Chih-Hsuan Chen CHTTL 2016/11/04

Size: px
Start display at page:

Download "Chih-Hsuan Chen CHTTL 2016/11/04"

Transcription

1 Chih-Hsuan Chen CHTTL 2016/11/04 1/27

2 Background Rel-13 FD-MIMO Rel-14 efd-mimo NR MIMO 2/27

3 Spectrum extension Current Capacity Network Densification Spectrum efficiency 3/27

4 R8/R9 R10 R13 R14 2x2 MIMO 4x2/4x4 MIMO 8x8 MIMO CRS->DMRS/CSI-RS FD-MIMO up to 16 antenna port efd-mimo up to 32 antenna port Current status of most FDD operators Adopted by TDD operators (e.g. CMCC) RS becomes UE-specific Two Categories: nonprecoded and beamformed Overhead reduction, Hybrid CSI-RS, Advanced CSI, DMRSbased OL MIMO NR MIMO 4/27

5 Base station equipped with Active Antenna System (AAS) and able to exploit the full 3D channels Conventional BS can only do beamforming in one direction (horizontal) 3D beamforming Vertical sectorization Higher order MUMIMO Improve indoor coverage in urban scenario Increase cell-edge and average cell capacity Improve cell capacity 5/27

6 Rel-13 FD-MIMO specification primary includes the following parts: Non-precoded CSI-RS Increase CSI-RS port to 12 and 16 Beamformed CSI-RS CSI reporting enhancement To support non-precoded and beamformed CSI-RS DL DM-RS enhancement Additional DM-RS port to support higher order MU- MIMO SRS enhancement Increase SRS measurement resources 6/27

7 This category comprises schemes where different CSI-RS ports have the same wide beam width and direction and hence generally cell wide coverage. CSI-RS port number extends to 12- and 16-port Total number of antenna ports Number of antenna ports per CSI-RS configuration Number of CSI-RS configurations CSI-RS: 16 CSI-RS: Ref: TR , TS /27

8 Class A CSI reporting (non-precoded CSI-RS) PMI reporting is also two stage: W=W 1 W 2 12/16-port codebook: There are 5 parameters require RRC config. (N 1,N 2 ):dimension of two different directions (O 1,O 2 ):sampling factor for (N 1,N 2 ) Config={1,2,3,4}: codebook subset for beam selection and co-phasing (N1,N2) (O1,O2) combinations (8,1) (4,-), (8,-) (2,2) (4,4), (8,8) (2,3) {(8,4), (8,8)} (3,2) {(8,4), (4,4)} (2,4) {(8,4), (8,8)} (4,2) {(8,4), (4,4)} 8-port codebook Rank-1 codebook config. Ref: 3GPP R /27

9 This category comprises schemes where CSI-RS ports have narrow beam widths and hence not cell wide coverage, and at least some CSI-RS portresource combinations have different beam directions. CSI-RS port number per beam 8 CRI (CSI-RS Resource Indicator) + CSI feedback (PMI, RI, CQI) Ref: TR /27

10 Class B CSI reporting (beamformed CSI-RS) BS can configure K beams for UE K=1~8 CSI-RS port number for each beam=1,2,4,8 UE report CRI (CSI-RS Resource Indicator) to indicate the preferred beam CRI is wideband RI/CQI/PMI based on legacy codebook (i.e. Rel-12) CRI reporting period is integer multiple of RI Report CRI=2 RI/CQI/PMI is measured on CSI-RS 2 10/27

11 DL DM-RS enhancement Support additional DM-RS port for higher order MU-MIMO Support at most 8 layers MU-MIMO in Rel DM-RS REs with OCC = 4 for up to total 4 layers per scrambling sequence 1 bit is add to DCI format 2C and 2D SRS enhancement Improve SRS capacity Two mechanisms: Increasing the number of UpPTS SC-FDMA symbols utilized for SRS transmission Additional number of UpPTS symbol can be {2,4} Increase the number of SRS combs to 4 and increase cyclic shift from 8 to 12 Ref: TS /27

12 Timeline: ~ (RAN1#84b~#88) Aims to deal with the following aspects not addressed in Rel-13 FD-MIMO: At most 16 antenna ports CSI reports enhancements to enable efficient MU spatial multiplexing No support for higher robustness against CSI impairments (e.g. high mobility) and higher CSI accuracy Ref: RP /27

13 Reference signal related enhancements Support {20,24,28,32} CSI-RS ports Improve efficiency for UE-specific beamformed CSI-RS CSI-RS overhead reduction Increase the number of UL orthogonal DMRS ports CSI reporting enhancements Codebook for newly supported CSI-RS ports Hybrid CSI-RS and its CSI reporting Advanced CSI DM-RS based open-loop transmission 13/27

14 Support {20,24,28,32} CSI-RS ports Total number of antenna ports Illustration of CSI-RS ports: Number of antenna ports per CSI-RS configuration Number of CSI-RS configurations CSI-RS: 32 CSI-RS: Cause quite large overhead when CSI-RS is present (11.9% and 19%, respectively) 14/27

15 The CSI-RS overhead reduction is supported by comb-like transmission in frequency domain For CSI-RS ports > 16 Supported density: 1, ½, 1 3 RE/RB/port Each CSI-RS configuration can have different comb offset 32-port, Density=1 32-port, Density= port, Density=0.5, different comb offset 15/27

