Geoacoustic inversions using Combustive Sound Sources (CSS)

Size: px
Start display at page:

Download "Geoacoustic inversions using Combustive Sound Sources (CSS)"

Transcription

1 Geoacoustic inversions using Combustive Sound Sources (CSS) Gopu Potty, James Miller (URI) James Lynch, Arthur Newhall (WHOI) Preston Wilson, David Knobles (UT, Austin) Work supported by Office of Naval Research

2 Source Receiver Locations CSS 20 to SHRU km CSS 20 to SHRU km Grab samples In situ probes Short core- station AHC 800 Core

3 From David Knobles

4 Potty, G., Miller, J. H., and Lynch, J. F., Newhall, A., Wilson, P., Geoacoustic inversions using combustive sound source signals, J. Acoust. Soc. Am. (EL), 2008 Inversion Results- Compressional Wave Speed Compressional wave speed (top 40 m) compared with Jiang et al. model (JASA- 2007) Standard deviation ~ 20 m/sec. The R- reflector is approx. around 20 m Sea floor R - Reflector

5 Potty, Miller, Wilson, Lynch and Newhall, Geoacoustic inversion using combustive sound source signals, J. Acoust. Soc. Am., 124(3), Inversion Results- Compressional Wave Speed Sediments in top 15 m generally sandy interbedded with mud and shells. Inversion captures the trend in core data; but lower in magnitude Resolution not sufficient to capture high-speed layers at 8 m and at 11 m.

6 Attenuation - Modal Amplitude Ratios Mode 1 and 2 ratios in the frequency range 20 Hz to 80 Hz used for inversion Inversion for attenuation using the dominant modes modes 1 and 2

7 Depth below seafloor Relative Sensitivity of modes 0-2 m 2-4 m High 4-6 m 6-10 m m m m m m >30 m Low Mode #

8 Attenuation Inversion Results Mode 1 and 2 Published data all types of sediments (Stoll- 85) Freq. exponent ~ 1.86 (deep) 1.89 (shallow) Primer study SW 06 SW 06 (Biot Model) ECS data Primer data (Biot model) Inversions compare well with earlier (Primer) inversions Frequency exponent agrees with Holmes et al. (JASA-EL;2007) value of 1.8 +/- 0.2

9 Attenuation Estimates Mode 3 Different colors indicate attenuation at different depths Mode 3 data at frequencies 70 to 100 Hz Mode 1 and 2 strong > 20 m Mode 3 strong depth< 20 m Deeper sediments (red) very different (depends on modes 1 and 2; mode 3 not very sensitive at this depth Sediments at depths< 20 m more reliable (mode 3 sensitive at this depth)

10 SHRU 1 SHRU 2 From David Knobles

11 From David Knobles

12 From David Knobles

13 Time Frequency Analysis of the CSS signal SWAMI Data HRU Data

14 depth below seafloor (m) source receiver Mode Arrival Times Calculated based on SHRU data Mode 2 fit not very good Mode shapes _ Modes 1,2 and 3 Mode 2 has a peak at the sedimentwater interface. Mode 3 has a null both at the source and receiver location. Mode 3 could help to get better sediment information

15 Inversion Initial Result Mode 2 fit good except at the Airy Phase Mode 2 sensitive to near surface sediment Inversions range independent

16 Future Work Use more modes (mode 3 use another receiver) Attenuation inversions using CSS 26 and CSS 18. Focus on the Airy phase (mode 2) include range dependency Investigate the depth resolution are sediment layers visible to the inversion?

17 Acoustic Intensity Variability in the Presence of Shallow Water Internal Waves near a Shelfbreak Front Georges Dossot, James H. Miller, Gopu R. Potty, Dept. of Ocean Engineering, URI James F. Lynch, Arthur E. Newhall, WHOI Mohsen Badiey, University of Delaware SW06 Workshop at UT Austin February 10-12, 2009

18 Research Overview This study will attempt to verify the hypothesis that ISWs and the front cause complex multimode and multipath interference patterns which result in intensity variations of received acoustic signals Benefits: Provide a better understanding of acoustic variability in the complex shallow-water environment Provide a better understanding of ocean processes and properties Calculate and characterize intensity metrics based upon the R/V Sharp Transmissions

19 R/V Sharp Event 44 Compiled environmental data is useful for visualizing the event and for acoustic modeling Radar data determines the orientation of the wave front R/V Sharp ADCP shows internal wave structure SHARK soundspeed shows internal wave front arrives at SHARK array one hour prior to location of R/V Sharp

20 180 Hours of Acoustic Transmissions

21 Research Tasks Develop and maintain a web-based data archival system Currently operational, continued updates Preliminary data processing and automation Example of chirp automatic handling of chirp sequences Intensity metrics Example of chirp sequences transmitted on 13 Aug 06 Statistical characterization Some preliminary figures from calculated intensity metrics Modeling Future, most likely R/V Sharp Event 44 Inverse Problem Future, use statistics as part of model

22 Web-based data archival Information posted includes: Initial data results Misc Documents & Presentations References I am using Matlab code Simple way of sharing my work not meant to steal thunder from primary SW06 websites Password protected with standard SW06 username & password

