TOP VIEW RESET INPUT (RESET) RESET 2. Maxim Integrated Products 1

Size: px
Start display at page:

Download "TOP VIEW RESET INPUT (RESET) RESET 2. Maxim Integrated Products 1"

Transcription

1 19-11; Rev ; 1/5 -Pin µp oltage Monitors General Description The are low-power microprocessor (µp) supervisory circuits used to monitor power supplies in µp and digital systems. They provide excellent circuit reliability and low cost by eliminating external components and adjustments when used with 5powered or 3-powered circuits. The also provide a debounced manual reset input. These devices perform a single function: They assert a reset signal whenever the CC supply voltage falls below a preset threshold, keeping it asserted for at least 1ms after CC has risen above the reset threshold. The only difference between the two devices is that the has an active-low output (which is guaranteed to be in the correct state for CC down to 1), while the MAX81 has an active-high output. The reset comparator is designed to ignore fast transients on CC. Reset thresholds are available for operation with a variety of supply voltages. Low supply current makes the ideal for use in portable equipment. The devices come in a -pin SOT13 package. Applications Computers Controllers Intelligent Instruments Critical µp and µc Power Monitoring Portable/Battery-Powered Equipment Typical Operating Circuit Features Precision Monitoring of 3, 3.3, and 5 Power-Supply oltages 6µA Supply Current 1ms Min Power-On Reset Pulse Width; Output (), Output (MAX81) Guaranteed Over Temperature Guaranteed alid to CC = 1 () Power-Supply Transient Immunity No External Components -Pin SOT13 Package Ordering Information PART* TEMP RANGE PIN-PACKAGE _EUS-T MAX81_EUS-T - C to +85 C - C to +85 C SOT13 SOT13 *This part offers a choice of five different reset threshold voltages. Select the letter corresponding to the desired nominal reset threshold voltage, and insert it into the blank to complete the part number. Devices are available in both leaded and lead-free packaging. Specify lead-free by replacing -T with +T when ordering. Pin Configuration TOP IEW THRESHOLD SUFFIX OLTAGE () L.63 M.38 T 3.8 S.93 R.63 1 MR MAX81 () INPUT µp () MAX81 3 MR PUSHBUTTON SWITCH ( ) ARE FOR MAX81 SOT13 ( ) ARE FOR MAX81 NOTE: SEE LAST PAGE FOR MARKING INFORMATION. Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at , or visit Maxim s website at

2 ABSOLUTE MAXIMUM RATINGS Terminal oltage (with respect to ) to 6. All Other Inputs to ( +.3) Input Current,, MR...mA Output Current, or...ma Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS Continuous Power Dissipation (T A = +7 C) SOT13 (derate mw/ C above +7 C) 3mW Operating Temperature Range...- C to +85 C Storage Temperature Range C to +16 C Lead Temperature (soldering, 1sec)...+3 C ( = 5 for L/M versions, = 3.3 for T/S versions, = 3 for R version,, unless otherwise noted. Typical values are at.) (Note 1) Supply Current PARAMETER Operating oltage Range Reset Threshold Reset Threshold Tempco to Reset Delay (Note ) Reset Active Timeout Period MR Minimum Pulse Width MR Glitch Immunity (Note 3) MR to Reset Propagation Delay (Note ) MR Input Threshold MR Pull-Up Resistance Output oltage (MAX81) SYMBOL I CC TH t RP t MR t MD IH IL IH IL OH OL MAX81_L/M, = 5.5, I OUT = MAX81_R/S/T, = 3.6, I OUT = MAX81_L MAX81_M MAX81_S OD = 15m, MAX81_L/M OD = 15m, MAX81_R/S/T = TH(MAX) CONDITIONS I SOURCE = 15µA, 1.8 < < TH(MIN) MAX81R/S/T only, I SINK = 1.mA, = TH(MAX) MIN TYP MAX T A = C to +7 C MAX81_T MAX81_R > TH(MAX), MAX81_L/M > TH(MAX), MAX81_R/S/T MAX81L/M only, I SINK = 3.mA, = TH(MAX) x x UNITS µa ppm/ C µs ms µs ns µs kω

3 ELECTRICAL CHARACTERISTICS (continued) ( = 5 for L/M versions, = 3.3 for T/S versions, = 3 for R version,, unless otherwise noted. Typical values are at.) (Note 1) PARAMETER Output oltage () SYMBOL OL OH CONDITIONS R/S/T only, I SINK = 1.mA, = TH(MIN) L/M only, I SINK = 3.mA, = TH(MIN) I SINK = 5µA, > 1. R/S/T only, I SOURCE = 5µA, > TH(MAX) L/M only, I SOURCE = 8µA, > TH(MAX) MIN TYP MAX Note 1: Production testing done at, over temperature limits guaranteed by design using six sigma design limits. Note : output for, output for MAX81. Note 3: Glitches of 1ns or less typically will not generate a reset pulse UNITS 3

4 Typical Operating Characteristics (, unless otherwise noted.) SUPPLY CURRENT (µa) SUPPLY CURRENT vs. TEMPERATURE (MAX81_R/S/T) = 3.6 = 3.3 = 1 /1-TOC1 SUPPLY CURRENT (µa) 8 6 SUPPLY CURRENT vs. TEMPERATURE (MAX81_L/M) = 5.5 = 3 = 1 /1-TOC POWER-DOWN DELAY (µs) POWER-DOWN DELAY vs. TEMPERATURE (MAX81_R/S/T) 1 OD = TH OD = m OD = 15m OD = m /1-TOC3 POWER-DOWN DELAY (µs) POWER-DOWN DELAY vs. TEMPERATURE (MAX81_L/M) OD = TH OD = m OD = 15m /1-TOC POWER-UP TIMEOUT (ms) 3 1 POWER-UP TIMEOUT vs. TEMPERATURE MAX81_R/S/T MAX81_L/M /1-TOC5 NORMALIZED THRESHOLD () THRESHOLD DEIATION vs. TEMPERATURE /1-TOC6 OD = m