16 20/24/28/32-port codebook: There are 5 parameters require RRC config. (same as Rel-13) Number of CSI-RS ports (N 1,N 2 ):dimension of two different directions (O 1,O 2 ):sampling factor for (N 1,N 2 ) Config={1,2,3,4}: codebook subset for beam selection and cophasing The need to enhance Config. is to be discussed Rel-14 (N 1,N 2 ) (O 1,O 2 ) 20 (2,5) (8,4) (5,2) (4,4) (10,1) (4,-) 24 (2,6) (8,4) (3,4) (8,4) (4,3) (4,4) (6,2) (4,4) (12,1) (4,-) 28 (2,7) (8,4) (7,2) (4,4) (14,1) (4,-) 32 (2,8) (8,4) (4,4) (8,4) (8,2) (4,4) (16,1) (4,-) Number of CSI-RS ports Rel-13 (N 1,N 2 ) (O 1,O 2 ) 12 (2,3) (8,4), (8,8) (3,2) (8,4), (4,4) 16 (2,4) (8,4), (8,8) (4,2) (8,4), (4,4) (8,1) (4,-), (8,-) 16/27

17 To improve the efficiency of UE-specific BF CSI-RS Especially when the number of served UE is large Two schemes to reduce the BF CSI-RS overhead: Aperiodic CSI-RS: aperiodic NZP CSI-RS resource is supported (one-shot) Multi-shot CSI-RS: UE receives activation/release trigger containing a choice from multiple higher-layerconfigured NZP CSI-RS resources for a given CSI process 17/27

18 Multi-shot CSI-RS RRC configuration Activation/Release CSI request and reporting Configure a UE with K={1,2,,8} CSI-RS resource by RRC Activate N out of K CSI-RS resources per CSI process by MAC CE. Once activated, a CSI-RS resource remains active until released Aperiodic CSI-RS N=1, CQI/PMI/RI is reported N>1, CRI is reported along with CQI/PMI/RI One out of N CSI-RS resource is selected via UL-related DCI 18/27

19 Class B CSI-RS overhead reduction is similar to Class A Comb-like transmission in frequency domain For both periodic and aperiodic CSI-RS Supported density: 1, ½ RE/RB/port FFS: other density values 19/27

20 Main motivation: Reduce CSI-RS overhead and CSI feedback The need for enabling UE-specific BF CSI-RS when sufficiently accurate CSI is not available at the enb Currently only Mechanism 1 is supported: 1 st emimo-type: Class A, 2 nd emimo-type: Class B K=1 Realized by a single CSI process For 1 st emimo-type: Report i1 and 1-bit RI(if UE supports 8 layer, RI={1,3}) For 2 nd emimo-type: Report CQI, PMI,, RI No inter-dependence between CSI calculations across two emimo-types FFS: CSI reporting details 20/27

21 Motivation: Finer CSI feedback to better reach the full potential of larger antenna arrays. Current progress: For advanced CSI feedback, at least one of the following types of beam group is supported Type 1: Class A based W1 (non-orthogonal) Type 2: Unrestricted orthogonal W1 Type 3: Orthogonal beams with restricted beam pattern For advanced CSI feedback, RAN1 will specify only rank-1 and rank-2 codebooks FFS: rank /27

22 Motivation: Current DMRS-based MIMO only has CL-MIMO mode, which will suffer severe performance loss at high mobility Semi-open-loop MIMO RB-level precoding + RE-level PDSCH processing RE-level PDSCH processing is based on DMRS port 7/8 Rank-1: Tx diversity Rank-2: co-phasing cycling RB-level precoding Detailed scheme to be determined FFS: rank 3/4 Fixed beam selection/precoder cycling 22/27

23 Currently, NR MIMO is still in study item phase. Many aspects are be studied including the followings: Beamforming implementations Analog/Digital/Hybrid beamforming Single/multi-beam approach Initial access/rrm/control channel CSI reporting schemes Implicit/explicit/reciprocity-based CSI feedback CSI acquisition and RS design Non-UE-specific/UE-specific RS, periodic/aperiodic RS Multi-antenna transmission schemes CL/OL-MIMO, Single/Multi-point, SU/MU MIMO, Tx Diversity CSI timing relationship RS indication/rs Tx/CSI feedback trigger/csi reporting 23/27

24 Multi-beam based approaches Multiple beams are used for covering a DL coverage area and/or UL coverage distance of a TRP/a UE Example of multi-beam based approaches: beam sweeping Def: operation of covering a spatial area, with beams transmitted and/or received during a time interval in a predetermined way Single-beam based approaches Ref: R The single beam can be used for covering a DL coverage area and/or UL coverage distance of a TRP/a UE, similarly as for LTE cell-specific channels/rs Beam sweeping 24/27

25 Beam management has the following procedures P-1: is used to enable UE measurement on different TRP Tx beams to support selection of TRP Tx beams/ue Rx beam(s) P-2: is used to enable UE measurement on different TRP Tx beams to possibly change inter/intra-trp Tx beam(s) P-3: is used to enable UE measurement on the same TRP Tx beam to change UE Rx beam in the case UE uses beamforming 25/27

26 How to determine Tx/Rx beam Initial access/connected/mobility Joint/separate/Multi-stage Channel reciprocity assumptions Reduce overhead/latency UE movement/rotation/blockage Possible UE/TRP beam change Data/control channel beams Same or different beamwidth/direction Multi-beam multi-point operation Interference management 26/27

27 本簡報內容受著作權法保護, 且為中華電信研究院之營業秘 密, 非經本所或其他相關權利人之事前書面同意, 任何人不 得以包括重製 轉載 傳輸或其他任何形式做非法應用 27/27

Chih-Hsuan Chen CHTTL 2017/05/05

Chih-Hsuan Chen CHTTL 2017/05/05 Chih-Hsuan Chen CHTTL 2017/05/05 1/26 3GPP NR timeline NR overview NR MIMO 2/26 In March, NR phase-1 WI is approved: NSA to be completed by Dec., 2017 SA to be completed by June, 2018 All L1 and L2 to

