MICROWAVE communication systems require numerous

Size: px
Start display at page:

Download "MICROWAVE communication systems require numerous"

Transcription

1 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 4, APRIL The Effects of Component Q Distribution on Microwave Filters Chih-Ming Tsai, Member, IEEE, and Hong-Ming Lee, Student Member, IEEE Abstract The effects of lossy components on the passband response of a bandpass filter are studied in this paper. It is found that the resonator has pronounced effects on the insertion losses, while its effects on the group delays are rather minor. The firstorder approximation is used to estimate the deviations of insertion loss and group delay from the ideal. The effects of a lossy resonator in each stage are individually analyzed to evaluate which components are more critical and should be paid more attention. Filters designed by the predistortion technique are also discussed with emphasis on the effects of component distribution on the transmission level. When resonators with different are used in a filter, a bell-shaped distribution is proposed to achieve the optimal passband response. Finally, three filters with different component distributions were designed by combining the dielectric and microstrip-line resonators, and the measured results agreed well with the theoretical predictions. Index Terms Filter distortion, lossy circuits, microwave filters, factor. I. INTRODUCTION MICROWAVE communication systems require numerous bandpass filters for functions such as preselection and suppression of mixer spurious products. Cost, size, and performance are the important considerations for the filter in the design of microwave communication systems. The design procedure of microwave filter starts from finding the low-pass prototype having the desired insertion loss response and then scaling the frequency and impedance to yield the parameters of resonators. However, the component losses, i.e., factors, are not taken into account in the traditional filter design, and thus the frequency responses may have serious deviations from the expected specifications due to the dissipation losses. The most evident deviation of the insertion loss is in the passband, especially around the band edges, and thus leads to a rounded passband response. In order to reduce this effect, high- resonators are usually required in high-frequency filter designs. However, as the frequencies go higher, the component losses and distortions become unnegligible. Therefore, a filter design that takes into account the finite component is desirable. Generally, all of the resonators in a filter are selected to be the same type, and therefore the component (unloaded) s of all resonators are equal, i.e., they are uniformly distributed Manuscript received September 22, 2005; revised January 6, This work was supported in part by the National Science Council, Taiwan, R.O.C., under Grant NSC E The authors are with the Institute of Computer and Communication Engineering, Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C. ( tsaic@mail.ncku.edu.tw). Digital Object Identifier /TMTT among the stages. The dissipated insertion loss of the filter can be estimated from its original lossless transmission function by shifting the zeros and poles a constant distance of away from the axis in the plane. The distance is given by [1], [5] (1) where and are the unloaded of the resonators and the fractional bandwidth, respectively. However, by using this method, the different effects of each resonator on the insertion loss are concealed, and it is unable to distinguish which resonator is more crucial. If this information is available, more attention could be paid to a few critical components. The cost and filter size could even be reduced if the others are replaced with low- alternatives. A simple formula was derived by Cohn to evaluate the insertion loss of a filter with resonators of nonuniform distribution. However, only the loss at the center of the passband could be determined [2]. In order to study and compare the loss effects over the entire passband caused by each lossy resonator, first-order approximations of insertion loss and group delay are given in this paper. The effect of each lossy resonator was analyzed individually and compared. The responses of the filters designed with the lossless parameters for the maximally flat or equal-ripple functions will be distorted by the presence of component losses. However, it is possible for the filters composed of low- resonators to have their responses approach these functions, if they are designed with the method of predistortion technique [3] [7]. Once the unloaded s of the resonators are known, one may use the predistortion technique to compute the circuit parameters. In order to flatten the insertion loss that is rounded at the band edges, the predistortion technique introduces proper mismatch in the band center, and, thus, maximally flat or equal-ripple responses can still be obtained. Fig. 1 shows a typical insertion loss response of a predistorted Chebyshev filter, which is compared to that of a lossy filter designed by the traditional lossless parameters. Although the unloaded s are the same, the passband transmission of the predistorted filter is much lower. The predistortion technique is applicable to the communication system that needs a low-variation transmission in the passband, such as satellite transponder input multiplexers [5], [6]. The high insertion loss may be compensated by a low-noise amplifier (LNA) followed by the filter [6]. In this paper, the predistorted filter design is also discussed with the effects of component distribution. Finally, three filters were designed to demonstrate the effects of component distribution. These filters were the combinations of high- dielectric resonators and relatively low- mi /$ IEEE

2 1546 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 4, APRIL 2006 To evaluate the deviation of insertion loss caused by the lossy resonators, the lossless transmission function of the prototype filter is first determined and given by the general form as where and. The rest of the coefficients are functions of the prototype values. The response of along the -axis is then transformed into the natural logarithmic form as (4) Fig. 1. Comparison of the insertion losses between the traditional and predistorted filters. (5) where and. The lossy conductances and resistances cause the deviation of by. The first-order deviation of is given by McDonald and Temes studies in [4] as Fig. 2. (a) Circuit model of a lossy bandpass filter and (b) its low-pass prototype. crostrip-line resonators. The passband transmissions of the filters with their high- resonators in the inner and outer stages are compared in order to verify the theoretical predictions. (6) This equation was extended here to derive the expressions of the insertion loss deviation. Letting and, the in (6) can then be obtained as II. FIRST-ORDER APPROXIMATIONS OF THE DEVIATION OF PASSBAND RESPONSES (7) The circuit model of lossy bandpass filter is shown in Fig. 2(a); the shunt conductances and series resistances attached to the resonators represent the lossy terms. It is rather complicated to directly estimate the loss effects of the bandpass filter. For simplicity, the low-pass prototype of the bandpass filter, as shown in Fig. 2(b), is used for the analysis of insertion loss deviation. The conductances and resistances in Fig. 2(b) are given by [2] Therefore, the deviation of can be written as for is odd (2) for is even (3) where is the element value of the filter prototype. The fractional bandwidth herein represents the 3-dB bandwidth for Butterworth filters and the equal-ripple bandwidth for Chebyshev filters. It is obvious that the filter is less lossy if the filter has a larger bandwidth or higher resonators. where is part of and is defined as the factor of insertion loss deviation. Equation (8) is the general form of for calculating the deviation of insertion loss. To recover the decibel scale of the deviation of, the following equation can be used: (8) db (9)

3 TSAI AND LEE: EFFECTS OF COMPONENT DISTRIBUTION ON MICROWAVE FILTERS 1547 FUNCTION D TABLE I OF THE THIRD- AND FOURTH-ORDER FILTERS The effect on the insertion loss due to the lossy component in each stage is characterized by the deviation factor.for small-ripple db Chebyshev filters, the deviation in the passband can be simply approximated by db (10) The functions for third- and fourth-order filters are listed in Table I. The expressions of for higher order filters are more complicated. The zeroth-order terms of for all of the filters are found to be or. For the filters that are matched at, i.e.,, one can calculate the deviation of as db (11) which coincides with the result of [2]. However, for the other filters with, (8) is more accurate in the estimate of the mid-band loss. Moreover, by using (8) or (10), the deviation of over the entire passband can be easily examined. As examples, of the third- to fifth-order Butterworth filters and Chebyshev filters with 0.1-dB ripple are plotted in Figs. 3 and 4, respectively. The frequency scale of the low-pass filters is used and the corresponding frequency of the bandpass filters can be calculated by the frequency transformation as (12) where is the central frequency of the bandpass filters. The frequency ranges of the curves are plotted from 1 to 1 and correspond to the bandwidths of the bandpass filters. Fig. 3. Deviation factor of insertion loss F in each stage for the: (a) thirdorder, (b) fourth-order, and (c) fifth-order Butterworth filter. It is obvious that, for all of the filters, the deviations caused by the lossy components in the first and last stages are less and more uniform than those by the others. This is because the lossy terms of the input/output resonators are directly attached to the terminations. The loss of a filter caused by the outer-stage resonators can be estimated by the power division between the lossy terms and terminations. Therefore, the insertion loss deviation is uniform over the passband. However, it is not easy to intuitively explain the loss effects of the inner-stage resonators. As shown