23 Example Data from Event 44

24 Data processing & automation Automatic signal detection & automation is a must for this data

25 Statistical Measurements Integrated Energy: I z l dz d I, z, l Temporally Integrated Energy: I z, l d I, z, l Point Observations of Broadband Intensity: I, z, l Point Observations of Point Scintillations: Point Observations of Peak Intensity: SI I I I P z, l max I, z, l

26 I z (l) Number of arrivals 5 Integrated Energy Integrated Energy Integrated Energy Distribution Transmission number I z l dz d I, z, l I z (l) Total acoustic energy detected at the array, as a function of transmission number Intensity integrated over depth and arrival time Depth is integrated over entire array Time integral done over τ, the energetic region of the signal Corrected for ambient noise by subtracting average noise levels before and after energetic region of signal

27 I (z,l) I (z,l) Temporally Integrated Energy Temporally Integrated Energy (deepest hydrophone) 5 4 Temporally Integrated Energy Distribution (deepest hydrophone) Transmission number I z, l d I, z, l Number of arrivals Time integral done over τ, the energetic region of the signal Energy Detector mode of a sonar system Corrected for ambient noise by subtracting average noise levels before and after energetic region of signal Shows depth dependence not seen in Integrated Energy, I zτ (l) Energy redistribution due to mode coupling Energy redistribution due to ray scattering

28 I P (z,l) Number of arrivals Peak Intensity 5 Peak Intensity 30 Peak Intensity Distribution Transmission number I P (z,l) I P z, l max I, z, l

29 I(,z,l) Number of arrivals Point Observations Intensity "Point" Observations Intensity "Point" Observations Distribution Transmission number I(,z,l) I, z, l

30 I(,z,l) Number of arrivals Event Correlation Intensity "Point" Observations Intensity "Point" Observations Distribution 600 Research 500 Vessel Transmission number SHARK0 Array Propagating Internal 0 5 Wave10 I(,z,l)

31 Research Tasks Develop and maintain a web-based data archival system Currently operational, continued updates Preliminary data processing and automation Example of chirp automatic handling of chirp sequences Intensity metrics Example of chirp sequences transmitted on 13 Aug 06 Statistical characterization Some preliminary figures from calculated intensity metrics Modeling Future, most likely R/V Sharp Event 44 Inverse Problem Future, use statistics as part of model

32 Thank you! Questions?

33 Chirp detector Performance

34 Chirp detector Performance

35 Chirp detector Performance

36 Chirp detector Performance Automatic signal detection & automation is a must for this data

37 Chirp detector Performance

Dispersion of Sound in Marine Sediments

Dispersion of Sound in Marine Sediments DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Dispersion of Sound in Marine Sediments N. Ross Chapman School of Earth and Ocean Sciences University of Victoria 3800

More information

Fluctuations of Broadband Acoustic Signals in Shallow Water

Fluctuations of Broadband Acoustic Signals in Shallow Water Fluctuations of Broadband Acoustic Signals in Shallow Water LONG-TERM GOALS Mohsen Badiey College of Earth, Ocean, and Environment University of Delaware Newark, DE 19716 Phone: (302) 831-3687 Fax: (302)

More information

Observation of sound focusing and defocusing due to propagating nonlinear internal waves

Observation of sound focusing and defocusing due to propagating nonlinear internal waves Observation of sound focusing and defocusing due to propagating nonlinear internal waves J. Luo, M. Badiey, and E. A. Karjadi College of Marine and Earth Studies, University of Delaware, Newark, Delaware

More information

SW06 Shallow Water Acoustics Experiment

SW06 Shallow Water Acoustics Experiment SW06 Shallow Water Acoustics Experiment James F. Lynch MS #12, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 phone: (508) 289-2230 fax: (508) 457-2194 e-mail: jlynch@whoi.edu Grant Number:

More information

Broadband Temporal Coherence Results From the June 2003 Panama City Coherence Experiments

Broadband Temporal Coherence Results From the June 2003 Panama City Coherence Experiments Broadband Temporal Coherence Results From the June 2003 Panama City Coherence Experiments H. Chandler*, E. Kennedy*, R. Meredith*, R. Goodman**, S. Stanic* *Code 7184, Naval Research Laboratory Stennis

More information

Fluctuating arrivals of short-range acoustic data

Fluctuating arrivals of short-range acoustic data Fluctuating arrivals of short-range acoustic data Cheolsoo Park Maritime and Ocean Engineering Research Institute (MOERI), Daejeon 305-343, Korea Woojae Seong a) Department of Ocean Engineering, Seoul

More information

Sei whale localization and vocalization frequency sweep rate estimation during the New Jersey Shallow Water 2006 (SW06) experiment

Sei whale localization and vocalization frequency sweep rate estimation during the New Jersey Shallow Water 2006 (SW06) experiment Sei whale localization and vocalization frequency sweep rate estimation during the New Jersey Shallow Water 2006 (SW06) experiment Arthur Newhall, Ying-Tsong Lin, Jim Lynch, Mark Baumgartner Woods Hole

More information

Analysis of South China Sea Shelf and Basin Acoustic Transmission Data

Analysis of South China Sea Shelf and Basin Acoustic Transmission Data DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Analysis of South China Sea Shelf and Basin Acoustic Transmission Data Ching-Sang Chiu Department of Oceanography