More information

NR Physical Layer Design: NR MIMO

NR Physical Layer Design: NR MIMO NR Physical Layer Design: NR MIMO Younsun Kim 3GPP TSG RAN WG1 Vice-Chairman (Samsung) 3GPP 2018 1 Considerations for NR-MIMO Specification Design NR-MIMO Specification Features 3GPP 2018 2 Key Features

More information

Test strategy towards Massive MIMO

Test strategy towards Massive MIMO Test strategy towards Massive MIMO Using LTE-Advanced Pro efd-mimo Shatrughan Singh, Technical Leader Subramaniam H, Senior Technical Leader Jaison John Puliyathu Mathew, Senior Engg. Project Manager Abstract

More information

Massive MIMO a overview. Chandrasekaran CEWiT

Massive MIMO a overview. Chandrasekaran CEWiT Massive MIMO a overview Chandrasekaran CEWiT Outline Introduction Ways to Achieve higher spectral efficiency Massive MIMO basics Challenges and expectations from Massive MIMO Network MIMO features Summary

More information

3GPP TR V ( )

3GPP TR V ( ) TR 36.871 V11.0.0 (2011-12) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Downlink Multiple

More information

An LTE compatible massive MIMO testbed based on OpenAirInterface. Xiwen JIANG, Florian Kaltenberger EURECOM

An LTE compatible massive MIMO testbed based on OpenAirInterface. Xiwen JIANG, Florian Kaltenberger EURECOM An LTE compatible massive MIMO testbed based on OpenAirInterface Xiwen JIANG, Florian Kaltenberger EURECOM Testbed Overview Open source platform Based on OAI hardware and software 3GPP LTE compatible Incorporate

More information

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better 5G New Radio Design Expanding the human possibilities of technology to make our lives better Fall VTC-2017, Panel September 25 th, 2017 Dr. Amitabha Ghosh Head of Small Cell Research, Nokia Fellow, IEEE

More information

MU-MIMO in LTE/LTE-A Performance Analysis. Rizwan GHAFFAR, Biljana BADIC

MU-MIMO in LTE/LTE-A Performance Analysis. Rizwan GHAFFAR, Biljana BADIC MU-MIMO in LTE/LTE-A Performance Analysis Rizwan GHAFFAR, Biljana BADIC Outline 1 Introduction to Multi-user MIMO Multi-user MIMO in LTE and LTE-A 3 Transceiver Structures for Multi-user MIMO Rizwan GHAFFAR

More information

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany 3G/4G Mobile Communications Systems Dr. Stefan Brück Qualcomm Corporate R&D Center Germany Chapter VI: Physical Layer of LTE 2 Slide 2 Physical Layer of LTE OFDM and SC-FDMA Basics DL/UL Resource Grid

More information

LTE-Advanced research in 3GPP

LTE-Advanced research in 3GPP LTE-Advanced research in 3GPP GIGA seminar 8 4.12.28 Tommi Koivisto tommi.koivisto@nokia.com Outline Background and LTE-Advanced schedule LTE-Advanced requirements set by 3GPP Technologies under investigation

More information

DOWNLINK AIR-INTERFACE...

DOWNLINK AIR-INTERFACE... 1 ABBREVIATIONS... 10 2 FUNDAMENTALS... 14 2.1 INTRODUCTION... 15 2.2 ARCHITECTURE... 16 2.3 INTERFACES... 18 2.4 CHANNEL BANDWIDTHS... 21 2.5 FREQUENCY AND TIME DIVISION DUPLEXING... 22 2.6 OPERATING

More information

5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc.

5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc. 5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc. Yinan Qi Samsung Electronics R&D Institute UK, Staines, Middlesex TW18 4QE,

More information

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN Evolved UTRA and UTRAN Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA Evolved UTRA (E-UTRA) and UTRAN represent long-term evolution (LTE) of technology to maintain continuous

More information

Interference management Within 3GPP LTE advanced

Interference management Within 3GPP LTE advanced Interference management Within 3GPP LTE advanced Konstantinos Dimou, PhD Senior Research Engineer, Wireless Access Networks, Ericsson research konstantinos.dimou@ericsson.com 2013-02-20 Outline Introduction

More information

LTE-Advanced and Release 10

LTE-Advanced and Release 10 LTE-Advanced and Release 10 1. Carrier Aggregation 2. Enhanced Downlink MIMO 3. Enhanced Uplink MIMO 4. Relays 5. Release 11 and Beyond Release 10 enhances the capabilities of LTE, to make the technology

More information

Carrier Aggregation and MU-MIMO: outcomes from SAMURAI project

Carrier Aggregation and MU-MIMO: outcomes from SAMURAI project Carrier Aggregation and MU-MIMO: outcomes from SAMURAI project Presented by Florian Kaltenberger Swisscom workshop 29.5.2012 Eurecom, Sophia-Antipolis, France Outline Motivation The SAMURAI project Overview

More information

Beamforming for 4.9G/5G Networks

Beamforming for 4.9G/5G Networks Beamforming for 4.9G/5G Networks Exploiting Massive MIMO and Active Antenna Technologies White Paper Contents 1. Executive summary 3 2. Introduction 3 3. Beamforming benefits below 6 GHz 5 4. Field performance

More information

Canadian Evaluation Group

Canadian Evaluation Group IEEE L802.16-10/0061 Canadian Evaluation Group Raouia Nasri, Shiguang Guo, Ven Sampath Canadian Evaluation Group (CEG) www.imt-advanced.ca Overview What the CEG evaluated Compliance tables Services Spectrum

