Slow Light Waveguide Optimization

Size: px
Start display at page:

Download "Slow Light Waveguide Optimization"

Transcription

1 Slow Light Waveguide Optimization Sebastian Dütsch, Corrado Fraschina, Patric Strasser, Roman Kappeler, Peter Kaspar, Heinz Jäckel Communication Photonics Group, Electronics Laboratory Patric Strasser, CPG, IfE, ETHZ 21. August 2008

2 Photonic Crystals (PhC) Periodic modulation of the refractive index Vertically guided by slab waveguide structure (InP n=3.17 / InGaAsP n=3.35 / InP n=3.17) Deeply etched holes in a triangular array (diameter ~250nm, depth >3μm) Devices Introducing defects into the lattice Omitting holes, shifting holes, changing hole size Waveguides, splitters, Future: Active devices (SOA) Area-size is the driver for success Requires slow-light 21 August 2008 Patric Strasser, CPG, IfE, ETHZ 2

3 Slow-Light Modes Dispersion W1 waveguide Along waveguide direction 21 August 2008 Patric Strasser, CPG, IfE, ETHZ 3

4 Slow-Light Modes (even) slowlight regimes Dispersion W1 waveguide slow-light Slow-Light Modes Stronger light-matter interaction Slow light smaller devices High propagation losses Difficult to couple in Along waveguide direction Slow down factors up to 300 measured [1] Simulations show: ν g 0 21 August 2008 Patric Strasser, CPG, IfE, ETHZ 4

5 Overview Part 1: Incoupling into slow light Optimization by the use of a genetic algorithm Reduction of the calculation time Part 2: Loss reduction of slow-light waveguides Wide waveguides Extension of the gap map concept to detect slow-light modes 21 August 2008 Patric Strasser, CPG, IfE, ETHZ 5

6 Incoupling into Slow-Light Modes Difficult due to Mode mismatch Group velocity (refractive index) mismatch Published solutions: Intuitive approaches (Tapers, butt-coupling) but PhC s are not very intuitive Can we do it better? genetic algorithm 21 August 2008 Patric Strasser, CPG, IfE, ETHZ 6

7 Simulation Ridge WG Interface W1 PML COMSOL (FEM) 2D No time evolution Scripting interface Simulation setup Automatic generation by scripts (No user interaction required) PML adaptation (Suppress reflections) Interface reflections (Area integration method) power flow (x-direc., time avg.) magnetic field (z-comp) 21 August 2008 Patric Strasser, CPG, IfE, ETHZ 7

8 Genetic Algorithm (GA) Fitness-function: Evaluates the quality of the solution Averaged transmission for 3 frequencies Breeder Algorithm init. population with random solutions (e.g., 50) start iteration: random selection of two recombination by crossing mutation evaluation by a fitness function Better than worst in population? next iteration 21 August 2008 Patric Strasser, CPG, IfE, ETHZ 8

9 Challenges Fitness-function Only 3 frequencies investigated (broadband/accuracy vs. calculation speed) Reflections at the interface require area integration method GA parameters Adaptive mutation rate constant mutationrate: best in population worst in population adaptive mutationrate: 21 August 2008 Patric Strasser, CPG, IfE, ETHZ 9

10 Result Examples GA Holes with variable diameters References (Literature) Linear taper: Butt coupling: Shift holes along the y-direction Lattice constant tapering [Krauss] 21 August 2008 Patric Strasser, CPG, IfE, ETHZ 10

11 Transmission Spectra Simulation results: good transmission achieved by using a GA quite narrow band (requires more probed frequencies) Probed frequencies 10nm 21 August 2008 Patric Strasser, CPG, IfE, ETHZ 11

12 Overview Part 1: Incoupling into slow light Optimization by the use of a genetic algorithm Reduction of the calculation time Part 2: Loss reduction of slow-light waveguides Wide waveguides Extension of the gap map concept to detect slow-light modes 21 August 2008 Patric Strasser, CPG, IfE, ETHZ 12

13 How to Design a Slow-Light Waveguide? Slow-light waveguides suffer from tremendously high losses Reducing losses is deciding for their usability Reduce losses by wider waveguides Assumption: Wider waveguides have lower losses (observed also by comparison of a W1 to a W3) Relaxed condition for electrical contacts on top of the waveguide Losses cannot be included into the optimization (theoretically not well understood) Boundary conditions Slow light Single mode waveguide (Producibility) 21 August 2008 Patric Strasser, CPG, IfE, ETHZ 13

14 Extension of the Gap Maps for Waveguides Simulation of all possible waveguide types (e.g. waveguide width) creates huge amount of data (dispersion diagrams) Aggregation of the data into one single viewgraph Plot density of states against frequency Slow-light modes have a high density of states easy to identify classical gap map for undisturbed PhC 21 August 2008 Patric Strasser, CPG, IfE, ETHZ

15 Gap Maps Contain Condensed Informations slow light region of a guided mode slow light region of a guided mode 21 August 2008 Patric Strasser, CPG, IfE, ETHZ 15