More information

HIGH-FREQUENCY ACOUSTIC PROPAGATION IN THE PRESENCE OF OCEANOGRAPHIC VARIABILITY

HIGH-FREQUENCY ACOUSTIC PROPAGATION IN THE PRESENCE OF OCEANOGRAPHIC VARIABILITY HIGH-FREQUENCY ACOUSTIC PROPAGATION IN THE PRESENCE OF OCEANOGRAPHIC VARIABILITY M. BADIEY, K. WONG, AND L. LENAIN College of Marine Studies, University of Delaware Newark DE 19716, USA E-mail: Badiey@udel.edu

More information

Mid-Frequency Reverberation Measurements with Full Companion Environmental Support

Mid-Frequency Reverberation Measurements with Full Companion Environmental Support DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Mid-Frequency Reverberation Measurements with Full Companion Environmental Support Dajun (DJ) Tang Applied Physics Laboratory,

More information

Analysis of South China Sea Shelf and Basin Acoustic Transmission Data

Analysis of South China Sea Shelf and Basin Acoustic Transmission Data DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Analysis of South China Sea Shelf and Basin Acoustic Transmission Data Ching-Sang Chiu Department of Oceanography

More information

Fluctuations of Mid-to-High Frequency Acoustic Waves in Shallow Water

Fluctuations of Mid-to-High Frequency Acoustic Waves in Shallow Water Fluctuations of Mid-to-High Frequency Acoustic Waves in Shallow Water Mohsen Badiey College of Marine and Earth Studies University of Delaware Newark, DE 19716 phone: (302) 831-3687 fax: (302) 831-3302

More information

3D Propagation and Geoacoustic Inversion Studies in the Mid-Atlantic Bight

3D Propagation and Geoacoustic Inversion Studies in the Mid-Atlantic Bight 3D Propagation and Geoacoustic Inversion Studies in the Mid-Atlantic Bight Kevin B. Smith Code PH/Sk, Department of Physics Naval Postgraduate School Monterey, CA 93943 phone: (831) 656-2107 fax: (831)

More information

TARUN K. CHANDRAYADULA Sloat Ave # 3, Monterey,CA 93940

TARUN K. CHANDRAYADULA Sloat Ave # 3, Monterey,CA 93940 TARUN K. CHANDRAYADULA 703-628-3298 650 Sloat Ave # 3, cptarun@gmail.com Monterey,CA 93940 EDUCATION George Mason University, Fall 2009 Fairfax, VA Ph.D., Electrical Engineering (GPA 3.62) Thesis: Mode

More information

Ocean Acoustics and Signal Processing for Robust Detection and Estimation

Ocean Acoustics and Signal Processing for Robust Detection and Estimation Ocean Acoustics and Signal Processing for Robust Detection and Estimation Zoi-Heleni Michalopoulou Department of Mathematical Sciences New Jersey Institute of Technology Newark, NJ 07102 phone: (973) 596

More information

High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise

High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise Martin Siderius Portland State University, ECE Department 1900 SW 4 th Ave., Portland, OR 97201 phone: (503) 725-3223

More information

BROADBAND ACOUSTIC SIGNAL VARIABILITY IN TWO TYPICAL SHALLOW-WATER REGIONS

BROADBAND ACOUSTIC SIGNAL VARIABILITY IN TWO TYPICAL SHALLOW-WATER REGIONS BROADBAND ACOUSTIC SIGNAL VARIABILITY IN TWO TYPICAL SHALLOW-WATER REGIONS PETER L. NIELSEN SACLANT Undersea Research Centre, Viale San Bartolomeo 400, 19138 La Spezia, Italy E-mail: nielsen@saclantc.nato.int

More information

Fluctuations of Mid-to-High Frequency Acoustic Waves in Shallow Water

Fluctuations of Mid-to-High Frequency Acoustic Waves in Shallow Water Fluctuations of Mid-to-High Frequency Acoustic Waves in Shallow Water Mohsen Badiey University of Delaware College of Marine Studies Newark, DE 19716 phone: (32) 831-3687 fax: (32) 831-332 email: badiey@udel.edu

More information

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Propagation of Low-Frequency, Transient Acoustic Signals through a Fluctuating Ocean: Development of a 3D Scattering Theory

More information

High-Frequency Rapid Geo-acoustic Characterization

High-Frequency Rapid Geo-acoustic Characterization High-Frequency Rapid Geo-acoustic Characterization Kevin D. Heaney Lockheed-Martin ORINCON Corporation, 4350 N. Fairfax Dr., Arlington VA 22203 Abstract. The Rapid Geo-acoustic Characterization (RGC) algorithm

More information

ON WAVEFORM SELECTION IN A TIME VARYING SONAR ENVIRONMENT

ON WAVEFORM SELECTION IN A TIME VARYING SONAR ENVIRONMENT ON WAVEFORM SELECTION IN A TIME VARYING SONAR ENVIRONMENT Ashley I. Larsson 1* and Chris Gillard 1 (1) Maritime Operations Division, Defence Science and Technology Organisation, Edinburgh, Australia Abstract

More information

Three-Dimensional Scale-Model Tank Experiment of the Hudson Canyon Region

Three-Dimensional Scale-Model Tank Experiment of the Hudson Canyon Region DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Three-Dimensional Scale-Model Tank Experiment of the Hudson Canyon Region Jason D. Sagers Applied Research Laboratories