More information

Massive MIMO for the New Radio Overview and Performance

Massive MIMO for the New Radio Overview and Performance Massive MIMO for the New Radio Overview and Performance Dr. Amitabha Ghosh Nokia Bell Labs IEEE 5G Summit June 5 th, 2017 What is Massive MIMO ANTENNA ARRAYS large number (>>8) of controllable antennas

More information

Radio Interface and Radio Access Techniques for LTE-Advanced

Radio Interface and Radio Access Techniques for LTE-Advanced TTA IMT-Advanced Workshop Radio Interface and Radio Access Techniques for LTE-Advanced Motohiro Tanno Radio Access Network Development Department NTT DoCoMo, Inc. June 11, 2008 Targets for for IMT-Advanced

More information

Utilization of Channel Reciprocity in Advanced MIMO System

Utilization of Channel Reciprocity in Advanced MIMO System Utilization of Channel Reciprocity in Advanced MIMO System Qiubin Gao, Fei Qin, Shaohui Sun System and Standard Deptartment Datang Mobile Communications Equipment Co., Ltd. Beijing, China gaoqiubin@datangmobile.cn

More information

Inter-cell Interference Coordination Schemes via Homo/Hetero-geneous Network Deployment for LTE-Advanced

Inter-cell Interference Coordination Schemes via Homo/Hetero-geneous Network Deployment for LTE-Advanced Inter-cell Interference Coordination Schemes via Homo/Hetero-geneous Network Deployment for LTE-Advanced Daichi IMAMURA Atsushi SUMASU Masayuki HOSHINO Katsuhiko HIRAMATSU April 27, 2010 Tohoku-Univ. GCOE

More information

5G NR Update and UE Validation

5G NR Update and UE Validation 5G NR Update and UE Validation Sr. Project Manager/ Keysight JianHua Wu 3GPP Status Update 2 5G Scenarios and Use Cases B R O A D R A N G E O F N E W S E R V I C E S A N D PA R A D I G M S Amazingly fast

More information

Radio Performance of 4G-LTE Terminal. Daiwei Zhou

Radio Performance of 4G-LTE Terminal. Daiwei Zhou Radio Performance of 4G-LTE Terminal Daiwei Zhou Course Objectives: Throughout the course the trainee should be able to: 1. get a clear overview of the system architecture of LTE; 2. have a logical understanding

More information

DOWNLINK ADAPTIVE CLOSED LOOP MIMO RESEARCH FOR 2 ANTENNAS IN TD-LTE SYSTEM

DOWNLINK ADAPTIVE CLOSED LOOP MIMO RESEARCH FOR 2 ANTENNAS IN TD-LTE SYSTEM DOWNLINK ADAPTIVE CLOSED LOOP MIMO RESEARCH FOR 2 ANTENNAS IN TD-LTE SYSTEM 1 XIAOTAO XU, 2 WENBING JIN 1 Asstt Prof., Department of Mechanical and Electrical Engineering, Hangzhou, China 2 Assoc. Prof.,

More information

Improving MU-MIMO Performance in LTE-(Advanced) by Efficiently Exploiting Feedback Resources and through Dynamic Scheduling

Improving MU-MIMO Performance in LTE-(Advanced) by Efficiently Exploiting Feedback Resources and through Dynamic Scheduling Improving MU-MIMO Performance in LTE-(Advanced) by Efficiently Exploiting Feedback Resources and through Dynamic Scheduling Ankit Bhamri, Florian Kaltenberger, Raymond Knopp, Jyri Hämäläinen Eurecom, France

More information

Keysight Technologies LTE-Advanced Signal Generation and Measurement Using SystemVue. Application Note

Keysight Technologies LTE-Advanced Signal Generation and Measurement Using SystemVue. Application Note Keysight Technologies LTE-Advanced Signal Generation and Measurement Using SystemVue Application Note Introduction LTE-Advanced is specified as part of Release of the 3GPP specifications and is now approved

More information

TEPZZ A T EP A2 (19) (11) EP A2. (12) EUROPEAN PATENT APPLICATION published in accordance with Art.

TEPZZ A T EP A2 (19) (11) EP A2. (12) EUROPEAN PATENT APPLICATION published in accordance with Art. (19) TEPZZ 69648A T (11) EP 2 696 48 A2 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 13(4) EPC (43) Date of publication: 12.02.14 Bulletin 14/07 (21) Application number: 12768639.2

More information

PHY/MAC design concepts of 5G Version 1.0

PHY/MAC design concepts of 5G Version 1.0 PHY/MAC design concepts of 5G 1 2018 Version 1.0 Outline Introduction Background (standardization process, requirements/levers, LTE vs 5G) Part I: 5G PHY/MAC Enablers Physical channels, physical reference

More information

Proposal for Uplink MIMO Schemes in IEEE m

Proposal for Uplink MIMO Schemes in IEEE m Proposal for Uplink MIMO Schemes in IEEE 802.16m Document Number: IEEE C802.16m-08/615 Date Submitted: 2008-07-07 Source: Jun Yuan, Hosein Nikopourdeilami, Mo-Han Fong, Robert Novak, Dongsheng Yu, Sophie

More information

TEPZZ A T EP A2 (19) (11) EP A2. (12) EUROPEAN PATENT APPLICATION published in accordance with Art.