5 Pin Description 1 3 PIN MAX NAME MR Ground FUNCTION Active-Low Reset Output. remains low while is below the reset threshold or while MR is held low. remains low for the Reset Active Timeout Period (t RP ) after the reset conditions are terminated. Active-High Reset Output. remains high while is below the reset threshold or while MR is held low. remains high for Reset Active Timeout Period (t RP ) after the reset conditions are terminated. Manual Reset Input. A logic low on MR asserts reset. Reset remains asserted as long as MR is low and for 18ms after MR returns high. This active-low input has an internal kω pull-up resistor. It can be driven from a TTL or CMOS-logic line, or shorted to ground with a switch. Leave open if unused. +5, +3.3, or +3 Supply oltage Detailed Description Reset Output A microprocessor s (µp s) reset input starts the µp in a known state. These µp supervisory circuits assert reset to prevent code execution errors during power-up, power-down, or brownout conditions. is guaranteed to be a logic low for CC > 1. Once CC exceeds the reset threshold, an internal timer keeps low for the reset timeout period; after this interval, goes high. If a brownout condition occurs (CC dips below the reset threshold), goes low. Any time CC goes below the reset threshold, the internal timer resets to zero, and goes low. The internal timer starts after returns above the reset threshold, and remains low for the reset timeout period. The manual reset input (MR) can also initiate a reset. See the Manual Reset Input section. The MAX81 has an active-high output that is the inverse of the s output. Manual Reset Input Many µp-based products require manual reset capability, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic low on MR asserts reset. Reset remains asserted while MR is low, and for the Reset Active Timeout Period (trp) after MR returns high. This input has an internal kω pull-up resistor, so it can be left open if it is not used. MR can be driven with TTL or CMOS-logic levels, or with opendrain/collector outputs. Connect a normally open momentary switch from MR to to create a manualreset function; external debounce circuitry is not required. If MR is driven from long cables or if the device is used in a noisy environment, connecting a.1µf capacitor from MR to ground provides additional noise immunity. Reset Threshold Accuracy The are ideal for systems using a 5 ±5% or 3 ±5% power supply with ICs specified for 5 ±1% or 3 ±1%, respectively. They are designed to meet worst-case specifications over temperature. The reset is guaranteed to assert after the power supply falls out of regulation, but before power drops below the minimum specified operating voltage range for the system ICs. The thresholds are pre-trimmed and exhibit tight distribution, reducing the range over which an undesirable reset may occur. 5

6 MAXIMUM TRANSIENT DURATION (ms) MAX81 _L/M 5 MAX81 _R/S/T COMPARATOR OERDRIE, TH - (m) R1 Figure 1. Maximum Transient Duration without Causing a Reset Pulse vs. Comparator Overdrive Applications Information Negative-Going CC Transients In addition to issuing a reset to the µp during power-up, power-down, and brownout conditions, the / MAX81 are relatively immune to short duration negative-going CC transients (glitches). Figure 1 shows typical transient durations vs. reset comparator overdrive, for which the do not generate a reset pulse. This graph was generated using a negative-going pulse applied to CC, starting above the actual reset threshold and ending below it by the magnitude indicated (reset comparator overdrive). The graph indicates the typical maximum pulse width a negative-going CC transient may have without causing a reset pulse to be issued. As the magnitude of the transient increases (goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a CC transient that goes 15m below the reset threshold and lasts µs or less (MAX81_L/M) or µs or less (MAX81_T/S/R) will not cause a reset pulse to be issued. A.1µF capacitor mounted as close as possible to CC provides additional transient immunity. Figure. alid to = Ground Circuit Ensuring a alid Output Down to CC = When CC falls below 1, the output no longer sinks current it becomes an open circuit. Therefore, high-impedance CMOS-logic inputs connected to the output can drift to undetermined voltages. This presents no problem in most applications, since most µp and other circuitry is inoperative with CC below 1. However, in applications where the output must be valid down to, adding a pulldown resistor to the pin will cause any stray leakage currents to flow to ground, holding low (Figure ). R1 s value is not critical; 1kΩ is large enough not to load and small enough to pull to ground. A 1kΩ pull-up resistor to CC is also recommended for the MAX81 if is required to remain valid for CC < 1. 6

7 Interfacing to µps with Bidirectional Reset Pins µps with bidirectional reset pins (such as the Motorola 68HC11 series) can contend with the reset outputs. If, for example, the output is asserted high and the µp wants to pull it low, indeterminate logic levels may result. To correct such cases, connect a.7kω resistor between the (or MAX81 ) output and the µp reset I/O (Figure 3). Buffer the reset output to other system components. Chip Information TRANSISTOR COUNT: 31.7k BUFFER µp BUFFERED TO OTHER SYSTEM COMPONENTS Figure 3. Interfacing to µps with Bidirectional Reset I/O 7

8 Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to ±.1. ±.1. ±.5 ø1.5 ±.1 ø1.1 ± ±.1 8. ±. 3.5 ±.5 NOTE: DIMENSIONS ARE IN MM. AND FOLLOW EIA81-1 STANDARD. ICs MAY ALSO BE MARKED WITH FULL PART NAME: 811L, 811M_ MARKING INFORMATION LOT SPECIFIC CODE X X X X AMAA or KABB = L ANAA or KABC = M APAA or KABD = T AQAA or KABE = S ARAA or KABF = R ASAA or KABG = MAX81L ATAA or KABH = MAX81M AAA or KABI = MAX81T AWAA or KABJ = MAX81S AXAA or KABK = MAX81R SOT-13 L.EPS PACKAGE OUTLINE, SOT-13, L 1-5 E 1 1 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 8 Maxim Integrated Products, 1 San Gabriel Drive, Sunnyvale, CA Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products, Inc.

