TABLE OF CONTENTS 1 Fundamentals Transmission Line Parameters... 29

Size: px
Start display at page:

Download "TABLE OF CONTENTS 1 Fundamentals Transmission Line Parameters... 29"

Transcription

1 TABLE OF CONTENTS 1 Fundamentals Impedance of Linear, Time-Invariant, Lumped-Element Circuits Power Ratios Rules of Scaling Scaling of Physical Size Scaling Inductors Scaling Transmission-Line Dimensions Power Scaling Time Scaling Impedance Scaling with Constant Voltage Dielectric-Constant Scaling Partially Embedded Transmission Lines Magnetic Permeability Scaling The Concept of Resonance Extra for Experts: Maximal Linear System Response to a Digital Input Transmission Line Parameters Telegrapher s Equations So Good It Works on Barbed Wire The No-Storage Principle and Its Implications for Returning Signal Current Derivation of Telegrapher s Equations Definition of Characteristic Impedance ZC Changes in Characteristic Impedance Calculation of Impedance Zc From Parameters R, L, G, And C Definition of Propagation Coefficient γ Calculation of Propagation Coefficient γ from Parameters R, L, G, and C Ideal Transmission Line DC Resistance DC Conductance Skin Effect What Causes the Skin Effect, and What Does It Have to Do With Skin? Eddy Currents within a Conductor High and Low-Frequency Approximations for Series Resistance Skin-Effect Inductance... 66

2 2.8 Modeling Internal Impedance Practical Modeling of Internal Impedance Special Issues Concerning Rectangular Conductors Concentric-Ring Skin-Effect Model Modeling Skin Effect Regarding Modeling Skin Effect Proximity Effect Proximity Factor Proximity Effect for Coaxial Cables Proximity Effect for Microstrip and Stripline Circuits Last Words on Proximity Effect Proximity Effect II D Quasistatic Field Solvers Surface Roughness Severity of Surface Roughness Onset of Roughness Effect Roughness of Pcb Materials Controlling Roughness Dielectric Effects Dielectric Loss Tangent Rule of Mixtures Calculating the Loss Tangent for a Uniform Dielectric Mixture Calculating the Loss Tangent When You Don t Know q Causality and the Network Function Relations Finding er to Match a Measured Loss Tangent Kramers-Kronig Relations Complex Magnetic Permeability Impedance in Series with the Return Path Slow-Wave Mode On-Chip Performance Regions Signal Propagation Model Extracting Parameters for RLGC Simulators Hierarchy of Regions A Transmission Line Is Always a Transmission Line Necessary Mathematics: Input Impedance and Transfer Function Lumped-Element Region Boundary of Lumped-Element Region Pi Model Taylor-Series Approximation of H (Lumped-Element Region)

3 3.4.4 Input impedance (Lumped-Element Region) Transfer Function (Lumped-Element Region) Step Response (Lumped-Element Region) RC Region Boundary of RC Region Input Impedance (RC Region) Characteristic Impedance (RC Region) General Behavior within RC Region Propagation Coefficient (RC Region) Transfer Function (RC Region) Propagation Function of RC Line with Open-Circuited Load Propagation Function of RC Line with Matched End Termination Propagation Function of RC Line with Matched Source Termination Propagation Function of RC Line with Resistive End Termination Normalized Step Response (RC Region) Tradeoffs Between Distance and Speed (RC Region) Closed-Form Solution for Step Response (RC Region) Elmore Delay Estimation (RC Region) LC Region (Constant-Loss Region) Boundary of LC Region Characteristic Impedance (LC Region) Influence of Series Resistance on TDR Measurements Propagation Coefficient (LC Region) Possibility of Severe Resonance within the LC Region Alternate Interpretation of Equation [3.17] Practical Effect of Resonance Terminating an LC Transmission Line End Termination Source Termination Both-Ends Termination Subtle Differences Between Termination Styles Application of Termination Equations to Other Regions Tradeoffs Between Distance And Speed (LC Region) Mixed-Mode Operation (LC and RC Regions) Skin-Effect Region Boundary of Skin-Effect Region Characteristic Impedance (Skin-Effect Region) Influence of Skin-Effect on TDR Measurement Propagation Coefficient (Skin-Effect Region) Possibility of Severe Resonance within Skin-Effect Region

4 Subtle Differences Between Termination Styles Application of Termination Equations to Other Regions Step Response (Skin-Effect Region) Tradeoffs Between Distance and Speed (Skin-Effect Region) Dielectric Loss Region Boundary of Dielectric-Loss-Limited Region Characteristic Impedance (Dielectric-Loss-Limited Region) Influence of Dielectric Loss on TDR Measurement Propagation Coefficient (Dielectric-Loss-Limited Region) Possibility of Severe Resonance within Dielectric-Loss Limited Region Subtle Differences Between Termination Styles Application of Termination Equations to Other Regions Step Response (Dielectric-Loss-Limited Region) Tradeoffs Between Distance and Speed (Dielectric-Loss Region) Waveguide Dispersion Region Boundary of Waveguide-Dispersion Region Summary of Breakpoints Between Regions Equivalence Principle for Transmission Media Scaling Copper Transmission Media Scaling Multimode Fiber-Optic Cables Linear Equalization: Long Backplane Trace Example Adaptive Equalization: Accelerant Networks Transceiver Frequency-Domain Modeling Going Nonlinear Approximations to the Fourier Transform Discrete Time Mapping Other Limitations of the FFT Normalizing the Output of an FFT Routine Deriving the DFT Normalization Factors Useful Fourier Transform-Pairs Effect of Inadequate Sampling Rate Implementation of Frequency-Domain Simulation Embellishments What if a Large Bulk-Transport Delay Causes the Waveform to Slide Off the end of the Time-Domain Window? How Do I Transform an Arbitrary Data Sequence? How Do I Shift the Time-Domain Waveforms? What If I Want to Model a More Complicated System? What About Differential Modeling?