16 Gap Maps and Design Parameters SM disappears SM disappears 21 August 2008 Patric Strasser, CPG, IfE, ETHZ 16

17 Optimized Waveguide Designs Use knowledge about the individual parameters to restrict the search area for a rigorous parameter sweep single-mode W1.3 Lattice constant: 332nm Channel width: 489nm - Increased by 113nm Single-mode band: 55nm W1.4 W August 2008 Patric Strasser, CPG, IfE, ETHZ 17

18 Summary and Conclusions The slow-light modes are a key feature of photonic crystals Loss problem must be solved Incoupling optimization by a GA Find the proper GA parameters Reduce calculation time per generation Wider waveguides beneficial An extension of the gap map concept will help to find useable slow-light modes 21 August 2008 Patric Strasser, CPG, IfE, ETHZ 18

19 Questions? References: [1] Y. A. Vlasov, et al., Active control of slow light on a chip with photonic crystal waveguides, Nature [Krauss] J. P. Hugonin, T. F. Krauss, et al., Coupling into slow-mode photonic crystal waveguides, Opt. Lett. 21 August 2008 Patric Strasser, CPG, IfE, ETHZ 19

Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane

Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane Swapnajit Chakravarty 1, Wei-Cheng Lai 2, Xiaolong (Alan) Wang 1, Che-Yun Lin 2, Ray T. Chen 1,2 1 Omega Optics, 10306 Sausalito Drive,

More information

Slow-light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides

Slow-light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides PIERS ONLINE, VOL. 6, NO. 3, 2010 273 Slow-light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides D. J. Moss 1, B. Corcoran 1, C. Monat 1, C. Grillet 1, T. P. White 2, L. O Faolain 2, T.

More information

160MER, Austin, TX-78758, USA ABSTRACT 1. INTRODUCTION

160MER, Austin, TX-78758, USA ABSTRACT 1. INTRODUCTION Group velocity independent coupling into slow light photonic crystal waveguide on silicon nanophotonic integrated circuits Che-Yun Lin* a, Xiaolong Wang a, Swapnajit Chakravarty b, Wei-Cheng Lai a, Beom

More information

Ultracompact and low power optical switch based on silicon. photonic crystals

Ultracompact and low power optical switch based on silicon. photonic crystals Ultracompact and low power optical switch based on silicon photonic crystals Daryl M. Beggs 1, *, Thomas P. White 1, Liam O Faolain 1 and Thomas F. Krauss 1 1 School of Physics and Astronomy, University

More information

InGaAsP photonic band gap crystal membrane microresonators*

InGaAsP photonic band gap crystal membrane microresonators* InGaAsP photonic band gap crystal membrane microresonators* A. Scherer, a) O. Painter, B. D Urso, R. Lee, and A. Yariv Caltech, Laboratory of Applied Physics, Pasadena, California 91125 Received 29 May

More information

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Introduction Fundamentals of laser Types of lasers Semiconductor lasers ECE 5368 Introduction Fundamentals of laser Types of lasers Semiconductor lasers Introduction Fundamentals of laser Types of lasers Semiconductor lasers How many types of lasers? Many many depending on

More information

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER As we discussed in chapter 1, silicon photonics has received much attention in the last decade. The main reason is

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information "Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip" SUPPLEMENTARY INFORMATION Eiichi Kuramochi*, Kengo Nozaki, Akihiko Shinya,

More information

Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode

Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode Guk-Hyun Kim and Yong-Hee Lee Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 35-71,

More information

Two bit optical analog-to-digital converter based on photonic crystals

Two bit optical analog-to-digital converter based on photonic crystals Two bit optical analog-to-digital converter based on photonic crystals Binglin Miao, Caihua Chen, Ahmed Sharkway, Shouyuan Shi, and Dennis W. Prather University of Delaware, Newark, Delaware 976 binglin@udel.edu

More information

SELF COLLIMATION IN PILLAR TYPE PHOTONIC CRYSTAL USING COMSOL

SELF COLLIMATION IN PILLAR TYPE PHOTONIC CRYSTAL USING COMSOL SELF COLLIMATION IN PILLAR TYPE PHOTONIC CRYSTAL USING COMSOL S.Hemalatha 1, K.Shanthalakshmi 2 1 ME Communication Systems Department of ECE Adhiyamaan College Of Engineering, Hosur, India 2 Associate

More information

AMACH Zehnder interferometer (MZI) based on the

AMACH Zehnder interferometer (MZI) based on the 1284 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 3, MARCH 2005 Optimal Design of Planar Wavelength Circuits Based on Mach Zehnder Interferometers and Their Cascaded Forms Qian Wang and Sailing He, Senior

More information

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall 2014

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall 2014 School of Electrical and Computer Engineering, Cornell University ECE 5330: Semiconductor Optoelectronics Fall 014 Homework 6 Due on Oct. 3, 014 Suggested Readings: i) Study lecture notes. Table of Parameter

More information

ISSN: [Akther* et al., 6(11): November, 2017] Impact Factor: 4.116

ISSN: [Akther* et al., 6(11): November, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DESIGN OF A WIDEBAND 1 2 Y-BRANCH OPTICAL BEAM SPLITTER USING GaAs BASED PHOTONIC CRYSTAL Md. Shoaib Akther 1, Md. Rupam Khandkar

