Chapter 5 Analytic Trigonometry

Size: px
Start display at page:

Download "Chapter 5 Analytic Trigonometry"

Transcription

1 Section 5. Fundamental Identities 0 Cater 5 Analytic Trigonometry Section 5. Fundamental Identities Exloration. cos > sec, sec > cos, and tan sin > cos. sin > csc and tan > cot. csc > sin, cot > tan, and cot cos > sin Quick Review 5. For #, use a calculator rad rad rad rad a - ab + b a - b 6. u + u + u + 7. x - xy - y x + yx - y 8. v - 5v - v + v # y x y - # x y x y - x xy a # y x y + b # x ay + bx y x xy x + y x + y xy x + y # a x + y b xy x # x + y x - y x + y - Section 5. Exercises. sec + tan + > 5>6, so sec ;5>. Ten cos >sec ;>5. But sin, tan 7 0 imlies cos 7 0. So cos >5. Finally, tan sin cos y # x - y x + y x - y x + y x - y sin cos a 5 b 5.. sec + tan + 0, so sec ;0. But cos 7 0 imlies sec 7 0, so sec 0. Finally, tan sec csc csc sec tan sec - - 5, so tan ;5. But sec 7 0, sin 6 0 imlies tan 6 0, so tan -5. And cot >tan -> 5-5>5.. sin - cos , so sin ;0.6. But cos >0, tan <0 imlies sin 6 0, so sin Finally, tan sin >cos -0.6> cos( /- )sin cot tan( /- ) cos( )cos sin( /- ) sin( - /) cot( ) cot tan( /- ) tan( - /) tan x # 0. cot x tan x #. sec y sin a - y b # cos y cos y cos u. cot u sin u # sin ucos u sin u + tan x sec x >cos x sin x. cos x tan x csc x csc x >sin x. - cos u sin u sin u sin u sin u 5. - cos x - cos x sin x sin u + tan u + cos u + tan u sec u 6. sec u sec u sec u sec u 7. csc( x) # sin x 8. sec( x) cos( x) # cos -x cos x cos a cos -x - x b 9. cot( x) cot a # - x b sin -x sin a - x b cos -x # sinx sin -x cosx cos -x 0. cot( x) tan( x) # sin -x sin -x cos -x. sin -x + cos -x. sec -x - tan x sec x - tan x tan a - x b csc x. cot x csc x # csc x

2 0 Cater 5 Analytic Trigonometry + tan x. # + sin x + cot x + cos x + tan x + 5. sec x + csc x - tan x + cot x sec x - tan x + csc x - cot x+ sec u - tan u 6. cos v + sin v 7. ()(tan x+cot x)() a + b a + cos x b sec x 8. sin -tan cos + cos a - u b sin u sin - # cos u+sin sin cos u 9. ()()(tan x)(sec x)(csc x) ()() a ba ba b tan x sec y - tan ysec y + tan y 0. sec y a cos y - sin y cos y ba cos y + sin y cos y b a cos y b + sin y - sin y - sin y - sin y # cos y cos y cos y cos y cos y cos y tan x. csc x + tan x sec x a cos x b + a b # a. b + cos x tan x a # sec cos x b x csc x. sec x + csc x a cos x b + a sin x b # cos x sin x cos x # sin x + cos x sec x. + csc x+ sin x tan x cos x cos x csc x+ csc x sin x sin x cos x sec x 5. cot x - cos x tan x - sec x tan x - sec x sec x - - sec x + - sec x + sec x + sec x - tan x cot x sec x 7. - sec x - - cos x cot x sin x csc x 9. cos x sin x cos x - + sin x -. - cos x - + sin x - (-)(+). - sin x cos x + cos x sin x + csc x tan x - + csc x cot x # tan x - tan x + tan x - tan x + tan x - 6. sec x - sec x + tan x sec x - sec x + sec x - sec x - sec x - sec x + sec x sin x + tan a - tan a - tan a + 8. tan a - + tan a + tan a sin x tan x 50. sec x + sec x - sec x - sec x + sec x + sec x + sec x , so eiter 0 or. Ten x or + n or x 6 + n x 5, n an integer. On te interval: 6 + n x e 6,, 5 6, f

3 Section 5. Fundamental Identities tan x - 0, so eiter tan x 0 or. Ten x n or x ; an + n, n integer. On te interval: x e 0,,, 7 f 5. tan xsin x - 0, so eiter tan x 0 or. Ten x n or x an interger. + n, n However, tan x excludes x, so we ave only + n xn, n an integer. On te interval: x 50, 6 5. tan x - 0, so eiter 0 or tan x. Ten x n or x an integer. Put anoter + n, n way, all multiles of excet for ;, etc., ; On te interval: x e 0,,,, 5, 7 f 55. tan x ;, so x ; an integer. + n, n On te interval: x e,,, 5 f 56. ; an integer., so x + n, n On te interval: x e,, 5, 7 f , so terefore ; x ; an integer. + n, n 58. ( +)(+)0, so - or. Ten x - +n, x - 5 or n x - an integer. + n, n 59. sin usin u - 0, so sin u 0 or sin u. Ten u n, n an integer. 60. sin t- sin t,or sin t+ sin t-0. Tis factors to ( sin t-)(sin t+)0, so sin t or sin t. Ten t or t 5, 6 + n 6 + n n an integer. 6. cos() if n. Only n0 gives a value between and ±, so 0, or xn, n an integer. 6. Tis can be rewritten as ( -)(+)0, so or -. Ten x or 6 + n x 5 an integer. See also # n, n 6. cos L.98, so te solution set is {;.98+n n0, ;, ;,... }. 6. cos L 0.77, so te solution set is {; 0.77+n n0, ;, ;,... }. 65. sin L 0.07 and , so te solution set is {0.07+n or.869+n n0, ;, ;,... }. 66. tan - 5 L.7, so te solution set is {.7+n n0, ;, ;,... } L 0.66, and cos L 0.886, so te solution set is {; n n0, ;, ;,... } L 0.66 and sin L 0.687, so te solution set is {; n n0, ;, ;,... } cos sin u@ 70. tan u sec u@ 7. 9 sec u - tan u@ sin u 6@ cos u@ sec u @ tan u@ 75. True. Since cosine is an even function, so is secant, and tus sec (x- /)sec ( /-x), wic equals csc x by one of te cofunction identities. 76. False. Te domain of validity does not include values of for wic cos 0 and tan sin /cos is undefined, namely all odd integer multiles of /. 77. tan x sec xtan x//cos x Z. Te answer is D. 78. sine, tangent, cosecant, and cotangent are odd, wile cosine and secant are even. Te answer is A. 79. (sec +)(sec -)sec -tan.te answer is C. 80. By te quadratic formula, cos x+-0 imlies - or Tere are tree solutions on te interval (0, ).Te answer is D. 8., ; - sin x, tan x ; - sin x, csc x, sec x ; - sin x 8. 8 tan u + 8 9@ sec u@ - ; - - cot x ; - ; - cos x,, tan x ; - csc x ; - cos x, sec x, cot x ; - cos x 8. Te two functions are arallel to eac oter, searated by unit for every x. At any x, te distance between te two gras is sin x - -cos x sin x + cos x.,

4 06 Cater 5 Analytic Trigonometry [, ] by [, ] 8. Te two functions are arallel to eac oter, searated by unit for every x. At any x, te distance between te two gras is sec x - tan x. 90. Use te int: cos - x cos> - x - > sinx - > Cofunction identity -sin> - x Since sin is odd - Cofunction identity 9. Since A, B, and C are angles of a triangle, A+B -C. So: sin(a+b)sin( -C) sin C 9. Using te identities from Exercises 69 and 70, we ave: sin - x tan( -x) cos - x - -tan x 85. (a) [, ] by [, ] Section 5. Proving Trigonometric Identities Exloration. Te gras lead us to conclude tat tis is not an identity. [ 6, 70] by [0 000, ] (b) Te equation is y, sin(0.997x+.57)+8,855. [, ] by [, ]. For examle, cos( # 0), wereas cos(0).. Yes.. Te gras lead us to conclude tat tis is an identity. [ 6, 70] by [0 000, ] (c) >0.998 L 7. days. Tis is te number of days tat it takes te Moon to make one comlete orbit of te Eart (known as te Moon s sidereal eriod). (d) 5,7 miles (e) y, cos x + 8,855, or y, cos0.997x + 8, Answers will vary. 87. Factor te left-and side: sin u - cos u sin u - cos usin sin u - cos u # u + cos u sin u - cos u 88. Any k satisfying k or k Use te int: sin - x sin> - x - > cosx - > Cofunction identity cos> - x Since cos is even Cofunction identity [, ] by [, ] 5. No. Te gra window can not sow te full gras, so tey could differ outside te viewing window. Also, te function values could be so close tat te gras aear to coincide. Quick Review 5.. csc x+sec x + + sin x + cos x. tan x+cot x + cos x + sin x. # + #

