =, and β 3 =. Dashed lines show the coverage area for uplin when association is unbiased, i.e., β =, {,, 3}. C. Energy Harvesting Model Each user is equipped with an energy harvesting unit that converts the ambient RF power received from the interference caused by the downlin cellular transmissions into useful DC power. Hence, the total power received at the harvesting unit of a user located at y is given by P H (y) = a K = x Φ P h x y where a is the RF-to-DC power conversion efficiency. Based on the TDD operation, users are assumed to adopt a time-slotted harvest-then-transmit strategy in which a user transmits only when the power harvested in one time slot (i.e., the downlin time slot) is sufficient to perform channel inversion power control (i.e., in the uplin time slot). There is no energy storage assumed such that no user can save the extra harvested energy for the next time slot. III. UPLINK TRANSMISSION PROBABILITY As mentioned earlier, for a user to be able to mae an uplin transmission, the energy harvested by this user should be sufficient to perform channel inversion towards the serving BS. Hence, we define η as the probability of transmission by a user in the -th tier after harvesting sufficient energy. In this section, we derive the probability density function (PDF) of the users transmit power as well as the harvested power, and then we obtain the transmission probability. A. Uplin Transmit Power Analysis Since each user performs channel inversion in order to satisfy a power level requirement ρ at her serving BS, we define the transmit power of a user when it associates with a BS from the -th tier at a distance R as, (3) p = ρ R. (4)

3 Hence, we firstly need to derive the PDF of the distance R in order to derive the PDF of the transmit power. Conditioned on the event of a generic user to be served by a BS belonging to the -th tier, the following lemma presents the PDF of the distance between this user and her serving BS. Lemma. The PDF of the distance between a generic user associated with tier and her serving BS is f R (r) = πλ r exp πλ r ] (5) where Λ = β K j= λ jβ j. Proof: See Appendix A. Using Lemma and (4) we derive the PDF of a generic user s transmit power when it associates with the -th tier as stated in the following lemma whose proof is left to the reader. Lemma. The PDF of the transmit power a generic user associated with tier to achieve a received power of ρ at her serving BS is f p (t) = πλ ρ ( t ρ and its -moment is given by where Λ = β ) ( t exp πλ ρ ] E p K j= λ jβ j. ) ] (6) = ρ (7) πλ Note that, for the unbiased association (i.e., β = ) and when all BSs have the same receiver sensitivity, the transmit power of any user is independent of which tier the user is associated with. That is because the association in this case is made with the nearest BS regardless of its tier. B. Analysis of Harvested Power Based on Slivnya s theorem, Theorem 8.], we use (3) to derive the Laplace transform of the harvested power at a typical user located at the origin from which the PDF is obtained as in the following lemma. Lemma 3. The PDF of the power received at the energy harvesting module of a generic user is given by ( π ) a ( π ) ] 4 aξ f PH (t) = ξ πt 3 exp (8) t where ξ = K = λ P. Note that the expression in Lemma 3 is derived for the special case when = 4. However, does not need to be 4 for the rest of the analysis, for example when < 4, this expression provides a pessimistic bound on the amount of harvested power and vice versa. Due to space limitations, we only present the detailed proof of the main result of this wor (i.e.,theorem ) along with the outline of other proofs where the complete proofs are left to an extended version of this paper. C. Transmission Probability As described above, the transmission probability of a user associated with the -th tier can be defined as η = PP H > p ] (9) and the following theorem provides a closed-form expression for this probability. Theorem. For a user served by a BS belonging to the -th tier, the probability that this user harvests sufficient energy to perform channel inversion towards her serving BS is given by η = ( ( π ) 6 aξ Λ π G3,,3, ρ, ) () where ξ = K j= λ jp j, Λ = β K j= λ jβ j, and G 3,,3 (x a, a, a 3 ) denotes the Meijer G-function. Proof: See Appendix B. Note that the function G 3,,3 (x,, ) in () is a decreasing function of x, furthermore, it can be calculated numerically by many computer algebra systems, e.g., MuPAD, MATLAB, Maple, and Mathematica. Also note that, for the unbiased association (i.e., β = ), the transmission probability is independent of which tier the user is associated with when all BSs have the same receiver sensitivity. IV. UPLINK COVERAGE PROBABILITY In this section we use Slivnya s theorem to characterize the SINR for a typical BS located at the origin, then we derive closed-form expressions for the uplin coverage probability. A. SINR Definition Based on the association criterion defined in () for the uplin, the SINR received at a typical BS belonging to the -th tier and located at (, ) R can be written as SINR = ρ h K j= u i Ψ j\{u o} p jg u i + σ () where h and g are the small-scale fading coefficients between the typical BS and the served and interfering users, respectively. σ is the variance of the additive noise at the BS where no specific distribution is assumed. u o is the user served by the typical BS at a specific time slot. In order to define the set of interfering users at a specific time slot, we define a point process Ψ with intensity η λ that represents the set of users who harvested sufficient energy and ready for transmission at this time slot. Although this thinning is not independent and Ψ is not a PPP, for analytical tractability, we assume that the interfering users at a certain time slot constitute a PPP. The channel coherence time is assumed to be greater than the frame duration. 6]. This assumption has been used and validated in the literature, e.g., 5],