More information

Design, Simulation & Optimization of 2D Photonic Crystal Power Splitter

Design, Simulation & Optimization of 2D Photonic Crystal Power Splitter Optics and Photonics Journal, 2013, 3, 13-19 http://dx.doi.org/10.4236/opj.2013.32a002 Published Online June 2013 (http://www.scirp.org/journal/opj) Design, Simulation & Optimization of 2D Photonic Crystal

More information

Si-EPIC Workshop: Silicon Nanophotonics Fabrication Directional Couplers

Si-EPIC Workshop: Silicon Nanophotonics Fabrication Directional Couplers Si-EPIC Workshop: Silicon Nanophotonics Fabrication Directional Couplers June 26, 2012 Dr. Lukas Chrostowski Directional Couplers Eigenmode solver approach Objectives Model the power coupling in a directional

More information

Study of the variation of refractive index for different organic liquids of an optical channel drop filter on a 2D photonic crystal ring resonator

Study of the variation of refractive index for different organic liquids of an optical channel drop filter on a 2D photonic crystal ring resonator Study of the variation of refractive index for different organic liquids of an optical channel drop filter on a 2D photonic crystal ring resonator Ghoumazi Mehdi #1, Abdessalam Hocini #2 1,2 Laboratoire

More information

Chad A. Husko 1,, Sylvain Combrié 2, Pierre Colman 2, Jiangjun Zheng 1, Alfredo De Rossi 2, Chee Wei Wong 1,

Chad A. Husko 1,, Sylvain Combrié 2, Pierre Colman 2, Jiangjun Zheng 1, Alfredo De Rossi 2, Chee Wei Wong 1, SOLITON DYNAMICS IN THE MULTIPHOTON PLASMA REGIME Chad A. Husko,, Sylvain Combrié, Pierre Colman, Jiangjun Zheng, Alfredo De Rossi, Chee Wei Wong, Optical Nanostructures Laboratory, Columbia University

More information

Optics Communications

Optics Communications Optics Communications 283 (2010) 3678 3682 Contents lists available at ScienceDirect Optics Communications journal homepage: www.elsevier.com/locate/optcom Ultra-low-loss inverted taper coupler for silicon-on-insulator

More information

A Low-loss Integrated Beam Combiner based on Polarization Multiplexing

A Low-loss Integrated Beam Combiner based on Polarization Multiplexing MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com A Low-loss Integrated Beam Combiner based on Polarization Multiplexing Wang, B.; Kojima, K.; Koike-Akino, T.; Parsons, K.; Nishikawa, S.; Yagyu,

More information

20dB-enhanced coupling to slot photonic crystal waveguide based on. multimode interference

20dB-enhanced coupling to slot photonic crystal waveguide based on. multimode interference 20dB-enhanced coupling to slot photonic crystal waveguide based on multimode interference Xiaonan Chen 1, Lanlan Gu 2, Wei Jiang 2, and Ray T. Chen 1* Microelectronic Research Center, Department of Electrical

More information

Wire Layer Geometry Optimization using Stochastic Wire Sampling

Wire Layer Geometry Optimization using Stochastic Wire Sampling Wire Layer Geometry Optimization using Stochastic Wire Sampling Raymond A. Wildman*, Joshua I. Kramer, Daniel S. Weile, and Philip Christie Department University of Delaware Introduction Is it possible

More information

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade: Examination Optoelectronic Communication Technology April, 26 Name: Student ID number: OCT : OCT 2: OCT 3: OCT 4: Total: Grade: Declaration of Consent I hereby agree to have my exam results published on

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

Computer Engineering, University of Texas, Burnet Road Bldg. 160, Austin, TX USA ABSTRACT 1. INTRODUCTION 2. PRINCIPLE OF OPERATION

Computer Engineering, University of Texas, Burnet Road Bldg. 160, Austin, TX USA ABSTRACT 1. INTRODUCTION 2. PRINCIPLE OF OPERATION Photonic crystal slot waveguide Spectrometer for detection of Methane Swapnajit Chakravarty* a, Wei-Cheng Lai b, Xiaolong Wang a, Cheyun Lin b, Ray T. Chen b, a Omega Optics Inc., 10306 Sausalito Drive,

More information

Characterization of Photonic Structures with CST Microwave Studio. CST UGM 2010 Darmstadt

Characterization of Photonic Structures with CST Microwave Studio. CST UGM 2010 Darmstadt Characterization of Photonic Structures with CST Microwave Studio Stefan Prorok, Jan Hendrik Wülbern, Jan Hampe, Hooi Sing Lee, Alexander Petrov and Manfred Eich, Institute of Optical and Electronic Materials

More information

2D silicon-based surface-normal vertical cavity photonic crystal waveguide array for high-density optical interconnects

2D silicon-based surface-normal vertical cavity photonic crystal waveguide array for high-density optical interconnects 2D silicon-based surface-normal vertical cavity photonic crystal waveguide array for high-density optical interconnects JaeHyun Ahn a, Harish Subbaraman b, Liang Zhu a, Swapnajit Chakravarty b, Emanuel

More information

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc.