5 Section 5. Proving Trigonometric Identities 07. sin # cos -cos # sin cos -sin sin cos 5. sin x+cos x > + > >cos Å 6. cos Å - sin Å cos Å - sin Å cos Å>sin a cos Å - sin Å cos Å 7. No. (Any negative x.) 8. Yes. 9. No. (Any x for wic <0, e.g. x /.) 0. No. (Any x for wic tan x<0, e.g. x /.). Yes.. Yes. Section 5. Exercises. One ossible roof: x - x - x - x + xx - x - x - x x x - x - x - -x + - x. One ossible roof: x - x a b - a x x b x - x x - x x. One ossible roof: x - x - - x - 9 x + x + x - x + x - - x - x + x + - x - 5. One ossible roof: x - x + - x + x - x + x - - x - x - x + x - - x + x + x sin x + cos x 5..Yes. csc x csc x tan x 6. #.Yes. sec x 7. # cot x # No.. 8. cos a x - Yes. b cos a - x b. sin x 9. (sin x)(+cot x)(sin x)(csc x).yes. sin x 0. No. Confirm graically.. ()(tan x+ cot x) # + # +cos x. ()(cot x+ tan x) # + # +sin x. (-tan x) - tan x+tan x (+tan x)- tan xsec x- tan x. (-) cos x- +sin x (cos x+sin x) One ossible roof: - cos u + cos u - cos u cos u cos u sin u cos u tan u + 6. tan x+sec x cos x - sin x - cos x - -sin x 7. # tan x 8. # sin a sin sec - tan sin sin sin cos b cos sin - sin 9. Multily out te exression on te left side csc x - cos x sin x. (cos t-sin t) +(cos t+sin t) cos t- cos t sin t+sin t+cos t + cos t sin t+sin t cos t+ sin t. sin Å-cos Å(-cos Å)-cos Å- cos Å + tan x sec x. sec x sin x + cos x cos ı cos ı + sin ı. +tan ı sin ı + sin b tan ı cos b cos ı sin ı sec ı csc ı cos ı sin ı cos ı cos ı - sin ı 5. + sin ı cos ı + sin ı cos ı + sin ı - sin ı + sin ı - sin ı cos ı + sin ı cos ı 6. One ossible roof: sec x + sec x + sec x - tan x tan x sec x - sec x - tan xsec x - tan x # tan xsec x - - -

6 08 Cater 5 Analytic Trigonometry tan x sec x - 7. sec x- - sec x + sec x + - cot v - cot v - 8. # tan v cot v tan v - tan v cot v + cot v + tan v cot v tan v + tan v - tan v cos v (Note: cot v tan v # sin v ) + tan v sin v cos v 9. cot x-cos x a -cos x b cos x - sin x cos x # sin x sin x cos x cot x 0. tan -sin a sin -sin cos b sin - cos sin # sin cos cos sin tan. cos x-sin x(cos x+sin x)(cos x-sin x) (cos x-sin x)cos x-sin x. tan t+tan ttan t(tan t+)(sec t-)(sec t) sec t-sec t. (x sin Å+y cos Å) +(x cos Å-y sin Å) (x sin Å+xy sin Å cos Å+y cos Å) +(x cos Å-xy cos Å sin Å+y sin Å) x sin Å+y cos Å+x cos Å+y sin Å (x +y )(sin Å+cos Å)x +y - cos - cos sin. sin sin + cos sin + cos sin + cos tan x tan xsec x + tan xsec x + 5. sec x - sec x - tan x sec x +. See also #6. tan x sin t + cos t sin t + + cos t cos t sin t sin t + cos t sin t + + cos t + cos t + cos t sin t + cos t sin t + cos t csc t sin t sin x - cos x sin x - - sin x sin x + + cos x + sin x sec x + sec x 8. # sec x - - sec x sec x - sec x sec x + (Note: sec x #.) sec x - sin t + cos t sin t + + cos t - cos t cos t sin t sin t - cos t sin t + - cos t - cos t + - cos t sin t - cos t sin t - cos t - cos t + cos t sin t - cos t sin t sin A cos B + cos A sin B 0. cos A cos B - sin A sin B cos A cos B sin A cos B + cos A sin B ± # cos A cos B - sin A sin B cos A cos B sin A cos A + sin B cos B tan A + tan B - tan A tan B - sin A sin B cos A cos B. sin x cos xsin x cos x sin x(-sin x)(sin x-sin x). sin 5 x cos xsin x cos x (sin x) cos x (-cos x) cos x (- cos x+cos x)cos x (cos x- cos x+cos 6 x). cos 5 xcos x (cos x) (-sin x) (- sin x+sin x). sin x cos xsin x cos x sin x (-sin x)(sin x-sin 5 x) tan x cot x cot x - tan x tan x # cot x + # - cot x - tan x a > - + > - b sin x - cos x - sin x + + cos x + +csc x sec x +. Tis involves rewriting a -b as (a-b)(a +ab+b ), were a and b sin x sec x cos x

7 Section 5. Proving Trigonometric Identities 09 tan x tan x cos x - tan x # + - tan x cos x cos x - sin x cos x + sin x + cos x - sin x cos x - sin x + cos x + sin x cos x sin x - cos x cos x(cos x)()(-sin x)() 50. sec x(sec x)(sec x)(+tan x)(sec x) 5. sin 5 x(sin x)()(sin x) () (-cos x) () (- cos x+cos x)() + 5. (b) divide troug by : sec x+tan x (d) multily out: (+sec x)(-) -+sec x-sec x # - cos x sin x -+ - # tan x. 5. (a) ut over a common denominator: sec x+csc x + a a b b a # sin x + cos x cos cos b x sin x x sin x sec x csc x. 55. (c) ut over a common denominator: sin x sec x. cos x 56. (e) multily and divide by : tan x + cot x sin x + cos x a + b. 57. (b) multily and divide by sec x+tan x: # sec x + tan x sec x + tan x sec x - tan x sec x + tan x sec x - tan x sec x + tan x. 58. False. Tere are numbers in te domain of bot sides of te equation for wic equality does not old, namely all negative real numbers. For examle, -, not. 59. True. If x is in te domain of bot sides of te equation, ten x 0. Te equation x x olds for all x 0, so it is an identity. 60. By te definition of identity, all tree must be true. Te answer is E. 6. A roof is - # cos x + sin x + Te answer is E. 6. One ossible roof: tan + sec sin cos + cos sin + cos sin + # sin - cos sin - sin - cos sin - -cos cos sin - -cos sin - cos - sin Te answer is C. 6. k must equal, so f(x) Z 0. Te answer is B. 6. ; cot x # 65. ; tan x # 66. ; + csc x + sec x > > sin x+cos x csc x cot x csc x > >sin x 67. ; - - sec x > cos x - cos x sin x - sin x sin x sin x sin x 68. ;. tan x > 69. ; (sec x)(-sin x) a (cos x) b 70. Since te sum of te logaritms is te logaritm of te roduct, and since te roduct of te absolute values of all six basic trig functions is, te logaritms sum to ln, wic is 0.

8 0 Cater 5 Analytic Trigonometry 7. If A and B are comlementary angles, ten sin A+sin Bsin A+sin ( /-A) sin A+cos A 7. Ceck Exercises 5 for correct identities. 7. Multily and divide by -sin t under te radical: - sin t # - sin t - sin t C + sin t - sin t C - sin t - sin t ƒ - sin t ƒ since a ƒ a ƒ. C cos t ƒ cos t ƒ Now, since -sin t 0, we can disense wit te absolute value in te numerator, but it must stay in te denominator. 7. Multily and divide by +cos t under te radical: + cos t # + cos t + cos t C - cos t + cos t C - cos t + cos t ƒ + cos t ƒ since a ƒ a ƒ. C sin t ƒ sin t ƒ Now, since +cos t 0, we can disense wit te absolute value in te numerator, but it must stay in te denominator. 75. sin 6 x+cos 6 x(sin x) +cos 6 x (-cos x) +cos 6 x (- cos x+ cos x-cos 6 x)+cos 6 x - cos x(-cos x)- cos x sin x. 76. Note tat a -b (a-b)(a +ab+b ). Also note tat a +ab+b a +ab+b -ab (a+b) -ab. Taking acos x and bsin x, we ave cos 6 x-sin 6 x (cos x-sin x)(cos x+cos x sin x+sin x) (cos x-sin x)[(cos x+sin x) -cos x sin x] (cos x-sin x)(-cos x sin x). 77. One ossible roof: ln tan x ln ƒ ƒ ƒ ƒ ln -ln. 78. One ossible roof: ln sec +tan +ln sec -tan ln sec -tan ln (a) Tey are not equal. Sown is te window [,,] by [, ]; graing on nearly any viewing window does not sow any aarent difference but using TRACE, one finds tat te y coordinates are not identical. Likewise, a table of values will sow sligt differences; for examle, wen x, y wile y [, ] by [, ] (b) One coice for is 0.00 (sown). Te function y is a combination of tree sinusoidal functions (000 sin(x+0.00), 000, and ), all wit eriod. [, ] by [ 0.00, 0.00] 80. (a) cos x-sin x (e x +e x ) - (e x -e x ) [e x ++e x -(e x -+e x )] (). sin x cos x - sin x (b) -tan x- cos x cos x, using te result from (a). Tis equals sec x. cos x cos x cos x - sin x (c) cot x- - sin x sin x, using te result from (a). Tis equals csc x. sin x 8. In te decimal window, te x coordinates used to lot te gra on te calculator are (e.g.) 0, 0., 0., 0., etc. tat is, xn/0, were n is an integer. Ten 0 x n, and te sine of integer multiles of is 0; terefore, +sin 0 x+sin n+0. However, for oter coices of x, suc as x, we ave +sin 0 x+sin 0 Z. Section 5. Sum and Difference Identities Exloration. sin u + v -, sin u + sin v. No.. cos u + v, cos u + cos v. No.. tan > + > -, tan > + tan >. (Many oter answers are ossible.) Quick Review # # No. fx + fy ln x + ln y lnxy fxy Z fx + y