4 1548 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 4, APRIL 2006 caused by the losses could be sim- deviation of the phase of ilarly derived as (13) where can be obtained as (14) Therefore, can be expressed by (15) The deviation of group delay can then be yielded by the derivative of with respect to as (16) Fig. 4. Deviation factor of insertion loss F in each stage for the: (a) thirdorder, (b) fourth-order, and (c) fifth-order Chebyshev filter with 0.1-dB ripple. in these figures, when the lossy elements are present closer to the middle stage, the filter will suffer from more loss at the band edges. Therefore, in order to avoid the rounded band edges and maintain a flat passband insertion loss, the resonators which are closer to the middle of the filter should have higher unloaded s. The component losses will also affect the group delay of filter transmissions. As the expression of in (6), the first-order where is defined as the factor of group delay deviation. Similarly, of the third-order to fifth-order Butterworth filters and Chebyshev filters with 0.1-dB ripple, which are normalized to their original group delay, are plotted in Figs. 5 and 6, respectively. The group delay has the largest deviations around the band edges due to the losses, and the negative values of could actually help to lower the peaks of group delay. The group delay deviations in the band center are minor. For a typical filter with and, the group delay deviations caused by the losses in each stage are less than 2%. Furthermore, is either positive or negative in the band center, and thus the group delay deviations due to the losses could offset each other. This results in a group delay that is close to the ideal in the band center. Therefore, the loss effects on the group delay are not as severe as those on the magnitude. The variation of group delay over the passband could, in fact, be slightly improved with the introduction of lossy components. As examples, two fifth-order Chebyshev filters with 0.1-dB ripple and 10% bandwidth are given to demonstrate the effects of component distributions. They are denoted filter A and filter B, with the distributions given by and, respectively. Fig. 7(a) gives the passband insertion losses of the two filters, which are compared with the responses of a lossless filter. It shows that the midband loss of filter B is better since its average is larger. However, in filter B, the unloaded s of the resonators are decreased with their positions closer to the middle stage, which are contrary to those in filter A, and, therefore, the insertion loss of filter B at band edges is larger and rounded. It is apparent that filter A has a flatter insertion loss and still keeps sharp band edges, even though its average is lower. For comparison, three filter responses with uniformly distributed,, and

5 TSAI AND LEE: EFFECTS OF COMPONENT DISTRIBUTION ON MICROWAVE FILTERS 1549 Fig. 5. Normalized deviation factor of group delay F = in each stage for the: (a) third-order, (b) fourth-order, and (c) fifth-order Butterworth filter. for the resonators are given in Fig. 7(b). It is obvious the response of the filter with is highly distorted, and the others with higher resonators are much better and close to the ideal. Therefore, increasing the component can help to improve the filter response, and the distribution should be taken into account for filter design that consists of different kinds of resonators. The resonators at the first and last stages have the least effect on the passband responses and might be replaced with lower alternatives for the consideration of Fig. 6. Normalized deviation factor of group delay F = in each stage for the: (a) third-order, (b) fourth-order, and (c) fifth-order Chebyshev filter with 0.1-dB ripple. cost and circuit size reduction. Moreover, the resonators that are closer to the middle stage are more critical to the insertion loss and should be carefully manufactured. The group delays of filters A and B are shown in Fig. 7(c). It was found that they have the largest deviations from the ideal at the band edges, but in a positive sense, because the group delay variations over the entire passband are reduced. Moreover, in the band center, the group delays are undistinguishable from those of the ideal.

6 1550 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 4, APRIL 2006 [3] [6]. The presence of component losses will distort the passband responses of the traditional filter design. By using the predistortion technique, mismatch is introduced in the band center to compensate for the rounded band edges such that the entire passband response could still be flat. Therefore, the predistorted filter will experience larger reflection and insertion loss. However, it is still acceptable in some particular applications such as the satellite transponder [5], [6]. It is known that, for a filter with uniform s, its zeros and poles of the transmission function are shifted left in the plane by a distance of as shown by (1). For a predistorted filter, its poles are moved to the right in advance to offset their shifts due to the losses. However, for the predistorted filters having zeros, their zeros cannot be moved and need to be fixed on the -axis for the feasibility of filter synthesis. In this paper, only the allpole (ladder) filters are discussed, and their lossless predistorted transmission functions are given by (17) Fig. 7. (a) Passband insertion losses of filters A and B, which are compared with the response of a lossless filter and (b) three S responses of the filters with uniformly distributed Q = 100, 1000, and 5000 for comparison. (c) Group delays of filters A and B and the ideal lossless filter. This example shows that the resonator has more pronounced effects on the filter shape than the group delay. III. EFFECT OF COMPONENT DISTRIBUTION ON THE TRANSMISSION LEVEL OF THE PREDISTORTED FILTERS Here, the effect of component distribution is discussed for the filter designed with a specific predistortion technique where is the original transmission function and is a constant to ensure the maximum of is unity. It is expected that has two peaks at its band edges to overcome the rounding effect caused by the losses. The design procedure was discussed in detail in [7]. This design method cannot be applied to filters with nonuniform distributions; for these, the method proposed by McDonald and Temes [4] might be used. Low-pass prototype filters are also used to simplify the predistortion procedure. Several sixth-order filters, which are denoted filters C H, are given as examples, and they are all predistorted to have a Chebyshev filter response with a 10% bandwidth and 0.1-dB ripple. The unloaded s of the resonators in filters C and D are uniformly distributed, and they are given 1000 and 100, respectively. On the other hand, filters E H consist of resonators with both the s of 1000 and 100. The distributions and the low-pass prototype parameters of these predistorted filters are given in Table II, with. The passband insertion losses of these filters are shown in Fig. 8. It is apparent that all of the filters have Chebyshev-like insertion losses, and the differences between them are their transmission levels, which are also summarized in Table II. Since these predistorted filters have the same pole distributions as that of a lossless filter, their group delay responses are also the same. Table II shows that the predistorted filters will suffer from significant loss on their transmission when the number of low- resonators is increased. Filters E G have the same composition of resonators but different distributions, and it was found that filter E, which has its low- resonators at the first and last stages, has the least insertion loss. Generally, when the s of the predistorted filters are not uniformly distributed, they should be arranged to have a bell-shaped distribution for maximizing the transmission level. This result is similar to that discussed in the previous section, which states that the traditional filter should have higher for the resonator closer to the middle stage to decrease the loss at the band edges.

7 TSAI AND LEE: EFFECTS OF COMPONENT DISTRIBUTION ON MICROWAVE FILTERS 1551 TABLE II LOW-PASS PROTOTYPE PARAMETERS OF THE PREDISTORTED FILTERS Fig. 8. Passband insertion losses of filters C H. IV. FILTER DESIGN EXAMPLES To experimentally verify the theoretical studies, three fourth-order filters were designed to demonstrate the effects of component distribution. These filters, denoted filters I III, are composed of dielectric and microstrip-line resonators, and they were designed to have central frequencies around 10 GHz. Filter I consists of dielectric resonators only, and its circuit structure is shown in Fig. 9(a). The filter is fed by half-wavelength open stubs, which were fabricated on the Rogers RO3003 substrate with a relative dielectric constant of 3, a thickness of 0.51 mm, and a loss tangent of The two outer resonators are located near the centers of the open stubs to maximize the magnetic coupling. In order to increase the bandwidth, low-impedance transmission lines were used to transform the 50- termination to a lower impedance for a smaller loaded. The unloaded of the dielectric resonators was measured to be about A housing is needed for the dielectric resonator filter, as shown in Fig. 9(b). The couplings between the resonators are controlled by the distances between them, and their resonant frequencies can be fine tuned with the screws. The filter design followed the time-domain tuning method [8], and the measured results are given in Fig. 9(c). Filters II and III consist of both the dielectric and microstrip-line resonators, and their circuit structures are shown in Figs. 10(a) and 11(a), respectively. The transmission lines were also fabricated on the Rogers RO3003 substrate. The half-wavelength transmission lines were used as the resonators, and their unloaded s were measured to be 150. The dielectric resonators were placed in the inner and outer stages for filters Fig. 9. (a) Photograph of filter I. (b) Complete structure with a housing. (c) Measured and simulation results. II and III, respectively. These two filters need to be housed as well. The time-domain tuning method was also used to optimize their passband responses, and their measured results are shown in Figs. 10(b) and 11(b). Among these three filters, additional transmission zeros were found at the lower or upper side of the passband. This is because the nonadjacent resonators are not fully isolated, and there exists a cross-coupling effect between them. The bandwidth of filter I was measured to be 1.8%, and those of filters II and III were intentionally designed to be similar and about 2.5%. The comparisons between the simulation and measured results of filters I III are also shown in Fig All of the simulated filters are given as Chebyshev filters with 0.1-dB ripple. Since there exist cross-coupling effects in the fabricated filters, the measured out-of-band responses are different from the simulations of the all-pole filters. Also, because the filters are manually tuned, the return losses in the passbands are somewhat different.

