Lab 2: Optical Theremin Team 2 Flyback By Brian Pugh, Andrew Baker, and Michael Betts

Size: px
Start display at page:

Download "Lab 2: Optical Theremin Team 2 Flyback By Brian Pugh, Andrew Baker, and Michael Betts"

Transcription

1 Lab 2: Optical Theremin Team 2 Flyback By Brian Pugh, Andrew Baker, and Michael Betts

2 Table of Contents Abstract... 3 Introduction... 3 Rationale... 4 Implementation... 5 Hardware... 5 Software... 5 Conclusion... 6 Appendix A... 6 Bibliography... 13

3 Abstract A simple optical Theremin is designed to produce sound over a user-defined scale and with optional distortion sound effects. The hardware consists of two photodiodes sensing light input. The signal from the photodiodes get amplified and then read into a computer by a Texas Instruments mydaq. A LabVIEW virtual instrument handles all calibrating, auto-tuning, noise generation, and user parameter input. Introduction The Theremin is an electronic musical device invented by Leon Theremin in the year The Theremin operates by having two metal antennas that sense the relative positioning of the operator s hands. Bringing a hand closer to one antenna changes the instrument s pitch, and bringing a hand closer to the other antenna changes the volume. The antennas detect the hand s relative location by precisely measuring capacitance; the hand acts as the ground plate of the capacitor and as the hand gets closer to an antenna, capacitance increases. [1] A conventional Theremin is relatively complex to design and construct. Our simple optical Theremin uses changes in ambient light to measure relative hand location instead of capacitance. A transimpedance amplifier circuit converts a photodiode s small reverse bias current into a useable and measureable voltage signal. It is assumed that the optical Theremin will be used indoors under moderate lighting conditions; this assumption is made so that the amplification circuit can be tuned for the correct lighting conditions. Direct sunlight is orders of magnitude brighter than indoor lighting and can saturate the amplification circuit. When a hand is brought close to a photodiode, some ambient light is blocked and consequently changes and the output signal. Unlike a conventional Theremin, much of the heavy lifting is done in easy-to-configure, inexpensive software instead of complicated and expensive analog circuits. This amplified signal gets converted into a digital signal by the mydaq and is processed in LabVIEW to produce musical tones. There are two light sensing photodiodes, one control pitch and the other controls volume. Other parameters such as pitch range, volume range, and distortion options can be changed by the user-friendly software interface. The output music can be listened to through the mydaq s 3.5mm TRS jack. With a bit of practice, real songs can be played on this implementation of a Theremin.

4 Rationale The optical Theremin consists of two distinct parts: hardware and software. The hardware needs to detect changes in light and transform that information into information the computer and software can understand. The software (LabVIEW) then handles the calculations and sound generation. These two subsystems are further broken up into the high-level block diagram in Figure 1. We are using two OP906 photodiodes to detect light due to availability. These photodiodes generate a current that is directly proportional to the amount of ambient light; the max current output from these photodiodes is 35µA under very bright light. [2] Unfortunately, the mydaq s cannot directly measure small currents, so a transimpedance amplifier needs to be designed to amplify the signal and convert it into a measureable voltage. The actual output currents of the photodiodes are unknown, but we know the max output current is 35µA. If we want the output voltage to range between 0 and 5 volts, then we can calculate the feedback resistor with Equation 1. A 100kΩ feedback resistor was calculated, but there was no measureable output voltage signal under ambient lighting. Through experimentation, we determined that the photodiode output current is much lower than 35µA under our operating conditions. A feedback resistor of 5.1MΩ gave a satisfactory 3~5V range under ambient lighting. Equation 1: V out = I P R f Transimpedance amplifier gain We used the commonly available TL074CN quad-opamp for the transimpedance amplifier circuit. This opamp works well in this amplification because it has very high (10 12 Ω) input resistance and very low input offset voltage (~3mV). These two parameters make the TL074CN very attractive for amplifying a relatively slow, small amplitude signal. [3] Other, more obscure opamps such as the NJM4580 would offer better performance in a smaller package at a lower price, but were unavailable. Two of the four opamps in the TL074CN are currently not used. With no additional components they could be used as a buffer for both channels. But, the mydaq has a very large (>10GΩ [4] ) input impedance, making any loading effects completely insignificant. The two extra opamps will not be used as buffers because they increase circuit complexity, points of failure, and add no benefit for this application. We used two separate loops for the audio generation and configured it so that the inputs and outputs could occur simultaneously. Sub-VIs were used to accomplish modular functions that were separate from the original task of generating an audio signal from the input data. For loops with case structures were used to allow quick changes between states and configurations. The inputs were normalized to account for high and low light levels. These were then scaled to match user inputs; in order to provide a linear relationship between light levels and the note, the output