4-Pin μp Voltage Monitors with Manual Reset Input MAX811/MAX812

4-Pin μp Voltage Monitors with Manual Reset Input MAX811/MAX812 General Description The MAX811/MAX81 are low-power microprocessor (µp) supervisory circuits used to monitor power supplies in µp and digital systems. They provide excellent circuit reliability and low

More information

PART* MAX812_EUS-T TOP VIEW

PART* MAX812_EUS-T TOP VIEW 19-11; Rev ; /98 -Pin µp oltage Monitors General Description The are low-power microprocessor (µp) supervisory circuits used to monitor power supplies in µp and digital systems. They provide excellent

More information

MAX6711L/M/R/S/T/Z, MAX6712L/M/R/S/T/Z, MAX6713L/M/R/S/T/Z. 4-Pin SC70 Microprocessor Reset Circuits with Manual Reset Input

MAX6711L/M/R/S/T/Z, MAX6712L/M/R/S/T/Z, MAX6713L/M/R/S/T/Z. 4-Pin SC70 Microprocessor Reset Circuits with Manual Reset Input General Description The MAX6711/MAX6712/MAX6713 are microprocessor (µp) supervisory circuits used to monitor the power supplies in µp and digital systems. They provide excellent circuit reliability and

More information

Ultra-Low-Voltage µp Reset Circuits and Voltage Detectors

Ultra-Low-Voltage µp Reset Circuits and Voltage Detectors 19-2625; Rev 2; 12/05 Ultra-Low-oltage µp Reset Circuits and General Description The microprocessor (µp) supervisory circuits monitor ultra-low-voltage power supplies in µp and digital systems. They provide

More information

3-Pin Microprocessor Reset Circuits

3-Pin Microprocessor Reset Circuits 19-0344; Rev 4; 12/99 3-Pin Microprocessor Reset Circuits General Description The MAX803/MAX809/MAX810 are microprocessor (µp) supervisory circuits used to monitor the power supplies in µp and digital

More information

High-Accuracy μp Reset Circuit

High-Accuracy μp Reset Circuit General Description The MAX6394 low-power CMOS microprocessor (μp) supervisory circuit is designed to monitor power supplies in μp and digital systems. It offers excellent circuit reliability by providing

More information

Power-Supply Monitor with Reset

Power-Supply Monitor with Reset 9-036; Rev. 2; 2/05 Power-Supply Monitor with Reset General Description The provides a system reset during power-up, power-down, and brownout conditions. When falls below the reset threshold, goes low

More information

3-Pin, Ultra-Low-Voltage, Low-Power µp Reset Circuits

3-Pin, Ultra-Low-Voltage, Low-Power µp Reset Circuits 19-1411; Rev 1; 6/00 3-Pin, Ultra-Low-oltage, Low-Power General Description The // microprocessor (µp) supervisory circuits monitor the power supplies in 1.8 to 3.3 µp and digital systems. They increase

More information

Microprocessor Supervisory Reset Circuits with Edge-Triggered, One-Shot Manual Reset

Microprocessor Supervisory Reset Circuits with Edge-Triggered, One-Shot Manual Reset 9-2523; Rev ; /5 Microprocessor Supervisory Reset Circuits General Description The microprocessor (µp) supervisory circuits monitor single power-supply voltages from +.8 to +5. and assert a reset if the

More information

G692/G693 4-Pin µp Voltage Monitors with Manual Reset Input

G692/G693 4-Pin µp Voltage Monitors with Manual Reset Input 4-Pin µp Voltage Monitors with Manual Reset Input Features Precision Monitoring of +3V, +3.3V, and +5V Power-Supply Voltages Fully Specified Over Temperature Available in Three Output Configurations Push-Pull

More information

Reset in SOT23-3. General Description. Ordering Information. Applications. Typical Operating Circuit. Pin Configuration

Reset in SOT23-3. General Description. Ordering Information. Applications. Typical Operating Circuit. Pin Configuration General Description The MAX633/ combine a precision shunt regulator with a power-on reset function in a single SOT23-3 package. They offer a low-cost method of operating small microprocessor (µp)-based

More information

Low-Power, Single/Dual-Voltage μp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay

Low-Power, Single/Dual-Voltage μp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay General Description The MAX6412 MAX6420 low-power microprocessor supervisor circuits monitor system voltages from 1.6V to 5V. These devices are designed to assert a reset signal whenever the supply voltage

More information

Low-Power, Single/Dual-Voltage µp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay. Maxim Integrated Products 1

Low-Power, Single/Dual-Voltage µp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay. Maxim Integrated Products 1 19-2336; Rev 2; 12/05 Low-Power, Single/Dual-Voltage µp Reset Circuits General Description The low-power microprocessor supervisor circuits monitor system voltages from 1.6V to 5V. These devices are designed

More information

+5V, Low-Power µp Supervisory Circuits with Adjustable Reset/Watchdog

+5V, Low-Power µp Supervisory Circuits with Adjustable Reset/Watchdog 19-1078; Rev 4; 9/10 +5V, Low-Power µp Supervisory Circuits General Description The * low-power microprocessor (µp) supervisory circuits provide maximum adjustability for reset and watchdog functions.

More information

Low-Voltage, High-Accuracy, Triple/Quad Voltage µp Supervisory Circuits in SOT Package

Low-Voltage, High-Accuracy, Triple/Quad Voltage µp Supervisory Circuits in SOT Package 19-2324; Rev 2; 12/05 Low-oltage, High-Accuracy, Triple/Quad General Description The precision triple/quad voltage microprocessor (µp) supervisory circuits monitor up to four system-supply voltages and

More information

MANUAL RESET (MR) (RESET)/ RESET RESET MAX16084 MAX16085 MAX16086 GND. Maxim Integrated Products 1

MANUAL RESET (MR) (RESET)/ RESET RESET MAX16084 MAX16085 MAX16086 GND. Maxim Integrated Products 1 19-5903; Rev 0; 6/11 General Description The family of supervisory circuits monitors voltages from +1.1V to +5V using a factory-set reset threshold. The MAX16084/MAX16085/MAX16086 offer a manual reset

More information

Setup Period. General Description

Setup Period. General Description General Description The MAX6443 MAX6452 low-current microprocessor reset circuits feature single or dual manual reset inputs with an extended setup period. Because of the extended setup period, short switch

More information

Microprocessor Reset Circuit

Microprocessor Reset Circuit Microprocessor Reset Circuit GENERAL DESCRIPTION The TS3809 series are used for microprocessor (µp) supervisory circuits to monitor the power supplies in µp and digital systems. They provide excellent

More information

140ms (min) WDO Pulse Period PART. Maxim Integrated Products 1

140ms (min) WDO Pulse Period PART. Maxim Integrated Products 1 19-2804; Rev 2; 12/05 5-Pin Watchdog Timer Circuit General Description The is a low-power watchdog circuit in a tiny 5- pin SC70 package. This device improves system reliability by monitoring the system

More information

Dual-/Triple-/Quad-Voltage, Capacitor- Adjustable, Sequencing/Supervisory Circuits

Dual-/Triple-/Quad-Voltage, Capacitor- Adjustable, Sequencing/Supervisory Circuits 19-0622; Rev 0; 8/06 Dual-/Triple-/Quad-Voltage, Capacitor- General Description The are dual-/triple-/ quad-voltage monitors and sequencers that are offered in a small thin QFN package. These devices offer

More information

Dual-/Triple-/Quad-Voltage, Capacitor- Adjustable, Sequencing/Supervisory Circuits

Dual-/Triple-/Quad-Voltage, Capacitor- Adjustable, Sequencing/Supervisory Circuits 19-0525; Rev 3; 1/07 EVALUATION KIT AVAILABLE Dual-/Triple-/Quad-Voltage, Capacitor- General Description The are dual-/triple-/quad-voltage monitors and sequencers that are offered in a small TQFN package.