9 Section 5. Sum and Difference Identities 8. No. fx + y e x + y e x e y 9. Yes. fx + y x + y x + y 0. No. fx + y x + y + 0 Section 5. Exercises. sin 5 sin5-0 sin 5 cos 0 - cos 5 sin 0. tan 5 tan5-0 - > + > sin 75 sin5 + 0 sin 5 cos 0 + cos 5 sin 0. cos 75 cos5 + 0 cos 5 cos 0 - sin 5 sin 0 5. cos sin sin cos a - b cos cos + 6. tan> - tan> 7. tan 5 tan a - b + tan> tan> tan> + tan> 8. tan tan a + b - tan> tan> fx fy Z fx + y fx + fy fx + y Z fx + fy # - # 6 - # + # 6 + # - # 6 - # + # + 6 sin 7 sin a + b sin cos + # + # 6 + cos 7 cos a b cos 5 6 cos + 0. sin a- b sin a 6 - b sin 6 cos tan 5 - tan 0 + tan 5 tan 0 cos sin sin 5 6 sin - # + # cos 6 sin # - # In #, matc te given exression wit te sum and difference identities.. sin - 7 sin 5. cos9-8 cos 76. sin a b sin 0. sin a - b sin 7 5. tan tan tan a 5-7. cos a 7 - x b cos a x - 7 b 8. cos a x + 7 b 9. sinx - x 0. cos7y + y cos 0y. tany + x. tana - b. b tan - 5 sin a x - b cos - sin # 0 - # -. Using te difference identity for te tangent function, we encounter tan, wic is undefined. However, we can comute tan a x - sinx - > b. From #, cosx - > sin a x -. Since te cosine function is even, b - cos a x - (see Examle, b cos a - x b - or #5). Terefore tis simlifies to. -cot x cos a x - b cos + sin # 0 + # Te simlest way is to note tat a, so tat - x b - y - x - y - x + y cos ca. Now use - x b - y d cos c - x + yd Examle to conclude tat cos c - x + y d sinx + y. 7. sin a x + 6 b cos 6 + sin 6 # + # 8. cos a x - b cos + sin # + # +

10 Cater 5 Analytic Trigonometry 9. tan a + b tan + tan> - tan tan> + tan - tan 0. cos a + b cos cos - sin sin cos # 0 - sin u # -sin. Equations B and F.. Equations C and E.. Equations D and H.. Equations A and G. 5. Rewrite as - 0; te left side equals sin(x-x), so xn, n an integer. 6. Rewrite as cos x -sin x 0; te left side equals cos(x+x), so x ; ten + n x an integer. 8 + n, n 7. sin a - u b sin cos u - cos sin u # cos u - 0 # sin u cos u. 8. Using te difference identity for te tangent function, we encounter tan, wic is undefined. However, we can comute tan a sin> - u - u b cos u cot u. cos> - u sin u Or, use #, and te fact tat te tangent function is odd. 9. cot a cos> - u - u b sin u tan u using sin> - u cos u te first two cofunction identities. 0. sec a csc u using te - u b cos> - u sin u first cofunction identity.. csc a sec u using te - u b sin> - u cos u second cofunction identity.. cos a x + cos a b - sin a b b # 0 - # tan + - tan # -. To write y + in te form y a sinbx + c, rewrite te formula using te formula for te sine of a sum: y asin bx cos c + cos bx sin c a sin bx cos c + a cos bx sin c a cos csin bx + a sin ccos bx. Ten comare te coefficients: a cos c, b, a sin c. Solve for a as follows: a cos c + a sin c + a cos c + a sin c 5 a cos c + sin c 5 a 5 a ;5 If we coose a to be ositive, ten cos c >5 and sin c >5. c cos - >5 sin - >5. So te sinusoid is y 5 sinx + cos - >5 L 5 sinx Follow te stes sown in Exercise (using te formula for te sine of a difference) to comare te coefficients in y a cos csin bx - a sin ccos bx to te coefficients in y 5 - : a cos c 5,b, a sin c. Solve for a as follows: a cos c + a sin c 5 + a cos c + sin c 69 a ; If we coose a to be ositive, ten cos c 5> and sin c >. So te sinusoid is y sinx - cos - 5> L sinx Follow te stes sown in Exercise to comare te coefficients in y a cos csin bx + a sin ccos bx to te coefficients in y cos x + sin x: a cos c, b, a sin c. Solve for a as follows: a cos c + a sin c + a cos c + sin c 5 a ;5 If we coose a to be ositive, ten cos c > 5 and sin c > 5. So te sinusoid is y 5 sinx - cos - > 5 L.6 sinx Follow te stes sown in Exercise to comare te coefficients in y a cos csin bx + a sin ccos bx to te coefficients in y : a cos c -, b, a sin c. Solve for a as follows: a cos c + a sin c - + a cos c + sin c a ; If we coose a to be negative, ten cos c > and sin c ->. So te sinusoid is y - - cos - > sinx sin(x-y)+sin(x+y) ( cos y- sin y) + ( cos y+ sin y) cos y 8. cos(x-y)+cos(x+y) ( cos y+ sin y) + ( cos y- sin y) cos y 9. cos xcos[(x+x)+x] cos(x+x) -sin(x+x) ( - ) -( + ) cos x-sin x - sin x cos x- sin x 50. sin usin[(u+u)+u]sin(u+u) cos u+ cos(u+u) sin u(sin u cos u+cos u sin u) cos u+ (cos u cos u-sin u sin u) sin u cos u sin u+ cos u sin u-sin u cos u sin u-sin u 5. cos x+cos(x+x)+cos(x-x); use #8 wit x relaced wit x and y relaced wit x. 5. sin x+sin(x+x)+sin(x-x); use #7 wit x relaced wit x and y relaced wit x.

11 Section 5. Sum and Difference Identities 5. tan(x+y) tan(x-y) tan x + tan y tan x - tan y a a - tan x tan y b # + tan x tan y b tan x - tan y since bot te numerator and - tan x tan y denominator are factored forms for differences of squares. 5. tan 5u tan utan(u+u) tan(u-u); use #5 wit xu and yu. + y y cos y + sin y cos y - sin y cos y + sin y > cos y # cos y - sin y > cos y cos y> cos y + sin y> cos y cos y> cos y - sin y> cos y > + sin y>cos y > - sin y>cos y tan x + tan y tan x - tan y 56. True. If B -A, ten cos A+cos B cos A+cos ( -A) cos A+cos cos A+sin sin A cos A+( ) cos A+(0) sin A False. For examle, cos +cos 0, but and are not sulementary. And even toug cos ( /)+cos ( /)0, / is not sulementary wit itself. 58. If cos A cos Bsin A sin B, ten cos (A+B) cos A cos B-sin A sin B0. Te answer is A. 59. y + sin (x+x)sin x. Te answer is A. 60. Sin 5 sin5-0 sin 5 cos 0 - cos 5 sin 0 a b - a b 6 - Te answer is D. tan u + tan v 6. For all u, v, tanu + v Te answer is B. - tan u tan v. sinu + v 6. tan(u+v) cosu + v sin u cos v + cos u sin v cos u cos v - sin u sin v sin u cos v cos u sin v + cos u cos v cos u cos v cos u cos v sin u sin v - cos u cos v cos u cos v sin u cos u + sin v cos v sin u sin v - cos u cos v tan u + tan v - tan u tan v sinu - v 6. tan(u-v) cosu - v sin u cos v - cos u sin v cos u cos v + sin u sin v sin u cos v cos u cos v cos u cos v cos u cos v sin u cos u - sin v cos v sin u sin v + cos u cos v tan u - tan v + tan u tan v 6. Te identity would involve tan a wic does not exist. b, sin a x + b tan a x + b cos + sin cos - sin -cot x 65. Te identity would involve tan a, wic does not exit. b tan a x - b sin a x - cos - sin cos + sin cos a x + b # 0 + # # 0 - # b cos a x - b - cos u sin v cos u cos v + sin u sin v cos u cos v # 0 - # # 0 + # -cot x sinx + - cos + sin cos - + sin a cos - b + sin