5 frequency was generated using a logarithmic scale to account for the frequency doubling that occurs between octaves. Both the software and hardware can be designed and created independently. The Gantt chart in Figure 3 illustrates how our team divided up the work into as many parallel tasks as possible to reduce project time. The hardware is considerably less complex than the software, so while the software was still being programmed and debugged, this report was written. Implementation Hardware The finalized schematic used is available in Figure 2. The mydaq supplies the 15V rails to the TL074CN opamp. Both A0 and A1 are used to measure the transimpedance amplifiers outputs; the negative inputs for both channels need to be grounded to get meaningful results. For brighter environments, a smaller feedback resistor should be used for both channels. Similarly, in a dimmer environment a larger feedback resistor should be used to give the mydaq the greatest voltage range possible. Software The LabVIEW code consists primarily of two while loops on the main block diagram (one for the input from the photodiodes and the associated signal processing and one for controlling and outputting a waveform to the mydaq) as well as several sub vis. Each of the while loops in the main vi have nested loops and case structures. When the code is initialized, it begins by setting minimum and maximum values for volume and frequency. It then moves to the signal processing loop within which it creates a waveform chart for both volume and frequency as well as contains the option for calibrating the entire system for both high and low light levels. It then proceeds to read from channels A0 and A1 on the mydaq which are then normalized before plotting and calculating the corresponding volume and frequency in such a way as to distribute it across the entire selected range. Once this has been accomplished and if auto-tune is enabled, it is passed to the auto-tune sub vi where the frequency is then coerced into a key of F#, G, C majors or the chromatic scale depending on the users preference before passing this information to the output waveform loop. Once there, the output volume can be adjusted manually and both soft and hard clipping can be turned on and off by a Boolean controlling the clipping sub-vi. This waveform is then converted into a format readable by the mydaq and is output on the audio out channel. It should also be noted that whatever controls on the front panel are not affecting operation are removed until they are again required.

6 Conclusion The end goal of this project was to design and construct an optical Theremin. The optical Theremin was required to generate user-controllable tones and volume through varying light intensity. The software was required to have a friendly front panel user interface, user configurable volume and pitch ranges, and to display both graphically and numerically the measured light intensities from the photodiodes. The realized final optical Theremin design met all design requirements and can be easily replicated by others through this final documentation. Further research can be done to improve responsiveness, increase user sensitivity, and add additional effects. Appendix A Figure 1: High Level N=1 Block Diagram Figure 2: Transimpedance Amplifier Schematic

7 Week Circuit Design and Construction Circuit Debugging LabVIEW Coding LabVIEW Debugging Design Verification/Validation Design Review Document Figure 3: Gantt Chart Component Quantity Unit Price ($) Supplier NI mydaq Studica OP906 Photodiode Mouser TL074CN PDIP Mouser 5.1MΩ, 5% Metal Film Resistor Mouser 170 Tie Point Breadboard Deal Extreme Breadboard Solid Wire TOTAL: Figure 4: Bill of Materials Figure 5: Front Panel

8 Figure 6: Clipping Block Diagram Figure 7: Autotune Block Diagram

9 Figure 8: Main Block Diagram Figure 8a: Inputs to loops

10 Figure 8b: Bottom Loop (Sound Generation and Output) Figure 8c: Setup of Inputs in Top Loop

11 Figure 8d: Outer Case Structure False (Top Loop)

12 Figure 8e: Outer Case Structure True (Top Loop)

13 Bibliography [1] Glinsky, Albert. Theremin: Ether Music and Espionage. Urbana: U of Illinois, Print. [2] Optek Technology. PIN Silicon Photo Diode OP906. June [3] Texas Instruments. TL07x Low-Noise JFET-Input Operational Amplifiers. Feb [4] National Instruments. NI MyDAQ Specifications. Aug

Optical Theremin Critical Design Review Yanzhe Zhao, Mason Story, Nicholas Czesak March

Optical Theremin Critical Design Review Yanzhe Zhao, Mason Story, Nicholas Czesak March Optical Theremin Critical Design Review Yanzhe Zhao, Mason Story, Nicholas Czesak March-07-2015 Abstract A theremin is a musical instrument whose tone and pitch can be controlled without physical contact.