More information

68HC11/Bidirectional-Compatible µp Reset Circuit MAX6314*

68HC11/Bidirectional-Compatible µp Reset Circuit MAX6314* 9-9; Rev ; /99 68HC/Bidirectional-Compatible General Description The low-power CMOS microprocessor (µp) supervisory circuit is designed to monitor power supplies in µp and digital systems. The s output

More information

3V to 5.5V, up to 250kbps True RS-232 Transceiver with 4µA AutoShutdown Plus and Power-On Reset

3V to 5.5V, up to 250kbps True RS-232 Transceiver with 4µA AutoShutdown Plus and Power-On Reset 19-1253; Rev ; 8/97 3 to 5.5, up to 25kbps True RS-232 Transceiver General Description The MAX332 combines a microprocessor (µp) supervisory circuit with an RS-232 transceiver. The power-on reset performs

More information

Quad Voltage µp Supervisory Circuit in SOT Package

Quad Voltage µp Supervisory Circuit in SOT Package 19-1756; Rev 3; 12/05 Quad Voltage µp Supervisory Circuit General Description The is a precision quad voltage monitor with microprocessor (µp) supervisory reset timing. The device can monitor up to four

More information

3.0V/3.3V Microprocessor Supervisory Circuits MAX690T/S/R, MAX704T/S/R, MAX802T/S/R, MAX804 MAX806T/S/R. Features

3.0V/3.3V Microprocessor Supervisory Circuits MAX690T/S/R, MAX704T/S/R, MAX802T/S/R, MAX804 MAX806T/S/R. Features , MAX804 General Description These microprocessor (µp) supervisory circuits reduce the complexity and number of components required for power-supply monitoring and battery-control functions in µp systems.

More information

Microprocessor Reset Circuit

Microprocessor Reset Circuit GENERAL DESCRIPTION The TS3809/3810 series are used for microprocessor (µp) supervisory circuits to monitor the power supplies in µp and digital systems. They provide excellent circuit reliability and

More information

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN 19-3869; Rev 1; 1/11 Low-oltage, High-Accuracy, Quad Window General Description The are adjustable quad window voltage detectors in a small thin QFN package. These devices are designed to provide a higher

More information

Features. Ordering Information VCC MIC8114 RESET

Features. Ordering Information VCC MIC8114 RESET MIC8114 Microprocessor Reset Circuit General Description The MIC8114 is an inexpensive microprocessor supervisory circuit that monitors the power supply in microprocessor based systems. The function of

More information

V CC 2.7V TO 5.5V. Maxim Integrated Products 1

V CC 2.7V TO 5.5V. Maxim Integrated Products 1 19-3491; Rev 1; 3/07 Silicon Oscillator with Reset Output General Description The silicon oscillator replaces ceramic resonators, crystals, and crystal-oscillator modules as the clock source for microcontrollers

More information

POWER MANAGEMENT. Key Features. Applications. Block Diagrams. Reset Threshold Suffix Voltage (V)

POWER MANAGEMENT. Key Features. Applications. Block Diagrams. Reset Threshold Suffix Voltage (V) POWER MANAGEMENT 4-Pin µp P VoltV oltage e Supervisor with h Manual ResetR The /IMP812 are low-power supervisors designed to monitor voltage levels of 3.0V, 3.3V and 5.0V power supplies in low-power microprocessor

More information

Low-Power, Single/Dual-Voltage µp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay

Low-Power, Single/Dual-Voltage µp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay General Description The MAX6412 MAX6420 low-power microprocessor supervisor circuits monitor system voltages from 1.6V to 5V. These devices are designed to assert a reset signal whenever the supply voltage

More information

Low-Voltage, 1.8kHz PWM Output Temperature Sensors

Low-Voltage, 1.8kHz PWM Output Temperature Sensors 19-266; Rev 1; 1/3 Low-Voltage, 1.8kHz PWM Output Temperature General Description The are high-accuracy, low-power temperature sensors with a single-wire output. The convert the ambient temperature into

More information

CONSONANCE Ultra Low Power Microprocessor Reset IC CN803/809/CN810 General Description Features Pin Assignment Applications

CONSONANCE Ultra Low Power Microprocessor Reset IC CN803/809/CN810 General Description Features Pin Assignment Applications CONSONANCE Ultra Low Power Microprocessor Reset IC CN803/809/CN810 General Description The CN803/809/810 series are micro- processor (µp) supervisory circuits used to monitor the power supplies in µp and

More information

Low-Cost, Micropower, High-Side Current-Sense Amplifier + Comparator + Reference ICs

Low-Cost, Micropower, High-Side Current-Sense Amplifier + Comparator + Reference ICs 9-63; Rev ; /3 Low-Cost, Micropower, High-Side Current-Sense General Description The low-cost, micropower, high-side current-sense supervisors contain a highside current-sense amplifier, bandgap reference,

More information

Voltage Detectors in 4-Bump (2 X 2) Chip-Scale Package

Voltage Detectors in 4-Bump (2 X 2) Chip-Scale Package 19-2041; Rev 1; 8/01 oltage Detectors in 4-Bump (2 X 2) General Description The is a family of ultra-low power circuits used for monitoring battery, power-supply, and regulated system voltages. Each detector

More information

MXD1810 MXD1813/ MXD1815 MXD1818. Low-Power μp Reset Circuits in 3-Pin SC70/SOT23. Features. General Description. Ordering Information