4 B. Analysis of Uplin Coverage Probability Using (), we can get the uplin SINR coverage probability C of the overall system. Let C denote the SINR coverage probability offered by the -th tier to the users associated with this tier, hence, using the law of total probability, the overall SINR coverage probability is obtained as C = K = λ Λ C () where λ Λ represents the probability of a user to associate with the -th tier and Λ is given in Lemma. Here, uplin SINR coverage probability of the -th tier is defined as the probability that the received SINR at a BS in this tier is higher than a predefined threshold τ that is chosen to satisfy certain quality-of-service requirements. Hence, C = P SINR > τ ]. (3) In the following theorem, we obtain the coverage probability of the uplin transmission for a user served by a typical BS belonging to the -th tier and located at the origin where the statistics of the networ can be generalized to a generic user. As an outline to the proof, the coverage probability is derived using the Laplace transform of the interference resulting from tier j. In addition, due to using channel inversion power control, we now for sure that the closest interferer from that tier is at least at a distance of ( β β j p j ρ j ) Theorem. The coverage probability offered by the -th tier in an uplin cellular networ for a generic user is given by C = exp τ ρ σ where Λ j = β j K j= η j λ j Λ j K i= λ iβ i. ( ) ( ) ]] ρ j β ρ τ F, ρ τ β j ρ j and Fy, ] = y u +u du. (4) Note that the function F(y, ) can be evaluated by numerical methods, in addition, it reduces to simple closed-form expressions for some special values of, Appendix 3]. For example, when = 4, Fy, 4] = arctan(y ). Now, we introduce some special cases to highlight the consistency between our model and previous results on uplin cellular networs in the literature. Corollary. (Single-tier Uplin Networ, = 4, σ = ) In the special case of an interference-limited single-tier uplin networ, the overall coverage probability is given by C = exp η τ arctan ( τ )]. (5) Proof: Substitute K =, σ =, and = 4 in (4). This result shows that, for single-tier uplin cellular networs, the coverage probability is independent of the the BS intensity, receiver sensitivity, and transmit power when η =. The same conclusion can be found in previous wor on uplin and downlin (when η = ) 5] 8], ]. The next special case is the K-tier uplin networ with best uplin channel association (i.e., unbiased association). In this case, for the uplin, the serving BS is simply the closest BS since all tiers have the same propagation path-loss exponent. Corollary. (Unbiased uplin association, σ = ) In the special case when a user associates to the nearest BS in the uplin, the coverage probability of an interference-limited K- tier networ is given by C = exp K j= η j λ j Λ ( ) ρ j τ ρ F ( τ ρ ρ j ), ]] (6) where Λ = K j= λ j. Proof: We use the fact that the association of the uplin is unbiased, hence, we set β to and σ = in (4). In this case, we can see that the K tiers reduce to a singletier networ with intensity Λ which is equal to the sum of all tiers intensities. This result is consistent with the wor on uplin (when η j = ) presented in 6, Theorem 3] for the case when P u =. V. NUMERICAL RESULTS AND DISCUSSION In this section, we evaluate the performance of the proposed system with energy harvesting and flexible association in terms of transmission probability (η ), SINR coverage probability (C ), and overall coverage probability (i.e., η η ( C ) = η C ) for a user associated with the -th tier. We consider a 3- tier networ scenario with macro, pico, and femto BSs as tier, tier, and tier 3, respectively. For numerical evaluation, unless otherwise stated, the transmit powers of BSs are assumed to be P = 53 dbm, P = 33 dbm, and P 3 = 3 dbm while the thermal noise power σ z is 4 dbm. The intensities of BSs are λ = 5(.5 π) BS/m, λ = 5λ, and λ 3 = λ. Independent and identically exponential power envelope with unit mean is considered for all lins and the path-loss exponent is = 3.3. The power conversion efficiency 3 a is set to and the SINR threshold τ is set to.5. Fig. shows the effect of the bias factors as well as the SINR threshold on the performance of users associated to different tiers. It can be seen that the overall coverage probability decreases with τ due to the reduction in the SINR coverage probability in (4) where η is independent of τ. It can also be seen that in the unbiased case (i.e., β = db), the performance of all users is the same since each user associates with the nearest BS regardless of its tier. In the flexible association case, we can notice that when a bias factor is added to one tier, this degrades the performance of this tier while improving the overall coverage of the smaller BSs tiers. For example, in this case β > β > β 3 which means that 3 Note that decreasing the conversion efficiency is equivalent to increasing the receiver s sensitivity as can be seen in (). That is, varying a only scales the resulting figures when plotting versus ρ as if we plot versus the ratio ρ a instead.

5 .9.8 Macro user, flexible association Pico user, flexible association Femto user, flexible association Generic user, unbiased association.9.8 Macro user, flexible associaition Pico user, flexible associaition Femto user, flexible associaition Generic user, unbiased association Overall coverage probability Transmission probability, SINR threshold, (dbm) BS receiver sensitivity, (dbm) Fig.. Overall coverage probability of a user associated with the -th tier vs. SINR threshold for the unbiased and flexible association. For the flexible association, the bias factors are set such that β = P, and ρ = 9 dbm for =,, 3. Transmission probability, Macro user, =,, ] db Pico and femto users, =,, ] db Macro and femto users, =,, ] db Pico user, =,, ] db Macro and pico users, =,, 3 ] db Femto user, =,, 3 ] db Bias factor, (db) Fig. 3. Transmission probability of a user associated with the -th tier vs. the bias factors (for ρ = ρ = ρ 3 = 9 db). more users are served by the macro tier and less users are served by the femto tier compared to the unbiased case. This increases the transmission probability of the femto users as the femto BSs only serve the nearby users and the far users are offloaded to other tiers, hence, less transmit power p is required by the femto users. On the other hand, macro users suffer from performance degradation as more transmit power is required to invert the channel to the corresponding BS. To show the effect of the bias factor β on the transmission probability in (), Fig. 3 compares different cases of flexible association by varying β. Compared to the unbiased case (i.e., β = db), it can be seen that biasing the association to a certain tier degrades the transmission probability of this tier while improving that of other tiers. However, it can be seen that the degradation is less severe for denser tiers because the number of users added to this tier is divided on all BSs. For the same reason, the improvement in the transmission probability of femto and pico users is higher compared to the macro users. Fig. 4 shows the relation between the BS receiver sensitivity and the users transmission probability where all BSs are assumed to have the same ρ. It can be seen that we can achieve higher transmission probability for small-cell users (i.e., pico and femto users) for the same ρ by adding a bias Fig. 4. Transmission probability of a user associated with the -th tier vs. BS receiver sensitivity for the unbiased and flexible association. For the flexible association, the bias factors are set such that β = P. factor to the macro cell association. In addition, it can be also seen that the lower ρ, the better is the performance for both the unbiased and biased association. Fig. 5 sums up all the trade-offs presented so far. It shows the behavior of the femto users performance in response to varying femto BS receiver sensitivity ρ 3 and the bias factor β. The performance is shown in terms of the SINR coverage probability (i.e., C 3 ), transmission probability (i.e., η 3 ), as well as the overall coverage probability (i.e., η 3 η 3 ( C 3 )). From this figure, the following observations can be made: For both cases (i.e., unbiased and flexible association), there exists an optimal value of ρ that maximizes the overall coverage probability. This behavior can be explained as follows: when the femto BS s receiver is more sensitive (i.e., low ρ 3 ), the femto user can achieve high transmission probability (curves with circles), however, the SINR coverage becomes very low, e.g. when ρ 3 = dbm. However, as ρ 3 increases, the probability of sufficient power η 3 starts to fall (curves with circles) and the improvement in the SINR coverage (curves with squares) starts to dominate the overall coverage probability. Hence, the overall coverage probability starts to increase. After some value of ρ 3, the decrease of η 3 starts to have more influence on the overall coverage probability compared to the SINR coverage probability, hence, the overall coverage probability starts to decrease. With the flexible (biased) association, the overall coverage probability of small-cell users can be highly improved compared to the unbiased association when β =. This improvement is introduced by decreasing the distance between a small-cell user and her serving BS. This increases the probability of the user to harvest sufficient power to perform channel inversion towards her serving BS (i.e., η ). Note that all the results in Figs. -5 are under the assumption that all users only depend on harvesting energy from the ambient RF interference as a power source. That is, the degradation in the macro users performance is mainly caused by the degradation in the transmission probability. So, if energy harvesting is considered only for users with shortrange communication lins such as femto users, the same