12 Cater 5 Analytic Trigonometry cosx + - cos - sin cos - - sin a cos - b - sin 68. Te coordinates of all oints must be a cos a k k b, sin a for k0,,,»,. We only bb need to find te coordinates of tose oints in Quadrant I, because te remaining oints are symmetric. We already know te coordinates for te cases wen k0,,,, 6 since tese corresond to te secial angles. k: cos a b cos a - b cos a b cos a b 6 - k5: cos a 5 b cos a - b cos a b cos a b + sin a b sin a b - # + sin a b cos a b - sin a b cos a b # - # a b Coordinates in te first quadrant are (, 0), a sin a 5 b sin a - b a, 6 - b, a,, sin a b sin a b # + # + 6 sin a b sin a - b sin a b cos a b sin a b cos a b # - # # b, a, b, a, b, + 6 b, 0, 69. sina + B sin - C sin cos C - cos sin C 0 # cos C - - sin C sin C 70. cos Ccos( -(A+B)) cos cos(a+b)+sin sin(a+b) ( )(cos A cos B-sin A sin B) + 0 # sina + B sin A sin B-cos A cos B sin A 7. tan A+tan B+tan C cos A + sin B cos B + sin C cos C sin Acos B cos C + sin Bcos A cos C cos A cos B cos C sin Ccos A cos B + cos A cos B cos C cos Csin A cos B + cos A sin B + sin Ccos A cos B cos A cos B cos C cos C sina + B + sin CcosA + B + sin A sin B cos A cos B cos C cos C sin - C + sin Ccos - C + sin A sin B cos A cos B cos C cos C sin C + sin C -cos C + sin C sin A sin B cos A cos B cos C sin A sin B sin C cos A cos B cos C tan A tan B tan C 7. cos A cos B cos C-sin A sin B cos C -sin A cos B sin C-cos A sin B sin C cos A(cos B cos C-sin B sin C) -sin A(sin B cos C+cos B sin C) cos A cos (B+C)-sin A sin(b+c) cos(a+b+c) cos 7. Tis equation is easier to deal wit after rewriting it as cos 5x +sin 5x sin x0. Te left side of tis equation is te exanded form of cos(5x-x), wic of course equals ; te gra sown is simly y. Te equation 0 is easily solved on te interval [, ]: x ; or x ;. Te original gra is so crowded tat one cannot see were crossings occur. [, ] by [.,.] 7. xa cos t a c cos a T b cos d - t a cos d cos a ( a sin d) sin T b B B in + B ref E 0 x cos a t - c b + E 0 x cos a t + c c b c E 0 x a cos t cos c c + cos t cos x c E 0 c a t T + d b sin a t T b sin d d + sin t sin x c x - sin t sin c b a t T b x a cos t cos c b E 0 x cos t cos c c

13 Section 5. Multile-Angle Identities 5 Section 5. Multile-Angle Identities Exloration. sin 8 - cos> - > # -. sin. 8 ; - - B We take te ositive square root because is a firstquadrant angle. 8. sin cos9> - > # - is a tird- 9. sin. 8 ; C We take te negative square root because 8 quadrant angle. Quick Review 5.. tan x wen x +n, n an integer. tan x wen x - +n, n an integer. Eiter 0 or. Te latter imlies te former, so x, n an integer. + n. Eiter 0 or. Te latter imlies te former, so xn, n an integer. 5. wen x - +n, n an integer 6. wen x +n, n an integer 7. Eiter or -. Ten x or 6 + n 5 x or x ;, n an integer. 6 + n + n 8. Eiter or. Ten x + n or x ;, n an integer. + n 9. Te traezoid can be viewed as a rectangle and two triangles; te area is ten A()()+ ()()+ ()() 0.5 square units. 0. View te triangle as two rigt triangles wit yotenuse, one leg, and te oter leg te eigt equal to - 8 Section 5. Exercises. cos ucos(u+u)cos u cos u-sin u sin u cos u-sin u. Starting wit te result of #: cos ucos u-sin u cos u-(-cos u) cos u-. Starting wit te result of #: cos ucos u-sin u (-sin u)-sin u- sin u tan u + tan u. tan utan(u+u) - tan u tan u tan u - tan u , so (-)0; 0 or wen x0 or x ( -)0, So 0 or wen x0,,., or 5 7. sin x+-0, so ( -)(+) 0; or wen x, 6 5 x or x cos x--0, so ( +)(-) 0; - or wen x0, x or x 9. -, so, or Ten 0 or 0 (but Z 0), so x0, x, x, x, 5 7 x or x. ; 5 0. cos x--0, so. Only - 5 is in [, ], so xcos a - 5 b.70 or x-cos a - 5 b.06 For #, any one of te last several exressions given is an answer to te question. In some cases, oter answers are ossible, as well.. sin +cos sin cos +cos (cos )( sin +). sin +cos sin cos +cos -sin sin cos + cos - sin cos +- sin. sin +cos sin cos +cos cos -sin sin sin cos +(cos -sin ) cos - sin cos sin cos +cos - sin cos sin cos + cos - cos

14 6 Cater 5 Analytic Trigonometry. sin +cos sin cos +cos sin +cos -sin sin cos +(cos -sin ) sin +cos -sin sin cos -sin +cos -sin 5. sin xsin (x) 6. cos 6xcos (x) cos x- 7. csc x # csc x tan x sin x 8. cot x tan x tan x - tan x tan x tan x - cot x-tan x 9. sin x + cos x +( cos x-) ()( cos x-) 0. sin x + cos x+(- sin x) ()( cos x+- sin x) ()(- sin x). cos (x)- sin x -( ) -8 sin x cos x. sin xsin (x) ( )( cos x-) ( )( cos x-). cos x+-0, so or, 5 x, x or x. +- sin x+0, so 7 or -, x, x, or x cos x - (- sin x) -( ) - sin x - sin x - sin x Tus te left side can be written as ()(- sin x). Tis equals 0 in [0, ) wen x x, x 5, x, or x 7, x,. 6. Using #9, tis become cos x0, so x0, x., x, or x 7. +sin x+ ()(+ )0. Ten 0 or - ; te solutions in [0, ) are x0, x,, x x., x, x, x, or x 5 8. Wit ux, tis becomes cos u+cos u0, te same as #. Tis means u, u, u 5, etc. i.e., x. Ten x 6, x, x 5 + n 6, x 7. 6, x, x 6 9. Using results from #5, -cos x ( )-(- sin x ) ()( sin x+ -)0. 0 wen x or x, wile te second - ; 5 factor equals zero wen. It turns out as can be observed by noting, e.g., tat sin a b tat tis means x0., x0.9, x., or x Using #, te left side can be rewritten as cos x-sin x+cos x-sin x. Relacing cos x wit -sin x gives sin x- sin x+ + (+)( sin x+ +). Tis equals 0 wen a x, and b ; 5 wen. Tese values turn out to be x0., x0.7, x., and x.9, as can be observed by noting, e.g., tat sin a - 5 b cos 0. sin 5 B a - B b -. Since sin 5 7 0, take te ositive square root. - cos 90. tan 95 - > -. Note sin 90 > tat tan 95 tan 5. + cos 50. cos 75 C a - C b -. Since cos , take te ositive square root. 5 - cos 5>6. sin C a + C b 5 +. Since sin 7 0, take te ositive square root tan. - cos7>6 + > - - sin7>6 -> + cos> 6. cos C a + 8 C b +. Since cos 7 0, take te ositive 8 square root.

15 Section 5. Multile-Angle Identities 7 7. (a) Starting from te rigt side: - cos u ( sin u)sin u. - - sin u (b) Starting from te rigt side: + cos u cos u. cos u + cos u - 8. (a) tan sin u u cos u - cos u> - cos u + cos u> + cos u (b) Te equation is false wen tan u is a negative number. It would be an identity if it were written as - cos u tan u. B + cos u 9. sin x(sin x) c - d - + c d (- +) 8 0. cos x cos x # + +. sin x sin x # - -. sin 5 x()(sin x) () c - d - + c d Alternatively, take sin 5 x sin x and aly te result of #9. -. cos x, so cos x+-0. Ten or. In te interval [0, ), x, 5 x, or x. General solution: +n or x+n, n an integer.. -cos + x, so cos x+-0. Ten or. In te interval [0, ), 5 x, x, orx. General solution: x +n or x+n, n an integer. 5. Te rigt side equals tan (x/); te only way tat tan(x/) tan (x/) is if eiter tan(x/)0 or tan(x/). In [0, ), tis aens wen x0 or x. Te general solution is xn or x n, n an integer cos x -, so cos x+-0, or ( -)(+)0. Ten or. Let Åcos a In te interval b [0, ), xå, x, or x-å. General solution: x_å+n or x+n, n an integer. 7. False. For examle, f(x) as eriod and g(x) as eriod, but te roduct f(x)g(x) as eriod. 8. True. cos x sin a - a x - bb + Te last exression is in te form for a sinusoid. 9. f(x) f(x)g(x). Te answer is D sin.5 sin a 5 b sin a - x b + C - cos 5 C - > C - - Te answer is E. 5. or 0 or 0 x 6 or 5 x 6 or Te answer is E.