More information

EE 300W 001 Lab 2: Optical Theremin. Cole Fenton Matthew Toporcer Michael Wilson

EE 300W 001 Lab 2: Optical Theremin. Cole Fenton Matthew Toporcer Michael Wilson EE 300W 001 Lab 2: Optical Theremin Cole Fenton Matthew Toporcer Michael Wilson March 8 th, 2015 2 Abstract This document serves as a design review to document our process to design and build an optical

More information

Optical Theremin CDR

Optical Theremin CDR William Cane Wissing James Jones Mackenzie Phelps EE 300w Sec 003 Abstract Optical Theremin CDR For this lab we created an optical theremin. A theremin is an electronic instrument controlled without any

More information

THE PENNSYLVANIA STATE UNIVERSITY. Lab 2: Designing Optical Theremin Instrument. EE 300W Section 001. Nathaniel Houtz, Ji Eun Shin, Peter Wu 2/22/2013

THE PENNSYLVANIA STATE UNIVERSITY. Lab 2: Designing Optical Theremin Instrument. EE 300W Section 001. Nathaniel Houtz, Ji Eun Shin, Peter Wu 2/22/2013 THE PENNSYLVANIA STATE UNIVERSITY Lab 2: Designing Optical Theremin Instrument EE 300W Section 001 Nathaniel Houtz, Ji Eun Shin, Peter Wu 2/22/2013 1 ABSTRACT A simple Theremin must be able to produce

More information

Lab 2: Designing an Optical Theremin. EE 300W Section 5 Team #3: Penn Power United Gregory Hodgkiss, Nasser Aljadeed 10/23/15

Lab 2: Designing an Optical Theremin. EE 300W Section 5 Team #3: Penn Power United Gregory Hodgkiss, Nasser Aljadeed 10/23/15 Lab 2: Designing an Optical Theremin EE 300W Section 5 Team #3: Penn Power United Gregory Hodgkiss, Nasser Aljadeed 10/23/15 Abstract The purpose of this lab is to design an optical theremin, a musical

More information

EE 300W Lab 2: Optical Theremin Critical Design Review

EE 300W Lab 2: Optical Theremin Critical Design Review EE 300W Lab 2: Optical Theremin Critical Design Review Team Drunken Tinkers: S6G8 Levi Nicolai, Harvish Mehta, Justice Lee October 21, 2016 Abstract The objective of this lab is to create an Optical Theremin,

More information

Optical Theremin Critical Design Review

Optical Theremin Critical Design Review 1 Optical Theremin Critical Design Review EE 300W Team Laplace: Richard Michael Sean Solley Ye Zhang 10/23/15 2 Abstract: Team Laplace successfully designed a working Optical Theremin with equalizing and

More information

Infrared Communications Lab

Infrared Communications Lab Infrared Communications Lab This lab assignment assumes that the student knows about: Ohm s Law oltage, Current and Resistance Operational Amplifiers (See Appendix I) The first part of the lab is to develop

More information

EE 210 Lab Exercise #5: OP-AMPS I

EE 210 Lab Exercise #5: OP-AMPS I EE 210 Lab Exercise #5: OP-AMPS I ITEMS REQUIRED EE210 crate, DMM, EE210 parts kit, T-connector, 50Ω terminator, Breadboard Lab report due at the ASSIGNMENT beginning of the next lab period Data and results

More information

Lab 8: Beer Bottle Symphony

Lab 8: Beer Bottle Symphony Lab 8. Beer Bottle Symphony Lab 8: Beer Bottle Symphony Introduction In college, a group of students and professors get together to build a beer bottle symphony. Beer bottles of various sizes and shapes

More information

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore)

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore) Laboratory 9 Operational Amplifier Circuits (modified from lab text by Alciatore) Required Components: 1x 741 op-amp 2x 1k resistors 4x 10k resistors 1x l00k resistor 1x 0.1F capacitor Optional Components:

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

LABORATORY 5 v3 OPERATIONAL AMPLIFIER

LABORATORY 5 v3 OPERATIONAL AMPLIFIER University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 5 v3 OPERATIONAL AMPLIFIER Integrated operational amplifiers opamps

More information

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers BME/ISE 3512 Bioelectronics Laboratory Five - Operational Amplifiers Learning Objectives: Be familiar with the operation of a basic op-amp circuit. Be familiar with the characteristics of both ideal and

More information

DESIGN OF AN ANALOG FIBER OPTIC TRANSMISSION SYSTEM

DESIGN OF AN ANALOG FIBER OPTIC TRANSMISSION SYSTEM DESIGN OF AN ANALOG FIBER OPTIC TRANSMISSION SYSTEM OBJECTIVE To design and build a complete analog fiber optic transmission system, using light emitting diodes and photodiodes. INTRODUCTION A fiber optic