TEPZZ A T EP A2 (19) (11) EP A2. (12) EUROPEAN PATENT APPLICATION published in accordance with Art. (19) TEPZZ 597799A T (11) EP 2 597 799 A2 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: 29.05.2013 Bulletin 2013/22 (21) Application number: 11809845.8

More information

3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li

3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li 3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li Mar. 4, 2016 1 Agenda Status Overview of RAN1 Working/Study Items Narrowband Internet of Things (NB-IoT) (Rel-13)

More information

3GPP TS V ( )

3GPP TS V ( ) TS 36.216 V10.3.1 (2011-09) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical

More information

Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G

Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G ICTC 2015 Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G Juho Lee Samsung Electronics Presentation Outline LTE/LTE-Advanced evolution: an overview LTE-Advanced in Rel-13 Expectation for LTE-Advanced

More information

GTI Proof of Concept of 5G System White Paper

GTI Proof of Concept of 5G System White Paper GTI Proof of Concept of 5G System White Paper http://www.gtigroup.org Page 0 White Paper of Proof of Concept of 5G System V 1.0 Version V1.0 Deliverable Type Confidential Level Program Name Working Group

More information

Part I Evolution. ZTE All rights reserved

Part I Evolution. ZTE All rights reserved Part I Evolution 2 ZTE All rights reserved 4G Standard Evolution, LTE-A in 3GPP LTE(R8/R9) DL: 100Mbps, UL: 50Mbps MIMO, BF,LCS, embms LTE-A (R10/R11) DL: 1Gbps, UL: 500Mbps CA, Relay, Het-Net CoMP, emimo

More information

Capacity Enhancement Techniques for LTE-Advanced

Capacity Enhancement Techniques for LTE-Advanced Capacity Enhancement Techniques for LTE-Advanced LG 전자 윤영우연구위원 yw.yun@lge.com 1/28 3GPP specification releases 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 GSM/GPRS/EDGE enhancements

More information

TECHTRAINED. Foundations Explained. Learn Technology in 10 minutes. Contact:

TECHTRAINED. Foundations Explained. Learn Technology in 10 minutes. Contact: TT 1608: LTE Air Interface Foundations Explained Contact: hello@techtrained.com 469-619-7419 918-908-0336 Course Overview: If you are trying to learn LTE and don t know where to start. You or your technical

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

Ten Things You Should Know About MIMO

Ten Things You Should Know About MIMO Ten Things You Should Know About MIMO 4G World 2009 presented by: David L. Barner www/agilent.com/find/4gworld Copyright 2009 Agilent Technologies, Inc. The Full Agenda Intro System Operation 1: Cellular

More information

Performance Studies on LTE Advanced in the Easy-C Project Andreas Weber, Alcatel Lucent Bell Labs

Performance Studies on LTE Advanced in the Easy-C Project Andreas Weber, Alcatel Lucent Bell Labs Performance Studies on LTE Advanced in the Easy-C Project 19.06.2008 Andreas Weber, Alcatel Lucent Bell Labs All Rights Reserved Alcatel-Lucent 2007 Agenda 1. Introduction 2. EASY C 3. LTE System Simulator

More information

MU-MIMO with Fixed Beamforming for

MU-MIMO with Fixed Beamforming for MU-MIMO with Fixed Beamforming for FDD Systems Manfred Litzenburger, Thorsten Wild, Michael Ohm Alcatel-Lucent R&I Stuttgart, Germany MU-MIMO - Motivation MU-MIMO Supporting multiple users in a cell on

More information

A Novel 3D Beamforming Scheme for LTE-Advanced System

A Novel 3D Beamforming Scheme for LTE-Advanced System A Novel 3D Beamforming Scheme for LTE-Advanced System Yu-Shin Cheng 1, Chih-Hsuan Chen 2 Wireless Communications Lab, Chunghwa Telecom Co, Ltd No 99, Dianyan Rd, Yangmei City, Taoyuan County 32601, Taiwan

More information

3GPP TS V8.0.0 ( )

3GPP TS V8.0.0 ( ) TS 36.213 V8.0.0 (2007-09) Technical Specification 3 rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical

More information

5G New Radio (NR) : Physical Layer Overview and Performance

5G New Radio (NR) : Physical Layer Overview and Performance 5G New Radio (NR) : Physical Layer Overview and Performance IEEE Communication Theory Workshop - 2018 Amitabha Ghosh Nokia Fellow and Head, Radio Interface Group Nokia Bell Labs May 15 th, 2018 1 5G New

More information

Planning of LTE Radio Networks in WinProp

Planning of LTE Radio Networks in WinProp Planning of LTE Radio Networks in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0

More information

MIMO-OFDM for LTE 최수용. 연세대학교전기전자공학과

MIMO-OFDM for LTE 최수용.   연세대학교전기전자공학과 MIMO-OFDM for LTE 최수용 csyong@yonsei.ac.kr http://web.yonsei.ac.kr/sychoi/ 연세대학교전기전자공학과 LTE 시스템의특징 : Architecture LTE(Long Term Evolution) (=E-UTRAN) SAE(System Architecture Evolution) (=EPC) EPS(Evolved

More information

Evolution of 3GPP LTE-Advanced Standard toward 5G

Evolution of 3GPP LTE-Advanced Standard toward 5G Evolution of 3GPP LTE-Advanced Standard toward 5G KRNet 2013. 6. 24. LG Electronics Byoung-Hoon Kim (bh.kim@lge.com) Communication Standards Evolution Mobility We are here IMT-Advanced Standard High (~350Km/h)

More information

3G Evolution HSPA and LTE for Mobile Broadband Part II

3G Evolution HSPA and LTE for Mobile Broadband Part II 3G Evolution HSPA and LTE for Mobile Broadband Part II Dr Stefan Parkvall Principal Researcher Ericsson Research stefan.parkvall@ericsson.com Outline Series of three seminars I. Basic principles Channel