8 1552 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 4, APRIL 2006 Fig. 12. Comparison among the insertion losses of filters I III. Fig. 10. (a) Photograph of filter II. (b) Measured and simulation results. their passband responses are quite different due to their component distributions. It should be noted that the low- resonators will not only degrade the filter transmission but also the reflection response. Their midband transmissions were measured to be approximately 4 db. However, the high- resonators of filter II were placed in the inner stages, and therefore it has a uniform insertion loss in the passband. It is almost a shift in transmission level from the ideal. On the contrary, filter III has low- resonators in the middle stages, and its passband transmission is highly distorted and rounded. The measured midband transmission is about db lower than the estimations, which is supposed to be caused by the losses of the connectors and the input/output transmission lines. These measured results show good agreements with the theoretical predictions and these experiments have demonstrated the importance of component distribution. Fig. 12 gives the comparison among insertion losses of the three filters. Fig. 11. (a) Photograph of filter III. (b) Measured and simulation results. However, the trends of the measured and simulated responses in the passbands of filters I-III are similar. Filter I, which is composed of all-high resonators, has the smallest bandwidth and highest transmission, which is measured to be approximately 1.1 db. Although filters II and III have the same components, V. CONCLUSION The effects of component distribution on the passband responses of microwave filters have been studied in this paper. It was found that the resonator has pronounced effects on the insertion losses, while its effect on the group delays are rather minor. In order to find the critical components which are sensitive to component losses, the first-order approximation has been derived in this paper to estimate the deviation of passband transmission. For the traditional filter design, it was found that the resonators in the first and last stages have the least effect on the insertion loss, and they might be replaced with low- alternatives for cost or circuit-size reduction. The resonators closer to the middle stage are more crucial to the passband insertion loss, especially at the band edges, and therefore they should be carefully manufactured. The filters designed with the predistortion technique were also discussed with different component distributions. Similarly, the lossy resonators in the first and last stages cause the least loss on the transmission level. When the lossy resonators are placed in the inner stages, the predistorted filter will suffer from more severe insertion loss. Generally, for both the traditional and predistorted filters designed with different kinds of resonators, a bell-shaped distribution should be chosen to optimize the passband responses. Three filters had

9 TSAI AND LEE: EFFECTS OF COMPONENT DISTRIBUTION ON MICROWAVE FILTERS 1553 dis- been designed to demonstrate the effects of component tribution and verify the theoretical studies. REFERENCES [1] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filter, Impedance-Matching Networks, and Coupling Structures. Norwood, MA: Artech House, 1980, ch. 4. [2] S. B. Cohn, Dissipation loss in multiple-coupled-resonator filters, Proc. IRE, vol. 47, no. 8, pp , Aug [3] M. Dishal, Design of dissipative bandpass filters producing desired exact amplitude-frequency characteristics, Proc. IRE, vol. 37, no. 9, pp , Sep [4] J. MacDonald and G. Temes, A simple method for the predistortion of filter transfer functions, IEEE Trans. Circuit Theory, vol. CT-10, pp , Sep [5] A. Williams, W. Bush, and R. Bonetti, Predistortion techniques for multicoupled resonator filters, IEEE Trans. Microw. Theory Tech., vol. MTT-33, no. 5, pp , May [6] M. Yu, W.-C. Tang, A. Malarky, V. Dokas, R. Cameron, and Y. Wang, Predistortion technique for cross-coupled filters and its application to satellite communication systems, IEEE Trans. Microw. Theory Tech., vol. 51, no. 12, pp , Dec [7] I. Hunter, Theory and Design of Microwave Filters. London, U.K.: IEE Press, 2001, ch. 8. [8] Simplified filter tuning using time domain, Agilent Technol., Palo Alto, CA, Applicat. Note , Chih-Ming Tsai (S 92 M 94) received the B.S. degree from the National Tsing Hua University, Hsinchu, Taiwan, R.O.C., in 1987, the M.S. degree from the Polytechnic University, Brooklyn, NY, in 1991, and the Ph.D. degree from the University of Colorado at Boulder, in 1993, all in electrical engineering. From 1987 to 1989, he was a Member of the Technical Staff with Microelectronic Technology Inc., Taiwan, R.O.C., where he was involved with the design of digital microwave radios. In 1994, he joined the Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C., where he is currently an Associate Professor. His research interests include microwave passive components, high-speed digital design, and measurements. Hong-Ming Lee (S 03) was born in Nantou, Taiwan, R.O.C. He received the B.S. and Ph.D. degrees in electrical engineering from the National Cheng Kung University, Tainan, Taiwan, R.O.C., in 2002 and 2006, respectively. He is currently a Post-Doctoral Research Fellow with the Institute of Computer and Communication Engineering, Department of Electrical Engineering, National Cheng Kung University. His research interests include microwave passive components and measurements.

PARALLEL coupled-line filters are widely used in microwave

PARALLEL coupled-line filters are widely used in microwave 2812 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 9, SEPTEMBER 2005 Improved Coupled-Microstrip Filter Design Using Effective Even-Mode and Odd-Mode Characteristic Impedances Hong-Ming

More information

Exact Synthesis of Broadband Three-Line Baluns Hong-Ming Lee, Member, IEEE, and Chih-Ming Tsai, Member, IEEE

Exact Synthesis of Broadband Three-Line Baluns Hong-Ming Lee, Member, IEEE, and Chih-Ming Tsai, Member, IEEE 140 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 57, NO. 1, JANUARY 2009 Exact Synthesis of Broadband Three-Line Baluns Hong-Ming Lee, Member, IEEE, and Chih-Ming Tsai, Member, IEEE Abstract

More information

RECENTLY, the fast growing wireless local area network

RECENTLY, the fast growing wireless local area network 1002 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 55, NO. 5, MAY 2007 Dual-Band Filter Design With Flexible Passband Frequency and Bandwidth Selections Hong-Ming Lee, Member, IEEE, and Chih-Ming

More information

MODERN microwave communication systems require

MODERN microwave communication systems require IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 2, FEBRUARY 2006 755 Novel Compact Net-Type Resonators and Their Applications to Microstrip Bandpass Filters Chi-Feng Chen, Ting-Yi Huang,

More information

Design of Duplexers for Microwave Communication Systems Using Open-loop Square Microstrip Resonators

Design of Duplexers for Microwave Communication Systems Using Open-loop Square Microstrip Resonators International Journal of Electromagnetics and Applications 2016, 6(1): 7-12 DOI: 10.5923/j.ijea.20160601.02 Design of Duplexers for Microwave Communication Charles U. Ndujiuba 1,*, Samuel N. John 1, Taofeek

More information

IN MICROWAVE communication systems, high-performance

IN MICROWAVE communication systems, high-performance IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 2, FEBRUARY 2006 533 Compact Microstrip Bandpass Filters With Good Selectivity and Stopband Rejection Pu-Hua Deng, Yo-Shen Lin, Member,

More information

THE DESIGN of microwave filters is based on

THE DESIGN of microwave filters is based on IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 4, APRIL 1998 343 A Unified Approach to the Design, Measurement, and Tuning of Coupled-Resonator Filters John B. Ness Abstract The concept

More information

Miniaturized Microstrip Cross-Coupled Filters Using Quarter-Wave or Quasi-Quarter-Wave Resonators

Miniaturized Microstrip Cross-Coupled Filters Using Quarter-Wave or Quasi-Quarter-Wave Resonators 120 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 1, JANUARY 2003 Miniaturized Microstrip Cross-Coupled Filters Using Quarter-Wave or Quasi-Quarter-Wave Resonators Cheng-Chung Chen,

More information

The Design of Microstrip Six-Pole Quasi-Elliptic Filter with Linear Phase Response Using Extracted-Pole Technique