MXD1810 MXD1813/ MXD1815 MXD1818. Low-Power μp Reset Circuits in 3-Pin SC70/SOT23. Features. General Description. Ordering Information General Description The MXD1810 MXD1813/ family of microprocessor (μp) reset circuits monitor power supplies in μp and digital systems. These devices provide excellent circuit reliability and low cost

More information

Current-Limited Switch for Single USB Port

Current-Limited Switch for Single USB Port 9-57; Rev ; / Current-Limited Switch for Single USB Port General Description The is a current-limited, 6mΩ switch with built-in fault blanking. Its accurate preset current limit of.6a to.6a makes it ideally

More information

PART* MAX6509HAUK-T MAX6510CAUT-T** MAX6510HAUT-T** TOP VIEW INT GND GND OUT. Maxim Integrated Products 1

PART* MAX6509HAUK-T MAX6510CAUT-T** MAX6510HAUT-T** TOP VIEW INT GND GND OUT. Maxim Integrated Products 1 19-1617; Rev 2; 11/03 Resistor-Programmable General Description The are fully integrated, resistorprogrammable temperature switches with thresholds set by an external resistor. They require only one external

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-3474; Rev 2; 8/07 Silicon Oscillator with Low-Power General Description The dual-speed silicon oscillator with reset is a replacement for ceramic resonators, crystals, crystal oscillator modules, and

More information

MAX705 MAX708/MAX813L Low-Cost, µp Supervisory Circuits

MAX705 MAX708/MAX813L Low-Cost, µp Supervisory Circuits MAX0 MAX0/MAXL General Description The MAX0-MAX0/MAXL microprocessor (µp) supervisory circuits reduce the complexity and number of components required to monitor power-supply and battery functions in µp

More information

SGM706 Low-Cost, Microprocessor Supervisory Circuit

SGM706 Low-Cost, Microprocessor Supervisory Circuit GENERAL DESCRIPTION The microprocessor supervisory circuit reduces the complexity and number of components required to monitor power-supply and monitor microprocessor activity. It significantly improves

More information

SGM706 Low-Cost, Microprocessor Supervisory Circuit

SGM706 Low-Cost, Microprocessor Supervisory Circuit GENERAL DESCRIPTION The microprocessor supervisory circuit reduces the complexity and number of components required to monitor power-supply and monitor microprocessor activity. It significantly improves

More information

OSC2 Selector Guide appears at end of data sheet. Maxim Integrated Products 1

OSC2 Selector Guide appears at end of data sheet. Maxim Integrated Products 1 9-3697; Rev 0; 4/05 3-Pin Silicon Oscillator General Description The is a silicon oscillator intended as a low-cost improvement to ceramic resonators, crystals, and crystal oscillator modules as the clock

More information

Low-Cost Microprocessor Supervisory Circuits with Battery Backup

Low-Cost Microprocessor Supervisory Circuits with Battery Backup General Description The / microprocessor (μp) supervisory circuits reduce the complexity and number of components required for power-supply monitoring and battery control functions in μp systems. These

More information

CE OUT ADDRESS DECODER CE IN OVO LOW LINE RESET RESET 8 9 SWT. Maxim Integrated Products 1

CE OUT ADDRESS DECODER CE IN OVO LOW LINE RESET RESET 8 9 SWT. Maxim Integrated Products 1 9-047; Rev. 4; /05 Microprocessor and Nonvolatile General Description The microprocessor (µp) supervisory circuits provide the most functions for power-supply and watchdog monitoring in systems without

More information

MAX6340/MAX6421 MAX6426

MAX6340/MAX6421 MAX6426 19-2440; Rev 4; 12/05 Low-Power, SC70/SOT µp Reset Circuits with General Description The low-power microprocessor supervisor circuits monitor system voltages from 1.6V to 5V. These devices perform a single

More information

4-Pin Microprocessor Power Supply Supervisors with Manual Reset

4-Pin Microprocessor Power Supply Supervisors with Manual Reset 4-Pin Microprocessor Power Supply Supervisors with Manual Reset, CAT812 FEATURES Precision monitoring of +5.0 V (± 5%, ± 10%, ± 20%), +3.3 V (± 5%, ± 10%), +3.0 V (± 10%) and +2.5 V (± 5%) power supplies

More information

Low-Voltage, High-Accuracy, Triple/Quad Voltage μp Supervisory Circuits in SOT Package

Low-Voltage, High-Accuracy, Triple/Quad Voltage μp Supervisory Circuits in SOT Package General Description The MAX6700/MAX6710 precision triple/quad voltage microprocessor (μp) supervisory circuits monitor up to four system-supply voltages and assert a single reset if any supply voltage

More information

APX 8 XX - XX XX G - 7. Package Packaging SA : SOT23

APX 8 XX - XX XX G - 7. Package Packaging SA : SOT23 Features Precision Monitoring of +2.5V, +3V, +3.3V, and +5V Power-Supply Voltages Fully Specified Over Temperature Available in three Output Configurations Push-Pull Active Low (APX809) Push-Pull Active

More information

3 Pin Microcontroller Power Supply Supervisor L 4.63 M 4.38 J 4.00 T 3.08 S 2.93 R Features: V CC

3 Pin Microcontroller Power Supply Supervisor L 4.63 M 4.38 J 4.00 T 3.08 S 2.93 R Features: V CC General Description Six voltage thresholds are available to support 3V to 5V systems: The /ASM810 are cost effective 3.0V, 3.3V and 5.0V power supply supervisor circuits optimized for low-power microprocessor

More information

Single/Dual/Triple-Voltage μp Supervisory Circuits with Independent Watchdog Output

Single/Dual/Triple-Voltage μp Supervisory Circuits with Independent Watchdog Output General Description The MAX6730 MAX6735 single/dual/triple-voltage microprocessor (μp) supervisors feature a watchdog timer and manual reset capability. The MAX6730 MAX6735 offer factory-set reset thresholds

More information

Maxim Integrated Products 1

Maxim Integrated Products 1 19-1951; Rev 3; 1/5 SOT3 Power-Supply Sequencers General Description The are power-supply sequencers for dual-voltage microprocessors (µps) and multivoltage systems. These devices monitor a primary supply

More information

Low-Cost Microprocessor Supervisory Circuits with Battery Backup

Low-Cost Microprocessor Supervisory Circuits with Battery Backup 19-0130; Rev 2; 11/05 Low-Cost Microprocessor Supervisory General Description The microprocessor (µp) supervisory circuits reduce the complexity and number of components required for power-supply monitoring