6 Femto user overall coverage probability SINR coverage, flexible Transmission probability, flexible Overall coverage, flexible SINR coverage, unbiased Transmission probability, unbiased Overall coverage, unbiased BS receiver sensitivity, 3 (dbm) Fig. 5. Femto user overall coverage probability vs. BS receiver sensitivity for the unbiased and flexible association. For the flexible association, the bias factors are set such that β = P (for ρ = ρ = 9). improvement of performance will be still attainable without performance degradation of the macrocell users. Furthermore, same results can be achieved by considering the case when users are powered by a fixed source such as batteries beside harvesting energy. VI. CONCLUSION We have used stochastic geometry to present a novel framewor to model, analyze, and evaluate the performance of flexible association and RF energy harvesting in multi-tier uplin cellular networ. We have shown that energy harvesting can be a reliable source to power cellular users especially those with short-range transmissions such as femto users. Furthermore, we have shown how to balance the different trade-offs of the overall performance by varying the networ design parameters such as BSs receiver sensitivity and bias factors. APPENDIX A PROOF OF LEMMA For each tier, we define Ψ = {β x : x Φ }. Using the mapping theorem, Theorem.34 and Corollary.35], we conclude that Ψ is a homogeneous PPP with intensity β λ since β is scalar. Using the superposition property of PPPs, we define the PPP Ψ = K = Ψ which is homogeneous with intensity K j= λ jβ j. Note that the association criterion defined in () is equivalent to associate with the nearest point in Ψ, hence, the distance distribution can be obtained by the null probability from a PPP with intensity Λ = β K j= λ jβ j which is Rayleigh-distributed as given in (5). APPENDIX B PROOF OF THEOREM By definition of η given in (9), we have η = F p (t)f PH (t)dt (7) where F p (t) and f PH (t) can be obtained from (6) and (8), respectively. Given that = 4 as dictated by Lemma 3, after substitution we have η = κ (e) = κ κ 3 3 exp t 3 κ t ( G, t ), κ ] ] exp κ 3 t dt G,, ) (κ 3 t 3 dt (8) where κ = π πaξ 4, κ = aξ ( ) π 4, and κ3 = πλ ρ. G is the Meijer G-function defined in ]. (e) follows because exp( u) = G,, (u ), G,, (u c) = G,, (u c), and u h G,, (u c) = G,, (u c + h). By replacing u = κ 3 t we get ( η = κ κ 3 G, u ) ( ), κ κ G,, u du 3 (f) = κ ( κ 3 G, u ) (, π κ κ G, u,, ) du 3 4 (g) = κ ( G,3 κ κ 3 3,, πκ 4, ) (9) where (f) follows because G,, (u c) = 4 π G,, ( u 4 c, c+ ) and (g) follows because G,, (hu c)g,, (gu m, n)du = h G3,,3 ( g h c, m, n). After minor mathematical manipulations, the results in () can be verified. REFERENCES ] J. A. Paradiso and T. Starner, Energy scavenging for mobile and wireless electronics, IEEE Pervasive Computing, vol. 4, no., pp. 8 7, Jan.-Mar. 5. ] K. Huang and V. K. N. Lau, Enabling wireless power transfer in cellular networs: architecture, modeling and deployment, IEEE Trans. Wireless Commun., vol. 3, no., pp. 9 9, Feb. 4. 3] S. Lee, R. Zhang and K. Huang, Opportunistic wireless energy harvesting in cognitive radio networs, IEEE Trans. Wireless Commun., vol., no. 9, pp , Sep. 3. 4] A. H. Sar and E. Hossain, Cognitive and energy harvesting-based DD communication in cellular networs: stochastic geometry modeling and analysis, under submission, Available Online]: umanitoba.ca/ sara/ 5] T. D. Novlan, H. S. Dhillon, and J. G. Andrews, Analytical modeling of uplin cellular networs, IEEE Trans. Wireless Commun., vol., no. 6, pp , 3. 6] H. ElSawy and E. Hossain, On stochastic geometry modeling of cellular uplin transmission with truncated channel inversion power control, IEEE Trans. Wireless Commun. vol. 3, no. 8, pp , 4. 7] H.-S. Jo, Y. J. Sang, P. Xia, and J. Andrews, Heterogeneous cellular networs with flexible cell association: A comprehensive downlin SINR analysis, IEEE Trans. Wireless Commun., vol., no., pp ,. 8] J. G. Andrews, F. Baccelli, R. K. Ganti, A tractable approach to coverage and rate in cellular networs, IEEE Trans. Commun., vol. 59, no., pp , Nov.. 9] H. ElSawy, E. Hossain, and M. Haenggi, Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networs: A survey, IEEE Commun. Surveys Tuts., vol. 5, no. 3, pp , July 3. ] M. Haenggi, Stochastic Geometry for Wireless Networs. Cambridge University Press, 3. ] L. C. Andrews, Special Functions for Engineers and Applied Mathematicians. New Yor: MacMillan, 985. ] A. H. Sar and E. Hossain, Location-aware cross-tier coordinated multipoint transmission in two-tier cellular networs, IEEE Trans. Wireless Commun., to appear.

Performance Analysis of Power Control and Cell Association in Heterogeneous Cellular Networks

Performance Analysis of Power Control and Cell Association in Heterogeneous Cellular Networks Performance Analysis of Power Control and Cell Association in Heterogeneous Cellular Networks Prasanna Herath Mudiyanselage PhD Final Examination Supervisors: Witold A. Krzymień and Chintha Tellambura

More information

Analysis of massive MIMO networks using stochastic geometry

Analysis of massive MIMO networks using stochastic geometry Analysis of massive MIMO networks using stochastic geometry Tianyang Bai and Robert W. Heath Jr. Wireless Networking and Communications Group Department of Electrical and Computer Engineering The University

More information

Throughput-optimal number of relays in delaybounded multi-hop ALOHA networks

Throughput-optimal number of relays in delaybounded multi-hop ALOHA networks Page 1 of 10 Throughput-optimal number of relays in delaybounded multi-hop ALOHA networks. Nekoui and H. Pishro-Nik This letter addresses the throughput of an ALOHA-based Poisson-distributed multihop wireless

More information

Uplink Rate Distribution in Heterogeneous Cellular Networks with Power Control and Load Balancing

Uplink Rate Distribution in Heterogeneous Cellular Networks with Power Control and Load Balancing Uplink Rate Distribution in Heterogeneous Cellular Networks with Power Control and Load Balancing Sarabjot Singh, Xinchen Zhang, and Jeffrey G. Andrews Abstract Load balancing through proactive offloading

More information

Cooperative Retransmission in Heterogeneous Cellular Networks

Cooperative Retransmission in Heterogeneous Cellular Networks Cooperative Retransmission in Heterogeneous Cellular Networs Gaurav Nigam Paolo Minero and Martin Haenggi Department of Electrical Engineering University of Notre Dame Notre Dame IN 46556 USA {gnigam pminero

More information

THE rapid growth of mobile traffic in recent years drives

THE rapid growth of mobile traffic in recent years drives Optimal Deployment of mall Cell for Maximizing Average m Rate in Ultra-dense Networks Yang Yang Member IEEE Linglong Dai enior Member IEEE Jianjun Li Richard MacKenzie and Mo Hao Abstract In future 5G

More information

Downlink Coverage Probability in MIMO HetNets

Downlink Coverage Probability in MIMO HetNets Downlin Coverage robability in MIMO HetNets Harpreet S. Dhillon, Marios Kountouris, Jeffrey G. Andrews Abstract The growing popularity of small cells is driving cellular networs of yesterday towards heterogeneity

More information

Enabling Cyber-Physical Communication in 5G Cellular Networks: Challenges, Solutions and Applications

Enabling Cyber-Physical Communication in 5G Cellular Networks: Challenges, Solutions and Applications Enabling Cyber-Physical Communication in 5G Cellular Networks: Challenges, Solutions and Applications Rachad Atat Thesis advisor: Dr. Lingjia Liu EECS Department University of Kansas 06/14/2017 Networks

More information

Asymptotic Analysis of Normalized SNR-Based Scheduling in Uplink Cellular Networks with Truncated Channel Inversion Power Control