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc. Optodevice Data Book ODE-408-001I Rev.9 Mar. 2003 Opnext Japan, Inc. Section 1 Operating Principles 1.1 Operating Principles of Laser Diodes (LDs) and Infrared Emitting Diodes (IREDs) 1.1.1 Emitting Principles

More information

Ultra-Compact Photonic Crystal Based Water Temperature Sensor

Ultra-Compact Photonic Crystal Based Water Temperature Sensor PHOTONIC SENSORS / Vol. 6, No. 3, 2016: 274 278 Ultra-Compact Photonic Crystal Based Water Temperature Sensor Mahmoud NIKOUFARD *, Masoud KAZEMI ALAMOUTI, and Alireza ADEL Department of Electronics, Faculty

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

Grating coupled photonic crystal demultiplexer with integrated detectors on InPmembrane

Grating coupled photonic crystal demultiplexer with integrated detectors on InPmembrane Grating coupled photonic crystal demultiplexer with integrated detectors on InPmembrane F. Van Laere, D. Van Thourhout and R. Baets Department of Information Technology-INTEC Ghent University-IMEC Ghent,

More information

Luminous Equivalent of Radiation

Luminous Equivalent of Radiation Intensity vs λ Luminous Equivalent of Radiation When the spectral power (p(λ) for GaP-ZnO diode has a peak at 0.69µm) is combined with the eye-sensitivity curve a peak response at 0.65µm is obtained with

More information

Waveguiding in PMMA photonic crystals

Waveguiding in PMMA photonic crystals ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 12, Number 3, 2009, 308 316 Waveguiding in PMMA photonic crystals Daniela DRAGOMAN 1, Adrian DINESCU 2, Raluca MÜLLER2, Cristian KUSKO 2, Alex.

More information

Microphotonics Readiness for Commercial CMOS Manufacturing. Marco Romagnoli

Microphotonics Readiness for Commercial CMOS Manufacturing. Marco Romagnoli Microphotonics Readiness for Commercial CMOS Manufacturing Marco Romagnoli MicroPhotonics Consortium meeting MIT, Cambridge October 15 th, 2012 Passive optical structures based on SOI technology Building

More information

New Waveguide Fabrication Techniques for Next-generation PLCs

New Waveguide Fabrication Techniques for Next-generation PLCs New Waveguide Fabrication Techniques for Next-generation PLCs Masaki Kohtoku, Toshimi Kominato, Yusuke Nasu, and Tomohiro Shibata Abstract New waveguide fabrication techniques will be needed to make highly

More information

Effects of Two Dimensional Electromagnetic Bandgap (EBG) Structures on the Performance of Microstrip Patch Antenna Arrays

Effects of Two Dimensional Electromagnetic Bandgap (EBG) Structures on the Performance of Microstrip Patch Antenna Arrays Effects of Two Dimensional Electromagnetic Bandgap (EBG) Structures on the Performance of Microstrip Patch Antenna Arrays Mr. F. Benikhlef 1 and Mr. N. Boukli-Hacen 2 1 Research Scholar, telecommunication,

More information

On-chip Si-based Bragg cladding waveguide with high index contrast bilayers

On-chip Si-based Bragg cladding waveguide with high index contrast bilayers On-chip Si-based Bragg cladding waveguide with high index contrast bilayers Yasha Yi, Shoji Akiyama, Peter Bermel, Xiaoman Duan, and L. C. Kimerling Massachusetts Institute of Technology, 77 Massachusetts

More information

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index. absorption, 69 active tuning, 234 alignment, 394 396 apodization, 164 applications, 7 automated optical probe station, 389 397 avalanche detector, 268 back reflection, 164 band structures, 30 bandwidth

More information

A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver

A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver A. Rylyakov, C. Schow, B. Lee, W. Green, J. Van Campenhout, M. Yang, F. Doany, S. Assefa, C. Jahnes, J. Kash, Y. Vlasov IBM

More information

Ultralow-power all-optical RAM based on nanocavities

Ultralow-power all-optical RAM based on nanocavities Supplementary information SUPPLEMENTARY INFORMATION Ultralow-power all-optical RAM based on nanocavities Kengo Nozaki, Akihiko Shinya, Shinji Matsuo, Yasumasa Suzaki, Toru Segawa, Tomonari Sato, Yoshihiro

More information

Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in

Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in semiconductor material Pumped now with high current density

More information

Design Rules for Silicon Photonics Prototyping

Design Rules for Silicon Photonics Prototyping Design Rules for licon Photonics Prototyping Version 1 (released February 2008) Introduction IME s Photonics Prototyping Service offers 248nm lithography based fabrication technology for passive licon-on-insulator

More information

Photonic Integrated Circuits Made in Berlin

Photonic Integrated Circuits Made in Berlin Fraunhofer Heinrich Hertz Institute Photonic Integrated Circuits Made in Berlin Photonic integration Workshop, Columbia University, NYC October 2015 Moritz Baier, Francisco M. Soares, Norbert Grote Fraunhofer