More information

INTEGRATED CIRCUITS. MAX809/MAX810 3-pin microprocessor resets. Product data Supersedes data of 2002 Oct Aug 08

INTEGRATED CIRCUITS. MAX809/MAX810 3-pin microprocessor resets. Product data Supersedes data of 2002 Oct Aug 08 INTEGRATED CIRCUITS Supersedes data of 2002 Oct 21 2003 Aug 08 DESCRIPTION The are single function microprocessor resets used to monitor supply voltages in microprocessor and other logic systems. They

More information

SGM706 Low-Cost, Microprocessor Supervisory Circuit

SGM706 Low-Cost, Microprocessor Supervisory Circuit GENERAL DESCRIPTION The microprocessor supervisory circuit reduces the complexity and number of components required to monitor power supply and monitor microprocessor activity. It significantly improves

More information

ADM6823. Low Voltage, Supervisory Circuit with Watchdog and Manual Reset in 5-Lead SOT-23. Data Sheet FUNCTIONAL BLOCK DIAGRAM FEATURES APPLICATIONS

ADM6823. Low Voltage, Supervisory Circuit with Watchdog and Manual Reset in 5-Lead SOT-23. Data Sheet FUNCTIONAL BLOCK DIAGRAM FEATURES APPLICATIONS Data Sheet Low Voltage, Supervisory Circuit with Watchdog and Manual Reset in 5-Lead SOT-23 FEATURES Precision low voltage monitoring 9 reset threshold options: 1.58 V to 4.63 V (typical) 140 ms (minimum)

More information

μp Supervisors Benefits and Features General Description Typical Operating Circuit Applications

μp Supervisors Benefits and Features General Description Typical Operating Circuit Applications Click here for production status of specific part numbers. MAX16000 MAX16007 General Description The MAX16000 MAX16007 are low-voltage, quad/hex/ octal-voltage μp supervisors in small TQFN and TSSOP packages.

More information

MOTOROLA. MAX810x. Semiconductor Components

MOTOROLA. MAX810x. Semiconductor Components MOTOROLA Semiconductor Components Order Number: MAX809/D Rev. 0, 06/1999 PLASTIC PACKAGE (TO 236) CASE 318 08 Features Precision CC Monitor for 3.0, 3.3, and 5.0 Supplies 140msec Guaranteed Minimum, Output

More information

Precision, Low-Power, 6-Pin SOT23 Temperature Sensors and Voltage References

Precision, Low-Power, 6-Pin SOT23 Temperature Sensors and Voltage References 19-2457; Rev 2; 11/03 Precision, Low-Power, 6-Pin SOT23 General Description The are precise, low-power analog temperature sensors combined with a precision voltage reference. They are ideal for applications

More information

ENABLE RESET EN RESETIN

ENABLE RESET EN RESETIN 19-4000; Rev 2; 8/09 High-Voltage Watchdog Timers with General Description The are microprocessor (µp) supervisory circuits for high-input-voltage and low-quiescent-current applications. These devices

More information

PART MAX3183. MAX3181EUK-T -40 C to +85 C 5 SOT23-5 ADKG MAX3182EUK-T -40 C to +85 C 5 SOT23-5 ADKH MAX3183EUK-T -40 C to +85 C 5 SOT23-5 ADKI

PART MAX3183. MAX3181EUK-T -40 C to +85 C 5 SOT23-5 ADKG MAX3182EUK-T -40 C to +85 C 5 SOT23-5 ADKH MAX3183EUK-T -40 C to +85 C 5 SOT23-5 ADKI 19-1444; Rev 1; 7/99 +3 to +5.5, 1.5Mbps General Description The MAX318MAX3183 are single RS-232 receivers in a SOT23-5 package for space- and cost-cotrained applicatio requiring minimal RS-232 communicatio.

More information

±15kV ESD-Protected, 1Mbps, 1µA RS-232 Transmitters in SOT23-6

±15kV ESD-Protected, 1Mbps, 1µA RS-232 Transmitters in SOT23-6 19-164; Rev 1; 3/ ±15k ESD-Protected, bps, 1 General Description The / single RS-3 transmitters in a SOT3-6 package are for space- and cost-constrained applications requiring minimal RS-3 communications.

More information

CLK_EN CLK_SEL. Q3 THIN QFN-EP** (4mm x 4mm) Maxim Integrated Products 1

CLK_EN CLK_SEL. Q3 THIN QFN-EP** (4mm x 4mm) Maxim Integrated Products 1 19-2575; Rev 0; 10/02 One-to-Four LVCMOS-to-LVPECL General Description The low-skew, low-jitter, clock and data driver distributes one of two single-ended LVCMOS inputs to four differential LVPECL outputs.

More information

RT9807. Micro-Power Voltage Detector with Manual Reset. General Description. Features. Applications. Pin Configurations. Ordering Information RT9807-

RT9807. Micro-Power Voltage Detector with Manual Reset. General Description. Features. Applications. Pin Configurations. Ordering Information RT9807- Micro-Power Voltage Detector with Manual Reset General Description The is a micro-power voltage detector with deglitched manual reset input which supervises the power supply voltage level for microprocessors

More information

LP3470 Tiny Power On Reset Circuit

LP3470 Tiny Power On Reset Circuit Tiny Power On Reset Circuit General Description The LP3470 is a micropower CMOS voltage supervisory circuit designed to monitor power supplies in microprocessor (µp) and other digital systems. It provides

More information

Supervisory Circuits with Watchdog and Manual Reset in 5-Lead SC70 and SOT-23 ADM823/ADM824/ADM825

Supervisory Circuits with Watchdog and Manual Reset in 5-Lead SC70 and SOT-23 ADM823/ADM824/ADM825 Data Sheet Supervisory Circuits with Watchdog and Manual Reset in 5-Lead SC70 and SOT-23 ADM823/ADM824/ADM825 FEATURES FUNCTIONAL BLOCK DIAGRAM Precision 2.5 V to 5 V power supply monitor 7 reset threshold