Asymptotic Analysis of Normalized SNR-Based Scheduling in Uplink Cellular Networks with Truncated Channel Inversion Power Control Asymptotic Analysis of Normalized SNR-Based Scheduling in Uplin Cellular Networs with Truncated Channel Inversion Power Control arxiv:182.2193v1 cs.it] 6 Feb 218 Shotaro Kamiya, Koji Yamamoto, Seong-Lyun

More information

Performance of ALOHA and CSMA in Spatially Distributed Wireless Networks

Performance of ALOHA and CSMA in Spatially Distributed Wireless Networks Performance of ALOHA and CSMA in Spatially Distributed Wireless Networks Mariam Kaynia and Nihar Jindal Dept. of Electrical and Computer Engineering, University of Minnesota Dept. of Electronics and Telecommunications,

More information

Optimal Energy Efficiency Fairness of Nodes in Wireless Powered Communication Networks

Optimal Energy Efficiency Fairness of Nodes in Wireless Powered Communication Networks sensors Article Optimal Energy Efficiency Fairness of Nodes in Wireless Powered Communication Networs Jing Zhang 1, Qingie Zhou 1, Derric Wing Kwan Ng 2 and Minho Jo 3, * 1 School of Electronic Information

More information

Downlink Erlang Capacity of Cellular OFDMA

Downlink Erlang Capacity of Cellular OFDMA Downlink Erlang Capacity of Cellular OFDMA Gauri Joshi, Harshad Maral, Abhay Karandikar Department of Electrical Engineering Indian Institute of Technology Bombay Powai, Mumbai, India 400076. Email: gaurijoshi@iitb.ac.in,

More information

EasyChair Preprint. A User-Centric Cluster Resource Allocation Scheme for Ultra-Dense Network

EasyChair Preprint. A User-Centric Cluster Resource Allocation Scheme for Ultra-Dense Network EasyChair Preprint 78 A User-Centric Cluster Resource Allocation Scheme for Ultra-Dense Network Yuzhou Liu and Wuwen Lai EasyChair preprints are intended for rapid dissemination of research results and

More information

Opportunistic cooperation in wireless ad hoc networks with interference correlation

Opportunistic cooperation in wireless ad hoc networks with interference correlation Noname manuscript No. (will be inserted by the editor) Opportunistic cooperation in wireless ad hoc networks with interference correlation Yong Zhou Weihua Zhuang Received: date / Accepted: date Abstract

More information

Inter-Operator Infrastructure Sharing: Trade-offs and Market

Inter-Operator Infrastructure Sharing: Trade-offs and Market Inter-Operator Infrastructure Sharing: Trade-offs and Maret Tachporn Sanguanpua, Sudarshan Guruacharya, Eram Hossain, Matti Latva-aho Dept. of Commun. Eng., Univ. of Oulu, Finland; Dept. Elec. & Comp.

More information

Energy Efficient Inter-Frequency Small Cell Discovery in Heterogeneous Networks

Energy Efficient Inter-Frequency Small Cell Discovery in Heterogeneous Networks .9/TVT.25.248288, IEEE Transactions on Vehicular Technology Energy Efficient Inter-Frequency Small Cell Discovery in Heterogeneous Networks Oluwakayode Onireti, Member, IEEE, Ali Imran, Member, IEEE, Muhammad

More information

Beyond 4G Cellular Networks: Is Density All We Need?

Beyond 4G Cellular Networks: Is Density All We Need? Beyond 4G Cellular Networks: Is Density All We Need? Jeffrey G. Andrews Wireless Networking and Communications Group (WNCG) Dept. of Electrical and Computer Engineering The University of Texas at Austin

More information

Base Station Cooperation for Energy Efficiency: A Gauss-Poisson Process Approach

Base Station Cooperation for Energy Efficiency: A Gauss-Poisson Process Approach Base Station Cooperation for Energy Efficiency: A Gauss-Poisson Process Approach Pengcheng Qiao, Yi Zhong and Wenyi Zhang, Senior Member, IEEE Abstract Base station cooperation is an effective means of

More information

Coverage Analysis and Resource Allocation in Heterogeneous Networks. Sanam Sadr

Coverage Analysis and Resource Allocation in Heterogeneous Networks. Sanam Sadr Coverage Analysis and Resource Allocation in Heterogeneous Networks by Sanam Sadr A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Electrical

More information

On the Downlink SINR and Outage Probability of Stochastic Geometry Based LTE Cellular Networks with Multi-Class Services

On the Downlink SINR and Outage Probability of Stochastic Geometry Based LTE Cellular Networks with Multi-Class Services On the Downlink SINR and of Stochastic Geometry Based LTE Cellular Networks with Multi-Class Services 1 Shah Mahdi Hasan, Md. Abul Hayat and 3 Md. Farhad Hossain Department of Electrical and Electronic

More information

Randomized Channel Access Reduces Network Local Delay

Randomized Channel Access Reduces Network Local Delay Randomized Channel Access Reduces Network Local Delay Wenyi Zhang USTC Joint work with Yi Zhong (Ph.D. student) and Martin Haenggi (Notre Dame) 2013 Joint HK/TW Workshop on ITC CUHK, January 19, 2013 Acknowledgement

More information

Multiple Association in Ultra-Dense Networks

Multiple Association in Ultra-Dense Networks IEEE ICC 6 - Wireless Communications Symposium Multiple Association in Ultra-Dense Networks Mahmoud I. Kamel Electrical and Computer Engineering Concordia University Montreal, Quebec, Canada. Email: mah

More information

arxiv: v2 [cs.it] 29 Mar 2014

arxiv: v2 [cs.it] 29 Mar 2014 1 Spectral Efficiency and Outage Performance for Hybrid D2D-Infrastructure Uplink Cooperation Ahmad Abu Al Haija and Mai Vu Abstract arxiv:1312.2169v2 [cs.it] 29 Mar 2014 We propose a time-division uplink

More information

A New Analysis of the DS-CDMA Cellular Uplink Under Spatial Constraints

A New Analysis of the DS-CDMA Cellular Uplink Under Spatial Constraints A New Analysis of the DS-CDMA Cellular Uplink Under Spatial Constraints D. Torrieri M. C. Valenti S. Talarico U.S. Army Research Laboratory Adelphi, MD West Virginia University Morgantown, WV June, 3 the

More information

THE ever increasing demand for mobile data traffic continues

THE ever increasing demand for mobile data traffic continues 1 Analysis of Statistical QoS in Half Duplex and Full Duplex Dense Heterogeneous Cellular Networs Alireza Sadeghi, Student Member, IEEE, Michele Luvisotto, Student Member, IEEE, Farshad Lahouti, Senior

More information

Dual-Branch MRC Receivers in the Cellular Downlink under Spatial Interference Correlation

Dual-Branch MRC Receivers in the Cellular Downlink under Spatial Interference Correlation European Wireless 4 Dual-Branch MRC Receivers in the Cellular Downlink under Spatial Interference Correlation Ralph Tanbourgi, Harpreet S. Dhillon, Jeffrey G. Andrews and Friedrich K. Jondral Abstract