5 4.10 Checking the Output of Your FFT Routine Pcb (printed-circuit board) Traces Pcb Signal Propagation Characteristic Impedance and Delay Resistive Effects DC Resistance of Pcb Trace AC Resistance of Pcb Trace Calculation of Perimeter of Pcb Trace Very Low Impedance Pcb Trace Calculation of Skin-Effect Loss Coefficient for Pcb trace Popsicle-Stick Analysis Nickel-Plated Traces Dielectric Effects Estimating the Effective Dielectric Constant for a Microstrip Propagation Velocity Calculating the Effective Loss Tangent for a Microstrip Dielectric Properties of Laminate Materials (core and prepreg) Variations in Dielectric Properties with Temperature Passivation and Soldermask Dielectric Properties of Soldermask Materials Calculation of Dielectric Loss Coefficient for Pcb Trace Mixtures of Skin Effect and Dielectric Loss Non-TEM Modes Strange Microstrip Modes Simulation of Non-TEM Behavior Limits to Attainable Distance SONET Data Coding Pcb Noise and Interference Pcb: Reflections Both Ends Termination Pcb: Lumped-Element Reflections Potholes Inductive Potholes Who s Afraid of the Big, Bad Bend? Stubs and Vias Parasitic Pads How Close Is Close Enough? Placement of End Termination Making an Accurate Series Termination

6 Matching Pads Pcb Crosstalk Purpose of Solid Plane Layers Variations with Trace Geometry Directionality NEXT: Near-End or Reverse Crosstalk FEXT: Far-End or Forward Crosstalk Special Considerations Directionality of Crosstalk Pcb Connectors Mutual Understanding Through-Hole Clearances Measuring Connectors Tapered Transitions Straddle-Mount Connectors Cable Shield Grounding Modeling Vias Incremental Parameters of a Via Three Models for a Via Dangling Vias Capacitance Data Three-Layer Via Capacitance Effect of Back-Drilling Effect of Multiple Planes Inductance Data Through-Hole Via Inductance Via Crosstalk The Future of On-Chip Interconnections Differential Signaling Single-Ended Circuits Two-Wire Circuits Differential Signaling Differential and Common-Mode Voltages and Currents Differential and Common-Mode velocity Common-Mode Balance Common-Mode Range Differential to Common-Mode Conversion Differential Impedance Relation Between Odd-Mode and Uncoupled Impedance

7 6.9.2 Why the Odd-Mode Impedance Is Always Less Than the Uncoupled Impedance Differential Reflections Pcb Configurations Differential (Microstrip) Trace Impedance Edge-Coupled Stripline Breaking Up a Pair Broadside-Coupled Stripline Pcb Applications Matching to an External, Balanced Differential Transmission Medium Defeating ground bounce Reducing EMI with Differential Signaling Punching Through a Noisy Connector Differential Signaling (Through Connectors) Reducing Clock Skew Reducing Local Crosstalk A Good Reference about Transmission Lines Differential Clocks Differential Termination Differential U-Turn Your Layout Is Skewed Buying Time Intercabinet Applications Ribbon-Style Twisted-Pair Cables Immunity to Large Ground Shifts Rejection of External Radio-Frequency Interference (RFI) Differential Receivers Have Superior Tolerance to Skin Effect and Other High-Frequency Losses LVDS Signaling Output Levels Common-Mode Output Common-Mode Noise Tolerance Differential-Mode Noise Tolerance Hysteresis Impedance Control Trace Radiation Risetime Input Capacitance Skew Fail-Safe

8 7 Generic Building-Cabling Standards Generic Cabling Architecture SNR Budgeting Glossary of Cabling Terms Preferred Cable Combinations FAQ: Building-Cabling Practices Crossover Wiring Plenum-Rated Cables Laying cables in an Uncooled Attic Space FAQ: Older Cable Types Ohm Balanced Twisted-Pair Cabling UTP Signal Propagation UTP Modeling Adapting the Metallic-Transmission Model UTP Transmission Example: 10BASE-T UTP Noise and Interference UTP: Far-End Reflections UTP: Near-End Reflections UTP: (Structural) Return Loss Modeling Structural Return Loss UTP: Hybrid Circuits UTP: Near-End Crosstalk UTP: Alien crosstalk UTP: Far-End Crosstalk Power sum NEXT and ELFEXT UTP: Radio-Frequency Interference UTP: Radiation UTP Connectors Issues with Screening Category-3 UTP at Elevated Temperature Ohm STP-A Cabling Ω STP-A Signal Propagation Ω STP-A Noise and Interference Ω STP-A: Skew Ω STP-A: Radiation and Safety Ω STP-A: Comparison with UTP Ω STP-A Connectors

9 10 Coaxial Cabling Coaxial Signal Propagation Stranded Center-Conductors Why 50 Ohms? Ohm Mailbag Coaxial Cable Noise and Interference Coax: Far-End Reflected Noise Coax: Radio Frequency Interference Coax: Radiation Coaxial Cable: Safety Issues Coaxial Cable Connectors Fiber-Optic Cabling Making Glass Fiber Finished Core Specifications Cabling the Fiber Wavelengths of Operation Multimode Glass Fiber-Optic Cabling Multimode Signal Propagation Why Is Graded-Index Fiber Better than Step-Index? Standards for Multimode Fiber What Considerations Govern the Use of 50-micron Fiber? Multimode Optical Performance Budget Multimode Dispersion Budget Multimode Attenuation Budget Jitter Multimode Fiber-Optic Noise and Interference Multimode Fiber Safety Multimode Fiber with Laser Source VCSEL Diodes Multimode Fiber-Optic Connectors Single-Mode Fiber-Optic Cabling Single-Mode Signal Propagation Single-Mode Fiber-Optic Noise and Interference Single-Mode Fiber Safety Single-Mode Fiber-Optic Connectors Clock Distribution Extra Fries, Please Arithmetic of Clock Skew

10 12.3 Clock Repeaters Active Skew Correction Zero-Delay Clock Repeaters Compensating for Line Length Stripline vs. Microstrip Delay Importance of Terminating Clock Lines Effect of Clock Receiver Thresholds Effect of Split Termination Intentional Delay Adjustments Fixed Delay Adjustable Delays Automatically Programmable Delays Serpentine Delays Switchback Coupling Driving Multiple Loads with Source Termination To Tee or Not To Tee Driving Two Loads Daisy-Chain Clock Distribution Case Study of Daisy-Chained Clock The Jitters When Clock Jitter Matters Clock Jitter Rarely Matters within the Boundaries of a Synchronous State Machine Clock Jitter Propagation Variance of the Tracking Error Clock Jitter in FIFO-Based Architectures What Causes Jitter Random and Deterministic Jitter Measuring Clock Jitter Jitter Measurement Jitter and Phase Noise Power Supply Filtering for Clock Sources, Repeaters, and PLL Circuits Healthy Power Clean Power Intentional Clock Modulation Signal Integrity Mailbag Jitter-Free Clocks Reduced-Voltage Signaling Controlling Crosstalk on Clock Lines