The Design of Microstrip Six-Pole Quasi-Elliptic Filter with Linear Phase Response Using Extracted-Pole Technique IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 2, FEBRUARY 2001 321 The Design of Microstrip Six-Pole Quasi-Elliptic Filter with Linear Phase Response Using Extracted-Pole Technique

More information

A MINIATURIZED OPEN-LOOP RESONATOR FILTER CONSTRUCTED WITH FLOATING PLATE OVERLAYS

A MINIATURIZED OPEN-LOOP RESONATOR FILTER CONSTRUCTED WITH FLOATING PLATE OVERLAYS Progress In Electromagnetics Research C, Vol. 14, 131 145, 21 A MINIATURIZED OPEN-LOOP RESONATOR FILTER CONSTRUCTED WITH FLOATING PLATE OVERLAYS C.-Y. Hsiao Institute of Electronics Engineering National

More information

PSEUDO-INTERDIGITAL BANDPASS FILTER WITH TRANSMISSION ZEROS

PSEUDO-INTERDIGITAL BANDPASS FILTER WITH TRANSMISSION ZEROS 19 PSEUDO-INTERDIGITAL BANDPASS FILTER WITH TRANSMISSION ZEROS Wu-Nan Chen 1, Min-Hung Weng 2, Sung-Fong Lin 1 and Tsung Hui Huang, 1 1 Department of Computer and Communication, SHU TE University, Kaohsiung,

More information

H.-W. Wu Department of Computer and Communication Kun Shan University No. 949, Dawan Road, Yongkang City, Tainan County 710, Taiwan

H.-W. Wu Department of Computer and Communication Kun Shan University No. 949, Dawan Road, Yongkang City, Tainan County 710, Taiwan Progress In Electromagnetics Research, Vol. 107, 21 30, 2010 COMPACT MICROSTRIP BANDPASS FILTER WITH MULTISPURIOUS SUPPRESSION H.-W. Wu Department of Computer and Communication Kun Shan University No.

More information

A NOVEL COUPLING METHOD TO DESIGN A MI- CROSTRIP BANDPASS FILER WITH A WIDE REJEC- TION BAND

A NOVEL COUPLING METHOD TO DESIGN A MI- CROSTRIP BANDPASS FILER WITH A WIDE REJEC- TION BAND Progress In Electromagnetics Research C, Vol. 14, 45 52, 2010 A NOVEL COUPLING METHOD TO DESIGN A MI- CROSTRIP BANDPASS FILER WITH A WIDE REJEC- TION BAND R.-Y. Yang, J.-S. Lin, and H.-S. Li Department

More information

/$ IEEE

/$ IEEE 1756 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 55, NO. 8, AUGUST 2007 Balanced Coupled-Resonator Bandpass Filters Using Multisection Resonators for Common-Mode Suppression and Stopband

More information

IN THE RF front end of a modern communication system,

IN THE RF front end of a modern communication system, 3352 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 8, AUGUST 2006 Broadband Quasi-Chebyshev Bandpass Filters With Multimode Stepped-Impedance Resonators (SIRs) Yi-Chyun Chiou, Student

More information

COMPACT MICROSTRIP BANDPASS FILTERS USING TRIPLE-MODE RESONATOR

COMPACT MICROSTRIP BANDPASS FILTERS USING TRIPLE-MODE RESONATOR Progress In Electromagnetics Research Letters, Vol. 35, 89 98, 2012 COMPACT MICROSTRIP BANDPASS FILTERS USING TRIPLE-MODE RESONATOR K. C. Lee *, H. T. Su, and M. K. Haldar School of Engineering, Computing

More information

Multi-pole Microstrip Directional Filters for Multiplexing Applications

Multi-pole Microstrip Directional Filters for Multiplexing Applications Multi-pole Microstrip Directional Filters for Multiplexing Applications Humberto Lobato-Morales, Alonso Corona-Chávez, J. Luis Olvera-Cervantes, D.V.B. Murthy Instituto Nacional de Astrofísica, Óptica

More information

Progress In Electromagnetics Research Letters, Vol. 23, , 2011

Progress In Electromagnetics Research Letters, Vol. 23, , 2011 Progress In Electromagnetics Research Letters, Vol. 23, 173 180, 2011 A DUAL-MODE DUAL-BAND BANDPASS FILTER USING A SINGLE SLOT RING RESONATOR S. Luo and L. Zhu School of Electrical and Electronic Engineering

More information

Switchable Dual-Band Filter with Hybrid Feeding Structure

Switchable Dual-Band Filter with Hybrid Feeding Structure International Journal of Information and Electronics Engineering, Vol. 5, No. 2, March 215 Switchable Dual-Band Filter with Hybrid Feeding Structure Ming-Lin Chuang, Ming-Tien Wu, and Pei-Ru Wu Abstract

More information

Microstrip Lowpass Filters with Reduced Size and Improved Stopband Characteristics

Microstrip Lowpass Filters with Reduced Size and Improved Stopband Characteristics 62 IEICE TRANS. ELECTRON., VOL.E88 C, NO.1 JANUARY 2005 PAPER Special Section on Recent Trends of Microwave and Millimeter-Wave Passive Circuit Components Microstrip Lowpass Filters with Reduced Size and

More information

Microstrip Dual-Band Bandpass Filter Using U-Shaped Resonators

Microstrip Dual-Band Bandpass Filter Using U-Shaped Resonators Progress In Electromagnetics Research Letters, Vol. 59, 1 6, 2016 Microstrip Dual-Band Bandpass Filter Using U-haped Resonators Eugene A. Ogbodo 1, *,YiWang 1, and Kenneth. K. Yeo 2 Abstract Coupled resonators

More information

ULTRA-WIDEBAND (UWB) radio technology has been

ULTRA-WIDEBAND (UWB) radio technology has been 3772 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 10, OCTOBER 2006 Compact Ultra-Wideband Bandpass Filters Using Composite Microstrip Coplanar-Waveguide Structure Tsung-Nan Kuo, Shih-Cheng

More information

A Simple Bandpass Filter with Independently Tunable Center Frequency and Bandwidth

A Simple Bandpass Filter with Independently Tunable Center Frequency and Bandwidth Progress In Electromagnetics Research Letters, Vol. 69, 3 8, 27 A Simple Bandpass Filter with Independently Tunable Center Frequency and Bandwidth Bo Zhou *, Jing Pan Song, Feng Wei, and Xiao Wei Shi Abstract

More information

Miniaturization of Harmonics-suppressed Filter with Folded Loop Structure

Miniaturization of Harmonics-suppressed Filter with Folded Loop Structure PIERS ONINE, VO. 4, NO. 2, 28 238 Miniaturization of Harmonics-suppressed Filter with Folded oop Structure Han-Nien in 1, Wen-ung Huang 2, and Jer-ong Chen 3 1 Department of Communications Engineering,

More information

Compact Dual-Band Microstrip BPF with Multiple Transmission Zeros for Wideband and WLAN Applications

Compact Dual-Band Microstrip BPF with Multiple Transmission Zeros for Wideband and WLAN Applications Progress In Electromagnetics Research Letters, Vol. 50, 79 84, 2014 Compact Dual-Band Microstrip BPF with Multiple Transmission Zeros for Wideband and WLAN Applications Hong-Li Wang, Hong-Wei Deng, Yong-Jiu

More information

Transformation of Generalized Chebyshev Lowpass Filter Prototype to Suspended Stripline Structure Highpass Filter for Wideband Communication Systems

Transformation of Generalized Chebyshev Lowpass Filter Prototype to Suspended Stripline Structure Highpass Filter for Wideband Communication Systems Transformation of Generalized Chebyshev Lowpass Filter Prototype to Suspended Stripline Structure Highpass Filter for Wideband Communication Systems Z. Zakaria 1, M. A. Mutalib 2, M. S. Mohamad Isa 3,

More information

Narrowband Microstrip Filter Design With NI AWR Microwave Office

Narrowband Microstrip Filter Design With NI AWR Microwave Office Narrowband Microstrip Filter Design With NI AWR Microwave Office Daniel G. Swanson, Jr. DGS Associates, LLC Boulder, CO dan@dgsboulder.com www.dgsboulder.com Narrowband Microstrip Filters There are many