16 8 Cater 5 Analytic Trigonometry 5. sin x-cos x- cos x, wic as te same eriod as te function cos x, namely. Te answer is C. 5. (a) In te figure, te triangle wit side lengts x/ and R is a rigt triangle, since R is given as te erendicular distance. Ten te tangent of te angle / is te ratio oosite over adjacent : tan Solving for x x> R gives te desired equation. Te central angle is /n since one full revolution of radians is divided evenly into n sections. u (b) 5.87 R tan, were /, so R 5.87/( tan ) R0. 5. (a) d A x D x E x Call te center of te rombus E. Consider rigt ABE, wit legs d / and d /, and yotenuse lengt x. jabe as measure /, and using sine o adj equals and cosine equals, we ave y y and sin. d > d cos d > d x x x x (b) Use te double angle formula for te sine function: sin sin a b sin cos d # d x x d d x 55. (a) B x C d ft θ θ ft ft Te volume is 0 ft times te area of te end. Te end is made u of two identical triangles, wit area (sin ) (cos ) eac, and a rectangle wit area () (cos ). Te total volume is ten 0 # (sin cos +cos )0 (cos )(+sin ). Considering only -, te maximum value occurs wen 0.5 (in fact, it aens exactly at ). Te maximum value is about.99 ft (a) x y 00 (x, y) x y Te eigt of te tunnel is y, and te widt is x, so te area is xy. Te x- and y-coordinates of te vertex are 0 cos and 0 sin, so te area is (0 cos )(0 sin )00( cos sin )00 sin. (b) Considering 0, te maximum area occurs wen, or about Tis gives x0 cos, or about., for a widt of 0 about 8.8, and a eigt of y 0 L. 57. csc u sin u sin u cos u # # sin u cos u csc u sec u 58. cot u tan u - tan u tan u a - tan u tan u b a cot u cot u b cot u - cot u 59. sec u cos u - sin u u a - sin u bacsc csc u b csc u csc u sec u cos u cos u - u a cos u - basec sec u b sec u - sec u 6. sec u cos u cos u - sin u u csc u a cos u - sin u basec sec u csc u b sec u csc u csc u - sec u 6. Te second equation cannot work for any values of x for wic 6 0, since te square root cannot be negative. Te first is correct since a double angle identity for te cosine gives - sin x; solving for gives sin x -, so tat -. Te absolute value of bot A sides removes te _. 6. (a) Te following is a scatter lot of te days ast January as x-coordinates (L) and te time (in our mode) as y-coordinates (L) for te time of day tat astronomical twiligt began in norteastern Mali in 005. [ 0, 70] by [ 60, 60]

Chapter 5 Analytic Trigonometry

Chapter 5 Analytic Trigonometry Section 5. Fundamental Identities 5 Chater 5 Analytic Trigonometry Section 5. Fundamental Identities Exloration. cos / sec, sec / cos, and tan sin / cos. sin / csc and tan / cot 3. csc / sin, cot / tan,

More information

5.3 Sum and Difference Identities

5.3 Sum and Difference Identities SECTION 5.3 Sum and Difference Identities 21 5.3 Sum and Difference Identities Wat you ll learn about Cosine of a Difference Cosine of a Sum Sine of a Difference or Sum Tangent of a Difference or Sum Verifying

More information

Trigonometry Review Page 1 of 14

Trigonometry Review Page 1 of 14 Trigonometry Review Page of 4 Appendix D has a trigonometric review. This material is meant to outline some of the proofs of identities, help you remember the values of the trig functions at special values,

More information

cos 2 x + sin 2 x = 1 cos(u v) = cos u cos v + sin u sin v sin(u + v) = sin u cos v + cos u sin v

cos 2 x + sin 2 x = 1 cos(u v) = cos u cos v + sin u sin v sin(u + v) = sin u cos v + cos u sin v Concepts: Double Angle Identities, Power Reducing Identities, Half Angle Identities. Memorized: cos x + sin x 1 cos(u v) cos u cos v + sin v sin(u + v) cos v + cos u sin v Derive other identities you need

More information

Math 1205 Trigonometry Review

Math 1205 Trigonometry Review Math 105 Trigonometry Review We begin with the unit circle. The definition of a unit circle is: x + y =1 where the center is (0, 0) and the radius is 1. An angle of 1 radian is an angle at the center of

More information

Chapter 5 Analytic Trigonometry

Chapter 5 Analytic Trigonometry Section 5. Fundmentl Identities 03 Chter 5 Anlytic Trigonometry Section 5. Fundmentl Identities Exlortion. cos > sec, sec > cos, nd tn sin > cos. sin > csc nd tn > cot 3. csc > sin, cot > tn, nd cot cos

More information

Trigonometric Functions of any Angle

Trigonometric Functions of any Angle Trigonometric Functions of an Angle Wen evaluating an angle θ, in standard position, wose terminal side is given b te coordinates (,), a reference angle is alwas used. Notice ow a rigt triangle as been

More information

Math 102 Key Ideas. 1 Chapter 1: Triangle Trigonometry. 1. Consider the following right triangle: c b

Math 102 Key Ideas. 1 Chapter 1: Triangle Trigonometry. 1. Consider the following right triangle: c b Math 10 Key Ideas 1 Chapter 1: Triangle Trigonometry 1. Consider the following right triangle: A c b B θ C a sin θ = b length of side opposite angle θ = c length of hypotenuse cosθ = a length of side adjacent

More information

Chapter 4 Trigonometric Functions

Chapter 4 Trigonometric Functions Chapter 4 Trigonometric Functions Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8 Radian and Degree Measure Trigonometric Functions: The Unit Circle Right Triangle Trigonometry

More information

MATH 1040 CP 15 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MATH 1040 CP 15 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 1040 CP 15 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) (sin x + cos x) 1 + sin x cos x =? 1) ) sec 4 x + sec x tan x - tan 4 x =? ) ) cos

More information

Trigonometry. An Overview of Important Topics

Trigonometry. An Overview of Important Topics Trigonometry An Overview of Important Topics 1 Contents Trigonometry An Overview of Important Topics... 4 UNDERSTAND HOW ANGLES ARE MEASURED... 6 Degrees... 7 Radians... 7 Unit Circle... 9 Practice Problems...

More information

6.4 & 6.5 Graphing Trigonometric Functions. The smallest number p with the above property is called the period of the function.

6.4 & 6.5 Graphing Trigonometric Functions. The smallest number p with the above property is called the period of the function. Math 160 www.timetodare.com Periods of trigonometric functions Definition A function y f ( t) f ( t p) f ( t) 6.4 & 6.5 Graphing Trigonometric Functions = is periodic if there is a positive number p such

More information

Chapter 5 Analytic Trigonometry

Chapter 5 Analytic Trigonometry Section 5. Fundmentl Identities 03 Chter 5 Anlytic Trigonometry Section 5. Fundmentl Identities Exlortion. cos / sec, sec / cos, nd tn sin / cos. sin / csc nd tn / cot 3. csc / sin, cot / tn, nd cot cos

More information

( x "1) 2 = 25, x 3 " 2x 2 + 5x "12 " 0, 2sin" =1.

( x 1) 2 = 25, x 3  2x 2 + 5x 12  0, 2sin =1. Unit Analytical Trigonometry Classwork A) Verifying Trig Identities: Definitions to know: Equality: a statement that is always true. example:, + 7, 6 6, ( + ) 6 +0. Equation: a statement that is conditionally

More information

Verifying Trigonometric Identities

Verifying Trigonometric Identities 25 PART I: Solutions to Odd-Numbered Exercises and Practice Tests a 27. sina =- ==> a = c. sin A = 20 sin 28 ~ 9.39 c B = 90 -A = 62 b cosa=- ==~ b=c.cosa~ 7.66 c 29. a = ~/c 2 - b 2 = -~/2.542-6.22 ~

More information

Trigonometric identities

Trigonometric identities Trigonometric identities An identity is an equation that is satisfied by all the values of the variable(s) in the equation. For example, the equation (1 + x) = 1 + x + x is an identity. If you replace

More information

Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions. By Dr. Mohammed Ramidh

Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions. By Dr. Mohammed Ramidh Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions By Dr. Mohammed Ramidh Trigonometric Functions This section reviews the basic trigonometric functions. Trigonometric functions are important because

More information

Algebra2/Trig Chapter 10 Packet

Algebra2/Trig Chapter 10 Packet Algebra2/Trig Chapter 10 Packet In this unit, students will be able to: Convert angle measures from degrees to radians and radians to degrees. Find the measure of an angle given the lengths of the intercepted