More information

EXPERIMENT 2.2 NON-LINEAR OP-AMP CIRCUITS

EXPERIMENT 2.2 NON-LINEAR OP-AMP CIRCUITS 2.16 EXPERIMENT 2.2 NONLINEAR OPAMP CIRCUITS 2.2.1 OBJECTIVE a. To study the operation of 741 opamp as comparator. b. To study the operation of active diode circuits (precisions circuits) using opamps,

More information

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page! ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Non-inverting Gain Configurations Gain-Bandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors

More information

Operational Amplifier BME 360 Lecture Notes Ying Sun

Operational Amplifier BME 360 Lecture Notes Ying Sun Operational Amplifier BME 360 Lecture Notes Ying Sun Characteristics of Op-Amp An operational amplifier (op-amp) is an analog integrated circuit that consists of several stages of transistor amplification

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I ECE285 Electric Circuit Analysis I Spring 2014 Nathalia Peixoto Rev.2.0: 140124. Rev 2.1. 140813 1 Lab reports Background: these 9 experiments are designed as simple building blocks (like Legos) and students

More information

9 Feedback and Control

9 Feedback and Control 9 Feedback and Control Due date: Tuesday, October 20 (midnight) Reading: none An important application of analog electronics, particularly in physics research, is the servomechanical control system. Here

More information

Capacitive Touch Sensing Tone Generator. Corey Cleveland and Eric Ponce

Capacitive Touch Sensing Tone Generator. Corey Cleveland and Eric Ponce Capacitive Touch Sensing Tone Generator Corey Cleveland and Eric Ponce Table of Contents Introduction Capacitive Sensing Overview Reference Oscillator Capacitive Grid Phase Detector Signal Transformer

More information

Lecture 2 Analog circuits...or How to detect the Alarm beacon

Lecture 2 Analog circuits...or How to detect the Alarm beacon Lecture 2 Analog circuits..or How to detect the Alarm beacon I t IR light generates collector current V1 9V +V I c Q1 OP805 IR detection Vout Noise sources: Electrical (60Hz, 120Hz, 180Hz.) Other electrical

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

An Incremental Measurements and Data Acquisition Project

An Incremental Measurements and Data Acquisition Project An Incremental Measurements and Data Acquisition Project Lawrence G. Boyer Aerospace and Mechanical Engineering Department Saint Louis University Abstract In the junior level Measurements course for Mechanical

More information

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING Objectives: To familiarize the student with the concepts of signal conditioning. At the end of the lab, the student should be able to: Understand the

More information

Precision Rectifier Circuits

Precision Rectifier Circuits Precision Rectifier Circuits Rectifier circuits are used in the design of power supply circuits. In such applications, the voltage being rectified are usually much greater than the diode voltage drop,

More information

PHY 351/651 LABORATORY 5 The Diode Basic Properties and Circuits

PHY 351/651 LABORATORY 5 The Diode Basic Properties and Circuits Reading Assignment Horowitz, Hill Chap. 1.25 1.31 (p35-44) Data sheets 1N4007 & 1N4735A diodes Laboratory Goals PHY 351/651 LABORATORY 5 The Diode Basic Properties and Circuits In today s lab activities,

More information

Operational Amplifiers

Operational Amplifiers 1. Introduction Operational Amplifiers The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques

More information

Lecture 2 Analog circuits. Seeing the light..

Lecture 2 Analog circuits. Seeing the light.. Lecture 2 Analog circuits Seeing the light.. I t IR light V1 9V +V Q1 OP805 RL IR detection Vout Noise sources: Electrical (60Hz, 120Hz, 180Hz.) Other electrical IR from lights IR from cameras (autofocus)

More information

Lab 15: Lock in amplifier (Version 1.4)

Lab 15: Lock in amplifier (Version 1.4) Lab 15: Lock in amplifier (Version 1.4) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy expensive

More information

10: AMPLIFIERS. Circuit Connections in the Laboratory. Op-Amp. I. Introduction

10: AMPLIFIERS. Circuit Connections in the Laboratory. Op-Amp. I. Introduction 10: AMPLIFIERS Circuit Connections in the Laboratory From now on you will construct electrical circuits and test them. The usual way of constructing circuits would be to solder each electrical connection

More information

Theremin with Onboard Effects by Patrick Tarantino Shaun Cinnamon PHYCS 398

Theremin with Onboard Effects by Patrick Tarantino Shaun Cinnamon PHYCS 398 Theremin with Onboard Effects by Patrick Tarantino Shaun Cinnamon PHYCS 398 ii Abstract The theremin is a completely electronic musical instrument which is controlled by hand capacitance effects. The small

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #1 Lab Report Frequency Response of Operational Amplifiers Submission Date: 05/29/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams

More information

v 0 = A (v + - v - ) (1)

v 0 = A (v + - v - ) (1) UNIVERSITI TEKNOLOGI MALAYSIA KURSUS KEJURUTERAAN ELEKTRIK ELECTRONIC ENGINEERING LABORATORY 2 EXPERIMENT 2 : OPERATIONAL AMPLIFIER PRELIMINARY REPORT Name : Section : Group : Lecturer : Marks : 20 Attach

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering EE320L Electronics I Laboratory Laboratory Exercise #2 Basic Op-Amp Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose of

More information

Lecture 2 Analog circuits. IR detection

Lecture 2 Analog circuits. IR detection Seeing the light.. Lecture Analog circuits I t IR light V 9V V Q OP805 RL IR detection Noise sources: Electrical (60Hz, 0Hz, 80Hz.) Other electrical IR from lights IR from cameras (autofocus) Visible light

More information

6.101 Final Project Theremin. Pedro Brito David Gomez Patrick McCabe May 12, 2016

6.101 Final Project Theremin. Pedro Brito David Gomez Patrick McCabe May 12, 2016 6.101 Final Project Theremin Pedro Brito David Gomez Patrick McCabe May 12, 2016 1 Abstract The goal of this project is to create a theremin. A theremin is a musical instrument that is played without physical

More information

Laboratory Project 1B: Electromyogram Circuit

Laboratory Project 1B: Electromyogram Circuit 2240 Laboratory Project 1B: Electromyogram Circuit N. E. Cotter, D. Christensen, and K. Furse Electrical and Computer Engineering Department University of Utah Salt Lake City, UT 84112 Abstract-You will

More information

Logarithmic Circuits

Logarithmic Circuits by Kenneth A. Kuhn March 24, 2013 A log converter is a circuit that converts an input voltage to an output voltage that is a logarithmic function of the input voltage. Computing the logarithm of a signal

More information

EE 3305 Lab I Revised July 18, 2003

EE 3305 Lab I Revised July 18, 2003 Operational Amplifiers Operational amplifiers are high-gain amplifiers with a similar general description typified by the most famous example, the LM741. The LM741 is used for many amplifier varieties

More information

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance v 2 v 1 ir 1 ir 1 2iR 1 R in v 2 i v 1 2R 1 Differential

More information

ECEN 325 Lab 5: Operational Amplifiers Part III

ECEN 325 Lab 5: Operational Amplifiers Part III ECEN Lab : Operational Amplifiers Part III Objectives The purpose of the lab is to study some of the opamp configurations commonly found in practical applications and also investigate the non-idealities

More information

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz ) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz Solution: a) Input is of constant amplitude of 2 V from 0 to 0. ms and 2 V from 0. ms to 0.2 ms. The output

More information

Amplification. Objective. Equipment List. Introduction. The objective of this lab is to demonstrate the basic characteristics an Op amplifier.

Amplification. Objective. Equipment List. Introduction. The objective of this lab is to demonstrate the basic characteristics an Op amplifier. Amplification Objective The objective of this lab is to demonstrate the basic characteristics an Op amplifier. Equipment List Introduction Computer running Windows (NI ELVIS installed) National Instruments

More information

Uncle Sparky s Guide to Voltage, Current, and Resistance Measurements. Spring 2014

Uncle Sparky s Guide to Voltage, Current, and Resistance Measurements. Spring 2014 Uncle Sparky s Guide to Voltage, Current, and Resistance Measurements Spring 2014 The most important quantities in a circuit system are voltage and current. These include both AC and DC voltages and currents.

More information

Lecture 2 Analog circuits. Seeing the light..

Lecture 2 Analog circuits. Seeing the light.. Lecture 2 Analog circuits Seeing the light.. I t IR light V1 9V +V IR detection Noise sources: Electrical (60Hz, 120Hz, 180Hz.) Other electrical IR from lights IR from cameras (autofocus) Visible light

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019.101 Introductory Analog Electronics Laboratory Laboratory No. READING ASSIGNMENT

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

Putting it all Together

Putting it all Together ECE 2C Laboratory Manual 5b Putting it all Together.continuation of Lab 5a In-Lab Procedure At this stage you should have your transmitter circuit hardwired on a vectorboard, and your receiver circuit

More information

Lesson number one. Operational Amplifier Basics

Lesson number one. Operational Amplifier Basics What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

More information

3-Stage Transimpedance Amplifier

3-Stage Transimpedance Amplifier 3-Stage Transimpedance Amplifier ECE 3400 - Dr. Maysam Ghovanloo Garren Boggs TEAM 11 Vasundhara Rawat December 11, 2015 Project Specifications and Design Approach Goal: Design a 3-stage transimpedance

More information

E84 Lab 3: Transistor

E84 Lab 3: Transistor E84 Lab 3: Transistor Cherie Ho and Siyi Hu April 18, 2016 Transistor Testing 1. Take screenshots of both the input and output characteristic plots observed on the semiconductor curve tracer with the following

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

More information

UNIT 4 BIASING AND STABILIZATION

UNIT 4 BIASING AND STABILIZATION UNIT 4 BIASING AND STABILIZATION TRANSISTOR BIASING: To operate the transistor in the desired region, we have to apply external dec voltages of correct polarity and magnitude to the two junctions of the

More information

Lecture 2 Analog circuits. Seeing the light..