11 12.16 Reducing Emissions Time-Domain Simulation Tools and Methods Ringing in a New Era Signal Integrity Simulation Process How Much Modeling Do You Need? What Happens After Parameter Extraction? A Word of Caution The Underlying Simulation Engine Evolving Forward Pitfalls of SPICE-Like Algorithms Transmission Lines Interpreting Your Results Using SPICE Intelligently IBIS (I/O Buffer Information Specification) What Is IBIS? Who Created IBIS? What Is Good About IBIS? What s Wrong with IBIS? What You Can Do to Help IBIS: History and Future Direction IBIS Historical Overview Comparison to SPICE Future Directions IBIS: Issues with Interpolation IBIS: Issues with SSO Noise Nature of EMC Work EMC Simulation Power and Ground Resonance Collected References Points to Remember Appendix A - Building a Signal Integrity Department Appendix B - Calculation of Loss Slope Appendix C - Two-Port Analysis Simple Cases Involving Transmission Lines Fully Configured Transmission Line Complicated Configurations

12 Appendix D - Accuracy of Pi Model Pi-Model Operated in the LC Region Appendix E - erf( )

Relationship Between Signal Integrity and EMC

Relationship Between Signal Integrity and EMC Relationship Between Signal Integrity and EMC Presented by Hasnain Syed Solectron USA, Inc. RTP, North Carolina Email: HasnainSyed@solectron.com 06/05/2007 Hasnain Syed 1 What is Signal Integrity (SI)?

More information

ELEC Course Objectives/Proficiencies

ELEC Course Objectives/Proficiencies Lecture 1 -- to identify (and list examples of) intentional and unintentional receivers -- to list three (broad) ways of reducing/eliminating interference -- to explain the differences between conducted/radiated

More information

High-Speed Circuit Board Signal Integrity

High-Speed Circuit Board Signal Integrity High-Speed Circuit Board Signal Integrity For a listing of recent titles in the Artech House Microwave Library, turn to the back of this book. High-Speed Circuit Board Signal Integrity Stephen C. Thierauf

More information

Objectives of transmission lines

Objectives of transmission lines Introduction to Transmission Lines Applications Telephone Cable TV (CATV, or Community Antenna Television) Broadband network High frequency (RF) circuits, e.g., circuit board, RF circuits, etc. Microwave

More information

Texas Instruments DisplayPort Design Guide

Texas Instruments DisplayPort Design Guide Texas Instruments DisplayPort Design Guide April 2009 1 High Speed Interface Applications Introduction This application note presents design guidelines, helping users of Texas Instruments DisplayPort devices

More information

Demystifying Vias in High-Speed PCB Design

Demystifying Vias in High-Speed PCB Design Demystifying Vias in High-Speed PCB Design Keysight HSD Seminar Mastering SI & PI Design db(s21) E H What is Via? Vertical Interconnect Access (VIA) An electrical connection between layers to pass a signal

More information

Introduction to Electromagnetic Compatibility

Introduction to Electromagnetic Compatibility Introduction to Electromagnetic Compatibility Second Edition CLAYTON R. PAUL Department of Electrical and Computer Engineering, School of Engineering, Mercer University, Macon, Georgia and Emeritus Professor

More information

Chapter 12: Transmission Lines. EET-223: RF Communication Circuits Walter Lara

Chapter 12: Transmission Lines. EET-223: RF Communication Circuits Walter Lara Chapter 12: Transmission Lines EET-223: RF Communication Circuits Walter Lara Introduction A transmission line can be defined as the conductive connections between system elements that carry signal power.

More information

Lecture 4. Maximum Transfer of Power. The Purpose of Matching. Lecture 4 RF Amplifier Design. Johan Wernehag Electrical and Information Technology

Lecture 4. Maximum Transfer of Power. The Purpose of Matching. Lecture 4 RF Amplifier Design. Johan Wernehag Electrical and Information Technology Johan Wernehag, EIT Lecture 4 RF Amplifier Design Johan Wernehag Electrical and Information Technology Design of Matching Networks Various Purposes of Matching Voltage-, Current- and Power Matching Design

More information

Overcoming Obstacles to Closing Timing for DDR and Beyond. John Ellis Sr. Staff R&D Engineer Synopsys, Inc.

Overcoming Obstacles to Closing Timing for DDR and Beyond. John Ellis Sr. Staff R&D Engineer Synopsys, Inc. Overcoming Obstacles to Closing Timing for DDR3-1600 and Beyond John Ellis Sr. Staff R&D Engineer Synopsys, Inc. Agenda Timing budgets 1600 2133Mbps? Static vs. Dynamic Uncertainty Sources Benefits of

More information

DesignCon Design of Gb/s Interconnect for High-bandwidth FPGAs. Sherri Azgomi, Altera Corporation

DesignCon Design of Gb/s Interconnect for High-bandwidth FPGAs. Sherri Azgomi, Altera Corporation DesignCon 2004 Design of 3.125 Gb/s Interconnect for High-bandwidth FPGAs Sherri Azgomi, Altera Corporation sazgomi@altera.com Lawrence Williams, Ph.D., Ansoft Corporation williams@ansoft.com CF-031505-1.0

More information

11 Myths of EMI/EMC ORBEL.COM. Exploring common misconceptions and clarifying them. MYTH #1: EMI/EMC is black magic.

11 Myths of EMI/EMC ORBEL.COM. Exploring common misconceptions and clarifying them. MYTH #1: EMI/EMC is black magic. 11 Myths of EMI/EMC Exploring common misconceptions and clarifying them By Ed Nakauchi, Technical Consultant, Orbel Corporation What is a myth? A myth is defined as a popular belief or tradition that has

More information

Design Guide for High-Speed Controlled Impedance Circuit Boards

Design Guide for High-Speed Controlled Impedance Circuit Boards IPC-2141A ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES Design Guide for High-Speed Controlled Impedance Circuit Boards Developed by the IPC Controlled Impedance Task Group (D-21c) of the High Speed/High

More information

EE290C Spring Lecture 2: High-Speed Link Overview and Environment. Elad Alon Dept. of EECS