More information

Optimal Relay Placement for Cellular Coverage Extension

Optimal Relay Placement for Cellular Coverage Extension Optimal elay Placement for Cellular Coverage Extension Gauri Joshi, Abhay Karandikar Department of Electrical Engineering Indian Institute of Technology Bombay Powai, India 400076. Email: gaurijoshi@iitb.ac.in,

More information

MIMO Receiver Design in Impulsive Noise

MIMO Receiver Design in Impulsive Noise COPYRIGHT c 007. ALL RIGHTS RESERVED. 1 MIMO Receiver Design in Impulsive Noise Aditya Chopra and Kapil Gulati Final Project Report Advanced Space Time Communications Prof. Robert Heath December 7 th,

More information

Coverage and Rate Analysis of Super Wi-Fi Networks Using Stochastic Geometry

Coverage and Rate Analysis of Super Wi-Fi Networks Using Stochastic Geometry Coverage and Rate Analysis of Super Wi-Fi Networks Using Stochastic Geometry Neelakantan Nurani Krishnan, Gokul Sridharan, Ivan Seskar, Narayan Mandayam WINLAB, Rutgers University North Brunswick, NJ,

More information

Multihop Routing in Ad Hoc Networks

Multihop Routing in Ad Hoc Networks Multihop Routing in Ad Hoc Networks Dr. D. Torrieri 1, S. Talarico 2 and Dr. M. C. Valenti 2 1 U.S Army Research Laboratory, Adelphi, MD 2 West Virginia University, Morgantown, WV Nov. 18 th, 20131 Outline

More information

Achievable Transmission Capacity of Cognitive Radio Networks with Cooperative Relaying

Achievable Transmission Capacity of Cognitive Radio Networks with Cooperative Relaying Achievable Transmission Capacity of Cognitive Radio Networks with Cooperative Relaying Xiuying Chen, Tao Jing, Yan Huo, Wei Li 2, Xiuzhen Cheng 2, Tao Chen 3 School of Electronics and Information Engineering,

More information

Uplink and Downlink Rate Analysis of a Full-Duplex C-RAN with Radio Remote Head Association

Uplink and Downlink Rate Analysis of a Full-Duplex C-RAN with Radio Remote Head Association Uplink and Downlink Rate Analysis of a Full-Duplex C-RAN with Radio Remote Head Association Mohammadali Mohammadi 1, Himal A. Suraweera 2, and Chintha Tellambura 3 1 Faculty of Engineering, Shahrekord

More information

PERFORMANCE of predetection equal gain combining

PERFORMANCE of predetection equal gain combining 1252 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 8, AUGUST 2005 Performance Analysis of Predetection EGC in Exponentially Correlated Nakagami-m Fading Channel P. R. Sahu, Student Member, IEEE, and

More information

Geometric Analysis of Distributed Power Control and Möbius MAC Design

Geometric Analysis of Distributed Power Control and Möbius MAC Design WIRELESS COMMUNICATIONS AND MOBILE COMPUTING Wirel. Commun. Mob. Comput. 21; :1 29 RESEARCH ARTICLE Geometric Analysis of Distributed Power Control and Möbius MAC Design Zhen Tong 1 and Martin Haenggi

More information

A Soft-Limiting Receiver Structure for Time-Hopping UWB in Multiple Access Interference

A Soft-Limiting Receiver Structure for Time-Hopping UWB in Multiple Access Interference 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications A Soft-Limiting Receiver Structure for Time-Hopping UWB in Multiple Access Interference Norman C. Beaulieu, Fellow,

More information

MOBILE operators driven by the increasing number of

MOBILE operators driven by the increasing number of Uplink User-Assisted Relaying in Cellular Networks Hussain Elkotby, Student Member IEEE and Mai Vu, Senior Member IEEE Abstract We use stochastic geometry to analyze the performance of a partial decode-and-forward

More information

How user throughput depends on the traffic demand in large cellular networks

How user throughput depends on the traffic demand in large cellular networks How user throughput depends on the traffic demand in large cellular networks B. Błaszczyszyn Inria/ENS based on a joint work with M. Jovanovic and M. K. Karray (Orange Labs, Paris) 1st Symposium on Spatial

More information

On the Performance of Multi-tier Heterogeneous Cellular Networks with Idle Mode Capability

On the Performance of Multi-tier Heterogeneous Cellular Networks with Idle Mode Capability On the Performance of Multi-tier Heterogeneous Cellular Networks with Idle Mode Capability Chuan Ma, Ming Ding, He Chen, Zihuai Lin, Guoqiang Mao and David López-Pérez School of Electrical and Information

More information

Optimizing User Association and Spectrum. Allocation in HetNets: A Utility Perspective

Optimizing User Association and Spectrum. Allocation in HetNets: A Utility Perspective Optimizing User Association and Spectrum 1 Allocation in HetNets: A Utility Perspective Yicheng Lin, Wei Bao, Wei Yu, and Ben Liang arxiv:1412.5731v1 [cs.ni] 18 Dec 2014 Abstract The joint user association

More information

Analyzing Non-Orthogonal Multiple Access (NOMA) in Downlink Poisson Cellular Networks

Analyzing Non-Orthogonal Multiple Access (NOMA) in Downlink Poisson Cellular Networks Analyzing Non-Orthogonal Multiple Access (NOMA) in Downlink Poisson Cellular Networks Konpal Shaukat Ali, Hesham ElSawy, Anas Chaaban, Martin Haenggi, and Mohamed-Slim Alouini Abstract Non-orthogonal multiple

More information

Distributed Resource Allocation in D2D-Enabled Multi-tier Cellular Networks: An Auction Approach

Distributed Resource Allocation in D2D-Enabled Multi-tier Cellular Networks: An Auction Approach Distributed Resource Allocation in D2D-Enabled Multi-tier Cellular Networs: An Auction Approach 1 arxiv:1501.04199v2 [cs.ni] 20 Jan 2015 Monowar Hasan and Eram Hossain Department of Electrical and Computer

More information

Attack-Proof Collaborative Spectrum Sensing in Cognitive Radio Networks

Attack-Proof Collaborative Spectrum Sensing in Cognitive Radio Networks Attack-Proof Collaborative Spectrum Sensing in Cognitive Radio Networks Wenkai Wang, Husheng Li, Yan (Lindsay) Sun, and Zhu Han Department of Electrical, Computer and Biomedical Engineering University

More information

Femto-macro Co-channel Interference Coordination via Pricing Game

Femto-macro Co-channel Interference Coordination via Pricing Game emto-macro Co-channel Interference Coordination via Pricing Game Tong Zhou 1,2, Yan Chen 1, Chunxiao Jiang 3, and K. J. Ray Liu 1 1 Department of Electrical and Computer Engineering, University of Maryland,

More information

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang Wireless Communication: Concepts, Techniques, and Models Hongwei Zhang http://www.cs.wayne.edu/~hzhang Outline Digital communication over radio channels Channel capacity MIMO: diversity and parallel channels

More information

An Efficient Cooperation Protocol to Extend Coverage Area in Cellular Networks

An Efficient Cooperation Protocol to Extend Coverage Area in Cellular Networks An Efficient Cooperation Protocol to Extend Coverage Area in Cellular Networks Ahmed K. Sadek, Zhu Han, and K. J. Ray Liu Department of Electrical and Computer Engineering, and Institute for Systems Research

More information

Distributed Resource Allocation in D2D-Enabled Multi-tier Cellular Networks: An Auction Approach