Lecture 2 Analog circuits. Seeing the light.. Lecture 2 Analog circuits Seeing the light.. I t IR light V1 9V +V IR detection Noise sources: Electrical (60Hz, 120Hz, 180Hz.) Other electrical IR from lights IR from cameras (autofocus) Visible light

More information

Lab 2: Common Base Common Collector Design Exercise

Lab 2: Common Base Common Collector Design Exercise CSUS EEE 109 Lab - Section 01 Lab 2: Common Base Common Collector Design Exercise Author: Bogdan Pishtoy / Lab Partner: Roman Vermenchuk Lab Report due March 26 th Lab Instructor: Dr. Kevin Geoghegan 2016-03-25

More information

Final Design Project: Variable Gain Amplifier with Output Stage Optimization for Audio Amplifier Applications EE 332: Summer 2011 Group 2: Chaz

Final Design Project: Variable Gain Amplifier with Output Stage Optimization for Audio Amplifier Applications EE 332: Summer 2011 Group 2: Chaz Final Design Project: Variable Gain Amplifier with Output Stage Optimization for Audio Amplifier Applications EE 332: Summer 2011 Group 2: Chaz Bofferding, Serah Peterson, Eric Stephanson, Casey Wojcik

More information

ECE159H1S University of Toronto 2014 EXPERIMENT #2 OP AMP CIRCUITS AND WAVEFORMS ECE159H1S

ECE159H1S University of Toronto 2014 EXPERIMENT #2 OP AMP CIRCUITS AND WAVEFORMS ECE159H1S ECE159H1S University of Toronto 2014 EXPERIMENT #2 OP AMP CIRCUITS AND WAVEFORMS ECE159H1S OBJECTIVES: To study the performance and limitations of basic op-amp circuits: the inverting and noninverting

More information

Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170

Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Megan Ong Diana Wu Wong B01 Tuesday 11am April 28 st, 2015 Abstract: The

More information

Pre-Lab. Introduction

Pre-Lab. Introduction Pre-Lab Read through this entire lab. Perform all of your calculations (calculated values) prior to making the required circuit measurements. You may need to measure circuit component values to obtain

More information

UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT ELECTROMYOGRAM (EMG) DETECTOR WITH AUDIOVISUAL OUTPUT

UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT ELECTROMYOGRAM (EMG) DETECTOR WITH AUDIOVISUAL OUTPUT UNIVESITY OF UTAH ELECTICAL AND COMPUTE ENGINEEING DEPATMENT ECE 3110 LABOATOY EXPEIMENT NO. 5 ELECTOMYOGAM (EMG) DETECTO WITH AUDIOVISUAL OUTPUT Pre-Lab Assignment: ead and review Sections 2.4, 2.8.2,

More information

3 Circuit Theory. 3.2 Balanced Gain Stage (BGS) Input to the amplifier is balanced. The shield is isolated

3 Circuit Theory. 3.2 Balanced Gain Stage (BGS) Input to the amplifier is balanced. The shield is isolated Rev. D CE Series Power Amplifier Service Manual 3 Circuit Theory 3.0 Overview This section of the manual explains the general operation of the CE power amplifier. Topics covered include Front End Operation,

More information

Electronic Instrumentation ENGR-4300 Fall Project 4: Optical Communications Link

Electronic Instrumentation ENGR-4300 Fall Project 4: Optical Communications Link Project 4: Optical Communications Link In this project you will build a transmitter and a receiver circuit. The transmitter circuit uses pulse frequency modulation to create a series of light pulses that

More information

Analog Effect Pedals. EE333 Project 1. Francisco Alegria and Josh Rolles

Analog Effect Pedals. EE333 Project 1. Francisco Alegria and Josh Rolles Analog Effect Pedals EE333 Project 1 Francisco Alegria and Josh Rolles Introduction For the first project, we ve chosen to design two analog guitar effect pedals. This report will discuss the schematic