EE290C Spring Lecture 2: High-Speed Link Overview and Environment. Elad Alon Dept. of EECS EE290C Spring 2011 Lecture 2: High-Speed Link Overview and Environment Elad Alon Dept. of EECS Most Basic Link Keep in mind that your goal is to receive the same bits that were sent EE290C Lecture 2 2

More information

CPS-1848 PCB Design Application Note

CPS-1848 PCB Design Application Note Titl CPS-1848 PCB Design Application Note June 22, 2010 6024 Silver Creek Valley Road, San Jose, California 95138 Telephone: (408) 284-8200 Fax: (408) 284-3572 2010 About this Document This document is

More information

Modeling and Simulation of Powertrains for Electric and Hybrid Vehicles

Modeling and Simulation of Powertrains for Electric and Hybrid Vehicles Modeling and Simulation of Powertrains for Electric and Hybrid Vehicles Dr. Marco KLINGLER PSA Peugeot Citroën Vélizy-Villacoublay, FRANCE marco.klingler@mpsa.com FR-AM-5 Background The automotive context

More information

How to anticipate Signal Integrity Issues: Improve my Channel Simulation by using Electromagnetic based model

How to anticipate Signal Integrity Issues: Improve my Channel Simulation by using Electromagnetic based model How to anticipate Signal Integrity Issues: Improve my Channel Simulation by using Electromagnetic based model HSD Strategic Intent Provide the industry s premier HSD EDA software. Integration of premier

More information

Lines and Slotlines. Microstrip. Third Edition. Ramesh Garg. Inder Bahl. Maurizio Bozzi ARTECH HOUSE BOSTON LONDON. artechhouse.

Lines and Slotlines. Microstrip. Third Edition. Ramesh Garg. Inder Bahl. Maurizio Bozzi ARTECH HOUSE BOSTON LONDON. artechhouse. Microstrip Lines and Slotlines Third Edition Ramesh Garg Inder Bahl Maurizio Bozzi ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface xi Microstrip Lines I: Quasi-Static Analyses, Dispersion Models,

More information

Eye Diagrams. EE290C Spring Most Basic Link BER. What About That Wire. Why Wouldn t You Get What You Sent?

Eye Diagrams. EE290C Spring Most Basic Link BER. What About That Wire. Why Wouldn t You Get What You Sent? EE29C Spring 2 Lecture 2: High-Speed Link Overview and Environment Eye Diagrams V V t b This is a This is a V e Eye Opening - space between and Elad Alon Dept. of EECS t e With voltage noise With timing

More information

Custom Interconnects Fuzz Button with Hardhat Test Socket/Interposer 1.00 mm pitch

Custom Interconnects Fuzz Button with Hardhat Test Socket/Interposer 1.00 mm pitch Custom Interconnects Fuzz Button with Hardhat Test Socket/Interposer 1.00 mm pitch Measurement and Model Results prepared by Gert Hohenwarter 12/14/2015 1 Table of Contents TABLE OF CONTENTS...2 OBJECTIVE...

More information

APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH

APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH STUART M. WENTWORTH Auburn University IICENTBN Nlfll 1807; WILEY 2 OO 7 ; Ttt^TlLtftiTTu CONTENTS CHAPTER1 Introduction 1 1.1 1.2 1.3 1.4 1.5

More information

Low Jitter, Low Emission Timing Solutions For High Speed Digital Systems. A Design Methodology

Low Jitter, Low Emission Timing Solutions For High Speed Digital Systems. A Design Methodology Low Jitter, Low Emission Timing Solutions For High Speed Digital Systems A Design Methodology The Challenges of High Speed Digital Clock Design In high speed applications, the faster the signal moves through

More information

Aries QFP microstrip socket

Aries QFP microstrip socket Aries QFP microstrip socket Measurement and Model Results prepared by Gert Hohenwarter 2/18/05 1 Table of Contents Table of Contents... 2 OBJECTIVE... 3 METHODOLOGY... 3 Test procedures... 4 Setup... 4

More information

Microwave and optical systems Introduction p. 1 Characteristics of waves p. 1 The electromagnetic spectrum p. 3 History and uses of microwaves and

Microwave and optical systems Introduction p. 1 Characteristics of waves p. 1 The electromagnetic spectrum p. 3 History and uses of microwaves and Microwave and optical systems Introduction p. 1 Characteristics of waves p. 1 The electromagnetic spectrum p. 3 History and uses of microwaves and optics p. 4 Communication systems p. 6 Radar systems p.

More information

EMC Design Guidelines C4ISR EQUIPMENT & SYSTEMS

EMC Design Guidelines C4ISR EQUIPMENT & SYSTEMS EMC Design Guidelines C4ISR EQUIPMENT & SYSTEMS 1.1. SHIELDING Enclosed structure (equipment box or chassis in outside RF environment) should provide at least 100 db of RF shielding at 1 MHz, 40 db at

More information

Microwave Circuits 1.1 INTRODUCTION

Microwave Circuits 1.1 INTRODUCTION Microwave Circuits 1.1 INTRODUCTION The term microwave circuits means different things to different people. The prefix micro comes from the Greek fiikpog (micros) and among its various meanings has the

More information

Signal Integrity, Part 1 of 3

Signal Integrity, Part 1 of 3 by Barry Olney feature column BEYOND DESIGN Signal Integrity, Part 1 of 3 As system performance increases, the PCB designer s challenges become more complex. The impact of lower core voltages, high frequencies

More information

Signal Integrity Tips and Techniques Using TDR, VNA and Modeling. Russ Kramer O.J. Danzy

Signal Integrity Tips and Techniques Using TDR, VNA and Modeling. Russ Kramer O.J. Danzy Signal Integrity Tips and Techniques Using TDR, VNA and Modeling Russ Kramer O.J. Danzy Simulation What is the Signal Integrity Challenge? Tx Rx Channel Asfiakhan Dreamstime.com - 3d People Communication

More information

Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction.

Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction. Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction. D. A. Weston EMC Consulting Inc 22-3-2010 These are some of the commonly held beliefs about EMC which are

More information

High-Speed PCB Design und EMV Minimierung

High-Speed PCB Design und EMV Minimierung TRAINING Bei dem hier beschriebenen Training handelt es sich um ein Cadence Standard Training. Sie erhalten eine Dokumentation in englischer Sprache. Die Trainingssprache ist deutsch, falls nicht anders

More information

Aries Kapton CSP socket

Aries Kapton CSP socket Aries Kapton CSP socket Measurement and Model Results prepared by Gert Hohenwarter 5/19/04 1 Table of Contents Table of Contents... 2 OBJECTIVE... 3 METHODOLOGY... 3 Test procedures... 4 Setup... 4 MEASUREMENTS...

More information

Copper and Fiber Optic Cables

Copper and Fiber Optic Cables Copper and Fiber Optic Cables Pietro Nicoletti piero[at]studioreti.it Cables-Engl - 1 P. Nicoletti: see note pag. 2 Copyright note These slides are protected by copyright and international treaties. The

More information

Advanced Transmission Lines. Transmission Line 1

Advanced Transmission Lines. Transmission Line 1 Advanced Transmission Lines Transmission Line 1 Transmission Line 2 1. Transmission Line Theory :series resistance per unit length in. :series inductance per unit length in. :shunt conductance per unit

More information

IEEE CX4 Quantitative Analysis of Return-Loss

IEEE CX4 Quantitative Analysis of Return-Loss IEEE CX4 Quantitative Analysis of Return-Loss Aaron Buchwald & Howard Baumer Mar 003 Return Loss Issues for IEEE 0G-Base-CX4 Realizable Is the spec realizable with standard packages and I/O structures

More information

RF AND MICROWAVE ENGINEERING

RF AND MICROWAVE ENGINEERING RF AND MICROWAVE ENGINEERING FUNDAMENTALS OF WIRELESS COMMUNICATIONS Frank Gustrau Dortmund University of Applied Sciences and Arts, Germany WILEY A John Wiley & Sons, Ltd., Publication Preface List of

More information

A Few (Technical) Things You Need To Know About Using Ethernet Cable for Portable Audio

A Few (Technical) Things You Need To Know About Using Ethernet Cable for Portable Audio A Few (Technical) Things You Need To Know About Using Ethernet Cable for Portable Audio Rick Rodriguez June 1, 2013 Digital Audio Data Transmission over Twisted-Pair This paper was written to introduce

More information

The Challenges of Differential Bus Design

The Challenges of Differential Bus Design The Challenges of Differential Bus Design February 20, 2002 presented by: Arthur Fraser TechKnowledge Page 1 Introduction Background Historically, differential interconnects were often twisted wire pairs

More information

Lecture 4 RF Amplifier Design. Johan Wernehag, EIT. Johan Wernehag Electrical and Information Technology

Lecture 4 RF Amplifier Design. Johan Wernehag, EIT. Johan Wernehag Electrical and Information Technology Lecture 4 RF Amplifier Design Johan Wernehag, EIT Johan Wernehag Electrical and Information Technology Lecture 4 Design of Matching Networks Various Purposes of Matching Voltage-, Current- and Power Matching

More information

THE FIELDS OF ELECTRONICS

THE FIELDS OF ELECTRONICS THE FIELDS OF ELECTRONICS THE FIELDS OF ELECTRONICS Understanding Electronics Using Basic Physics Ralph Morrison A Wiley-Interscience Publication JOHN WILEY & SONS, INC. This book is printed on acid-free

More information

Keysight Technologies Signal Integrity Tips and Techniques Using TDR, VNA and Modeling

Keysight Technologies Signal Integrity Tips and Techniques Using TDR, VNA and Modeling Keysight Technologies Signal Integrity Tips and Techniques Using, VNA and Modeling Article Reprint This article first appeared in the March 216 edition of Microwave Journal. Reprinted with kind permission

More information

Categorized by the type of core on which inductors are wound:

Categorized by the type of core on which inductors are wound: Inductors Categorized by the type of core on which inductors are wound: air core and magnetic core. The magnetic core inductors can be subdivided depending on whether the core is open or closed. Equivalent

More information

DL-150 The Ten Habits of Highly Successful Designers. or Design for Speed: A Designer s Survival Guide to Signal Integrity

DL-150 The Ten Habits of Highly Successful Designers. or Design for Speed: A Designer s Survival Guide to Signal Integrity Slide -1 Ten Habits of Highly Successful Board Designers or Design for Speed: A Designer s Survival Guide to Signal Integrity with Dr. Eric Bogatin, Signal Integrity Evangelist, Bogatin Enterprises, www.bethesignal.com

More information

DL-150 The Ten Habits of Highly Successful Designers. or Design for Speed: A Designer s Survival Guide to Signal Integrity

DL-150 The Ten Habits of Highly Successful Designers. or Design for Speed: A Designer s Survival Guide to Signal Integrity Slide -1 Ten Habits of Highly Successful Board Designers or Design for Speed: A Designer s Survival Guide to Signal Integrity with Dr. Eric Bogatin, Signal Integrity Evangelist, Bogatin Enterprises, www.bethesignal.com

More information

Designing Your EMI Filter

Designing Your EMI Filter The Engineer s Guide to Designing Your EMI Filter TABLE OF CONTENTS Introduction Filter Classifications Why Do We Need EMI Filters Filter Configurations 2 2 3 3 How to Determine Which Configuration to

More information

Aries CSP microstrip socket Cycling test

Aries CSP microstrip socket Cycling test Aries CSP microstrip socket Cycling test RF Measurement Results prepared by Gert Hohenwarter 2/18/05 1 Table of Contents TABLE OF CONTENTS... 2 OBJECTIVE... 3 METHODOLOGY... 3 Test procedures... 6 Setup...