More information

Acoustic propagation affected by environmental parameters in coastal waters

Acoustic propagation affected by environmental parameters in coastal waters Indian Journal of Geo-Marine Sciences Vol. 43(1), January 2014, pp. 17-21 Acoustic propagation affected by environmental parameters in coastal waters Sanjana M C, G Latha, A Thirunavukkarasu & G Raguraman

More information

TREX13 data analysis/modeling

TREX13 data analysis/modeling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TREX13 data analysis/modeling Dajun (DJ) Tang Applied Physics Laboratory, University of Washington 1013 NE 40 th Street,

More information

Exploitation of frequency information in Continuous Active Sonar

Exploitation of frequency information in Continuous Active Sonar PROCEEDINGS of the 22 nd International Congress on Acoustics Underwater Acoustics : ICA2016-446 Exploitation of frequency information in Continuous Active Sonar Lisa Zurk (a), Daniel Rouseff (b), Scott

More information

Passive Measurement of Vertical Transfer Function in Ocean Waveguide using Ambient Noise

Passive Measurement of Vertical Transfer Function in Ocean Waveguide using Ambient Noise Proceedings of Acoustics - Fremantle -3 November, Fremantle, Australia Passive Measurement of Vertical Transfer Function in Ocean Waveguide using Ambient Noise Xinyi Guo, Fan Li, Li Ma, Geng Chen Key Laboratory

More information

MURI: Impact of Oceanographic Variability on Acoustic Communications

MURI: Impact of Oceanographic Variability on Acoustic Communications MURI: Impact of Oceanographic Variability on Acoustic Communications W.S. Hodgkiss Marine Physical Laboratory Scripps Institution of Oceanography La Jolla, CA 92093-0701 phone: (858) 534-1798 / fax: (858)

More information

Investigation of Statistical Inference Methodologies Through Scale Model Propagation Experiments

Investigation of Statistical Inference Methodologies Through Scale Model Propagation Experiments DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Investigation of Statistical Inference Methodologies Through Scale Model Propagation Experiments Jason D. Sagers Applied

More information

Oceanographic Variability and the Performance of Passive and Active Sonars in the Philippine Sea

Oceanographic Variability and the Performance of Passive and Active Sonars in the Philippine Sea DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Oceanographic Variability and the Performance of Passive and Active Sonars in the Philippine Sea Arthur B. Baggeroer Center

More information

Travel time estimation methods for mode tomography

Travel time estimation methods for mode tomography DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Travel time estimation methods for mode tomography Tarun K. Chandrayadula George Mason University Electrical

More information

Environmental Acoustics and Intensity Vector Acoustics with Emphasis on Shallow Water Effects and the Sea Surface

Environmental Acoustics and Intensity Vector Acoustics with Emphasis on Shallow Water Effects and the Sea Surface DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Environmental Acoustics and Intensity Vector Acoustics with Emphasis on Shallow Water Effects and the Sea Surface LONG-TERM

More information

Resonance classification of swimbladder-bearing fish using broadband acoustics: 1-6 khz

Resonance classification of swimbladder-bearing fish using broadband acoustics: 1-6 khz Resonance classification of swimbladder-bearing fish using broadband acoustics: 1-6 khz Tim Stanton The team: WHOI Dezhang Chu Josh Eaton Brian Guest Cindy Sellers Tim Stanton NOAA/NEFSC Mike Jech Francene

More information

Sonobuoy-Based Acoustic Characterization of Shallow-Water Environments

Sonobuoy-Based Acoustic Characterization of Shallow-Water Environments DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sonobuoy-Based Acoustic Characterization of Shallow-Water Environments George V. Frisk Department of Ocean and Mechanical

More information

Models of Acoustic Wave Scattering at khz from Turbulence in Shallow Water

Models of Acoustic Wave Scattering at khz from Turbulence in Shallow Water Models of Acoustic Wave Scattering at.-1 khz from Turbulence in Shallow Water Tokuo Yamamoto Division of Applied Marine Physics, RSMAS, University of Miami, 6 Rickenbacker Causeway Miami, FL 3319 phone:

More information

ANUMBER of moored sound sources were deployed

ANUMBER of moored sound sources were deployed 1264 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 29, NO. 4, OCTOBER 2004 Fluctuation of 400-Hz Sound Intensity in the 2001 ASIAEX South China Sea Experiment Timothy F. Duda, James F. Lynch, Senior Member,

More information

Geoacoustic Inversion for Spatially and Temporally Varying Shallow Water Environments

Geoacoustic Inversion for Spatially and Temporally Varying Shallow Water Environments Geoacoustic Inversion for Spatially and Temporally Varying Shallow Water Environments ONR Special Research Awards in Underwater Acoustics: Entry Level Faculty Award Kyle M. Becker The Pennsylvania State

More information

Modal Mapping in a Complex Shallow Water Environment

Modal Mapping in a Complex Shallow Water Environment Modal Mapping in a Complex Shallow Water Environment George V. Frisk Bigelow Bldg. - Mailstop 11 Department of Applied Ocean Physics and Engineering Woods Hole Oceanographic Institution Woods Hole, MA