More information

Design of Microstrip Coupled Line Bandpass Filter Using Synthesis Technique

Design of Microstrip Coupled Line Bandpass Filter Using Synthesis Technique Design of Microstrip Coupled Line Bandpass Filter Using Synthesis Technique 1 P.Priyanka, 2 Dr.S.Maheswari, 1 PG Student, 2 Professor, Department of Electronics and Communication Engineering Panimalar

More information

QUASI-ELLIPTIC MICROSTRIP BANDSTOP FILTER USING TAP COUPLED OPEN-LOOP RESONATORS

QUASI-ELLIPTIC MICROSTRIP BANDSTOP FILTER USING TAP COUPLED OPEN-LOOP RESONATORS Progress In Electromagnetics Research C, Vol. 35, 1 11, 2013 QUASI-ELLIPTIC MICROSTRIP BANDSTOP FILTER USING TAP COUPLED OPEN-LOOP RESONATORS Kenneth S. K. Yeo * and Punna Vijaykumar School of Architecture,

More information

BANDPASS filters with the characteristics of low insertion

BANDPASS filters with the characteristics of low insertion 540 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 2, FEBRUARY 2006 Novel Microstrip Coupled-Line Bandpass Filters With Shortened Coupled Sections for Stopband Extension Chao-Huang

More information

A NOVEL WIDE-STOPBAND BANDSTOP FILTER WITH SHARP-REJECTION CHARACTERISTIC AND ANA- LYTICAL THEORY

A NOVEL WIDE-STOPBAND BANDSTOP FILTER WITH SHARP-REJECTION CHARACTERISTIC AND ANA- LYTICAL THEORY Progress In Electromagnetics Research C, Vol. 40, 143 158, 2013 A NOVEL WIDE-STOPBAND BANDSTOP FILTER WITH SHARP-REJECTION CHARACTERISTIC AND ANA- LYTICAL THEORY Liming Liang, Yuanan Liu, Jiuchao Li *,

More information

Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator

Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator Progress In Electromagnetics Research Letters, Vol. 75, 39 45, 218 Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator Lihua Wu 1, Shanqing Wang 2,LuetaoLi 3, and Chengpei

More information

MODERN AND future wireless systems are placing

MODERN AND future wireless systems are placing IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 1 Wideband Planar Monopole Antennas With Dual Band-Notched Characteristics Wang-Sang Lee, Dong-Zo Kim, Ki-Jin Kim, and Jong-Won Yu, Member, IEEE Abstract

More information

An Area efficient structure for a Dual band Wilkinson power divider with flexible frequency ratios

An Area efficient structure for a Dual band Wilkinson power divider with flexible frequency ratios 1 An Area efficient structure for a Dual band Wilkinson power divider with flexible frequency ratios Jafar Sadique, Under Guidance of Ass. Prof.K.J.Vinoy.E.C.E.Department Abstract In this paper a new design

More information

Broadband Microstrip band pass filters using triple-mode resonator

Broadband Microstrip band pass filters using triple-mode resonator Broadband Microstrip band pass filters using triple-mode resonator CH.M.S.Chaitanya (07548), M.Tech (CEDT) Abstract: A broadband microstrip band pass filter using a triple-mode resonator is presented.

More information

Progress In Electromagnetics Research, Vol. 107, , 2010

Progress In Electromagnetics Research, Vol. 107, , 2010 Progress In Electromagnetics Research, Vol. 107, 101 114, 2010 DESIGN OF A HIGH BAND ISOLATION DIPLEXER FOR GPS AND WLAN SYSTEM USING MODIFIED STEPPED-IMPEDANCE RESONATORS R.-Y. Yang Department of Materials

More information

MERITS OF PARALLEL COUPLED BANDPASS FILTER OVER END COUPLED BANDPASS FILTER IN X BAND

MERITS OF PARALLEL COUPLED BANDPASS FILTER OVER END COUPLED BANDPASS FILTER IN X BAND International Journal of Electrical, Electronics and Data Counication, ISSN: 232-284 MERITS OF PARALLEL COUPLED BANDPASS FILTER OVER END COUPLED BANDPASS FILTER IN X BAND 1 INDER PAL SINGH, 2 PRAVEEN BHATT,

More information

DIFFERENTIAL circuit design leads to stable, noise-tolerant

DIFFERENTIAL circuit design leads to stable, noise-tolerant IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 5, MAY 2005 1569 Four-Port Microwave Networks With Intrinsic Broad-Band Suppression of Common-Mode Signals Wael M. Fathelbab, Member,

More information

A NOVEL DUAL-BAND BANDPASS FILTER USING GENERALIZED TRISECTION STEPPED IMPEDANCE RESONATOR WITH IMPROVED OUT-OF-BAND PER- FORMANCE

A NOVEL DUAL-BAND BANDPASS FILTER USING GENERALIZED TRISECTION STEPPED IMPEDANCE RESONATOR WITH IMPROVED OUT-OF-BAND PER- FORMANCE Progress In Electromagnetics Research Letters, Vol. 21, 31 40, 2011 A NOVEL DUAL-BAND BANDPASS FILTER USING GENERALIZED TRISECTION STEPPED IMPEDANCE RESONATOR WITH IMPROVED OUT-OF-BAND PER- FORMANCE X.

More information

Compact Planar Quad-Band Bandpass Filter for Application in GPS, WLAN, WiMAX and 5G WiFi

Compact Planar Quad-Band Bandpass Filter for Application in GPS, WLAN, WiMAX and 5G WiFi Progress In Electromagnetics Research Letters, Vol. 63, 115 121, 2016 Compact Planar Quad-Band Bandpass Filter for Application in GPS, WLAN, WiMAX and 5G WiFi Mojtaba Mirzaei and Mohammad A. Honarvar *

More information

AS THE frequency spectrum becomes more crowded, specifications

AS THE frequency spectrum becomes more crowded, specifications IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 57, NO. 3, MARCH 2009 667 An Inline Coaxial Quasi-Elliptic Filter With Controllable Mixed Electric and Magnetic Coupling Huan Wang, Student Member,

More information

COMPACT DESIGN AND SIMULATION OF LOW PASS MICROWAVE FILTER ON MICROSTRIP TRANSMISSION LINE AT 2.4 GHz

COMPACT DESIGN AND SIMULATION OF LOW PASS MICROWAVE FILTER ON MICROSTRIP TRANSMISSION LINE AT 2.4 GHz International Journal of Management, IT & Engineering Vol. 7 Issue 7, July 2017, ISSN: 2249-0558 Impact Factor: 7.119 Journal Homepage: Double-Blind Peer Reviewed Refereed Open Access International Journal

More information

DESIGN OF MICROSTRIP DIPLEXER USING LOWPASS FILTER AND HYBRID BANDPASS FILTER

DESIGN OF MICROSTRIP DIPLEXER USING LOWPASS FILTER AND HYBRID BANDPASS FILTER International Journal of Electronics and Communication Engineering & Technology (IJECET) Volume 6, Issue 12, Dec 2015, pp. 07-12, Article ID: IJECET_06_12_002 Available online at http://www.iaeme.com/ijecetissues.asp?jtype=ijecet&vtype=6&itype=12

More information

BROADBAND ASYMMETRICAL MULTI-SECTION COU- PLED LINE WILKINSON POWER DIVIDER WITH UN- EQUAL POWER DIVIDING RATIO

BROADBAND ASYMMETRICAL MULTI-SECTION COU- PLED LINE WILKINSON POWER DIVIDER WITH UN- EQUAL POWER DIVIDING RATIO Progress In Electromagnetics Research C, Vol. 43, 217 229, 2013 BROADBAND ASYMMETRICAL MULTI-SECTION COU- PLED LINE WILKINSON POWER DIVIDER WITH UN- EQUAL POWER DIVIDING RATIO Puria Salimi *, Mahdi Moradian,

More information

DUAL-WIDEBAND BANDPASS FILTERS WITH EX- TENDED STOPBAND BASED ON COUPLED-LINE AND COUPLED THREE-LINE RESONATORS

DUAL-WIDEBAND BANDPASS FILTERS WITH EX- TENDED STOPBAND BASED ON COUPLED-LINE AND COUPLED THREE-LINE RESONATORS Progress In Electromagnetics Research, Vol. 4, 5, 0 DUAL-WIDEBAND BANDPASS FILTERS WITH EX- TENDED STOPBAND BASED ON COUPLED-LINE AND COUPLED THREE-LINE RESONATORS J.-T. Kuo, *, C.-Y. Fan, and S.-C. Tang