More information

2. Be able to evaluate a trig function at a particular degree measure. Example: cos. again, just use the unit circle!

2. Be able to evaluate a trig function at a particular degree measure. Example: cos. again, just use the unit circle! Study Guide for PART II of the Fall 18 MAT187 Final Exam NO CALCULATORS are permitted on this part of the Final Exam. This part of the Final exam will consist of 5 multiple choice questions. You will be

More information

SECTION 1.5: TRIGONOMETRIC FUNCTIONS

SECTION 1.5: TRIGONOMETRIC FUNCTIONS SECTION.5: TRIGONOMETRIC FUNCTIONS The Unit Circle The unit circle is the set of all points in the xy-plane for which x + y =. Def: A radian is a unit for measuring angles other than degrees and is measured

More information

Chapter 6: Periodic Functions

Chapter 6: Periodic Functions Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a triangle, and related to points on a circle. We noticed how the x and y values

More information

1 Trigonometry. Copyright Cengage Learning. All rights reserved.

1 Trigonometry. Copyright Cengage Learning. All rights reserved. 1 Trigonometry Copyright Cengage Learning. All rights reserved. 1.2 Trigonometric Functions: The Unit Circle Copyright Cengage Learning. All rights reserved. Objectives Identify a unit circle and describe

More information

Math 180 Chapter 6 Lecture Notes. Professor Miguel Ornelas

Math 180 Chapter 6 Lecture Notes. Professor Miguel Ornelas Math 180 Chapter 6 Lecture Notes Professor Miguel Ornelas 1 M. Ornelas Math 180 Lecture Notes Section 6.1 Section 6.1 Verifying Trigonometric Identities Verify the identity. a. sin x + cos x cot x = csc

More information

Section 5.1 Angles and Radian Measure. Ever Feel Like You re Just Going in Circles?

Section 5.1 Angles and Radian Measure. Ever Feel Like You re Just Going in Circles? Section 5.1 Angles and Radian Measure Ever Feel Like You re Just Going in Circles? You re riding on a Ferris wheel and wonder how fast you are traveling. Before you got on the ride, the operator told you

More information

MHF4U. Advanced Functions Grade 12 University Mitchell District High School. Unit 4 Radian Measure 5 Video Lessons

MHF4U. Advanced Functions Grade 12 University Mitchell District High School. Unit 4 Radian Measure 5 Video Lessons MHF4U Advanced Functions Grade 12 University Mitchell District High School Unit 4 Radian Measure 5 Video Lessons Allow no more than 1 class days for this unit! This includes time for review and to write

More information

F.TF.A.2: Reciprocal Trigonometric Relationships

F.TF.A.2: Reciprocal Trigonometric Relationships Regents Exam Questions www.jmap.org Name: If sin x =, a 0, which statement must be true? a ) csc x = a csc x = a ) sec x = a sec x = a 5 The expression sec 2 x + csc 2 x is equivalent to ) sin x ) cos

More information

Unit 3 Unit Circle and Trigonometry + Graphs

Unit 3 Unit Circle and Trigonometry + Graphs HARTFIELD PRECALCULUS UNIT 3 NOTES PAGE 1 Unit 3 Unit Circle and Trigonometry + Graphs (2) The Unit Circle (3) Displacement and Terminal Points (5) Significant t-values Coterminal Values of t (7) Reference

More information

Trigonometric Integrals Section 5.7

Trigonometric Integrals Section 5.7 A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Trigonometric Integrals Section 5.7 Dr. John Ehrke Department of Mathematics Spring 2013 Eliminating Powers From Trig Functions

More information

Algebra 2/Trigonometry Review Sessions 1 & 2: Trigonometry Mega-Session. The Unit Circle

Algebra 2/Trigonometry Review Sessions 1 & 2: Trigonometry Mega-Session. The Unit Circle Algebra /Trigonometry Review Sessions 1 & : Trigonometry Mega-Session Trigonometry (Definition) - The branch of mathematics that deals with the relationships between the sides and the angles of triangles

More information

Chapter 6: Periodic Functions

Chapter 6: Periodic Functions Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a triangle, and related to points on a circle. We noticed how the x and y values

More information

Jim Lambers Math 1B Fall Quarter Final Exam Practice Problems

Jim Lambers Math 1B Fall Quarter Final Exam Practice Problems Jim Lambers Math 1B Fall Quarter 2004-05 Final Exam Practice Problems The following problems are indicative of the types of problems that will appear on the Final Exam, which will be given on Monday, December

More information

Section 7.7 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions

Section 7.7 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions Section 7.7 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions In this section, we will look at the graphs of the other four trigonometric functions. We will start by examining the tangent

More information

Chapter 1 and Section 2.1

Chapter 1 and Section 2.1 Chapter 1 and Section 2.1 Diana Pell Section 1.1: Angles, Degrees, and Special Triangles Angles Degree Measure Angles that measure 90 are called right angles. Angles that measure between 0 and 90 are called

More information

Multiple-Angle and Product-to-Sum Formulas

Multiple-Angle and Product-to-Sum Formulas Multiple-Angle and Product-to-Sum Formulas MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 011 Objectives In this lesson we will learn to: use multiple-angle formulas to rewrite

More information

Solutions to Assignment #07 MATH radians = = 7 (180 ) = 252 : 5

Solutions to Assignment #07 MATH radians = = 7 (180 ) = 252 : 5 Solutions to Assignment #0 MATH 0 Precalculus Section. (I) Comlete Exercises #b & #0b on. 0. (#b) We robabl need to convert this to degrees. The usual wa of writing out the conversion is to alwas multil

More information

Module 5 Trigonometric Identities I

Module 5 Trigonometric Identities I MAC 1114 Module 5 Trigonometric Identities I Learning Objectives Upon completing this module, you should be able to: 1. Recognize the fundamental identities: reciprocal identities, quotient identities,

More information

PREREQUISITE/PRE-CALCULUS REVIEW

PREREQUISITE/PRE-CALCULUS REVIEW PREREQUISITE/PRE-CALCULUS REVIEW Introduction This review sheet is a summary of most of the main topics that you should already be familiar with from your pre-calculus and trigonometry course(s), and which

More information

The reciprocal identities are obvious from the definitions of the six trigonometric functions.

The reciprocal identities are obvious from the definitions of the six trigonometric functions. The Fundamental Identities: (1) The reciprocal identities: csc = 1 sec = 1 (2) The tangent and cotangent identities: tan = cot = cot = 1 tan (3) The Pythagorean identities: sin 2 + cos 2 =1 1+ tan 2 =

More information

Double-Angle, Half-Angle, and Reduction Formulas

Double-Angle, Half-Angle, and Reduction Formulas Double-Angle, Half-Angle, and Reduction Formulas By: OpenStaxCollege Bicycle ramps for advanced riders have a steeper incline than those designed for novices. Bicycle ramps made for competition (see [link])

More information

Trigonometric Functions. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Trigonometric Functions. Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 Trigonometric Functions Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 1.4 Using the Definitions of the Trigonometric Functions Reciprocal Identities Signs and Ranges of Function Values Pythagorean

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MATH 1113 Exam III PRACTICE TEST FALL 2015 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact values of the indicated trigonometric

More information

Chapter 6: Periodic Functions

Chapter 6: Periodic Functions Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a right triangle, and related to points on a circle. We noticed how the x and y

More information

MATH 1113 Exam 3 Review. Fall 2017

MATH 1113 Exam 3 Review. Fall 2017 MATH 1113 Exam 3 Review Fall 2017 Topics Covered Section 4.1: Angles and Their Measure Section 4.2: Trigonometric Functions Defined on the Unit Circle Section 4.3: Right Triangle Geometry Section 4.4:

More information

Basic Trigonometry You Should Know (Not only for this class but also for calculus)

Basic Trigonometry You Should Know (Not only for this class but also for calculus) Angle measurement: degrees and radians. Basic Trigonometry You Should Know (Not only for this class but also for calculus) There are 360 degrees in a full circle. If the circle has radius 1, then the circumference

More information

# 1,5,9,13,...37 (hw link has all odds)

# 1,5,9,13,...37 (hw link has all odds) February 8, 17 Goals: 1. Recognize trig functions and their integrals.. Learn trig identities useful for integration. 3. Understand which identities work and when. a) identities enable substitution by

More information

You found trigonometric values using the unit circle. (Lesson 4-3)

You found trigonometric values using the unit circle. (Lesson 4-3) You found trigonometric values using the unit circle. (Lesson 4-3) LEQ: How do we identify and use basic trigonometric identities to find trigonometric values & use basic trigonometric identities to simplify

More information

MATH STUDENT BOOK. 12th Grade Unit 5

MATH STUDENT BOOK. 12th Grade Unit 5 MATH STUDENT BOOK 12th Grade Unit 5 Unit 5 ANALYTIC TRIGONOMETRY MATH 1205 ANALYTIC TRIGONOMETRY INTRODUCTION 3 1. IDENTITIES AND ADDITION FORMULAS 5 FUNDAMENTAL TRIGONOMETRIC IDENTITIES 5 PROVING IDENTITIES