More information

High Speed Digital Systems Require Advanced Probing Techniques for Logic Analyzer Debug

High Speed Digital Systems Require Advanced Probing Techniques for Logic Analyzer Debug JEDEX 2003 Memory Futures (Track 2) High Speed Digital Systems Require Advanced Probing Techniques for Logic Analyzer Debug Brock J. LaMeres Agilent Technologies Abstract Digital systems are turning out

More information

Ensuring Signal and Power Integrity for High-Speed Digital Systems

Ensuring Signal and Power Integrity for High-Speed Digital Systems Ensuring Signal and Power Integrity for High-Speed Digital Systems An EMC Perspective Christian Schuster Institut für Theoretische Elektrotechnik Technische Universität Hamburg-Harburg (TUHH) Invited Presentation

More information

Faster than a Speeding Bullet

Faster than a Speeding Bullet BEYOND DESIGN Faster than a Speeding Bullet by Barry Olney IN-CIRCUIT DESIGN PTY LTD AUSTRALIA In a previous Beyond Design column, Transmission Lines, I mentioned that a transmission line does not carry

More information

The Three Most Confusing Topics in Signal Integrity

The Three Most Confusing Topics in Signal Integrity Slide -1 The Three Most Confusing Topics in Signal Integrity and how not to be confused with Dr. Eric Bogatin, Signal Integrity Evangelist, Bogatin Enterprises, www.bethesignal.com eric@bethesignal.com

More information

Taking the Mystery out of Signal Integrity

Taking the Mystery out of Signal Integrity Slide - 1 Jan 2002 Taking the Mystery out of Signal Integrity Dr. Eric Bogatin, CTO, GigaTest Labs Signal Integrity Engineering and Training 134 S. Wolfe Rd Sunnyvale, CA 94086 408-524-2700 www.gigatest.com

More information

How Long is Too Long? A Via Stub Electrical Performance Study

How Long is Too Long? A Via Stub Electrical Performance Study How Long is Too Long? A Via Stub Electrical Performance Study Michael Rowlands, Endicott Interconnect Michael.rowlands@eitny.com, 607.755.5143 Jianzhuang Huang, Endicott Interconnect 1 Abstract As signal

More information

10 Safety earthing/grounding does not help EMC at RF

10 Safety earthing/grounding does not help EMC at RF 1of 6 series Webinar #3 of 3, August 28, 2013 Grounding, Immunity, Overviews of Emissions and Immunity, and Crosstalk Contents of Webinar #3 Topics 1 through 9 were covered by the previous two webinars

More information

Design and experimental realization of the chirped microstrip line

Design and experimental realization of the chirped microstrip line Chapter 4 Design and experimental realization of the chirped microstrip line 4.1. Introduction In chapter 2 it has been shown that by using a microstrip line, uniform insertion losses A 0 (ω) and linear

More information

ECE 145A/218A, Lab Project #1a: passive Component Test.

ECE 145A/218A, Lab Project #1a: passive Component Test. ECE 145A/218A, Lab Project #1a: passive Component Test. September 28, 2017 OVERVIEW... 2 GOALS:... 2 PRECAUTIONS TO AVOID INSTRUMENT DAMAGE... 2 SAFETY PRECAUTIONS... 2 READING:... 3 NETWORK ANALYZER CALIBRATION...

More information

Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering

Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering Second Edition Peter Russer ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface xvii Chapter 1 Introduction

More information

Lecture 5 Transmission. Physical and Datalink Layers: 3 Lectures

Lecture 5 Transmission. Physical and Datalink Layers: 3 Lectures Lecture 5 Transmission Peter Steenkiste School of Computer Science Department of Electrical and Computer Engineering Carnegie Mellon University 15-441 Networking, Spring 2004 http://www.cs.cmu.edu/~prs/15-441

More information

Using Sonnet EM Analysis with Cadence Virtuoso in RFIC Design. Sonnet Application Note: SAN-201B July 2011

Using Sonnet EM Analysis with Cadence Virtuoso in RFIC Design. Sonnet Application Note: SAN-201B July 2011 Using Sonnet EM Analysis with Cadence Virtuoso in RFIC Design Sonnet Application Note: SAN-201B July 2011 Description of Sonnet Suites Professional Sonnet Suites Professional is an industry leading full-wave

More information

Section VI. PCB Layout Guidelines

Section VI. PCB Layout Guidelines Section VI. PCB Layout Guidelines This section provides information for board layout designers to successfully layout their boards for Stratix II devices. These chapters contain the required PCB layout

More information

Microstrip Lines and Slotlines

Microstrip Lines and Slotlines Microstrip Lines and Slotlines Second Edition K.C. Gupta Ramesh Garg Inder Bahl Prakash Bhartia Artech House Boston London Contents Preface to the Second Edition Preface to the First Edition Chapter 1

More information

Signal Technologies 1

Signal Technologies 1 Signal Technologies 1 Gunning Transceiver Logic (GTL) - evolution Evolved from BTL, the backplane transceiver logic, which in turn evolved from ECL (emitter-coupled logic) Setup of an open collector bus

More information

Characterization Methodology for High Density Microwave Fixtures. Dr. Brock J. LaMeres, Montana State University

Characterization Methodology for High Density Microwave Fixtures. Dr. Brock J. LaMeres, Montana State University DesignCon 2008 Characterization Methodology for High Density Microwave Fixtures Dr. Brock J. LaMeres, Montana State University lameres@ece.montana.edu Brent Holcombe, Probing Technology, Inc brent.holcombe@probingtechnology.com

More information

Design Fundamentals by A. Ciccomancini Scogna, PhD Suppression of Simultaneous Switching Noise in Power and Ground Plane Pairs

Design Fundamentals by A. Ciccomancini Scogna, PhD Suppression of Simultaneous Switching Noise in Power and Ground Plane Pairs Design Fundamentals by A. Ciccomancini Scogna, PhD Suppression of Simultaneous Switching Noise in Power and Ground Plane Pairs Photographer: Janpietruszka Agency: Dreamstime.com 36 Conformity JUNE 2007

More information

VLSI is scaling faster than number of interface pins

VLSI is scaling faster than number of interface pins High Speed Digital Signals Why Study High Speed Digital Signals Speeds of processors and signaling Doubled with last few years Already at 1-3 GHz microprocessors Early stages of terahertz Higher speeds

More information

EMI. Chris Herrick. Applications Engineer

EMI. Chris Herrick. Applications Engineer Fundamentals of EMI Chris Herrick Ansoft Applications Engineer Three Basic Elements of EMC Conduction Coupling process EMI source Emission Space & Field Conductive Capacitive Inductive Radiative Low, Middle

More information

Intel 82566/82562V Layout Checklist (version 1.0)

Intel 82566/82562V Layout Checklist (version 1.0) Intel 82566/82562V Layout Checklist (version 1.0) Project Name Fab Revision Date Designer Intel Contact SECTION CHECK ITEMS REMARKS DONE General Ethernet Controller Obtain the most recent product documentation