More information

Devices Imaged with Near-eld Scanning Optical Microscopy. G. H. Vander Rhodes, M. S. Unlu, and B. B. Goldberg. J. M. Pomeroy

Devices Imaged with Near-eld Scanning Optical Microscopy. G. H. Vander Rhodes, M. S. Unlu, and B. B. Goldberg. J. M. Pomeroy Internal Spatial Modes of One Dimensional Photonic Band Gap Devices Imaged with Near-eld Scanning Optical Microscopy G. H. Vander Rhodes, M. S. Unlu, and B. B. Goldberg Departments of Physics and Electrical

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

Silicon Photonic Device Based on Bragg Grating Waveguide

Silicon Photonic Device Based on Bragg Grating Waveguide Silicon Photonic Device Based on Bragg Grating Waveguide Hwee-Gee Teo, 1 Ming-Bin Yu, 1 Guo-Qiang Lo, 1 Kazuhiro Goi, 2 Ken Sakuma, 2 Kensuke Ogawa, 2 Ning Guan, 2 and Yong-Tsong Tan 2 Silicon photonics

More information

Micro-Displacement Sensor Based on High Sensitivity Photonic Crystal

Micro-Displacement Sensor Based on High Sensitivity Photonic Crystal PHOTONIC SENSORS / Vol. 4, No. 3, 4: 4 Micro-Displacement Sensor Based on High Sensitivity Photonic Crystal Saeed OLYAEE * and Morteza AZIZI Nano-Photonics and Optoelectronics Research Laboratory (NORLab),

More information

All-optical Switch and Digital Light Processing Using Photonic Crystals

All-optical Switch and Digital Light Processing Using Photonic Crystals All-optical Switch and Digital Light Processing Using Photonic Crystals Akihiko Shinya, Takasumi Tanabe, Eiichi Kuramochi, and Masaya Notomi Abstract We have demonstrated all-optical switching operations

More information

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings Optimisation of DSF and SOA based Phase Conjugators by Incorporating Noise-Suppressing Fibre Gratings Paper no: 1471 S. Y. Set, H. Geiger, R. I. Laming, M. J. Cole and L. Reekie Optoelectronics Research

More information

High Speed Electronics and Photonics Group

High Speed Electronics and Photonics Group Electronics Laboratory, IfE Overview High Speed Electronics and Photonics Group Prof. Dr. H. Jäckel Electronics Laboratory, IfE Swiss Federal Institute of Technology ETHZ jaeckel@ife.ee.ethz.ch, http://www.ife.ee.ethz.ch,

More information

Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span

Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span Wavelength-independent coupler from fiber to an on-chip, demonstrated over an 85nm span Tal Carmon, Steven Y. T. Wang, Eric P. Ostby and Kerry J. Vahala. Thomas J. Watson Laboratory of Applied Physics,

More information

An integrated recirculating optical buffer

An integrated recirculating optical buffer An integrated recirculating optical buffer Hyundai Park, John P. Mack, Daniel J. Blumenthal, and John E. Bowers* University of California, Santa Barbara, Department of Electrical and Computer Engineering,

More information

Multiple wavelength resonant grating filters at oblique incidence with broad angular acceptance

Multiple wavelength resonant grating filters at oblique incidence with broad angular acceptance Multiple wavelength resonant grating filters at oblique incidence with broad angular acceptance Andrew B. Greenwell, Sakoolkan Boonruang, M.G. Moharam College of Optics and Photonics - CREOL, University

More information

Index. BaF 2 crystal 41 biochemical sensor 7, 316, ,

Index. BaF 2 crystal 41 biochemical sensor 7, 316, , Index acousto-optic effect 243 44 air bandedge 35, 266 air gap 188, 197, 224, 240 41 air holes 16 17, 52 53, 55, 64, 189, 192, 216 18, 241 43, 245, 266 68, 270 72, 298 99, 333 34, 336 37, 341 42 air pores

More information

Optical trapping on waveguides. Olav Gaute Hellesø University of Tromsø Norway

Optical trapping on waveguides. Olav Gaute Hellesø University of Tromsø Norway Optical trapping on waveguides Olav Gaute Hellesø University of Tromsø Norway Outline Principles of waveguide propulsion Simulation of optical forces: Maxwell stress tensor vs. pressure Squeezing of red

More information

Compact hybrid TM-pass polarizer for silicon-on-insulator platform

Compact hybrid TM-pass polarizer for silicon-on-insulator platform Compact hybrid TM-pass polarizer for silicon-on-insulator platform Muhammad Alam,* J. Stewart Aitchsion, and Mohammad Mojahedi Department of Electrical and Computer Engineering, University of Toronto,

More information

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression Optimization of supercontinuum generation in photonic crystal fibers for pulse compression Noah Chang Herbert Winful,Ted Norris Center for Ultrafast Optical Science University of Michigan What is Photonic