More information

Ocean Ambient Noise Studies for Shallow and Deep Water Environments

Ocean Ambient Noise Studies for Shallow and Deep Water Environments DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Ocean Ambient Noise Studies for Shallow and Deep Water Environments Martin Siderius Portland State University Electrical

More information

Exploitation of Environmental Complexity in Shallow Water Acoustic Data Communications

Exploitation of Environmental Complexity in Shallow Water Acoustic Data Communications Exploitation of Environmental Complexity in Shallow Water Acoustic Data Communications W.S. Hodgkiss Marine Physical Laboratory Scripps Institution of Oceanography La Jolla, CA 92093-0701 phone: (858)

More information

ACOUSTIC REFLECTION AND TRANSMISSION EXPERIMENTS FROM 4.5 TO 50 KHZ AT THE SEDIMENT ACOUSTICS EXPERIMENT 2004 (SAX04)

ACOUSTIC REFLECTION AND TRANSMISSION EXPERIMENTS FROM 4.5 TO 50 KHZ AT THE SEDIMENT ACOUSTICS EXPERIMENT 2004 (SAX04) Proceedings of the International Conference Underwater Acoustic Measurements: Technologies &Results Heraklion, Crete, Greece, 28 th June 1 st July 2005 ACOUSTIC REFLECTION AND TRANSMISSION EXPERIMENTS

More information

Low Frequency Bottom Reflectivity from Reflection

Low Frequency Bottom Reflectivity from Reflection Low Frequency Bottom Reflectivity from Reflection,Alexander Kritski 1 and Chris Jenkins 2 1 School of Geosciences, University of Sydney, NSW, 2 Ocean Sciences Institute, University of Sydney, NSW. Abstract

More information

A portative celerimeter for measurement and analysis of compressional speed and attenuation in marine sediments: description and first results

A portative celerimeter for measurement and analysis of compressional speed and attenuation in marine sediments: description and first results Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France A portative celerimeter for measurement and analysis of compressional speed and attenuation in marine sediments: description

More information

Acoustic Blind Deconvolution in Uncertain Shallow Ocean Environments

Acoustic Blind Deconvolution in Uncertain Shallow Ocean Environments DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Acoustic Blind Deconvolution in Uncertain Shallow Ocean Environments David R. Dowling Department of Mechanical Engineering

More information

North Pacific Acoustic Laboratory and Deep Water Acoustics

North Pacific Acoustic Laboratory and Deep Water Acoustics DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. North Pacific Acoustic Laboratory and Deep Water Acoustics PI James A. Mercer Applied Physics Laboratory, University of

More information

High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise

High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise Martin Siderius Portland State University, ECE Department 1900 SW 4 th Ave., Portland, OR 97201 phone: (503) 725-3223

More information

Measurements and analysis of phenomenology and statistics of sound propagation over sand dunes on upper slope of the Northeastern South China Sea

Measurements and analysis of phenomenology and statistics of sound propagation over sand dunes on upper slope of the Northeastern South China Sea DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Measurements and analysis of phenomenology and statistics of sound propagation over sand dunes on upper slope of the Northeastern

More information

Bio-Alpha off the West Coast

Bio-Alpha off the West Coast DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Bio-Alpha off the West Coast Dr. Orest Diachok Johns Hopkins University Applied Physics Laboratory Laurel MD20723-6099

More information

Remote Sediment Property From Chirp Data Collected During ASIAEX

Remote Sediment Property From Chirp Data Collected During ASIAEX Remote Sediment Property From Chirp Data Collected During ASIAEX Steven G. Schock Department of Ocean Engineering Florida Atlantic University Boca Raton, Fl. 33431-0991 phone: 561-297-3442 fax: 561-297-3885

More information

Ocean Acoustic Propagation: Fluctuations and Coherence in Dynamically Active Shallow-Water Regions

Ocean Acoustic Propagation: Fluctuations and Coherence in Dynamically Active Shallow-Water Regions Ocean Acoustic Propagation: Fluctuations and Coherence in Dynamically Active Shallow-Water Regions Timothy F. Duda Applied Ocean Physics and Engineering Department, MS 11 Woods Hole Oceanographic Institution,

More information

Results from the Elba HF-2003 experiment

Results from the Elba HF-2003 experiment Results from the Elba HF-2003 experiment Finn Jensen, Lucie Pautet, Michael Porter, Martin Siderius, Vincent McDonald, Mohsen Badiey, Dan Kilfoyle and Lee Freitag NATO Undersea Research Centre, La Spezia,

More information

Ocean Variability Effects on High-Frequency Acoustic Propagation in KauaiEx

Ocean Variability Effects on High-Frequency Acoustic Propagation in KauaiEx Ocean Variability Effects on High-Frequency Acoustic Propagation in KauaiEx Mohsen Badiey 1, Stephen E. Forsythe 2, Michael B. Porter 3, and the KauaiEx Group 1 College of Marine Studies, University of

More information

Shallow-Water Propagation

Shallow-Water Propagation Shallow-Water Propagation William L. Siegmann Rensselaer Polytechnic Institute 110 Eighth Street Troy, New York 12180-3590 phone: (518) 276-6905 fax: (518) 276-4824 email: siegmw@rpi.edu Award Numbers:

More information

NPAL Acoustic Noise Field Coherence and Broadband Full Field Processing

NPAL Acoustic Noise Field Coherence and Broadband Full Field Processing NPAL Acoustic Noise Field Coherence and Broadband Full Field Processing Arthur B. Baggeroer Massachusetts Institute of Technology Cambridge, MA 02139 Phone: 617 253 4336 Fax: 617 253 2350 Email: abb@boreas.mit.edu

More information

Mid-frequency sound propagation through internal waves at short range with synoptic oceanographic observations

Mid-frequency sound propagation through internal waves at short range with synoptic oceanographic observations Mid-frequency sound propagation through internal waves at short range with synoptic oceanographic observations Daniel Rouseff, Dajun Tang, Kevin L. Williams, and Zhongkang Wang a) Applied Physics Laboratory,

More information

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Propagation of How-Frequency, Transient Acoustic Signals through a Fluctuating Ocean: Development of a 3D Scattering Theory

More information

Sonobuoy-Based, 3-D Acoustic Characterization of Shallow-Water Environments

Sonobuoy-Based, 3-D Acoustic Characterization of Shallow-Water Environments DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sonobuoy-Based, 3-D Acoustic Characterization of Shallow-Water Environments George V. Frisk Department of Ocean and Mechanical

More information

Acoustic Blind Deconvolution and Frequency-Difference Beamforming in Shallow Ocean Environments

Acoustic Blind Deconvolution and Frequency-Difference Beamforming in Shallow Ocean Environments DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Acoustic Blind Deconvolution and Frequency-Difference Beamforming in Shallow Ocean Environments David R. Dowling Department

More information

The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling

The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling Grant B. Deane Marine

More information

Agenda. Tuesday, 16 March (all times approximate!) Workshop logistics Workshop goals Brief background on SAX99 and SAX04

Agenda. Tuesday, 16 March (all times approximate!) Workshop logistics Workshop goals Brief background on SAX99 and SAX04 Agenda Tuesday, 16 March 0900-1000 (all times approximate!) Workshop logistics Workshop goals Brief background on SAX99 and SAX04 1000, break, room will be divided 1015, resume as two groups Agenda for

More information

North Pacific Acoustic Laboratory (NPAL) Towed Array Measurements

North Pacific Acoustic Laboratory (NPAL) Towed Array Measurements DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. North Pacific Acoustic Laboratory (NPAL) Towed Array Measurements Kevin D. Heaney Ocean Acoustical Services and Instrumentation

More information

Range estimation using multipath arrivals from 20 Hz fin whale vocalizations recorded in the NE Pacific Ocean

Range estimation using multipath arrivals from 20 Hz fin whale vocalizations recorded in the NE Pacific Ocean Range estimation using multipath arrivals from 2 Hz fin whale vocalizations recorded in the NE Pacific Ocean S c h o o l o f O c e a n o g r a p h y Michelle Weirathmueller and William S.D. Wilcock University

More information

UNDERWATER ACOUSTIC CHANNEL ESTIMATION AND ANALYSIS

UNDERWATER ACOUSTIC CHANNEL ESTIMATION AND ANALYSIS Proceedings of the 5th Annual ISC Research Symposium ISCRS 2011 April 7, 2011, Rolla, Missouri UNDERWATER ACOUSTIC CHANNEL ESTIMATION AND ANALYSIS Jesse Cross Missouri University of Science and Technology

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Reverberation, Sediment Acoustics, and Targets-in-the-Environment

Reverberation, Sediment Acoustics, and Targets-in-the-Environment DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Reverberation, Sediment Acoustics, and Targets-in-the-Environment Kevin L. Williams Applied Physics Laboratory College

More information

Quarterly Progress Report. Technical and Financial Deep Water Ocean Acoustics Award No.: N C-0172

Quarterly Progress Report. Technical and Financial Deep Water Ocean Acoustics Award No.: N C-0172 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics Award No.: N00014-14-C-0172 Report No. QSR-14C0172-Ocean Acoustics-063016 Prepared for: Office of Naval Research For the period:

More information

APL - North Pacific Acoustic Laboratory

APL - North Pacific Acoustic Laboratory DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. APL - North Pacific Acoustic Laboratory PI James A. Mercer Applied Physics Laboratory, University of Washington 1013 NE

More information

International Journal of Research in Computer and Communication Technology, Vol 3, Issue 1, January- 2014

International Journal of Research in Computer and Communication Technology, Vol 3, Issue 1, January- 2014 A Study on channel modeling of underwater acoustic communication K. Saraswathi, Netravathi K A., Dr. S Ravishankar Asst Prof, Professor RV College of Engineering, Bangalore ksaraswathi@rvce.edu.in, netravathika@rvce.edu.in,

More information

Numerical Modeling of a Time Reversal Experiment in Shallow Singapore Waters

Numerical Modeling of a Time Reversal Experiment in Shallow Singapore Waters Numerical Modeling of a Time Reversal Experiment in Shallow Singapore Waters H.C. Song, W.S. Hodgkiss, and J.D. Skinner Marine Physical Laboratory, Scripps Institution of Oceanography La Jolla, CA 92037-0238,