More information

WINNER+ IMT-Advanced Evaluation Group

WINNER+ IMT-Advanced Evaluation Group IEEE L802.16-10/0064 WINNER+ IMT-Advanced Evaluation Group Werner Mohr, Nokia-Siemens Networks Coordinator of WINNER+ project on behalf of WINNER+ http://projects.celtic-initiative.org/winner+/winner+

More information

LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany;

LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany; Proceedings of SDR'11-WInnComm-Europe, 22-24 Jun 2011 LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany; meik.kottkamp@rohde-schwarz.com) ABSTRACT From 2009 onwards

More information

3D Beamforming for Capacity Boosting in LTE-Advanced System

3D Beamforming for Capacity Boosting in LTE-Advanced System 3D Beamforming for Capacity Boosting in LTE-Advanced System Hyoungju Ji, Byungju Lee and Byonghyo Shim Seoul National University, Seoul, Korea Email: {hyoungjuji, bjlee}@islabsnuackr, bshim@snuackr Young-Han

More information

LTE Channel State Information (CSI)

LTE Channel State Information (CSI) LTE Channel State Information (CSI) Presented by: Sandy Fraser, Agilent Technologies Agenda Channel State Information (CSI) different forms and definitions Channel Quality Information, Pre-Coding Matrix

More information

Multiple-Antenna Techniques in LTE-Advanced

Multiple-Antenna Techniques in LTE-Advanced TOPICS IN RADIO COMMUNICATIONS Multiple-Antenna Techniques in LTE-Advanced Federico Boccardi, Bell Labs, Alcatel-Lucent Bruno Clerckx, Imperial College London Arunabha Ghosh, AT&T Labs Eric Hardouin, Orange

More information

Recent Trend of Multiuser MIMO in LTE-Advanced

Recent Trend of Multiuser MIMO in LTE-Advanced TOPICS IN RADIO COMMUNICATIONS Recent Trend of Multiuser MIMO in LTE-Advanced Chaiman Lim, Korea University Taesang Yoo, Qualcomm Incorporated Bruno Clerckx, Imperial College, London Byungju Lee and Byonghyo

More information

Enhancing Energy Efficiency in LTE with Antenna Muting

Enhancing Energy Efficiency in LTE with Antenna Muting Enhancing Energy Efficiency in LTE with Antenna Muting Per Skillermark and Pål Frenger Ericsson AB, Ericsson Research, Sweden {per.skillermark, pal.frenger}@ericsson.com Abstract The concept of antenna

More information

TS 5G.201 v1.0 (2016-1)

TS 5G.201 v1.0 (2016-1) Technical Specification KT PyeongChang 5G Special Interest Group (); KT 5th Generation Radio Access; Physical Layer; General description (Release 1) Ericsson, Intel Corp., Nokia, Qualcomm Technologies

More information

ARIB STD-T V

ARIB STD-T V ARIB STD-T104-36.307 V11.17.0 Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements on User Equipments (UEs) supporting a release-independent frequency band (Release 11) Refer to Industrial

More information

Scalable SCMA Jianglei Ma Sept. 24., 2017

Scalable SCMA Jianglei Ma Sept. 24., 2017 Scalable SCMA Jianglei Ma Sept. 24., 2017 Page 1 5G-NR Air-Interface embb SoftAI: Programmable Air-Interface Adaptive numerology Adaptive transmission duration Adaptive multiple access scheme Adaptive

More information

American Journal of Engineering Research (AJER) 2015

American Journal of Engineering Research (AJER) 2015 American Journal of Engineering Research (AJER) 215 Research Paper American Journal of Engineering Research (AJER) e-issn : 232-847 p-issn : 232-936 Volume-4, Issue-1, pp-175-18 www.ajer.org Open Access

More information

3GPP 5G 無線インターフェース検討状況

3GPP 5G 無線インターフェース検討状況 3GPP 5G 無線インターフェース検討状況 エリクソン ジャパン ( 株 ) ノキアソリューションズ & ネットワークス ( 株 ) 2017 年 12 月 22 日 1 Disclaimers This presentation is based on the draft 3GPP specifications to be approved in RAN#78 meeting in Dec/2017.

More information

Coordinated Joint Transmission in WWAN

Coordinated Joint Transmission in WWAN Coordinated Joint Transmission in WWAN Sreekanth Annapureddy, Alan Barbieri, Stefan Geirhofer, Sid Mallik and Alex Gorokhov May 2 Qualcomm Proprietary Multi-cell system model Think of entire deployment

More information

System-Level Performance of Downlink Non-orthogonal Multiple Access (NOMA) Under Various Environments

System-Level Performance of Downlink Non-orthogonal Multiple Access (NOMA) Under Various Environments System-Level Permance of Downlink n-orthogonal Multiple Access (N) Under Various Environments Yuya Saito, Anass Benjebbour, Yoshihisa Kishiyama, and Takehiro Nakamura 5G Radio Access Network Research Group,

More information

3GPP TS V ( )

3GPP TS V ( ) TS 36.521-1 V11.4.0 (2014-03) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) conformance

More information

3GPP TS V ( )

3GPP TS V ( ) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) conformance specification Radio transmission

More information

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved.