More information

HIGH-EFFICIENCY MQW ELECTROABSORPTION MODULATORS

HIGH-EFFICIENCY MQW ELECTROABSORPTION MODULATORS HIGH-EFFICIENCY MQW ELECTROABSORPTION MODULATORS J. Piprek, Y.-J. Chiu, S.-Z. Zhang (1), J. E. Bowers, C. Prott (2), and H. Hillmer (2) University of California, ECE Department, Santa Barbara, CA 93106

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information S1. Theory of TPQI in a lossy directional coupler Following Barnett, et al. [24], we start with the probability of detecting one photon in each output of a lossy, symmetric beam

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Silver permittivity used in the simulations Silver permittivity values are obtained from Johnson & Christy s experimental data 31 and are fitted with a spline interpolation in order to estimate the permittivity

More information

Plane wave excitation by taper array for optical leaky waveguide antenna

Plane wave excitation by taper array for optical leaky waveguide antenna LETTER IEICE Electronics Express, Vol.15, No.2, 1 6 Plane wave excitation by taper array for optical leaky waveguide antenna Hiroshi Hashiguchi a), Toshihiko Baba, and Hiroyuki Arai Graduate School of

More information

Title. Author(s)Koshiba, Masanori. CitationJOURNAL OF LIGHTWAVE TECHNOLOGY, 19(12): Issue Date Doc URL. Rights.

Title. Author(s)Koshiba, Masanori. CitationJOURNAL OF LIGHTWAVE TECHNOLOGY, 19(12): Issue Date Doc URL. Rights. Title Wavelength division multiplexing and demultiplexing Author(s)Koshiba, Masanori CitationJOURNAL OF LIGHTWAVE TECHNOLOGY, 19(12): 1970-1975 Issue Date 2001-12 Doc URL http://hdl.handle.net/2115/5582

More information

Silicon photonic devices based on binary blazed gratings

Silicon photonic devices based on binary blazed gratings Silicon photonic devices based on binary blazed gratings Zhiping Zhou Li Yu Optical Engineering 52(9), 091708 (September 2013) Silicon photonic devices based on binary blazed gratings Zhiping Zhou Li Yu

More information

Design and Analysis of Resonant Leaky-mode Broadband Reflectors

Design and Analysis of Resonant Leaky-mode Broadband Reflectors 846 PIERS Proceedings, Cambridge, USA, July 6, 8 Design and Analysis of Resonant Leaky-mode Broadband Reflectors M. Shokooh-Saremi and R. Magnusson Department of Electrical and Computer Engineering, University

More information

Nano Structure Based Power Splitter Design by Using 2D Photonic Crystals

Nano Structure Based Power Splitter Design by Using 2D Photonic Crystals Journal of Modern Science and Technology Vol. 1. No. 1. May 2013 Issue. Pp.176-187 Nano Structure Based Power Splitter Design by Using 2D Photonic Crystals Md. Masruf Khan A nanostructure (80-100 μm 2

More information

Design and Fabrication of SOI-Based Photonic Crystal Components

Design and Fabrication of SOI-Based Photonic Crystal Components ICTON 2004 271 Tu.AZ.4 Design and Fabrication of SOI-Based Photonic Crystal Components Peter I. Borel, Lars H. Frandsen, Anders Harpeth, Martin Kristensen, Tapio Nemi, Pengfei Xing Jakoh S. Jensen*, Ole

More information

Demonstration of tunable optical delay lines based on apodized grating waveguides

Demonstration of tunable optical delay lines based on apodized grating waveguides Demonstration of tunable optical delay lines based on apodized grating waveguides Saeed Khan 1, 2 and Sasan Fathpour 1,2,* 1 CREOL, The College of Optics and Photonics, University of Central Florida, Orlando,

More information

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION 43 CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION 2.1 INTRODUCTION This work begins with design of reflectarrays with conventional patches as unit cells for operation at Ku Band in

More information

Characterization of a 3-D Photonic Crystal Structure Using Port and S- Parameter Analysis

Characterization of a 3-D Photonic Crystal Structure Using Port and S- Parameter Analysis Characterization of a 3-D Photonic Crystal Structure Using Port and S- Parameter Analysis M. Dong* 1, M. Tomes 1, M. Eichenfield 2, M. Jarrahi 1, T. Carmon 1 1 University of Michigan, Ann Arbor, MI, USA

More information

Pitch Reducing Optical Fiber Array Two-Dimensional (2D)

Pitch Reducing Optical Fiber Array Two-Dimensional (2D) PROFA Pitch Reducing Optical Fiber Array Two-Dimensional (2D) Pitch Reducing Optical Fiber Arrays (PROFAs) provide low loss coupling between standard optical fibers and photonic integrated circuits. Unlike

More information

Title. Author(s)Saitoh, Fumiya; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 18(5): Issue Date Doc URL.