More information

PT7M1818/1813 Supervisory Circuit

PT7M1818/1813 Supervisory Circuit Features Highly accurate: 1.5% (25 C) Accurate power monitoring: 2.5V, 2.9V, 3. (PT7M1818), and 4.1, 4.3, 4.6V (PT7M1813) Operating voltage range: 1. ~ 5.5V Operating temperature range: -40 C to + 85 C

More information

ECL/PECL Dual Differential 2:1 Multiplexer

ECL/PECL Dual Differential 2:1 Multiplexer 19-2484; Rev 0; 7/02 ECL/PECL Dual Differential 2:1 Multiplexer General Description The fully differential dual 2:1 multiplexer (mux) features extremely low propagation delay (560ps max) and output-to-output

More information

PT7M6314US. Supervisory Circuit General Description. Features. Pin Configuration. Description

PT7M6314US. Supervisory Circuit General Description. Features. Pin Configuration. Description Features Highly accurate: 1.5% (25 C) Detect voltage range: 1.8 to 5V in 100mV increments Operating voltage range: 1. ~ 5.5V Operating temperature range: -40 C to + 85 C Detect voltage temperature characteristics:

More information

Microprocessor Supervisory Circuit in 4-Lead SOT-143 with DSP ADM811/ADM812

Microprocessor Supervisory Circuit in 4-Lead SOT-143 with DSP ADM811/ADM812 Microprocessor Supervisory Circuit in 4-Lead SOT-143 with DSP ADM811/ADM812 FEATURES Superior upgrade for MAX811/MAX812 Specified over temperature Low power consumption: 5 μa typical Precision voltage

More information

Low-Jitter, 8kHz Reference Clock Synthesizer Outputs MHz

Low-Jitter, 8kHz Reference Clock Synthesizer Outputs MHz 19-3530; Rev 0; 1/05 Low-Jitter, 8kHz Reference General Description The low-cost, high-performance clock synthesizer with an 8kHz input reference clock provides six buffered LVTTL clock outputs at 35.328MHz.

More information

Not Recommended for New Designs

Not Recommended for New Designs Not Recommended for New Designs The MAX99 was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. A Maxim replacement

More information

TOP VIEW WDS1 WDS2. Maxim Integrated Products 1

TOP VIEW WDS1 WDS2. Maxim Integrated Products 1 9-3896; Rev ; /06 System Monitoring Oscillator with General Description The replace ceramic resonators, crystals, and supervisory functions for microcontrollers in 3.3V and 5V applications. The provide

More information

PT7M6315US. Pin Configuration PT7M6315USxxD3F/D4F. Pin Description

PT7M6315US. Pin Configuration PT7M6315USxxD3F/D4F. Pin Description Features Highly accurate: 1.5% (25 C) Detect voltage range: 1.8 to 5 in 100m increments Operating voltage range: 1.0 ~ 5.5 Operating temperature range: -40 C to + 85 C Detect voltage temperature characteristics:

More information

nanopower, Tiny Supervisor with Manual Reset Input

nanopower, Tiny Supervisor with Manual Reset Input General Description The MAX16140 is an ultra-low-current, single-channel supervisory IC in a tiny, 4-bump, wafer-level package (WLP). The MAX16140 monitors the V CC voltage from 1.7V to 4.85V in 50mV increments

More information

PA RT MAX3408EUK 100Ω 120Ω. Maxim Integrated Products 1

PA RT MAX3408EUK 100Ω 120Ω. Maxim Integrated Products 1 19-2141; Rev ; 8/1 75Ω/Ω/Ω Switchable Termination General Description The MAX346/MAX347/MAX348 are general-purpose line-terminating networks designed to change the termination value of a line, depending

More information

Four-Channel Thermistor Temperature-to-Pulse- Width Converter

Four-Channel Thermistor Temperature-to-Pulse- Width Converter 9-234; Rev ; 2/7 Four-Channel Thermistor Temperature-to-Pulse- General Description The four-channel thermistor temperature-topulse-width converter measures the temperatures of up to four thermistors and

More information

Sequencing/Supervisory Circuits

Sequencing/Supervisory Circuits Click here for production status of specific part numbers. MAX1652/MAX1653 General Description The MAX1652/MAX1653 are a family of small, low-power, high-voltage monitoring circuits with sequencing capability.

More information

OUTPUT UP TO 300mA C2 TOP VIEW FAULT- DETECT OUTPUT. Maxim Integrated Products 1

OUTPUT UP TO 300mA C2 TOP VIEW FAULT- DETECT OUTPUT. Maxim Integrated Products 1 19-1422; Rev 2; 1/1 Low-Dropout, 3mA General Description The MAX886 low-noise, low-dropout linear regulator operates from a 2.5 to 6.5 input and is guaranteed to deliver 3mA. Typical output noise for this

More information

IMP705/6/7/8, 813L8. atchdog timer Brownout detection. ection supply y monitor POWER MANAGEMENT. Key Features. Applications.

IMP705/6/7/8, 813L8. atchdog timer Brownout detection. ection supply y monitor POWER MANAGEMENT. Key Features. Applications. POWER MANAGEMENT Low-P -Power µp P Supervisor Circuits WatcW atchdog timer Brownout detection ection Power P supply y monitor or The IMP0/0/0/0 and IMPL CMOS supervisor circuits monitor power-supply and

More information

256-Tap SOT-PoT, Low-Drift Digital Potentiometers in SOT23

256-Tap SOT-PoT, Low-Drift Digital Potentiometers in SOT23 19-1848; Rev ; 1/ 256-Tap SOT-PoT, General Description The MAX54/MAX541 digital potentiometers offer 256-tap SOT-PoT digitally controlled variable resistors in tiny 8-pin SOT23 packages. Each device functions

More information

500mA Low-Dropout Linear Regulator in UCSP

500mA Low-Dropout Linear Regulator in UCSP 19-272; Rev ; 1/2 5mA Low-Dropout Linear Regulator in UCSP General Description The low-dropout linear regulator operates from a 2.5V to 5.5V supply and delivers a guaranteed 5mA load current with low 12mV

More information

±15kV ESD-Protected, 460kbps, 1µA, RS-232-Compatible Transceivers in µmax

±15kV ESD-Protected, 460kbps, 1µA, RS-232-Compatible Transceivers in µmax 19-191; Rev ; 1/1 ±15kV ESD-Protected, 6kbps, 1µA, General Description The are low-power, 5V EIA/TIA- 3-compatible transceivers. All transmitter outputs and receiver inputs are protected to ±15kV using