More information

Telecommunication Wiring Questions

Telecommunication Wiring Questions Telecommunication Wiring Questions 1. is the process of modifying a carrier frequency in rhythm to the audio frequency. A, Modulation B. Amplitude C. Change of phase D. Interference 2. is the property

More information

The Practical Limitations of S Parameter Measurements and the Impact on Time- Domain Simulations of High Speed Interconnects

The Practical Limitations of S Parameter Measurements and the Impact on Time- Domain Simulations of High Speed Interconnects The Practical Limitations of S Parameter Measurements and the Impact on Time- Domain Simulations of High Speed Interconnects Dennis Poulin Anritsu Company Slide 1 Outline PSU Signal Integrity Symposium

More information

A VIEW OF ELECTROMAGNETIC LIFE ABOVE 100 MHz

A VIEW OF ELECTROMAGNETIC LIFE ABOVE 100 MHz A VIEW OF ELECTROMAGNETIC LIFE ABOVE 100 MHz An Experimentalist's Intuitive Approach Lothar O. (Bud) Hoeft, PhD Consultant, Electromagnetic Effects 5012 San Pedro Ct., NE Albuquerque, NM 87109-2515 (505)

More information

PCB Design Guidelines for GPS chipset designs. Section 1. Section 2. Section 3. Section 4. Section 5

PCB Design Guidelines for GPS chipset designs. Section 1. Section 2. Section 3. Section 4. Section 5 PCB Design Guidelines for GPS chipset designs The main sections of this white paper are laid out follows: Section 1 Introduction Section 2 RF Design Issues Section 3 Sirf Receiver layout guidelines Section

More information

Understanding, measuring, and reducing output noise in DC/DC switching regulators

Understanding, measuring, and reducing output noise in DC/DC switching regulators Understanding, measuring, and reducing output noise in DC/DC switching regulators Practical tips for output noise reduction Katelyn Wiggenhorn, Applications Engineer, Buck Switching Regulators Robert Blattner,

More information

Antenna Matching Within an Enclosure Part II: Practical Techniques and Guidelines

Antenna Matching Within an Enclosure Part II: Practical Techniques and Guidelines Antenna Matching Within an Enclosure Part II: Practical Techniques and Guidelines By Johnny Lienau, RF Engineer June 2012 Antenna selection and placement can be a difficult task, and the challenges of

More information

EMC for Printed Circuit Boards

EMC for Printed Circuit Boards 9 Bracken View, Brocton Stafford, Staffs, UK tel: +44 (0)1785 660 247 fax +44 (0)1785 660 247 email: keith.armstrong@cherryclough.com web: www.cherryclough.com EMC for Printed Circuit Boards Basic and

More information

Media. Twisted pair db/km at 1MHz 2 km. Coaxial cable 7 db/km at 10 MHz 1 9 km. Optical fibre 0.2 db/km 100 km

Media. Twisted pair db/km at 1MHz 2 km. Coaxial cable 7 db/km at 10 MHz 1 9 km. Optical fibre 0.2 db/km 100 km Media Attenuation Repeater spacing Twisted pair 10-12 db/km at 1MHz 2 km Coaxial cable 7 db/km at 10 MHz 1 9 km Optical fibre 0.2 db/km 100 km conniq.com provides an excellent tutorial on physical media.

More information

Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction.

Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction. Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction. D. A. Weston EMC Consulting Inc 15-3-2013 1) First topic an introduction These are some of the commonly

More information

ECE 528 Understanding Power Quality

ECE 528 Understanding Power Quality ECE 528 Understanding Power Quality http://www.ece.uidaho.edu/ee/power/ece528/ Paul Ortmann portmann@uidaho.edu 208-733-7972 (voice) Lecture 41 1 Today Wiring for communications Decibels Coupling Avoiding

More information

Introduction: Planar Transmission Lines

Introduction: Planar Transmission Lines Chapter-1 Introduction: Planar Transmission Lines 1.1 Overview Microwave integrated circuit (MIC) techniques represent an extension of integrated circuit technology to microwave frequencies. Since four

More information

DesignCon Loaded Parallel Stub Common Mode Filter. Predrag Acimovic, PMC-Sierra, Inc

DesignCon Loaded Parallel Stub Common Mode Filter. Predrag Acimovic, PMC-Sierra, Inc DesignCon 2008 Loaded Parallel Stub Common Mode Filter Predrag Acimovic, PMC-Sierra, Inc predrag_acimovic@pmc-sierra.com Abstract EMI radiation problems are usually due to certain unwanted common mode

More information

Lecture 5 Transmission

Lecture 5 Transmission Lecture 5 Transmission David Andersen Department of Computer Science Carnegie Mellon University 15-441 Networking, Spring 2005 http://www.cs.cmu.edu/~srini/15-441/s05 1 Physical and Datalink Layers: 3

More information

Designing external cabling for low EMI radiation A similar article was published in the December, 2004 issue of Planet Analog.

Designing external cabling for low EMI radiation A similar article was published in the December, 2004 issue of Planet Analog. HFTA-13.0 Rev.2; 05/08 Designing external cabling for low EMI radiation A similar article was published in the December, 2004 issue of Planet Analog. AVAILABLE Designing external cabling for low EMI radiation

More information

High-Speed Interconnect Technology for Servers

High-Speed Interconnect Technology for Servers High-Speed Interconnect Technology for Servers Hiroyuki Adachi Jun Yamada Yasushi Mizutani We are developing high-speed interconnect technology for servers to meet customers needs for transmitting huge

More information

Chapter 16 PCB Layout and Stackup

Chapter 16 PCB Layout and Stackup Chapter 16 PCB Layout and Stackup Electromagnetic Compatibility Engineering by Henry W. Ott Foreword The PCB represents the physical implementation of the schematic. The proper design and layout of a printed

More information

Suppression Techniques using X2Y as a Broadband EMI Filter IEEE International Symposium on EMC, Boston, MA

Suppression Techniques using X2Y as a Broadband EMI Filter IEEE International Symposium on EMC, Boston, MA Suppression Techniques using X2Y as a Broadband EMI Filter Jim Muccioli Tony Anthony Dave Anthony Dale Sanders X2Y Attenuators, LLC Erie, PA 16506-2972 www.x2y.com Email: x2y@x2y.com Bart Bouma Yageo/Phycomp