Title. Author(s)Saitoh, Fumiya; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 18(5): Issue Date Doc URL. Title A design method of a fiber-based mode multi/demultip Author(s)Saitoh, Fumiya; Saitoh, Kunimasa; Koshiba, Masanori CitationOptics Express, 18(5): 4709-4716 Issue Date 2010-03-01 Doc URL http://hdl.handle.net/2115/46825

More information

Near/Mid-Infrared Heterogeneous Si Photonics

Near/Mid-Infrared Heterogeneous Si Photonics PHOTONICS RESEARCH GROUP Near/Mid-Infrared Heterogeneous Si Photonics Zhechao Wang, PhD Photonics Research Group Ghent University / imec, Belgium ICSI-9, Montreal PHOTONICS RESEARCH GROUP 1 Outline Ge-on-Si

More information

Tuning of Photonic Crystal Ring Resonators for Application in Analog to Digital Converter Systems

Tuning of Photonic Crystal Ring Resonators for Application in Analog to Digital Converter Systems International Research Journal of Applied and Basic Sciences 2013 Available online at www.irjabs.com ISSN 2251-838X / Vol, 4 (12): 4242-4247 Science Explorer Publications Tuning of Photonic Crystal Ring

More information

Photonic Crystal Cavities

Photonic Crystal Cavities 2013 Nanophotonics and integrated optics This whitepaper gives a general overview on different concepts of photonic crystal cavities. Important figures such as the transmission, the mode volume and the

More information

Figure 1 Basic waveguide structure

Figure 1 Basic waveguide structure Recent Progress in SOI Nanophotonic Waveguides D. Van Thourhout, P. Dumon, W. Bogaerts, G. Roelkens, D. Taillaert, G. Priem, R. Baets IMEC-Ghent University, Department of Information Technology, St. Pietersnieuwstraat

More information

Development of Vertical Spot Size Converter (SSC) with Low Coupling Loss Using 2.5%Δ Silica-Based Planar Lightwave Circuit

Development of Vertical Spot Size Converter (SSC) with Low Coupling Loss Using 2.5%Δ Silica-Based Planar Lightwave Circuit Development of Vertical Spot Size Converter (SSC) with Low Coupling Loss Using 2.5%Δ Silica-Based Planar Lightwave Circuit Yasuyoshi Uchida *, Hiroshi Kawashima *, and Kazutaka Nara * Recently, new planar

More information

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a) Optical Sources (a) Optical Sources (b) The main light sources used with fibre optic systems are: Light-emitting diodes (LEDs) Semiconductor lasers (diode lasers) Fibre laser and other compact solid-state

More information

Photonic Integrated Circuits using Crystal Optics (PICCO)

Photonic Integrated Circuits using Crystal Optics (PICCO) Photonic Integrated Circuits using Crystal Optics (PICCO) An overview Thomas F Krauss 1,*, Rab Wilson 1, Roel Baets 2, Wim Bogaerts 2, Martin Kristensen 3, Peter I Borel 3, Lars H Frandsen 3, Morten Thorhauge

More information

Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in

Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in semiconductor material Pumped now with high current density

More information

Impact of the light coupling on the sensing properties of photonic crystal cavity modes Kumar Saurav* a,b, Nicolas Le Thomas a,b,

Impact of the light coupling on the sensing properties of photonic crystal cavity modes Kumar Saurav* a,b, Nicolas Le Thomas a,b, Impact of the light coupling on the sensing properties of photonic crystal cavity modes Kumar Saurav* a,b, Nicolas Le Thomas a,b, a Photonics Research Group, Ghent University-imec, Technologiepark-Zwijnaarde

More information

New Design of All-Optical Slow Light TDM Structure Based on Photonic Crystals

New Design of All-Optical Slow Light TDM Structure Based on Photonic Crystals Progress In Electromagnetics Research, Vol. 146, 89 97, 2014 New Design of All-Optical Slow Light TDM Structure Based on Photonic Crystals Yaw-Dong Wu * Abstract This work demonstrates an all-optical slow

More information

Analysis and applications of 3D rectangular metallic waveguides

Analysis and applications of 3D rectangular metallic waveguides Analysis and applications of 3D rectangular metallic waveguides Mohamed A. Swillam, and Amr S. Helmy Department of Electrical and Computer Engineering, University of Toronto, Toronto, M5S 3G4, Canada.

More information

Negative refraction in photonic crystals

Negative refraction in photonic crystals Advances in Science and Technology Vol. 55 (28) pp 91-1 online at http://www.scientific.net (28) Trans Tech Publications, Switzerland Online available since 28/Sep/2 Negative refraction in photonic crystals

More information

Comparison of FRD (Focal Ratio Degradation) for Optical Fibres with Different Core Sizes By Neil Barrie

Comparison of FRD (Focal Ratio Degradation) for Optical Fibres with Different Core Sizes By Neil Barrie Comparison of FRD (Focal Ratio Degradation) for Optical Fibres with Different Core Sizes By Neil Barrie Introduction The purpose of this experimental investigation was to determine whether there is a dependence

More information

Segmented waveguide photodetector with 90% quantum efficiency

Segmented waveguide photodetector with 90% quantum efficiency Vol. 26, No. 10 14 May 2018 OPTICS EXPRESS 12499 Segmented waveguide photodetector with 90% quantum efficiency QIANHUAN YU, KEYE SUN, QINGLONG LI, AND ANDREAS BELING* Department of Electrical and Computer

More information

CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION

CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION 6.1 Introduction In this chapter we have made a theoretical study about carbon nanotubes electrical properties and their utility in antenna applications.