More information

Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0 C to +128 C)

Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0 C to +128 C) 19-2241; Rev 1; 8/02 Cold-Junction-Compensated K-Thermocoupleto-Digital General Description The cold-junction-compensation thermocouple-to-digital converter performs cold-junction compensation and digitizes

More information

10-Bit, Low-Power, Rail-to-Rail Voltage-Output Serial DAC in SOT23

10-Bit, Low-Power, Rail-to-Rail Voltage-Output Serial DAC in SOT23 19-195; Rev 1; 1/4 1-Bit, Low-Power, Rail-to-Rail General Description The is a small footprint, low-power, 1-bit digital-to-analog converter (DAC) that operates from a single +.7V to +5.5V supply. The

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-2213; Rev 0; 10/01 Low-Jitter, Low-Noise LVDS General Description The is a low-voltage differential signaling (LVDS) repeater, which accepts a single LVDS input and duplicates the signal at a single

More information

High-Voltage, Low-Power Linear Regulators for

High-Voltage, Low-Power Linear Regulators for 19-3495; Rev ; 11/4 High-oltage, Low-Power Linear Regulators for General Description The are micropower, 8-pin TDFN linear regulators that supply always-on, keep-alive power to CMOS RAM, real-time clocks

More information

3V 10-Tap Silicon Delay Line DS1110L

3V 10-Tap Silicon Delay Line DS1110L XX-XXXX; Rev 1; 11/3 3V 1-Tap Silicon Delay Line General Description The 1-tap delay line is a 3V version of the DS111. It has 1 equally spaced taps providing delays from 1ns to ns. The series delay lines

More information

High-Voltage, Low-Power Linear Regulators for Notebook Computers

High-Voltage, Low-Power Linear Regulators for Notebook Computers 19-1225; Rev 3; 9/4 High-Voltage, Low-Power Linear Regulators General Description The are micropower, SOT23-5 linear regulators that supply always-on, keep-alive power to CMOS RAM and microcontrollers

More information

±15kV ESD-Protected, 3.0V to 5.5V, Low-Power, up to 250kbps, True RS-232 Transceiver

±15kV ESD-Protected, 3.0V to 5.5V, Low-Power, up to 250kbps, True RS-232 Transceiver 19-1949; Rev ; 1/1 ±15k ESD-Protected, 3. to 5.5, Low-Power, General Description The is a 3-powered EIA/TIA-232 and.28/.24 communications interface with low power requirements, high data-rate capabilities,

More information

LVDS or LVTTL/LVCMOS Input to 14 LVTTL/LVCMOS Output Clock Driver

LVDS or LVTTL/LVCMOS Input to 14 LVTTL/LVCMOS Output Clock Driver 19-2392; Rev ; 4/2 LVDS or LVTTL/LVCMOS Input to General Description The 125MHz, 14-port LVTTL/LVCMOS clock driver repeats the selected LVDS or LVTTL/LVCMOS input on two output banks. Each bank consists

More information

10µA, Low-Dropout, Precision Voltage References MAX872/MAX874. General Description. Features. Applications. Ordering Information

10µA, Low-Dropout, Precision Voltage References MAX872/MAX874. General Description. Features. Applications. Ordering Information 9-; Rev 2; 6/97, Low-Dropout, General Description The / precision 2. and 4.96 micropower voltage references consume a maximum of only and operate from supply voltages up to. The combination of ultra-low

More information

Low-Cost, +2.7V to +5.5V, Micropower Temperature Switches in SOT23 and TO-220

Low-Cost, +2.7V to +5.5V, Micropower Temperature Switches in SOT23 and TO-220 19-128; Rev 2; 11/99 Low-Cost, +2.7 to +5.5, Micropower General Description The low-cost, fully integrated temperature switches assert a logic signal when their die temperature crosses a factory-programmed

More information

Precision, Micropower, 1.8V Supply, Low-Dropout, SOT23 Voltage Reference

Precision, Micropower, 1.8V Supply, Low-Dropout, SOT23 Voltage Reference 19-2211; Rev 2; 12/2 Precision, Micropower, 1.8V Supply, General Description The is a precision, low-voltage, low-dropout, micropower voltage reference in a SOT23 package. This three-terminal reference

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-267; Rev ; 7/1 Low-Dropout, Constant-Current General Description The low-dropout bias supply for white LEDs is a high-performance alternative to the simple ballast resistors used in conventional white

More information

150mA USB LDO Regulators with ±15kV TVS and µp Reset

150mA USB LDO Regulators with ±15kV TVS and µp Reset 9-35; Rev ; / 5mA USB LDO Regulators with ±5k TS General Description The MAX55/MAX5/MAX57 are low-dropout (LDO), micropower linear voltage regulators with an integrated microprocessor (µp) reset circuit

More information

TOP VIEW COM2. Maxim Integrated Products 1

TOP VIEW COM2. Maxim Integrated Products 1 19-3472; Rev ; 1/4 Quad SPST Switches General Description The quad single-pole/single-throw (SPST) switch operates from a single +2V to +5.5V supply and can handle signals greater than the supply rail.

More information

Low-Power, 1%-Accurate Battery Monitors in µdfn and SC70 Packages

Low-Power, 1%-Accurate Battery Monitors in µdfn and SC70 Packages 9-3774; Rev 4; 5/9 Low-Power, %-Accurate Battery General Description The low-power, %-accurate battery monitors are available in the ultra-small µdfn package (.mm x.5mm) and SC7 packages. These low-power

More information

Low-Cost, Remote Temperature Switch

Low-Cost, Remote Temperature Switch 19-1819; Rev 3; 2/11 Low-Cost, Remote Temperature Switch General Description The is a fully integrated, remote temperature switch that uses an external P-N junction (typically a diode-connected transistor)

More information

Single/Dual/Quad High-Speed, Ultra Low-Power, Single-Supply TTL Comparators

Single/Dual/Quad High-Speed, Ultra Low-Power, Single-Supply TTL Comparators 19-129; Rev. 3; 7/94 Single/Dual/Quad High-Speed, Ultra Low-Power, General Description The MAX97/MAX98/MAX99 dual, quad, and single high-speed, ultra low-power voltage comparators are designed for use

More information