More information

Microwave Stepped Impedance LPF Design at 1.2GHz

Microwave Stepped Impedance LPF Design at 1.2GHz Microwave Stepped Impedance LPF Design at 1.2GHz Phani kumar TVB 1, Nagraju N 2, Santhosh Kumar Ch 3 Assistant professor, Dept. of ECE, Institute of Aeronautical Engineering College, Hyderabad, Andhra

More information

MICROSTRIP REALIZATION OF TRISECTION SYN- THESIS WITH FREQUENCY-DEPENDENT ADMIT- TANCE INVERTER

MICROSTRIP REALIZATION OF TRISECTION SYN- THESIS WITH FREQUENCY-DEPENDENT ADMIT- TANCE INVERTER Progress In Electromagnetics Research, Vol. 3, 95, MICROSTRIP REAIZATION OF TRISECTION SYN- THESIS WITH FREQUENCY-DEPENDENT ADMIT- TANCE INVERTER C.-. Hsu Department of Computer and Communication Engineering

More information

COMPACT DUAL-MODE TRI-BAND TRANSVERSAL MICROSTRIP BANDPASS FILTER

COMPACT DUAL-MODE TRI-BAND TRANSVERSAL MICROSTRIP BANDPASS FILTER Progress In Electromagnetics Research Letters, Vol. 26, 161 168, 2011 COMPACT DUAL-MODE TRI-BAND TRANSVERSAL MICROSTRIP BANDPASS FILTER J. Li 1 and C.-L. Wei 2, * 1 College of Science, China Three Gorges

More information

Synthesis and Design of Narrow-Band Micrwave Lossy Filter Based on Microstrip Technology

Synthesis and Design of Narrow-Band Micrwave Lossy Filter Based on Microstrip Technology IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-iss: 78-834,p- ISS: 78-8735.Volume 9, Issue 1, Ver. II (Jan. 014), PP 8-3 Synthesis and Design of arrow-band Micrwave Lossy Filter

More information

Realization of Transmission Zeros in Combline Filters Using an Auxiliary Inductively Coupled Ground Plane

Realization of Transmission Zeros in Combline Filters Using an Auxiliary Inductively Coupled Ground Plane 2112 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 10, OCTOBER 2003 Realization of Transmission Zeros in Combline Filters Using an Auxiliary Inductively Coupled Ground Plane Ching-Wen

More information

High-Selectivity UWB Filters with Adjustable Transmission Zeros

High-Selectivity UWB Filters with Adjustable Transmission Zeros Progress In Electromagnetics Research Letters, Vol. 52, 51 56, 2015 High-Selectivity UWB Filters with Adjustable Transmission Zeros Liang Wang *, Zhao-Jun Zhu, and Shang-Yang Li Abstract This letter proposes

More information

[Makrariya* et al., 5(8): August, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Makrariya* et al., 5(8): August, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY FIVE POLE OPTIMUM DISTRIBUTED HIGH PASS MICROWAVE FILTER: DESIGN ANALYSIS AND SIMULATION ON MICROSTRIP AT 2.4 GHZ Atul Makrariya*,

More information

Lowpass Filters. Microwave Filter Design. Chp5. Lowpass Filters. Prof. Tzong-Lin Wu. Department of Electrical Engineering National Taiwan University

Lowpass Filters. Microwave Filter Design. Chp5. Lowpass Filters. Prof. Tzong-Lin Wu. Department of Electrical Engineering National Taiwan University Microwave Filter Design Chp5. Lowpass Filters Prof. Tzong-Lin Wu Department of Electrical Engineering National Taiwan University Lowpass Filters Design steps Select an appropriate lowpass filter prototype

More information

X. Wu Department of Information and Electronic Engineering Zhejiang University Hangzhou , China

X. Wu Department of Information and Electronic Engineering Zhejiang University Hangzhou , China Progress In Electromagnetics Research Letters, Vol. 17, 181 189, 21 A MINIATURIZED BRANCH-LINE COUPLER WITH WIDEBAND HARMONICS SUPPRESSION B. Li Ministerial Key Laboratory of JGMT Nanjing University of

More information

THE GENERALIZED CHEBYSHEV SUBSTRATE INTEGRATED WAVEGUIDE DIPLEXER

THE GENERALIZED CHEBYSHEV SUBSTRATE INTEGRATED WAVEGUIDE DIPLEXER Progress In Electromagnetics Research, PIER 73, 29 38, 2007 THE GENERALIZED CHEBYSHEV SUBSTRATE INTEGRATED WAVEGUIDE DIPLEXER Han S. H., Wang X. L., Fan Y., Yang Z. Q., and He Z. N. Institute of Electronic

More information

Design of Asymmetric Dual-Band Microwave Filters

Design of Asymmetric Dual-Band Microwave Filters Progress In Electromagnetics Research Letters, Vol. 67, 47 51, 2017 Design of Asymmetric Dual-Band Microwave Filters Zhongxiang Zhang 1, 2, *, Jun Ding 3,ShuoWang 2, and Hua-Liang Zhang 3 Abstract This

More information

MINIATURIZED MICROSTRIP DUAL-BAND BANDS- STOP FILTERS USING TRI-SECTION STEPPED- IMPEDANCE RESONATORS

MINIATURIZED MICROSTRIP DUAL-BAND BANDS- STOP FILTERS USING TRI-SECTION STEPPED- IMPEDANCE RESONATORS Progress In Electromagnetics Research C, Vol. 10, 37 48, 2009 MINIATURIZED MICROSTRIP DUAL-BAND BANDS- STOP FILTERS USING TRI-SECTION STEPPED- IMPEDANCE RESONATORS K.-S. Chin and C.-K. Lung Chang Gung

More information

Design of a Compact and High Selectivity Tri-Band Bandpass Filter Using Asymmetric Stepped-impedance Resonators (SIRs)

Design of a Compact and High Selectivity Tri-Band Bandpass Filter Using Asymmetric Stepped-impedance Resonators (SIRs) Progress In Electromagnetics Research Letters, Vol. 44, 81 86, 2014 Design of a Compact and High Selectivity Tri-Band Bandpass Filter Using Asymmetric Stepped-impedance Resonators (SIRs) Jun Li *, Shan

More information

A 6 : 1 UNEQUAL WILKINSON POWER DIVIDER WITH EBG CPW

A 6 : 1 UNEQUAL WILKINSON POWER DIVIDER WITH EBG CPW Progress In Electromagnetics Research Letters, Vol. 8, 151 159, 2009 A 6 : 1 UNEQUAL WILKINSON POWER DIVIDER WITH EBG CPW C.-P. Chang, C.-C. Su, S.-H. Hung, and Y.-H. Wang Institute of Microelectronics,

More information

Progress In Electromagnetics Research Letters, Vol. 9, 59 66, 2009

Progress In Electromagnetics Research Letters, Vol. 9, 59 66, 2009 Progress In Electromagnetics Research Letters, Vol. 9, 59 66, 2009 QUASI-LUMPED DESIGN OF BANDPASS FILTER USING COMBINED CPW AND MICROSTRIP M. Chen Department of Industrial Engineering and Managenment

More information

Wideband Bow-Tie Slot Antennas with Tapered Tuning Stubs

Wideband Bow-Tie Slot Antennas with Tapered Tuning Stubs Wideband Bow-Tie Slot Antennas with Tapered Tuning Stubs Abdelnasser A. Eldek, Atef Z. Elsherbeni and Charles E. Smith. atef@olemiss.edu Center of Applied Electromagnetic Systems Research (CAESR) Department

More information

THE DESIGN AND FABRICATION OF A HIGHLY COM- PACT MICROSTRIP DUAL-BAND BANDPASS FILTER

THE DESIGN AND FABRICATION OF A HIGHLY COM- PACT MICROSTRIP DUAL-BAND BANDPASS FILTER Progress In Electromagnetics Research, Vol. 112, 299 307, 2011 THE DESIGN AND FABRICATION OF A HIGHLY COM- PACT MICROSTRIP DUAL-BAND BANDPASS FILTER C.-Y. Chen and C.-C. Lin Department of Electrical Engineering

More information

Design of Microstrip UWB Bandpass Filter using open-circuited resonators

Design of Microstrip UWB Bandpass Filter using open-circuited resonators International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 11, Issue 04 (April 2015), PP.01-06 Design of Microstrip UWB Bandpass Filter using

More information

Chapter-2 LOW PASS FILTER DESIGN 2.1 INTRODUCTION

Chapter-2 LOW PASS FILTER DESIGN 2.1 INTRODUCTION Chapter-2 LOW PASS FILTER DESIGN 2.1 INTRODUCTION Low pass filters (LPF) are indispensable components in modern wireless communication systems especially in the microwave and satellite communication systems.