More information

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE)

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) Theory Class XI TARGET : JEE Main/Adv PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) MATHEMATICS Trigonometry SHARING IS CARING!! Want to Thank me? Share this Assignment with your friends and show

More information

cos sin sin 2 60 = 1.

cos sin sin 2 60 = 1. Name: Class: Date: Use the definitions to evaluate the six trigonometric functions of. In cases in which a radical occurs in a denominator, rationalize the denominator. Suppose that ABC is a right triangle

More information

Geometry Problem Solving Drill 11: Right Triangle

Geometry Problem Solving Drill 11: Right Triangle Geometry Problem Solving Drill 11: Right Triangle Question No. 1 of 10 Which of the following points lies on the unit circle? Question #01 A. (1/2, 1/2) B. (1/2, 2/2) C. ( 2/2, 2/2) D. ( 2/2, 3/2) The

More information

Find the exact values of the indicated trigonometric functions. Write fractions in lowest terms. 1)

Find the exact values of the indicated trigonometric functions. Write fractions in lowest terms. 1) MAC 1114 Review for Exam 1 Name Find the exact values of the indicated trigonometric functions. Write fractions in lowest terms. 1) 1) 12 20 16 Find sin A and cos A. 2) 2) 9 15 6 Find tan A and cot A.

More information

Unit 7 Trigonometric Identities and Equations 7.1 Exploring Equivalent Trig Functions

Unit 7 Trigonometric Identities and Equations 7.1 Exploring Equivalent Trig Functions Unit 7 Trigonometric Identities and Equations 7.1 Exploring Equivalent Trig Functions When we look at the graphs of sine, cosine, tangent and their reciprocals, it is clear that there will be points where

More information

Trigonometry. David R. Wilkins

Trigonometry. David R. Wilkins Trigonometry David R. Wilkins 1. Trigonometry 1. Trigonometry 1.1. Trigonometric Functions There are six standard trigonometric functions. They are the sine function (sin), the cosine function (cos), the

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 0 - Section 4. Unit Circle Trigonometr An angle is in standard position if its verte is at the origin and its initial side is along the positive ais. Positive angles are measured counterclockwise

More information

11.2 Areas of Trapezoids and Kites

11.2 Areas of Trapezoids and Kites Investigating g Geometry ACTIVITY Use before Lesson 11.2 11.2 Areas of Trapezoids and Kites MATERIALS grap paper straigtedge scissors tape Q U E S T I O N How can you use a parallelogram to find oter areas?

More information

Chapter 8. Analytic Trigonometry. 8.1 Trigonometric Identities

Chapter 8. Analytic Trigonometry. 8.1 Trigonometric Identities Chapter 8. Analytic Trigonometry 8.1 Trigonometric Identities Fundamental Identities Reciprocal Identities: 1 csc = sin sec = 1 cos cot = 1 tan tan = 1 cot tan = sin cos cot = cos sin Pythagorean Identities:

More information

Graphs of other Trigonometric Functions

Graphs of other Trigonometric Functions Graphs of other Trigonometric Functions Now we will look at other types of graphs: secant. tan x, cot x, csc x, sec x. We will start with the cosecant and y csc x In order to draw this graph we will first

More information

Copyright 2009 Pearson Education, Inc. Slide Section 8.2 and 8.3-1

Copyright 2009 Pearson Education, Inc. Slide Section 8.2 and 8.3-1 8.3-1 Transformation of sine and cosine functions Sections 8.2 and 8.3 Revisit: Page 142; chapter 4 Section 8.2 and 8.3 Graphs of Transformed Sine and Cosine Functions Graph transformations of y = sin

More information

Honors Algebra 2 w/ Trigonometry Chapter 14: Trigonometric Identities & Equations Target Goals

Honors Algebra 2 w/ Trigonometry Chapter 14: Trigonometric Identities & Equations Target Goals Honors Algebra w/ Trigonometry Chapter 14: Trigonometric Identities & Equations Target Goals By the end of this chapter, you should be able to Identify trigonometric identities. (14.1) Factor trigonometric

More information

Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan. Review Problems for Test #3

Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan. Review Problems for Test #3 Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan Review Problems for Test #3 Exercise 1 The following is one cycle of a trigonometric function. Find an equation of this graph. Exercise

More information

ASSIGNMENT ON TRIGONOMETRY LEVEL 1 (CBSE/NCERT/STATE BOARDS) Find the degree measure corresponding to the following radian measures :

ASSIGNMENT ON TRIGONOMETRY LEVEL 1 (CBSE/NCERT/STATE BOARDS) Find the degree measure corresponding to the following radian measures : ASSIGNMENT ON TRIGONOMETRY LEVEL 1 (CBSE/NCERT/STATE BOARDS) Find the degree measure corresponding to the following radian measures : (i) c 1 (ii) - c (iii) 6 c (iv) c 11 16 Find the length of an arc of

More information

Mathematics UNIT FIVE Trigonometry II. Unit. Student Workbook. Lesson 1: Trigonometric Equations Approximate Completion Time: 4 Days

Mathematics UNIT FIVE Trigonometry II. Unit. Student Workbook. Lesson 1: Trigonometric Equations Approximate Completion Time: 4 Days Mathematics 0- Student Workbook Unit 5 Lesson : Trigonometric Equations Approximate Completion Time: 4 Days Lesson : Trigonometric Identities I Approximate Completion Time: 4 Days Lesson : Trigonometric

More information

Center for Academic Excellence. Area and Perimeter

Center for Academic Excellence. Area and Perimeter Center for Academic Excellence Area and Perimeter Tere are many formulas for finding te area and perimeter of common geometric figures. Te figures in question are two-dimensional figures; i.e., in some

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Draw the given angle in standard position. Draw an arrow representing the correct amount of rotation.

More information

Math 3 Trigonometry Part 2 Waves & Laws

Math 3 Trigonometry Part 2 Waves & Laws Math 3 Trigonometry Part 2 Waves & Laws GRAPHING SINE AND COSINE Graph of sine function: Plotting every angle and its corresponding sine value, which is the y-coordinate, for different angles on the unit

More information

1 Trigonometric Identities

1 Trigonometric Identities MTH 120 Spring 2008 Essex County College Division of Mathematics Handout Version 6 1 January 29, 2008 1 Trigonometric Identities 1.1 Review of The Circular Functions At this point in your mathematical

More information

Solutions to Exercises, Section 5.6

Solutions to Exercises, Section 5.6 Instructor s Solutions Manual, Section 5.6 Exercise 1 Solutions to Exercises, Section 5.6 1. For θ = 7, evaluate each of the following: (a) cos 2 θ (b) cos(θ 2 ) [Exercises 1 and 2 emphasize that cos 2

More information

5.4 Multiple-Angle Identities

5.4 Multiple-Angle Identities 4 CHAPTER 5 Analytic Trigonometry 5.4 Multiple-Angle Identities What you ll learn about Double-Angle Identities Power-Reducing Identities Half-Angle Identities Solving Trigonometric Equations... and why

More information

Lecture-3 Amplitude Modulation: Single Side Band (SSB) Modulation

Lecture-3 Amplitude Modulation: Single Side Band (SSB) Modulation Lecture-3 Amplitude Modulation: Single Side Band (SSB) Modulation 3.0 Introduction. 3.1 Baseband Signal SSB Modulation. 3.1.1 Frequency Domain Description. 3.1. Time Domain Description. 3. Single Tone

More information

Name: Period: Date: Math Lab: Explore Transformations of Trig Functions

Name: Period: Date: Math Lab: Explore Transformations of Trig Functions Name: Period: Date: Math Lab: Explore Transformations of Trig Functions EXPLORE VERTICAL DISPLACEMENT 1] Graph 2] Explain what happens to the parent graph when a constant is added to the sine function.

More information

Mod E - Trigonometry. Wednesday, July 27, M132-Blank NotesMOM Page 1

Mod E - Trigonometry. Wednesday, July 27, M132-Blank NotesMOM Page 1 M132-Blank NotesMOM Page 1 Mod E - Trigonometry Wednesday, July 27, 2016 12:13 PM E.0. Circles E.1. Angles E.2. Right Triangle Trigonometry E.3. Points on Circles Using Sine and Cosine E.4. The Other Trigonometric

More information

Chapter 4/5 Part 2- Trig Identities and Equations

Chapter 4/5 Part 2- Trig Identities and Equations Chapter 4/5 Part 2- Trig Identities and Equations Lesson Package MHF4U Chapter 4/5 Part 2 Outline Unit Goal: By the end of this unit, you will be able to solve trig equations and prove trig identities.

More information

IMAGE ILLUMINATION (4F 2 OR 4F 2 +1?)