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved. LTE TDD What to Test and Why 2012 LitePoint Corp. 2012 LitePoint, A Teradyne Company. All rights reserved. Agenda LTE Overview LTE Measurements Testing LTE TDD Where to Begin? Building a LTE TDD Verification

More information

<Technical Report> Number of pages: 20. XGP Forum Document TWG TR

<Technical Report> Number of pages: 20. XGP Forum Document TWG TR XGP Forum Document TWG-009-01-TR Title: Conformance test for XGP Global Mode Version: 01 Date: September 2, 2013 XGP Forum Classification: Unrestricted List of contents: Chapter 1 Introduction

More information

ETSI TS V ( )

ETSI TS V ( ) TS 136 216 V14.0.0 (2017-04) TECHNICAL SPECIFICATION Universal Mobile Telecommunications System (UMTS); LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer for relaying operation (3GPP

More information

3GPP Long Term Evolution LTE

3GPP Long Term Evolution LTE Chapter 27 3GPP Long Term Evolution LTE Slides for Wireless Communications Edfors, Molisch, Tufvesson 630 Goals of IMT-Advanced Category 1 2 3 4 5 peak data rate DL / Mbit/s 10 50 100 150 300 max DL modulation

More information

Introducing LTE-Advanced

Introducing LTE-Advanced Introducing LTE-Advanced Application Note LTE-Advanced (LTE-A) is the project name of the evolved version of LTE that is being developed by 3GPP. LTE-A will meet or exceed the requirements of the International

More information

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 10 - LTE (4G) -Technologies used in 4G and 5G The Need for LTE Long Term Evolution (LTE) With the growth of mobile data and mobile users, it becomes essential

More information

Analysis of RF requirements for Active Antenna System

Analysis of RF requirements for Active Antenna System 212 7th International ICST Conference on Communications and Networking in China (CHINACOM) Analysis of RF requirements for Active Antenna System Rong Zhou Department of Wireless Research Huawei Technology

More information

NR Radio Access Network 2019 Training Programs. Catalog of Course Descriptions

NR Radio Access Network 2019 Training Programs. Catalog of Course Descriptions NR Radio Access Network 2019 Training Programs Catalog of Course Descriptions Catalog of Course Descriptions INTRODUCTION...3 5G RAN CONCEPTS - WBL...3 5G RAN NR AIR INTERFACE...3 5G RAN NR N18 FUNCTIONALITY...3

More information

LTE Transmission Modes and Beamforming White Paper

LTE Transmission Modes and Beamforming White Paper LTE Transmission Modes and Beamforming White Paper Multiple input multiple output (MIMO) technology is an integral part of 3GPP E-UTRA long term evolution (LTE). As part of MIMO, beamforming is also used

More information

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies //08 K E Y N O T E S P E E C H Jeffrey Chen Jeffrey-cy_chen@keysight.com 08.0. Deputy General Manager / Keysight Technologies M O R E S P E E D, L E S S P O W E R, P E R F E C T A C C U R A C Y NETWORKS/CLOUD

More information

ETSI TS V ( )

ETSI TS V ( ) TS 136 521-1 V11.4.0 (2014-03) Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) conformance specification; Radio transmission and reception; Part 1:

More information

Scheduler Algorithms for MU-MIMO

Scheduler Algorithms for MU-MIMO Scheduler Algorithms for MU-MIMO WISSAM MOUSTAFA AND RICHARD MUGISHA MASTER S THESIS DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY FACULTY OF ENGINEERING LTH LUND UNIVERSITY Scheduler Algorithms

More information

Addressing Future Wireless Demand

Addressing Future Wireless Demand Addressing Future Wireless Demand Dave Wolter Assistant Vice President Radio Technology and Strategy 1 Building Blocks of Capacity Core Network & Transport # Sectors/Sites Efficiency Spectrum 2 How Do

More information

ARIB STD-T V10.5.0

ARIB STD-T V10.5.0 ARIB STD-T63-36.521-2 V10.5.0 User Equipment (UE) conformance specification; Radio transmission and reception; Part 2: Implementation Conformance Statement (ICS) (Release 10) Refer to Industrial Property

More information

ETSI TS V8.7.0 ( ) Technical Specification

ETSI TS V8.7.0 ( ) Technical Specification TS 136 214 V8.7.0 (2009-10) Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer - Measurements (3GPP TS 36.214 version 8.7.0 Release 8) 1 TS 136 214 V8.7.0

More information

An Advanced Wireless System with MIMO Spatial Scheduling

An Advanced Wireless System with MIMO Spatial Scheduling An Advanced Wireless System with MIMO Spatial Scheduling Jan., 00 What is the key actor or G mobile? ) Coverage High requency band has small diraction & large propagation loss ) s transmit power Higher

More information

MIMO Systems and Applications

MIMO Systems and Applications MIMO Systems and Applications Mário Marques da Silva marques.silva@ieee.org 1 Outline Introduction System Characterization for MIMO types Space-Time Block Coding (open loop) Selective Transmit Diversity

More information

When technology meets spectrum: Bring 5G vision into Reality

When technology meets spectrum: Bring 5G vision into Reality When technology meets spectrum: Bring 5G vision into Reality 5G India 2018, 2 nd international conference (May 17-18, 2018) WU Yong www.huawei.com 5G Vision: Enabling a full connected world Enhance Mobile

More information

Potential Throughput Improvement of FD MIMO in Practical Systems

Potential Throughput Improvement of FD MIMO in Practical Systems 2014 UKSim-AMSS 8th European Modelling Symposium Potential Throughput Improvement of FD MIMO in Practical Systems Fangze Tu, Yuan Zhu, Hongwen Yang Mobile and Communications Group, Intel Corporation Beijing

More information

允許學生個人 非營利性的圖書館或公立學校合理使用本基金會網站所提供之各項試題及其解答 可直接下載而不須申請. 重版 系統地複製或大量重製這些資料的任何部分, 必須獲得財團法人臺北市九章數學教育基金會的授權許可 申請此項授權請電郵