Distributed Resource Allocation in D2D-Enabled Multi-tier Cellular Networks: An Auction Approach Distributed Resource Allocation in D2D-Enabled Multi-tier Cellular Networs: An Auction Approach Monowar Hasan and Eram Hossain Department of Electrical and Computer Engineering, University of Manitoba,

More information

This electronic thesis or dissertation has been downloaded from the King s Research Portal at

This electronic thesis or dissertation has been downloaded from the King s Research Portal at This electronic thesis or dissertation has been downloaded from the King s Research Portal at https://kclpure.kcl.ac.uk/portal/ Heterogeneous Cellular Networks With Energy and Spectral Efficient Techniques

More information

Adaptive Modulation, Adaptive Coding, and Power Control for Fixed Cellular Broadband Wireless Systems: Some New Insights 1

Adaptive Modulation, Adaptive Coding, and Power Control for Fixed Cellular Broadband Wireless Systems: Some New Insights 1 Adaptive, Adaptive Coding, and Power Control for Fixed Cellular Broadband Wireless Systems: Some New Insights Ehab Armanious, David D. Falconer, and Halim Yanikomeroglu Broadband Communications and Wireless

More information

Cooperative Handover Management in Dense Cellular Networks

Cooperative Handover Management in Dense Cellular Networks Cooperative Handover Management in Dense Cellular Networks Rabe Arshad, Hesham ElSawy, Sameh Sorour, Tareq Y. Al-Naffouri, and Mohamed-Slim Alouini Electrical Engineering Department, King Fahd University

More information

Combination of Dynamic-TDD and Static-TDD Based on Adaptive Power Control

Combination of Dynamic-TDD and Static-TDD Based on Adaptive Power Control Combination of Dynamic-TDD and Static-TDD Based on Adaptive Power Control Howon Lee and Dong-Ho Cho Department of Electrical Engineering and Computer Science Korea Advanced Institute of Science and Technology

More information

On the Feasibility of Sharing Spectrum. Licenses in mmwave Cellular Systems

On the Feasibility of Sharing Spectrum. Licenses in mmwave Cellular Systems On the Feasibility of Sharing Spectrum 1 Licenses in mmwave Cellular Systems Abhishek K. Gupta, Jeffrey G. Andrews, Robert W. Heath, Jr. arxiv:1512.129v2 [cs.it] 1 May 216 Abstract The highly directional

More information

THE STUDY OF LOCALIZATION in cellular networks

THE STUDY OF LOCALIZATION in cellular networks Localization Performance in Cellular Networks Javier Schloemann, Harpreet S. Dhillon, and R. Michael Buehrer Abstract When the Global Positioning System is unavailable, cellular networks become the dominant

More information

Power Control and Channel Allocation for D2D Underlaid Cellular Networks

Power Control and Channel Allocation for D2D Underlaid Cellular Networks 1 Power Control and Channel Allocation for DD Underlaid Cellular Networs Asmaa Abdallah, Student Member, IEEE, Mohammad M. Mansour, Senior Member, IEEE, and Ali Chehab, Senior Member, IEEE arxiv:183.983v1

More information

Wirelessly Powered Backscatter Communication Networks: Modeling, Coverage and Capacity

Wirelessly Powered Backscatter Communication Networks: Modeling, Coverage and Capacity Wirelessly Powered Backscatter Communication Networks: Modeling, Coverage and Capacity Kaifeng Han and Kaibin Huang Department of Electrical and Electronic Engineering The University of Hong Kong, Hong

More information

1534 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 33, NO. 8, AUGUST 2015

1534 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 33, NO. 8, AUGUST 2015 1534 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 33, NO. 8, AUGUST 2015 Spatial Throughput Maximization of Wireless Powered Communication Networks Yue Ling Che, Member, IEEE, Lingjie Duan, Member,

More information

Coverage probability analysis of three uplink power control schemes: Stochastic geometry approach

Coverage probability analysis of three uplink power control schemes: Stochastic geometry approach Herath et al. EURASIP Journal on Wireless Communications and Networking 18 18:141 https://doi.org/1.1186/s13638-18-11-7 RESEARCH Open Access Coverage probability analysis of three uplink power control

More information

Stochastic Modelling of Downlink Transmit Power in Wireless Cellular Networks

Stochastic Modelling of Downlink Transmit Power in Wireless Cellular Networks Stochastic Modelling of Downlink Transmit Power in Wireless Cellular Networks Boris Galkin, Jacek Kibiłda and Luiz A. DaSilva CONNECT, Trinity College Dublin, Ireland, E-mail: {galkinb,kibildj,dasilval}@tcd.ie

More information

Energy Coverage in Millimeterwave Energy Harvesting Networks

Energy Coverage in Millimeterwave Energy Harvesting Networks Energy Coverage in Millimeterwave Energy Harvesting Networs Talha Ahmed Khan, Ahmed Alhateeb and Robert W. Heath Jr. Abstract Wireless energy harvesting in millimeter wave mmwave) cellular networs is attractive,

More information

Stochastic Analysis of Two-Tier HetNets Employing LTE and WiFi

Stochastic Analysis of Two-Tier HetNets Employing LTE and WiFi Stochastic Analysis of Two-Tier HetNets Employing and WiFi George Arvanitakis, Florian Kaltenberger Eurecom Sophia Antipolis, France {George.Arvanitakis, Florian.Kaltenberger}@eurecom.fr Abstract In order

More information

Interference and Outage in Doubly Poisson Cognitive Networks

Interference and Outage in Doubly Poisson Cognitive Networks 1 Interference and Outage in Doubly Poisson Cognitive Networks Chia-han Lee and Martin Haenggi clee14,mhaenggi}@nd.edu Department of Electrical Engineering University of Notre Dame Notre Dame, IN 46556,

More information

Wireless communications: from simple stochastic geometry models to practice III Capacity

Wireless communications: from simple stochastic geometry models to practice III Capacity Wireless communications: from simple stochastic geometry models to practice III Capacity B. Błaszczyszyn Inria/ENS Workshop on Probabilistic Methods in Telecommunication WIAS Berlin, November 14 16, 2016

More information

An Accurate and Efficient Analysis of a MBSFN Network

An Accurate and Efficient Analysis of a MBSFN Network An Accurate and Efficient Analysis of a MBSFN Network Matthew C. Valenti West Virginia University Morgantown, WV May 9, 2014 An Accurate (shortinst) and Efficient Analysis of a MBSFN Network May 9, 2014

More information

Optimizing User Association and Frequency Reuse for Heterogeneous Network under Stochastic Model

Optimizing User Association and Frequency Reuse for Heterogeneous Network under Stochastic Model Optimizing User Association and Frequency Reuse for Heterogeneous Network under Stochastic Model Yicheng Lin and Wei Yu Department of Electrical and Computer Engineering University of Toronto, Toronto,

More information

Adaptive Precoding for Femtocell Interference Mitigation

Adaptive Precoding for Femtocell Interference Mitigation Adaptive Precoding for Femtocell Interference Mitigation Ahmed R. Elsherif, Ahmed Ahmedin, Zhi Ding, and Xin Liu University of California, Davis, California 95616 Email: {arelsherif,ahmedin,zding,xinliu}@ucdavis.edu