IMAGE ILLUMINATION (4F 2 OR 4F 2 +1?) IMAGE ILLUMINATION ( OR +?) BACKGROUND Publications abound wit two differing expressions for calculating image illumination, te amount of radiation tat transfers from an object troug an optical system

More information

Binary Search Tree (Part 2 The AVL-tree)

Binary Search Tree (Part 2 The AVL-tree) Yufei Tao ITEE University of Queensland We ave already learned a static version of te BST. In tis lecture, we will make te structure dynamic, namely, allowing it to support updates (i.e., insertions and

More information

Unit 6 Test REVIEW Algebra 2 Honors

Unit 6 Test REVIEW Algebra 2 Honors Unit Test REVIEW Algebra 2 Honors Multiple Choice Portion SHOW ALL WORK! 1. How many radians are in 1800? 10 10π Name: Per: 180 180π 2. On the unit circle shown, which radian measure is located at ( 2,

More information

Section 8.1 Radians and Arc Length

Section 8.1 Radians and Arc Length Section 8. Radians and Arc Length Definition. An angle of radian is defined to be the angle, in the counterclockwise direction, at the center of a unit circle which spans an arc of length. Conversion Factors:

More information

Right Triangle Trigonometry (Section 4-3)

Right Triangle Trigonometry (Section 4-3) Right Triangle Trigonometry (Section 4-3) Essential Question: How does the Pythagorean Theorem apply to right triangle trigonometry? Students will write a summary describing the relationship between the

More information

STRUCTURAL DESIGN ENGINEERING OF WOVEN FABRIC BY SOFT COMPUTING: PART I - PLAIN WEAVE

STRUCTURAL DESIGN ENGINEERING OF WOVEN FABRIC BY SOFT COMPUTING: PART I - PLAIN WEAVE AUTEX Researc Journal Vol. June AUTEX STRUCTURAL ESIGN ENGINEERING OF WOVEN FARIC Y SOFT COMPUTING: PART I - PLAIN WEAVE Rajes Misra ana Kremenakova.K. eera & Jiri Militky Faculty of Textile Engineering

More information

of the whole circumference.

of the whole circumference. TRIGONOMETRY WEEK 13 ARC LENGTH AND AREAS OF SECTORS If the complete circumference of a circle can be calculated using C = 2πr then the length of an arc, (a portion of the circumference) can be found by

More information

Unit 8 Trigonometry. Math III Mrs. Valentine

Unit 8 Trigonometry. Math III Mrs. Valentine Unit 8 Trigonometry Math III Mrs. Valentine 8A.1 Angles and Periodic Data * Identifying Cycles and Periods * A periodic function is a function that repeats a pattern of y- values (outputs) at regular intervals.

More information

3.2 Proving Identities

3.2 Proving Identities 3.. Proving Identities www.ck.org 3. Proving Identities Learning Objectives Prove identities using several techniques. Working with Trigonometric Identities During the course, you will see complex trigonometric

More information

1. Measure angle in degrees and radians 2. Find coterminal angles 3. Determine the arc length of a circle

1. Measure angle in degrees and radians 2. Find coterminal angles 3. Determine the arc length of a circle Pre- Calculus Mathematics 12 5.1 Trigonometric Functions Goal: 1. Measure angle in degrees and radians 2. Find coterminal angles 3. Determine the arc length of a circle Measuring Angles: Angles in Standard

More information

5-5 Multiple-Angle and Product-to-Sum Identities

5-5 Multiple-Angle and Product-to-Sum Identities Find the values of sin 2, cos 2, and tan 2 for the given value and interval. 1. cos =, (270, 360 ) Since on the interval (270, 360 ), one point on the terminal side of θ has x-coordinate 3 and a distance

More information

MATH Week 10. Ferenc Balogh Winter. Concordia University

MATH Week 10. Ferenc Balogh Winter. Concordia University MATH 20 - Week 0 Ferenc Balogh Concordia University 2008 Winter Based on the textbook J. Stuart, L. Redlin, S. Watson, Precalculus - Mathematics for Calculus, 5th Edition, Thomson All figures and videos

More information

MAT01A1. Appendix D: Trigonometry

MAT01A1. Appendix D: Trigonometry MAT01A1 Appendix D: Trigonometry Dr Craig 12 February 2019 Introduction Who: Dr Craig What: Lecturer & course coordinator for MAT01A1 Where: C-Ring 508 acraig@uj.ac.za Web: http://andrewcraigmaths.wordpress.com

More information

4.3. Trigonometric Identities. Introduction. Prerequisites. Learning Outcomes

4.3. Trigonometric Identities. Introduction. Prerequisites. Learning Outcomes Trigonometric Identities 4.3 Introduction trigonometric identity is a relation between trigonometric expressions which is true for all values of the variables (usually angles. There are a very large number

More information

D.3. Angles and Degree Measure. Review of Trigonometric Functions

D.3. Angles and Degree Measure. Review of Trigonometric Functions APPENDIX D. Review of Trigonometric Functions D7 APPENDIX D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving

More information

Ready To Go On? Skills Intervention 14-1 Graphs of Sine and Cosine

Ready To Go On? Skills Intervention 14-1 Graphs of Sine and Cosine 14A Ready To Go On? Skills Intervention 14-1 Graphs of Sine and Cosine Find these vocabulary words in Lesson 14-1 and the Multilingual Glossary. Vocabulary periodic function cycle period amplitude frequency

More information

Trigonometric Functions

Trigonometric Functions Trigonometric Functions Q1 : Find the radian measures corresponding to the following degree measures: (i) 25 (ii) - 47 30' (iii) 240 (iv) 520 (i) 25 We know that 180 = π radian (ii) â 47 30' â 47 30' =

More information

ON TWO-PLANE BALANCING OF SYMMETRIC ROTORS

ON TWO-PLANE BALANCING OF SYMMETRIC ROTORS Proceedings of ME Turbo Expo 0 GT0 June -5, 0, openagen, Denmark GT0-6806 ON TO-PLNE BLNING OF YMMETRI ROTOR Jon J. Yu, P.D. GE Energy 63 Bently Parkway out Minden, Nevada 8943 U Pone: (775) 5-5 E-mail:

More information

Section 5.2 Graphs of the Sine and Cosine Functions

Section 5.2 Graphs of the Sine and Cosine Functions Section 5.2 Graphs of the Sine and Cosine Functions We know from previously studying the periodicity of the trigonometric functions that the sine and cosine functions repeat themselves after 2 radians.

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 1316 Ch.1-2 Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 1) Find the supplement of an angle whose

More information

MAT01A1. Appendix D: Trigonometry

MAT01A1. Appendix D: Trigonometry MAT01A1 Appendix D: Trigonometry Dr Craig 14 February 2017 Introduction Who: Dr Craig What: Lecturer & course coordinator for MAT01A1 Where: C-Ring 508 acraig@uj.ac.za Web: http://andrewcraigmaths.wordpress.com

More information

Directional Derivative, Gradient and Level Set

Directional Derivative, Gradient and Level Set Directional Derivative, Gradient and Level Set Liming Pang 1 Directional Derivative Te partial derivatives of a multi-variable function f(x, y), f f and, tell us te rate of cange of te function along te

More information

Copyright 2005, Favour Education Centre. Mathematics Exercises for Brilliancy Book 3. Applications of trigonometry.

Copyright 2005, Favour Education Centre. Mathematics Exercises for Brilliancy Book 3. Applications of trigonometry. Unit 20 pplications of trigonometry Important facts 1. Key terms gradient ( 斜率 ), angle of inclination ( 傾斜角 ) angle of elevation ( 仰角 ), angle of depression ( 俯角 ), line of sigt ( 視線 ), orizontal ( 水平線

More information

Year 10 Term 1 Homework

Year 10 Term 1 Homework Yimin Math Centre Year 10 Term 1 Homework Student Name: Grade: Date: Score: Table of contents 6 Year 10 Term 1 Week 6 Homework 1 6.1 Triangle trigonometry................................... 1 6.1.1 The

More information

Math 104 Final Exam Review

Math 104 Final Exam Review Math 04 Final Exam Review. Find all six trigonometric functions of θ if (, 7) is on the terminal side of θ.. Find cosθ and sinθ if the terminal side of θ lies along the line y = x in quadrant IV.. Find

More information

C.3 Review of Trigonometric Functions

C.3 Review of Trigonometric Functions C. Review of Trigonometric Functions C7 C. Review of Trigonometric Functions Describe angles and use degree measure. Use radian measure. Understand the definitions of the si trigonometric functions. Evaluate

More information

PreCalc: Chapter 6 Test Review

PreCalc: Chapter 6 Test Review Name: Class: Date: ID: A PreCalc: Chapter 6 Test Review Short Answer 1. Draw the angle. 135 2. Draw the angle. 3. Convert the angle to a decimal in degrees. Round the answer to two decimal places. 8. If

More information

Trigonometry Review Tutorial Shorter Version

Trigonometry Review Tutorial Shorter Version Author: Michael Migdail-Smith Originally developed: 007 Last updated: June 4, 0 Tutorial Shorter Version Avery Point Academic Center Trigonometric Functions The unit circle. Radians vs. Degrees Computing

More information