More information

Waveguides. Metal Waveguides. Dielectric Waveguides

Waveguides. Metal Waveguides. Dielectric Waveguides Waveguides Waveguides, like transmission lines, are structures used to guide electromagnetic waves from point to point. However, the fundamental characteristics of waveguide and transmission line waves

More information

QUADSPLITTER AND IN-LINE QUADSPLITTER

QUADSPLITTER AND IN-LINE QUADSPLITTER QUADSPLITTER AND IN-LINE QUADSPLITTER technical characteristics specifications temperature rating: -55 c to + 5 c corrosion: MIL-STD-0 Method 0, Test Condition B shock: MIL-STD-0 Method, Test Condition

More information

Considerations in High-Speed High Performance Die-Package-Board Co-Design. Jenny Jiang Altera Packaging Department October 2014

Considerations in High-Speed High Performance Die-Package-Board Co-Design. Jenny Jiang Altera Packaging Department October 2014 Considerations in High-Speed High Performance Die-Package-Board Co-Design Jenny Jiang Altera Packaging Department October 2014 Why Co-Design? Complex Multi-Layer BGA Package Horizontal and vertical design

More information

Technology in Balance

Technology in Balance Technology in Balance A G1 G2 B Basic Structure Comparison Regular capacitors have two plates or electrodes surrounded by a dielectric material. There is capacitance between the two conductive plates within

More information

Bill Ham Martin Ogbuokiri. This clause specifies the electrical performance requirements for shielded and unshielded cables.

Bill Ham Martin Ogbuokiri. This clause specifies the electrical performance requirements for shielded and unshielded cables. 098-219r2 Prepared by: Ed Armstrong Zane Daggett Bill Ham Martin Ogbuokiri Date: 07-24-98 Revised: 09-29-98 Revised again: 10-14-98 Revised again: 12-2-98 Revised again: 01-18-99 1. REQUIREMENTS FOR SPI-3

More information

Appendix. RF Transient Simulator. Page 1

Appendix. RF Transient Simulator. Page 1 Appendix RF Transient Simulator Page 1 RF Transient/Convolution Simulation This simulator can be used to solve problems associated with circuit simulation, when the signal and waveforms involved are modulated

More information

Microcircuit Electrical Issues

Microcircuit Electrical Issues Microcircuit Electrical Issues Distortion The frequency at which transmitted power has dropped to 50 percent of the injected power is called the "3 db" point and is used to define the bandwidth of the

More information

Equivalent Circuit Model Overview of Chip Spiral Inductors

Equivalent Circuit Model Overview of Chip Spiral Inductors Equivalent Circuit Model Overview of Chip Spiral Inductors The applications of the chip Spiral Inductors have been widely used in telecommunication products as wireless LAN cards, Mobile Phone and so on.

More information

Guide to CMP-28/32 Simbeor Kit

Guide to CMP-28/32 Simbeor Kit Guide to CMP-28/32 Simbeor Kit CMP-28 Rev. 4, Sept. 2014 Simbeor 2013.03, Aug. 10, 2014 Simbeor : Easy-to-Use, Efficient and Cost-Effective Electromagnetic Software Introduction Design of PCB and packaging

More information

EC Transmission Lines And Waveguides

EC Transmission Lines And Waveguides EC6503 - Transmission Lines And Waveguides UNIT I - TRANSMISSION LINE THEORY A line of cascaded T sections & Transmission lines - General Solution, Physical Significance of the Equations 1. Define Characteristic

More information

Introduction to RF Measurement and Nonideal Components The Vector Network Analyzer UCSB - ECE145A/ECE218A Winter 2007

Introduction to RF Measurement and Nonideal Components The Vector Network Analyzer UCSB - ECE145A/ECE218A Winter 2007 Goals: Introduction to RF Measurement and Nonideal Components The Vector Network Analyzer UCSB - ECE145A/ECE218A Winter 2007 (a) Introduction to the vector network analyzer and measurement of S-parameters.

More information

DesignCon East Feasibility of 40 to 50 Gbps NRZ Interconnect Design for Terabit Backplanes

DesignCon East Feasibility of 40 to 50 Gbps NRZ Interconnect Design for Terabit Backplanes DesignCon East 2005 Feasibility of 40 to 50 Gbps NRZ Interconnect Design for Terabit Backplanes Roger Weiss, Paricon Technologies Corporation President, RWeiss@paricon-tech.com Scott McMorrow, Teraspeed

More information

Class-D Audio Power Amplifiers: PCB Layout For Audio Quality, EMC & Thermal Success (Home Entertainment Devices)

Class-D Audio Power Amplifiers: PCB Layout For Audio Quality, EMC & Thermal Success (Home Entertainment Devices) Class-D Audio Power Amplifiers: PCB Layout For Audio Quality, EMC & Thermal Success (Home Entertainment Devices) Stephen Crump http://e2e.ti.com Audio Power Amplifier Applications Audio and Imaging Products

More information

What is an Inductor? Token Electronics Industry Co., Ltd. Version: January 16, Web:

What is an Inductor? Token Electronics Industry Co., Ltd. Version: January 16, Web: Version: January 16, 2017 What is an Inductor? Web: www.token.com.tw Email: rfq@token.com.tw Token Electronics Industry Co., Ltd. Taiwan: No.137, Sec. 1, Zhongxing Rd., Wugu District, New Taipei City,

More information

Verifying Simulation Results with Measurements. Scott Piper General Motors

Verifying Simulation Results with Measurements. Scott Piper General Motors Verifying Simulation Results with Measurements Scott Piper General Motors EM Simulation Software Can be easy to justify the purchase of software packages even costing tens of thousands of dollars Upper

More information

if the conductance is set to zero, the equation can be written as following t 2 (4)

if the conductance is set to zero, the equation can be written as following t 2 (4) 1 ECEN 720 High-Speed Links: Circuits and Systems Lab1 - Transmission Lines Objective To learn about transmission lines and time-domain reflectometer (TDR). Introduction Wires are used to transmit clocks

More information

AN-1364 APPLICATION NOTE

AN-1364 APPLICATION NOTE APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com Differential Filter Design for a Receive Chain in Communication Systems by

More information

Analogue circuit design for RF immunity

Analogue circuit design for RF immunity Analogue circuit design for RF immunity By EurIng Keith Armstrong, C.Eng, FIET, SMIEEE, www.cherryclough.com First published in The EMC Journal, Issue 84, September 2009, pp 28-32, www.theemcjournal.com

More information