More information

Performance Evaluation of Millimeter-Wave Networks in the Context of Generalized Fading

Performance Evaluation of Millimeter-Wave Networks in the Context of Generalized Fading Performance Evaluation of Millimeter-Wave Networks in the Context of Generalized Fading Jacek Kibiłda, Young Jin Chun, Fadhil Firyaguna, Seong Ki Yoo, Luiz A. DaSilva, and Simon L. Cotton CONNECT, Trinity

More information

Comparison of Decentralized Time Slot Allocation Strategies for Asymmetric Traffic in TDD Systems

Comparison of Decentralized Time Slot Allocation Strategies for Asymmetric Traffic in TDD Systems 1 Comparison of Decentralized Time Slot Allocation Strategies for Asymmetric Traffic in TDD Systems Illsoo Sohn, Kwang Bok Lee, and Young Sil Choi School of Electrical Engineering and Computer Science

More information

On the Feasibility of Sharing Spectrum. Licenses in mmwave Cellular Systems

On the Feasibility of Sharing Spectrum. Licenses in mmwave Cellular Systems On the Feasibility of Sharing Spectrum 1 Licenses in mmwave Cellular Systems Abhishek K. Gupta, Jeffrey G. Andrews, Robert W. Heath, Jr. arxiv:1512.129v1 [cs.it] 4 Dec 215 Abstract The highly directional

More information

Interference and Throughput Analysis of Uplink User-Assisted Relaying in Cellular Networks

Interference and Throughput Analysis of Uplink User-Assisted Relaying in Cellular Networks Interference and Throughput Analysis of Uplink User-Assisted Relaying in Cellular Networks Hussain Elkotby and Mai Vu Department of Electrical and Computer Engineering, Tufts University, Medfo, MA, USA

More information

Asynchronous Ad Hoc Networks with Wireless Powered Cognitive Communications

Asynchronous Ad Hoc Networks with Wireless Powered Cognitive Communications Asynchronous Ad Hoc Networks with Wireless Powered Cognitive Communications Eleni Demarchou, Student Member, IEEE, Constantinos Psomas, Senior Member, IEEE, and Ioannis Krikidis, Fellow, IEEE arxiv:93.825v

More information

Gaussian Random Field Approximation for Exclusion Zones in Cognitive Radio Networks

Gaussian Random Field Approximation for Exclusion Zones in Cognitive Radio Networks Gaussian Random Field Approximation for Exclusion Zones in Cognitive Radio Networks Zheng Wang and Brian L. Mark Dept. of Electrical and Computer Engineering George Mason University, MS 1G5 4400 University

More information

Bandwidth-SINR Tradeoffs in Spatial Networks

Bandwidth-SINR Tradeoffs in Spatial Networks Bandwidth-SINR Tradeoffs in Spatial Networks Nihar Jindal University of Minnesota nihar@umn.edu Jeffrey G. Andrews University of Texas at Austin jandrews@ece.utexas.edu Steven Weber Drexel University sweber@ece.drexel.edu

More information

Energy Harvested and Achievable Rate of Massive MIMO under Channel Reciprocity Error

Energy Harvested and Achievable Rate of Massive MIMO under Channel Reciprocity Error Energy Harvested and Achievable Rate of Massive MIMO under Channel Reciprocity Error Abhishek Thakur 1 1Student, Dept. of Electronics & Communication Engineering, IIIT Manipur ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

Can cellular networks handle 1000x the data?

Can cellular networks handle 1000x the data? Can cellular networks handle 1000x the data? Jeffrey G. Andrews Director, Wireless Networking and Comm. Group Department of Electrical and Computer Engineering The University of Texas at Austin Seminar,

More information

Color of Interference and Joint Encoding and Medium Access in Large Wireless Networks

Color of Interference and Joint Encoding and Medium Access in Large Wireless Networks Color of Interference and Joint Encoding and Medium Access in Large Wireless Networks Nithin Sugavanam, C. Emre Koksal, Atilla Eryilmaz Department of Electrical and Computer Engineering The Ohio State

More information

Interference Mitigation Using Uplink Power Control for Two-Tier Femtocell Networks

Interference Mitigation Using Uplink Power Control for Two-Tier Femtocell Networks SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 1 Interference Mitigation Using Uplink Power Control for Two-Tier Femtocell Networks Han-Shin Jo, Student Member, IEEE, Cheol Mun, Member, IEEE,

More information

Hype, Myths, Fundamental Limits and New Directions in Wireless Systems

Hype, Myths, Fundamental Limits and New Directions in Wireless Systems Hype, Myths, Fundamental Limits and New Directions in Wireless Systems Reinaldo A. Valenzuela, Director, Wireless Communications Research Dept., Bell Laboratories Rutgers, December, 2007 Need to greatly

More information

Coverage and Throughput Analysis with a. Non-Uniform Femtocell Deployment

Coverage and Throughput Analysis with a. Non-Uniform Femtocell Deployment Coverage and Throughput Analysis with a Non-Uniform Femtocell eployment He Wang, Student Member, IEEE, Xiangyun Zhou, Member, IEEE, Mark C. Reed, Senior Member, IEEE arxiv:35.3694v [cs.it] 6 May 23 Abstract

More information

Mobility and Fading: Two Sides of the Same Coin

Mobility and Fading: Two Sides of the Same Coin 1 Mobility and Fading: Two Sides of the Same Coin Zhenhua Gong and Martin Haenggi Department of Electrical Engineering University of Notre Dame Notre Dame, IN 46556, USA {zgong,mhaenggi}@nd.edu Abstract

More information

Dynamic Subcarrier, Bit and Power Allocation in OFDMA-Based Relay Networks

Dynamic Subcarrier, Bit and Power Allocation in OFDMA-Based Relay Networks Dynamic Subcarrier, Bit and Power Allocation in OFDMA-Based Relay Networs Christian Müller*, Anja Klein*, Fran Wegner**, Martin Kuipers**, Bernhard Raaf** *Communications Engineering Lab, Technische Universität

More information

The Transmission Capacity of Frequency-Hopping Ad Hoc Networks

The Transmission Capacity of Frequency-Hopping Ad Hoc Networks The Transmission Capacity of Frequency-Hopping Ad Hoc Networks Matthew C. Valenti Lane Department of Computer Science and Electrical Engineering West Virginia University June 13, 2011 Matthew C. Valenti

More information

Spectrum Management and Cognitive Radios Alessandro Guidotti, XXIV ciclo

Spectrum Management and Cognitive Radios Alessandro Guidotti, XXIV ciclo Bologna, 24-25/01/2012 Spectrum Management and Cognitive Radios Alessandro Guidotti, XXIV ciclo DEIS Fondazione Ugo Bordoni Is spectrum lacking? Command & Control spectrum allocation model Static spectrum

More information

Coverage and Rate in Finite-Sized Device-to-Device Millimeter Wave Networks

Coverage and Rate in Finite-Sized Device-to-Device Millimeter Wave Networks Coverage and Rate in Finite-Sized Device-to-Device Millimeter Wave Networks Matthew C. Valenti, West Virginia University Joint work with Kiran Venugopal and Robert Heath, University of Texas Under funding

More information

System Level Simulations for Cellular Networks Using MATLAB

System Level Simulations for Cellular Networks Using MATLAB System Level Simulations for Cellular Networks Using MATLAB Sriram N. Kizhakkemadam, Swapnil Vinod Khachane, Sai Chaitanya Mantripragada Samsung R&D Institute Bangalore Cellular Systems Cellular Network:

More information

Can Operators Simply Share Millimeter Wave Spectrum Licenses?