允許學生個人 非營利性的圖書館或公立學校合理使用本基金會網站所提供之各項試題及其解答 可直接下載而不須申請. 重版 系統地複製或大量重製這些資料的任何部分, 必須獲得財團法人臺北市九章數學教育基金會的授權許可 申請此項授權請電郵 注意 : 允許學生個人 非營利性的圖書館或公立學校合理使用本基金會網站所提供之各項試題及其解答 可直接下載而不須申請 重版 系統地複製或大量重製這些資料的任何部分, 必須獲得財團法人臺北市九章數學教育基金會的授權許可 申請此項授權請電郵 ccmp@seed.net.tw Notice: Individual students, nonprofit libraries, or schools are

More information

mm Wave Communications J Klutto Milleth CEWiT

mm Wave Communications J Klutto Milleth CEWiT mm Wave Communications J Klutto Milleth CEWiT Technology Options for Future Identification of new spectrum LTE extendable up to 60 GHz mm Wave Communications Handling large bandwidths Full duplexing on

More information

Performance Evaluation of Limited Feedback Schemes for 3D Beamforming in LTE-Advanced System

Performance Evaluation of Limited Feedback Schemes for 3D Beamforming in LTE-Advanced System Performance Evaluation of Limited Feedback Scemes for 3D Beamforming in LTE-Advanced System Sang-Lim Ju, Young-Jae Kim, and Won-Ho Jeong Department of Radio and Communication Engineering Cungbuk National

More information

Precoding and Scheduling Techniques for Increasing Capacity of MIMO Channels

Precoding and Scheduling Techniques for Increasing Capacity of MIMO Channels Precoding and Scheduling Techniques for Increasing Capacity of Channels Precoding Scheduling Special Articles on Multi-dimensional Transmission Technology The Challenge to Create the Future Precoding and

More information

ETSI TS V ( )

ETSI TS V ( ) TS 136 307 V8.11.0 (2014-03) Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements on User Equipments (UEs) supporting a release-independent frequency band (3GPP

More information

5G - The multi antenna advantage. Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology

5G - The multi antenna advantage. Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology 5G - The multi antenna advantage Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology Content What is 5G? Background (theory) Standardization roadmap 5G trials & testbeds 5G product releases

More information

LTE systems: overview

LTE systems: overview LTE systems: overview Luca Reggiani LTE overview 1 Outline 1. Standard status 2. Signal structure 3. Signal generation 4. Physical layer procedures 5. System architecture 6. References LTE overview 2 Standard

More information

TS 5G.213 v1.9 (2016-9)

TS 5G.213 v1.9 (2016-9) Technical Specification KT PyeongChang 5G Special Interest Group (); KT 5th Generation Radio Access; Physical Layer; Physical layer procedures (Release 1) Ericsson, Intel Corp., Nokia, Qualcomm Technologies

More information

ARIB STD-T V Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Physical Layer - General Description (Release 8)

ARIB STD-T V Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Physical Layer - General Description (Release 8) ARIB STD-T63-36.201 V8.3.0 Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Physical Layer - General Description () Refer to Industrial Property Rights (IPR) in the preface of ARIB STD-T63 for

More information

允許學生個人 非營利性的圖書館或公立學校合理使用本基金會網站所提供之各項試題及其解答 可直接下載而不須申請. 重版 系統地複製或大量重製這些資料的任何部分, 必須獲得財團法人臺北市九章數學教育基金會的授權許可 申請此項授權請電郵

允許學生個人 非營利性的圖書館或公立學校合理使用本基金會網站所提供之各項試題及其解答 可直接下載而不須申請. 重版 系統地複製或大量重製這些資料的任何部分, 必須獲得財團法人臺北市九章數學教育基金會的授權許可 申請此項授權請電郵 注意 : 允許學生個人 非營利性的圖書館或公立學校合理使用本基金會網站所提供之各項試題及其解答 可直接下載而不須申請 重版 系統地複製或大量重製這些資料的任何部分, 必須獲得財團法人臺北市九章數學教育基金會的授權許可 申請此項授權請電郵 ccmp@seed.net.tw Notice: Individual students, nonprofit libraries, or schools are

More information

Impact of LTE Precoding for Fixed and Adaptive Rank Transmission in Moving Relay Node System

Impact of LTE Precoding for Fixed and Adaptive Rank Transmission in Moving Relay Node System Impact of LTE Precoding for Fixed and Adaptive Rank Transmission in Moving Relay Node System Ayotunde O. Laiyemo, Pekka Pirinen, and Matti Latva-aho Centre for Wireless Communications University of Oulu,

More information

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

References. What is UMTS? UMTS Architecture

References. What is UMTS? UMTS Architecture 1 References 2 Material Related to LTE comes from 3GPP LTE: System Overview, Product Development and Test Challenges, Agilent Technologies Application Note, 2008. IEEE Communications Magazine, February

More information

MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II

MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II BASICS & CHALLENGES Dr Konstantinos Dimou Senior Research Engineer Ericsson Research konstantinos.dimou@ericsson.com Overview Introduction Definition Vision

More information

ETSI TS V ( )

ETSI TS V ( ) TS 38 4 V5..0 (08-07) TECHNICAL SPECIFICATION 5G; NR; Physical layer procedures for data (3GPP TS 38.4 version 5..0 Release 5) TS 38 4 V5..0 (08-07) Reference DTS/TSGR-0384vf0 Keywords 5G 650 Route des

More information

Closed-loop MIMO performance with 8 Tx antennas

Closed-loop MIMO performance with 8 Tx antennas Closed-loop MIMO performance with 8 Tx antennas Document Number: IEEE C802.16m-08/623 Date Submitted: 2008-07-14 Source: Jerry Pi, Jay Tsai Voice: +1-972-761-7944, +1-972-761-7424 Samsung Telecommunications

More information