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

Unit 3: Introduction to Op- amps and Diodes

Unit 3: Introduction to Op- amps and Diodes Unit 3: Introduction to Op- amps and Diodes Differential gain Operational amplifiers are powerful building blocks conceptually simple, easy to use, versatile, and inexpensive. A great deal of analog electronic

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications About the Tutorial Linear Integrated Circuits are solid state analog devices that can operate over a continuous range of input signals. Theoretically, they are characterized by an infinite number of operating

More information

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017 AN-1106 Custom Instrumentation Author: Craig Cary Date: January 16, 2017 Abstract This application note describes some of the fine points of designing an instrumentation amplifier with op-amps. We will

More information

Lab 10: Oscillators (version 1.1)

Lab 10: Oscillators (version 1.1) Lab 10: Oscillators (version 1.1) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy expensive equipment.

More information

ELR 4202C Project: Finger Pulse Display Module

ELR 4202C Project: Finger Pulse Display Module EEE 4202 Project: Finger Pulse Display Module Page 1 ELR 4202C Project: Finger Pulse Display Module Overview: The project will use an LED light source and a phototransistor light receiver to create an

More information

Miniproject: AM Radio

Miniproject: AM Radio Objective UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE05 Lab Experiments Miniproject: AM Radio Until now, the labs have focused

More information

CHARACTERIZATION OF OP-AMP

CHARACTERIZATION OF OP-AMP EXPERIMENT 4 CHARACTERIZATION OF OP-AMP OBJECTIVES 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals. 2. To list the amplifier stages in a typical op-amp

More information

INSTRUMENTATION BREADBOARDING (VERSION 1.3)

INSTRUMENTATION BREADBOARDING (VERSION 1.3) Instrumentation Breadboarding, Page 1 INSTRUMENTATION BREADBOARDING (VERSION 1.3) I. BACKGROUND The purpose of this experiment is to provide you with practical experience in building electronic circuits

More information

Concepts to be Reviewed

Concepts to be Reviewed Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

Operational amplifiers

Operational amplifiers Operational amplifiers Bởi: Sy Hien Dinh INTRODUCTION Having learned the basic laws and theorems for circuit analysis, we are now ready to study an active circuit element of paramount importance: the operational

More information

University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS

University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS Issued 10/5/2008 Pre Lab Completed 10/12/2008 Lab Due in Lecture 10/21/2008 Introduction In this lab you will characterize

More information

7. Bipolar Junction Transistor

7. Bipolar Junction Transistor 41 7. Bipolar Junction Transistor 7.1. Objectives - To experimentally examine the principles of operation of bipolar junction transistor (BJT); - To measure basic characteristics of n-p-n silicon transistor

More information

Lab 7: Let s Make a Little Noise

Lab 7: Let s Make a Little Noise Lab 7: Let s Make a Little Noise Introduction Ever had a piece of a song rattling around in your head, but when you tried to sing it, it just did not sound right? What you need is a little keyboard to

More information

Operational Amplifier

Operational Amplifier Operational Amplifier Joshua Webster Partners: Billy Day & Josh Kendrick PHY 3802L 10/16/2013 Abstract: The purpose of this lab is to provide insight about operational amplifiers and to understand the

More information

ECE Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback

ECE Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback ECE 214 Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback 20 February 2018 Introduction: The TL082 Operational Amplifier (OpAmp) and the Texas Instruments Analog System Lab Kit Pro evaluation

More information

Test No. 2. Advanced Scope Measurements. History. University of Applied Sciences Hamburg. Last chance!! EEL2 No 2

Test No. 2. Advanced Scope Measurements. History. University of Applied Sciences Hamburg. Last chance!! EEL2 No 2 University of Applied Sciences Hamburg Group No : DEPARTMENT OF INFORMATION ENGINEERING Laboratory for Instrumentation and Measurement L1: in charge of the report Test No. 2 Date: Assistant A2: Professor:

More information

EXPERIMENT #3 TRANSISTOR BIASING

EXPERIMENT #3 TRANSISTOR BIASING EXPERIMENT #3 TRANSISTOR BIASING Bias (operating point) for a transistor is established by specifying the quiescent (D.C., no signal) values of collector-emitter voltage V CEQ and collector current I CQ.