Can Operators Simply Share Millimeter Wave Spectrum Licenses? Can Operators Simply Share Millimeter Wave Spectrum Licenses? Abhishek K. Gupta, Jeffrey G. Andrews, Robert W. Heath, Jr. Wireless Networking and Communications Group Department of Electrical and Computer

More information

Modeling and Analysis of User-Centric and Disjoint Cooperation in Network MIMO Systems. Caiyi Zhu

Modeling and Analysis of User-Centric and Disjoint Cooperation in Network MIMO Systems. Caiyi Zhu Modeling and Analysis of User-Centric and Disjoint Cooperation in Network MIMO Systems by Caiyi Zhu A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate

More information

Designing Energy Efficient 5G Networks: When Massive Meets Small

Designing Energy Efficient 5G Networks: When Massive Meets Small Designing Energy Efficient 5G Networks: When Massive Meets Small Associate Professor Emil Björnson Department of Electrical Engineering (ISY) Linköping University Sweden Dr. Emil Björnson Associate professor

More information

Cooperative Tx/Rx Caching in Interference Channels: A Storage-Latency Tradeoff Study

Cooperative Tx/Rx Caching in Interference Channels: A Storage-Latency Tradeoff Study Cooperative Tx/Rx Caching in Interference Channels: A Storage-Latency Tradeoff Study Fan Xu Kangqi Liu and Meixia Tao Dept of Electronic Engineering Shanghai Jiao Tong University Shanghai China Emails:

More information

Random Access Analysis for Massive IoT Networks under A New Spatio- Temporal Model: A Stochastic Geometry Approach

Random Access Analysis for Massive IoT Networks under A New Spatio- Temporal Model: A Stochastic Geometry Approach Random Access Analysis for Massive IoT Networks under A New Spatio- Temporal Model: A Stochastic Geometry Approach Jiang, N; Deng, Y; Kang, X; Nallanathan, A 28 IEEE. Personal use of this material is permitted.

More information

Superposition Coding in the Downlink of CDMA Cellular Systems

Superposition Coding in the Downlink of CDMA Cellular Systems Superposition Coding in the Downlink of CDMA Cellular Systems Surendra Boppana and John M. Shea Wireless Information Networking Group University of Florida Feb 13, 2006 Outline of the talk Introduction

More information

Deployment and Radio Resource Reuse in IEEE j Multi-hop Relay Network in Manhattan-like Environment

Deployment and Radio Resource Reuse in IEEE j Multi-hop Relay Network in Manhattan-like Environment Deployment and Radio Resource Reuse in IEEE 802.16j Multi-hop Relay Network in Manhattan-like Environment I-Kang Fu and Wern-Ho Sheen Department of Communication Engineering National Chiao Tung University

More information

Throughput reliability analysis of cloud-radio access networks Fatemeh Ghods *, Abraham Fapojuwo and Fadhel Ghannouchi

Throughput reliability analysis of cloud-radio access networks Fatemeh Ghods *, Abraham Fapojuwo and Fadhel Ghannouchi WIRELESS COMMUNICATIONS AND MOBILE COMPUTING Wirel. Commun. Mob. Comput. 26; 6:2824 2838 Published online 9 September 26 in Wiley Online Library (wileyonlinelibrary.com)..2728 RESEARCH ARTICLE Throughput

More information

Development of Outage Tolerant FSM Model for Fading Channels

Development of Outage Tolerant FSM Model for Fading Channels Development of Outage Tolerant FSM Model for Fading Channels Ms. Anjana Jain 1 P. D. Vyavahare 1 L. D. Arya 2 1 Department of Electronics and Telecomm. Engg., Shri G. S. Institute of Technology and Science,

More information

Successive Interference Cancellation in Uplink Cellular Networks

Successive Interference Cancellation in Uplink Cellular Networks 23 IEEE 4th Workshop on Signal Processing Advances in Wireless Communications SPAWC Successive Interference Cancellation in Uplink Cellular Networks Matthias Wildemeersch,TonyQ.S.Quek,MariosKountouris,andCornelisH.Slump

More information

Aadptive Subcarrier Allocation for Multiple Cognitive Users over Fading Channels

Aadptive Subcarrier Allocation for Multiple Cognitive Users over Fading Channels Proceedings of the nd International Conference On Systems Engineering and Modeling (ICSEM-3) Aadptive Subcarrier Allocation for Multiple Cognitive Users over Fading Channels XU Xiaorong a HUAG Aiping b

More information

Evaluation of the Effects of the Co-Channel Interference on the Bit Error Rate of Cellular Systems for BPSK Modulation

Evaluation of the Effects of the Co-Channel Interference on the Bit Error Rate of Cellular Systems for BPSK Modulation The 7 th International Telecommunications ymposium (IT 00 Evaluation of the Effects of the Co-Channel Interference on the Bit Error Rate of Cellular ystems for BPK Modulation Daniel Altamirano and Celso

More information

THE key objectives of future generation wireless communication. Cache-Aided Millimeter Wave Ad-Hoc Networks with Contention-Based Content Delivery

THE key objectives of future generation wireless communication. Cache-Aided Millimeter Wave Ad-Hoc Networks with Contention-Based Content Delivery SUBMITTED TO THE IEEE TRANSACTIONS ON COMMUNICATIONS Cache-Aided Millimeter Wave Ad-Hoc Networks with Contention-Based Content Delivery Satyanarayana Vuppala, Member, IEEE, Thang X. Vu, Member, IEEE, Sumit

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

PERFORMANCE ANALYSIS OF DIFFERENT M-ARY MODULATION TECHNIQUES IN FADING CHANNELS USING DIFFERENT DIVERSITY

PERFORMANCE ANALYSIS OF DIFFERENT M-ARY MODULATION TECHNIQUES IN FADING CHANNELS USING DIFFERENT DIVERSITY PERFORMANCE ANALYSIS OF DIFFERENT M-ARY MODULATION TECHNIQUES IN FADING CHANNELS USING DIFFERENT DIVERSITY 1 MOHAMMAD RIAZ AHMED, 1 MD.RUMEN AHMED, 1 MD.RUHUL AMIN ROBIN, 1 MD.ASADUZZAMAN, 2 MD.MAHBUB

More information

Performance Characterization of Spatially Random Energy Harvesting Underlay D2D Networks with Transmit Power Control

Performance Characterization of Spatially Random Energy Harvesting Underlay D2D Networks with Transmit Power Control 1 Performance Characterization of Spatially Random Energy Harvesting Underlay D2D Networks with Transmit Power Control S. Kusaladharma and C. Tellambura, Fellow, IEEE Department of Electrical and Computer

More information

TO efficiently cope with the rapid increase in wireless traffic,

TO efficiently cope with the rapid increase in wireless traffic, 1 Mode Selection and Resource Allocation in Device-to-Device Communications: A Matching Game Approach S. M. Ahsan Kazmi, Nguyen H. Tran, Member, IEEE, Walid Saad, Senior Member, IEEE, Zhu Han, Fellow,

More information