More information

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices 644 Realization of Polarization-Insensitive Optical Polymer Waveguide Devices Kin Seng Chiang,* Sin Yip Cheng, Hau Ping Chan, Qing Liu, Kar Pong Lor, and Chi Kin Chow Department of Electronic Engineering,

More information

LASER Transmitters 1 OBJECTIVE 2 PRE-LAB

LASER Transmitters 1 OBJECTIVE 2 PRE-LAB LASER Transmitters 1 OBJECTIVE Investigate the L-I curves and spectrum of a FP Laser and observe the effects of different cavity characteristics. Learn to perform parameter sweeps in OptiSystem. 2 PRE-LAB

More information

PROCEEDINGS OF SPIE. Teaching multilayer optical coatings with coaxial cables. J. Cos, M. M. Sánchez-López, J. A. Davis, D. Miller, I. Moreno, et al.

PROCEEDINGS OF SPIE. Teaching multilayer optical coatings with coaxial cables. J. Cos, M. M. Sánchez-López, J. A. Davis, D. Miller, I. Moreno, et al. PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Teaching multilayer optical coatings with coaxial cables J. Cos, M. M. Sánchez-López, J. A. Davis, D. Miller, I. Moreno, et al.

More information

In-Plane Coupling into Circular-Grating Resonators for All-Optical Switching

In-Plane Coupling into Circular-Grating Resonators for All-Optical Switching RZ 3664 (# 99674) 08/21/2006 Computer Science 4 pages Research Report In-Plane Coupling into Circular-Grating Resonators for All-Optical Switching Asma Jebali, Rainer F. Mahrt IBM Research GmbH Zurich

More information

Electromagnetically Induced Transparency with Hybrid Silicon-Plasmonic Travelling-Wave Resonators

Electromagnetically Induced Transparency with Hybrid Silicon-Plasmonic Travelling-Wave Resonators XXI International Workshop on Optical Wave & Waveguide Theory and Numerical Modelling 19-20 April 2013 Enschede, The Netherlands Session: Nanophotonics Electromagnetically Induced Transparency with Hybrid

More information

Title. Author(s)Fujisawa, Takeshi; Koshiba, Masanori. CitationOptics Letters, 31(1): Issue Date Doc URL. Rights. Type.

Title. Author(s)Fujisawa, Takeshi; Koshiba, Masanori. CitationOptics Letters, 31(1): Issue Date Doc URL. Rights. Type. Title Polarization-independent optical directional coupler Author(s)Fujisawa, Takeshi; Koshiba, Masanori CitationOptics Letters, 31(1): 56-58 Issue Date 2006 Doc URL http://hdl.handle.net/2115/948 Rights

More information

Pillar photonic crystals in integrated circuits

Pillar photonic crystals in integrated circuits Pillar photonic crystals in integrated circuits Kok, A.A.M. DOI: 10.6100/IR634964 Published: 01/01/2008 Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and

More information

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback Song, B.; Kojima, K.; Pina, S.; Koike-Akino, T.; Wang, B.;

More information

Cavity QED with quantum dots in semiconductor microcavities

Cavity QED with quantum dots in semiconductor microcavities Cavity QED with quantum dots in semiconductor microcavities M. T. Rakher*, S. Strauf, Y. Choi, N.G. Stolz, K.J. Hennessey, H. Kim, A. Badolato, L.A. Coldren, E.L. Hu, P.M. Petroff, D. Bouwmeester University

More information

UC Santa Barbara UC Santa Barbara Previously Published Works

UC Santa Barbara UC Santa Barbara Previously Published Works UC Santa Barbara UC Santa Barbara Previously Published Works Title Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides Permalink https://escholarship.org/uc/item/959523wq

More information

Virtual EM Prototyping: From Microwaves to Optics

Virtual EM Prototyping: From Microwaves to Optics Virtual EM Prototyping: From Microwaves to Optics Dr. Frank Demming, CST AG Dr. Avri Frenkel, Anafa Electromagnetic Solutions Virtual EM Prototyping Efficient Maxwell Equations solvers has been developed,

More information

Design of a compact mode and polarization converter in three-dimensional photonic crystals

Design of a compact mode and polarization converter in three-dimensional photonic crystals Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 8-27-2012 Design of a compact mode and polarization converter in three-dimensional photonic crystals Jian Wang Purdue

More information

Matryoshka Locally Resonant Sonic Crystal

Matryoshka Locally Resonant Sonic Crystal Matryoshka Locally Resonant Sonic Crystal D. P. Elford, L. Chalmers, F. Kusmartsev and G. M. Swallowe Department of Physics, Loughborough University, Loughborough, LE11 3TU, United Kingdom To verify methods

More information

Transmission Characteristics of 90 Bent Photonic Crystal Waveguides

Transmission Characteristics of 90 Bent Photonic Crystal Waveguides Fiber and Integrated Optics, 25:29 40, 2006 Copyright Taylor & Francis Group, LLC ISSN: 0146-8030 print/1096-4681 online DOI: 10.1080/01468030500332283 Transmission Characteristics of 90 Bent Photonic

More information