More information

Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum

Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum Aaron Thode

More information

Advanced Structural Dynamics and Acoustics

Advanced Structural Dynamics and Acoustics Advanced Structural Dynamics and Acoustics Fundamentals of OCEAN ACOUSTICS Figures in this lecture are from Jensen, F.B., W.A. Kuperman, M.B. Porter, and H. Schmidt. Computational Ocean Acoustics. New

More information

ONR Graduate Traineeship Award

ONR Graduate Traineeship Award ONR Graduate Traineeship Award Tarun K. Chandrayadula George Mason University Electrical and Computer Engineering Department 4400 University Drive, MSN 1G5 Fairfax, VA 22030 phone: (703)993-1610 fax: (703)993-1601

More information

Acoustic penetration of a sandy sediment

Acoustic penetration of a sandy sediment Nicholas P. Chotiros, D. Eric Smith, James N. Piper, Brett K. McCurley, Keith Lent, Nathan Crow, Roger Banks and Harvey Ma Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029,

More information

Characterization of a Very Shallow Water Acoustic Communication Channel MTS/IEEE OCEANS 09 Biloxi, MS

Characterization of a Very Shallow Water Acoustic Communication Channel MTS/IEEE OCEANS 09 Biloxi, MS Characterization of a Very Shallow Water Acoustic Communication Channel MTS/IEEE OCEANS 09 Biloxi, MS Brian Borowski Stevens Institute of Technology Departments of Computer Science and Electrical and Computer

More information

Measurement and Analysis of High-Frequency Scattering Statistics and Sound Speed Dispersion

Measurement and Analysis of High-Frequency Scattering Statistics and Sound Speed Dispersion Measurement and Analysis of High-Frequency Scattering Statistics and Sound Speed Dispersion Anthony P. Lyons The Pennsylvania State University Applied Research Laboratory, P.O. Box 30 State College, PA

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Shallow Water Fluctuations and Communications

Shallow Water Fluctuations and Communications Shallow Water Fluctuations and Communications H.C. Song Marine Physical Laboratory Scripps Institution of oceanography La Jolla, CA 92093-0238 phone: (858) 534-0954 fax: (858) 534-7641 email: hcsong@mpl.ucsd.edu

More information

Low Frequency Geoacoustic Inversion Method

Low Frequency Geoacoustic Inversion Method DISTRIBUTION STATEMENT A: Distribution approved for public release, distribution is unlimited Low Frequency Geoacoustic Inversion Method A. Tolstoy 538 Hampton Hill Circle, McLean VA 22 phone: (73) 76-88

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2005 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Principles of Modern Radar

Principles of Modern Radar Principles of Modern Radar Vol. I: Basic Principles Mark A. Richards Georgia Institute of Technology James A. Scheer Georgia Institute of Technology William A. Holm Georgia Institute of Technology PUBLiSH]J

More information

Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum

Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum Aaron Thode

More information

Shallow Water Array Performance (SWAP): Array Element Localization and Performance Characterization

Shallow Water Array Performance (SWAP): Array Element Localization and Performance Characterization Shallow Water Array Performance (SWAP): Array Element Localization and Performance Characterization Kent Scarbrough Advanced Technology Laboratory Applied Research Laboratories The University of Texas

More information

HIGH FREQUENCY INTENSITY FLUCTUATIONS

HIGH FREQUENCY INTENSITY FLUCTUATIONS Proceedings of the Seventh European Conference on Underwater Acoustics, ECUA 004 Delft, The Netherlands 5-8 July, 004 HIGH FREQUENCY INTENSITY FLUCTUATIONS S.D. Lutz, D.L. Bradley, and R.L. Culver Steven

More information

Experimentally-Based Ocean Acoustic Propagation and Coherence Studies

Experimentally-Based Ocean Acoustic Propagation and Coherence Studies DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Experimentally-Based Ocean Acoustic Propagation and Coherence Studies Timothy F. Duda Applied Ocean Physics and Engineering

More information

Implementation of Acoustic Communication in Under Water Using BPSK

Implementation of Acoustic Communication in Under Water Using BPSK IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 1, Ver. V (Feb. 2014), PP 73-81 Implementation of Acoustic Communication in Under

More information

Low Frequency Geoacoustic Inversion Method

Low Frequency Geoacoustic Inversion Method DISTRIBUTION STATEMENT A: Distribution approved for public release, distribution is unlimited Low Frequency Geoacoustic Inversion Method A. Tolstoy 538 Hampton Hill Circle, McLean VA 22 phone: (73) 76-88

More information

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss Introduction Small-scale fading is used to describe the rapid fluctuation of the amplitude of a radio

More information

Modeling Acoustic Signal Fluctuations Induced by Sea Surface Roughness

Modeling Acoustic Signal Fluctuations Induced by Sea Surface Roughness Modeling Acoustic Signal Fluctuations Induced by Sea Surface Roughness Robert M. Heitsenrether, Mohsen Badiey Ocean Acoustics Laboratory, College of Marine Studies, University of Delaware, Newark, DE 19716

More information

Measurement and Analysis of High-Frequency Scattering Statistics And Sound Speed Dispersion

Measurement and Analysis of High-Frequency Scattering Statistics And Sound Speed Dispersion Measurement and Analysis of High-Frequency Scattering Statistics And Sound Speed Dispersion Anthony P. Lyons The Pennsylvania State University Applied Research Laboratory, P.O. Box 30 State College, PA