More information

Enhanced Couplings in Broadband Planar Filters with Defected Ground Structures

Enhanced Couplings in Broadband Planar Filters with Defected Ground Structures ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 10, Number 2, 2007, 199 212 Enhanced Couplings in Broadband Planar Filters with Defected Ground Structures N. MILITARU 1, M.G. BANCIU 2, G.

More information

A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER

A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER Progress In Electromagnetics Research C, Vol. 11, 229 236, 2009 A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER E. Jafari, F. Hodjatkashani, and R. Rezaiesarlak Department

More information

FILTERING ANTENNAS: SYNTHESIS AND DESIGN

FILTERING ANTENNAS: SYNTHESIS AND DESIGN FILTERING ANTENNAS: SYNTHESIS AND DESIGN Deepika Agrawal 1, Jagadish Jadhav 2 1 Department of Electronics and Telecommunication, RCPIT, Maharashtra, India 2 Department of Electronics and Telecommunication,

More information

NOVEL DESIGN OF DUAL-MODE DUAL-BAND BANDPASS FILTER WITH TRIANGULAR RESONATORS

NOVEL DESIGN OF DUAL-MODE DUAL-BAND BANDPASS FILTER WITH TRIANGULAR RESONATORS Progress In Electromagnetics Research, PIER 77, 417 424, 2007 NOVEL DESIGN OF DUAL-MODE DUAL-BAND BANDPASS FILTER WITH TRIANGULAR RESONATORS L.-P. Zhao, X.-W. Dai, Z.-X. Chen, and C.-H. Liang National

More information

NOVEL PLANAR MULTIMODE BANDPASS FILTERS WITH RADIAL-LINE STUBS

NOVEL PLANAR MULTIMODE BANDPASS FILTERS WITH RADIAL-LINE STUBS Progress In Electromagnetics Research, PIER 101, 33 42, 2010 NOVEL PLANAR MULTIMODE BANDPASS FILTERS WITH RADIAL-LINE STUBS L. Zhang, Z.-Y. Yu, and S.-G. Mo Institute of Applied Physics University of Electronic

More information

Design and Synthesis of Quasi Dual-mode, Elliptic Coaxial Filter

Design and Synthesis of Quasi Dual-mode, Elliptic Coaxial Filter RADIOENGINEERING, VOL. 4, NO. 3, SEPTEMBER 15 795 Design and Synthesis of Quasi Dual-mode, Elliptic Coaxial Filter Sovuthy CHEAB, Peng Wen WONG Dept. of Electrical and Electronic Engineering, University

More information

Design and Fabrication of Transmission line based Wideband band pass filter

Design and Fabrication of Transmission line based Wideband band pass filter Available online at www.sciencedirect.com Procedia Engineering 30 (2012 ) 646 653 International Conference on Communication Technology and System Design 2011 Design and Fabrication of Transmission line

More information

Ceramic Waveguide Filters with Wide Spurious-Free Stopband Response

Ceramic Waveguide Filters with Wide Spurious-Free Stopband Response Progress In Electromagnetics Research M, Vol. 79, 23 31, 2019 Ceramic Waveguide Filters with Wide Spurious-Free Stopband Response Sharjeel Afridi 1, *, Ian Hunter 2, and Yameen Sandhu 1 Abstract This work

More information

A Folded SIR Cross Coupled WLAN Dual-Band Filter

A Folded SIR Cross Coupled WLAN Dual-Band Filter Progress In Electromagnetics Research Letters, Vol. 45, 115 119, 2014 A Folded SIR Cross Coupled WLAN Dual-Band Filter Zi Jian Su *, Xi Chen, Long Li, Bian Wu, and Chang-Hong Liang Abstract A compact cross-coupled

More information

MODIFIED BROADBAND SCHIFFMAN PHASE SHIFTER USING DENTATE MICROSTRIP AND PATTERNED GROUND PLANE

MODIFIED BROADBAND SCHIFFMAN PHASE SHIFTER USING DENTATE MICROSTRIP AND PATTERNED GROUND PLANE Progress In Electromagnetics Research Letters, Vol. 24, 9 16, 2011 MODIFIED BROADBAND SCHIFFMAN PHASE SHIFTER USING DENTATE MICROSTRIP AND PATTERNED GROUND PLANE Z. Zhang *, Y.-C. Jiao, S.-F. Cao, X.-M.

More information

COMPACT THIRD-ORDER MICROSTRIP BANDPASS FILTER USING HYBRID RESONATORS

COMPACT THIRD-ORDER MICROSTRIP BANDPASS FILTER USING HYBRID RESONATORS Progress In Electromagnetics Research C, Vol. 19, 93 106, 2011 COMPACT THIRD-ORDER MICROSTRIP BANDPASS FILTER USING HYBRID RESONATORS F. Xiao The EHF Key Laboratory of Fundamental Science School of Electronic

More information

Different Methods of Designing Ultra Wideband Filters in Various Applications-A Review

Different Methods of Designing Ultra Wideband Filters in Various Applications-A Review INTERNATIONAL JOURNAL OF R&D IN ENGINEERING, SCIENCE AND MANAGEMENT vol.1, issue I, AUG.2014 ISSN 2393-865X Review Paper Different Methods of Designing Ultra Wideband Filters in Various Applications-A

More information

DESIGN OF EVEN-ORDER SYMMETRIC BANDPASS FILTER WITH CHEBYSHEV RESPONSE

DESIGN OF EVEN-ORDER SYMMETRIC BANDPASS FILTER WITH CHEBYSHEV RESPONSE Progress In Electromagnetics Research C, Vol. 42, 239 251, 2013 DESIGN OF EVEN-ORDER SYMMETRIC BANDPASS FILTER WITH CHEBYSHEV RESPONSE Kai Wang 1, Li-Sheng Zheng 1, Sai Wai Wong 1, *, Yu-Fa Zheng 2, and

More information

Narrowband Combline Filter Design with ANSYS HFSS

Narrowband Combline Filter Design with ANSYS HFSS Narrowband Combline Filter Design with ANSYS HFSS Daniel G. Swanson, Jr. DGS Associates, LLC Boulder, CO dan@dgsboulder.com www.dgsboulder.com Introduction N = 6 Inline, Cover Loaded, Combline Filter Single

More information

Using Pcb-Techniques And Dielectric Design Band Pass Filter Resonators For Ku - Band Applications

Using Pcb-Techniques And Dielectric Design Band Pass Filter Resonators For Ku - Band Applications INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 5 149 Using Pcb-Techniques And Dielectric Design Band Pass Filter Resonators For Ku - Band Applications

More information

Bandpass Filters Using Capacitively Coupled Series Resonators

Bandpass Filters Using Capacitively Coupled Series Resonators 8.8 Filters Using Coupled Resonators 441 B 1 B B 3 B N + 1 1 3 N (a) jb 1 1 jb jb 3 jb N jb N + 1 N (b) 1 jb 1 1 jb N + 1 jb N + 1 N + 1 (c) J 1 J J Z N + 1 0 Z +90 0 Z +90 0 Z +90 0 (d) FIGURE 8.50 Development

More information

WIDE-BAND circuits are now in demand as wide-band

WIDE-BAND circuits are now in demand as wide-band 704 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 2, FEBRUARY 2006 Compact Wide-Band Branch-Line Hybrids Young-Hoon Chun, Member, IEEE, and Jia-Sheng Hong, Senior Member, IEEE Abstract

More information

A Novel Dual-Band SIW Filter with High Selectivity

A Novel Dual-Band SIW Filter with High Selectivity Progress In Electromagnetics Research Letters, Vol. 6, 81 88, 216 A Novel Dual-Band SIW Filter with High Selectivity Yu-Dan Wu, Guo-Hui Li *, Wei Yang, and Tong Mou Abstract A novel dual-band substrate