More information

Introduction to Op Amps By Russell Anderson, Burr-Brown Corp

Introduction to Op Amps By Russell Anderson, Burr-Brown Corp Introduction to Op Amps By ussell Anderson, BurrBrown Corp Introduction Analog design can be intimidating. If your engineering talents have been focused in digital, software or even scientific fields,

More information

Chapter 1: DC circuit basics

Chapter 1: DC circuit basics Chapter 1: DC circuit basics Overview Electrical circuit design depends first and foremost on understanding the basic quantities used for describing electricity: voltage, current, and power. In the simplest

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Hands-On Introduction to EE Lab Skills Laboratory No. 2 BJT, Op Amps IAP 2008

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Hands-On Introduction to EE Lab Skills Laboratory No. 2 BJT, Op Amps IAP 2008 Name MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.09 Hands-On Introduction to EE Lab Skills Laboratory No. BJT, Op Amps IAP 008 Objective In this laboratory, you will become familiar with a simple bipolar junction

More information

ELEC207 LINEAR INTEGRATED CIRCUITS

ELEC207 LINEAR INTEGRATED CIRCUITS Concept of VIRTUAL SHORT For feedback amplifiers constructed with op-amps, the two op-amp terminals will always be approximately equal (V + = V - ) This condition in op-amp feedback amplifiers is known

More information

Ultraviolet selective thin film sensor TW30DY NEW: Read important application notes on page 4 ff.

Ultraviolet selective thin film sensor TW30DY NEW: Read important application notes on page 4 ff. Features Schottky-type photodiode Intrinsic visible blindness due to wide-bandgap semiconductor material Built-in filter glass for low sensitivity above 400nm Large photoactive area No focusing lens needed,

More information

Lab 3: Digital Multimeter and Voltage Generator

Lab 3: Digital Multimeter and Voltage Generator Lab 3: Digital Multimeter and Voltage Generator Lab Goals: Learn how to use your mydaq as a Digital Multimeter (DMM) Learn how to output a signal to a specified output port on the mydaq and verify its

More information

Lab 9: Operational amplifiers II (version 1.5)

Lab 9: Operational amplifiers II (version 1.5) Lab 9: Operational amplifiers II (version 1.5) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy

More information

Electronic Instrumentation ENGR-4300 Fall 2002 Project 2: Optical Communications Link

Electronic Instrumentation ENGR-4300 Fall 2002 Project 2: Optical Communications Link Project 2: Optical Communications Link For this project, each group will build a transmitter circuit and a receiver circuit. It is suggested that 1 or 2 students build and test the individual components

More information

ECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load

ECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load ECE4902 C2012 - Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load PURPOSE: The primary purpose of this lab is to measure the

More information

The Inverting Amplifier

The Inverting Amplifier The Inverting Amplifier Why Do You Need To Know About Inverting Amplifiers? Analysis Of The Inverting Amplifier Connecting The Inverting Amplifier Testing The Circuit What If Questions Other Possibilities

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 Spring 2017 V2 6.101 Introductory Analog Electronics Laboratory Laboratory

More information

Version; first draft august 2018 Second draft september 2018, added schematic and adapted text to schematic

Version; first draft august 2018 Second draft september 2018, added schematic and adapted text to schematic Tuning the AS3340 Version; first draft august 2018 Second draft september 2018, added schematic and adapted text to schematic Author: Rob Hordijk (c)2018 Final draft to be released in the public domain.

More information

Sound Generator Jamie Maloway ( ) Polyphon nthesizer

Sound Generator Jamie Maloway ( ) Polyphon nthesizer ELEN146 Weird Sound Generator 1 Polyphon nic Syn nthesizer 2 Construction The system is comprised of two main components the synthesizer and the power amplifier. For practicality reasons, a custom PCB

More information

ELT 215 Operational Amplifiers (LECTURE) Chapter 5

ELT 215 Operational Amplifiers (LECTURE) Chapter 5 CHAPTER 5 Nonlinear Signal Processing Circuits INTRODUCTION ELT 215 Operational Amplifiers (LECTURE) In this chapter, we shall present several nonlinear circuits using op-amps, which include those situations

More information

OPERATIONAL AMPLIFIERS (OP-AMPS) II

OPERATIONAL AMPLIFIERS (OP-AMPS) II OPERATIONAL AMPLIFIERS (OP-AMPS) II LAB 5 INTRO: INTRODUCTION TO INVERTING AMPLIFIERS AND OTHER OP-AMP CIRCUITS GOALS In this lab, you will characterize the gain and frequency dependence of inverting op-amp

More information

EE 332 Design Project

EE 332 Design Project EE 332 Design Project Variable Gain Audio Amplifier TA: Pohan Yang Students in the team: George Jenkins Mohamed Logman Dale Jackson Ben Alsin Instructor s Comments: Lab Grade: Introduction The goal of

More information

Testing and Stabilizing Feedback Loops in Today s Power Supplies

Testing and Stabilizing Feedback Loops in Today s Power Supplies Keywords Venable, frequency response analyzer, impedance, injection transformer, oscillator, feedback loop, Bode Plot, power supply design, open loop transfer function, voltage loop gain, error amplifier,

More information