More information

OCEAN ACOUSTIC TIME-REVERSAL MIRROR. Two ocean acoustics experiments demonstrating the implementation of a time reversal

OCEAN ACOUSTIC TIME-REVERSAL MIRROR. Two ocean acoustics experiments demonstrating the implementation of a time reversal OCEAN ACOUSTIC TIME-REVERSAL MIRROR W.A. Kuperman 1, W.S. Hodgkiss 1, H.C. Song 1,P. Gerstoft 1,P. Roux 1,T.Akal 2,C. Ferla 2 and D.R. Jackson 3 1 Marine Physical LaboratoryèSIO, UCSD, La Jolla, CA 9293-71,

More information

Acoustic Communications and Navigation Under Arctic Ice

Acoustic Communications and Navigation Under Arctic Ice Acoustic Communications and Navigation Under Arctic Ice Lee Freitag, Peter Koski, Andrey Morozov, Sandipa Singh and James Partan Woods Hole Oceanographic Institution Woods Hole, MA USA {lfreitag, pkoski,

More information

Bruce D. Cornuelle, Matthew A. Dzieciuch, Walter H. Munk, and Peter F. Worcester Scripps Institution of Oceanography, La Jolla, California 92093

Bruce D. Cornuelle, Matthew A. Dzieciuch, Walter H. Munk, and Peter F. Worcester Scripps Institution of Oceanography, La Jolla, California 92093 Analysis of multipath acoustic field variability and coherence in the finale of broadband basin-scale transmissions in the North Pacific Ocean John A. Colosi Woods Hole Oceanographic Institution, Woods

More information

Development and Modeling of Systems for Source Tracking in Very Shallow Water

Development and Modeling of Systems for Source Tracking in Very Shallow Water Development and Modeling of Systems for Source Tracking in Very Shallow Water Stewart A.L. Glegg Dept. of Ocean Engineering Florida Atlantic University Boca Raton, FL 33431 Tel: (561) 297-2633 Fax: (561)

More information

High-Frequency Acoustic Propagation in Shallow, Energetic, Highly-Salt-Stratified Environments

High-Frequency Acoustic Propagation in Shallow, Energetic, Highly-Salt-Stratified Environments DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. High-Frequency Acoustic Propagation in Shallow, Energetic, Highly-Salt-Stratified Environments Andone C. Lavery Department

More information

Modal Mapping Techniques for Geoacoustic Inversion and Source Localization in Laterally Varying, Shallow-Water Environments

Modal Mapping Techniques for Geoacoustic Inversion and Source Localization in Laterally Varying, Shallow-Water Environments Modal Mapping Techniques for Geoacoustic Inversion and Source Localization in Laterally Varying, Shallow-Water Environments George V. Frisk Department of Ocean Engineering Florida Atlantic University SeaTech

More information

Reverberation, Sediment Acoustics, and Targets-in-the-Environment

Reverberation, Sediment Acoustics, and Targets-in-the-Environment DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Reverberation, Sediment Acoustics, and Targets-in-the-Environment Kevin L. Williams Applied Physics Laboratory College

More information

CLASSIFYING CONTINUOUS ACTIVE SONAR ECHOES FOR TARGET RECOGNITION

CLASSIFYING CONTINUOUS ACTIVE SONAR ECHOES FOR TARGET RECOGNITION CLASSIFYING CONTINUOUS ACTIVE SONAR ECHOES FOR TARGET RECOGNITION Stefan M. Murphy a, Paul C. Hines b, Kevin Dunphy c a Defence Research & Development Canada, Dartmouth, NS, Canada b Dept. of Electrical

More information

27/11/2013' OCEANOGRAPHIC APPLICATIONS. Acoustic Current Meters

27/11/2013' OCEANOGRAPHIC APPLICATIONS. Acoustic Current Meters egm502 seafloor mapping lecture 17 water column applications OCEANOGRAPHIC APPLICATIONS Acoustic Current Meters An acoustic current meter is a set of transducers fixed in a frame. Acoustic current meters

More information

ACMAC s PrePrint Repository

ACMAC s PrePrint Repository ACMAC s PrePrint Repository Monitoring the sea environment using acoustics the role of the acoustical observatories Michael Taroudakis Original Citation: Taroudakis, Michael (2013) Monitoring the sea environment

More information

Direct Imaging of Group Velocity Dispersion Curves in Shallow Water Christopher Liner*, University of Houston; Lee Bell and Richard Verm, Geokinetics

Direct Imaging of Group Velocity Dispersion Curves in Shallow Water Christopher Liner*, University of Houston; Lee Bell and Richard Verm, Geokinetics Direct Imaging of Group Velocity Dispersion Curves in Shallow Water Christopher Liner*, University of Houston; Lee Bell and Richard Verm, Geokinetics Summary Geometric dispersion is commonly observed in

More information

Bioacoustic Absorption Spectroscopy: Bio-alpha Measurements off the West Coast

Bioacoustic Absorption Spectroscopy: Bio-alpha Measurements off the West Coast DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Bioacoustic Absorption Spectroscopy: Bio-alpha Measurements off the West Coast Orest Diachok Johns Hopkins University Applied

More information