More information

MICROSTRIP leaky-wave antennas (LWAs) have been

MICROSTRIP leaky-wave antennas (LWAs) have been 2176 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 7, JULY 2010 A Compact Wideband Leaky-Wave Antenna With Etched Slot Elements and Tapered Structure Jin-Wei Wu, Christina F. Jou, and Chien-Jen

More information

DESIGN OF COMPACT MICROSTRIP LOW-PASS FIL- TER WITH ULTRA-WIDE STOPBAND USING SIRS

DESIGN OF COMPACT MICROSTRIP LOW-PASS FIL- TER WITH ULTRA-WIDE STOPBAND USING SIRS Progress In Electromagnetics Research Letters, Vol. 18, 179 186, 21 DESIGN OF COMPACT MICROSTRIP LOW-PASS FIL- TER WITH ULTRA-WIDE STOPBAND USING SIRS L. Wang, H. C. Yang, and Y. Li School of Physical

More information

A SIMPLE FOUR-ORDER CROSS-COUPLED FILTER WITH THREE TRANSMISSION ZEROS

A SIMPLE FOUR-ORDER CROSS-COUPLED FILTER WITH THREE TRANSMISSION ZEROS Progress In Electromagnetics Research C, Vol. 8, 57 68, 29 A SIMPLE FOUR-ORDER CROSS-COUPLED FILTER WITH THREE TRANSMISSION ZEROS J.-S. Zhan and J.-L. Wang Xidian University China Abstract Generalized

More information

LENGTH REDUCTION OF EVANESCENT-MODE RIDGE WAVEGUIDE BANDPASS FILTERS

LENGTH REDUCTION OF EVANESCENT-MODE RIDGE WAVEGUIDE BANDPASS FILTERS Progress In Electromagnetics Research, PIER 40, 71 90, 2003 LENGTH REDUCTION OF EVANESCENT-MODE RIDGE WAVEGUIDE BANDPASS FILTERS T. Shen Advanced Development Group Hughes Network Systems Germantown, MD

More information

DESIGN OF A TRIPLE-PASSBAND MICROSTRIP BAND- PASS FILTER WITH COMPACT SIZE

DESIGN OF A TRIPLE-PASSBAND MICROSTRIP BAND- PASS FILTER WITH COMPACT SIZE J. of Electromagn. Waves and Appl., Vol. 24, 2333 2341, 2010 DESIGN OF A TRIPLE-PASSBAND MICROSTRIP BAND- PASS FILTER WITH COMPACT SIZE H.-W. Wu Department of Computer and Communication Kun Shan University

More information

HARMONIC SUPPRESSION OF PARALLEL COUPLED MICROSTRIP LINE BANDPASS FILTER USING CSRR

HARMONIC SUPPRESSION OF PARALLEL COUPLED MICROSTRIP LINE BANDPASS FILTER USING CSRR Progress In Electromagnetics Research Letters, Vol. 7, 193 201, 2009 HARMONIC SUPPRESSION OF PARALLEL COUPLED MICROSTRIP LINE BANDPASS FILTER USING CSRR S. S. Karthikeyan and R. S. Kshetrimayum Department

More information

An extra reduced size dual-mode bandpass filter for wireless communication systems

An extra reduced size dual-mode bandpass filter for wireless communication systems University of Technology, Iraq From the SelectedWorks of Professor Jawad K. Ali September 12, 2011 An extra reduced size dual-mode bandpass filter for wireless communication systems Jawad K. Ali, Department

More information

DUAL-MODE SPLIT MICROSTRIP RESONATOR FOR COMPACT NARROWBAND BANDPASS FILTERS. Federal University, Krasnoyarsk , Russia

DUAL-MODE SPLIT MICROSTRIP RESONATOR FOR COMPACT NARROWBAND BANDPASS FILTERS. Federal University, Krasnoyarsk , Russia Progress In Electromagnetics Research C, Vol. 23, 151 160, 2011 DUAL-MODE SPLIT MICROSTRIP RESONATOR FOR COMPACT NARROWBAND BANDPASS FILTERS V. V. Tyurnev 1, * and A. M. Serzhantov 2 1 Kirensky Institute

More information

Microstrip Filtering Structure with Optimized Group-Delay Response for Wireless Communications

Microstrip Filtering Structure with Optimized Group-Delay Response for Wireless Communications Microstrip Filtering Structure with Optimized Group-Delay Response for Wireless Communications NICOLAE MILITARU, GEORGE LOJEWSKI Department of Telecommunications University POLITEHNICA of Bucharest 313

More information

Miniaturized Wilkinson Power Divider with nth Harmonic Suppression using Front Coupled Tapered CMRC

Miniaturized Wilkinson Power Divider with nth Harmonic Suppression using Front Coupled Tapered CMRC ACES JOURNAL, VOL. 28, NO. 3, MARCH 213 221 Miniaturized Wilkinson Power Divider with nth Harmonic Suppression using Front Coupled Tapered CMRC Mohsen Hayati 1,2, Saeed Roshani 1,3, and Sobhan Roshani

More information

Microstrip even-mode half-wavelength SIR based I-band interdigital bandpass filter

Microstrip even-mode half-wavelength SIR based I-band interdigital bandpass filter Indian Journal of Engineering & Materials Sciences Vol. 9, October 0, pp. 99-303 Microstrip even-mode half-wavelength SIR based I-band interdigital bandpass filter Ram Krishna Maharjan* & Nam-Young Kim

More information

Design and Analysis of Parallel-Coupled Line Bandpass Filter

Design and Analysis of Parallel-Coupled Line Bandpass Filter Design and Analysis of Parallel-Coupled Line Bandpass Filter Talib Mahmood Ali Asst. Lecturer, Electrical Engineering Department, University of Mustansiriyah, Baghdad, Iraq Abstract A compact microwave

More information

AVARIETY of microstrip dual-mode bandpass filters have

AVARIETY of microstrip dual-mode bandpass filters have IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 5, MAY 2006 2033 A Novel Microstrip Square-Loop Dual-Mode Bandpass Filter With Simultaneous Size Reduction and Spurious Response Suppression

More information

Predistortion Technique for Cross-Coupled Filters and Its Application to Satellite Communication Systems

Predistortion Technique for Cross-Coupled Filters and Its Application to Satellite Communication Systems IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 12, DECEMBER 2003 2505 Predistortion Technique for Cross-Coupled Filters and Its Application to Satellite Communication Systems Ming Yu,

More information

264 MHz HTS Lumped Element Bandpass Filter

264 MHz HTS Lumped Element Bandpass Filter IEICE SAITO TRANS. et al: 264 ELECTRON., MHz HTS LUMPED VOL. E83-C, ELEMENT NO. 1 JANUARY BANDPASS 2 FILTER 15 PAPER Special Issue on Superconductive Devices and Systems 264 MHz HTS Lumped Element Bandpass

More information

Compact Narrow Band Non-Degenerate Dual-Mode Microstrip Filter with Etched Square Lattices

Compact Narrow Band Non-Degenerate Dual-Mode Microstrip Filter with Etched Square Lattices J. Electromagnetic Analysis & Applications, 2010, 2: 98-103 doi:10.4236/jemaa.2010.22014 Published Online February 2010 (www.scirp.org/journal/jemaa) Compact Narrow Band Non-Degenerate Dual-Mode Microstrip

More information

NOVEL IN-LINE MICROSTRIP COUPLED-LINE BAND- STOP FILTER WITH SHARP SKIRT SELECTIVITY

NOVEL IN-LINE MICROSTRIP COUPLED-LINE BAND- STOP FILTER WITH SHARP SKIRT SELECTIVITY Progress In Electromagnetics Research, Vol. 137, 585 597, 2013 NOVEL IN-LINE MICROSTRIP COUPLED-LINE BAND- STOP FILTER WITH SHARP SKIRT SELECTIVITY Gui Liu 1, * and Yongle Wu 2 1 College of Physics & Electronic

More information

IT IS well known that typical properties of low-pass filters

IT IS well known that typical properties of low-pass filters IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 8, AUGUST 2005 2539 Design of Low-Pass Filters Using Defected Ground Structure Jong-Sik Lim, Member, IEEE, Chul-Soo Kim, Member, IEEE,

More information