DEFINITION: Classification of oscillators Based on the frequency generated Oscillator type Frequency range

Size: px
Start display at page:

Download "DEFINITION: Classification of oscillators Based on the frequency generated Oscillator type Frequency range"

Transcription

1 DEFINITION: An oscillator is just an electronic circuit which converts dc energy into AC energy of required frequency. (Or) An oscillator is an electronic circuit which produces an ac output without any input. Classification of oscillators 1. Based on the frequency generated : Oscillator type AF Oscillators RF Oscillators VHF Oscillators UHF Oscillators Microwave Oscillators Frequency range Few Hz - 20 khz. 20 khz 30 MHz 30 MHz 300 MHz 300 MHz 3 GHz. Above 3 GHz. 2. Based on the Auxiliary Oscillatory circuit used : (a) RC oscillators (i) RC Phase-shift and (ii) Wein-bridge oscillators (b) LC Oscillators (i) Tuned collector (ii) Hartley oscillators (iii)colpitts oscillators (iv)crystal Oscillator. 3. Based on the generated waveform (a) Sine wave oscillators. (b) Non - sinusoidal oscillators. KONA LAKSHMANARAO 1

2 CONDITIONS REQUIRED FOR SUSTAINED OSCILLATIONS: The conditions for sustained oscillations are 1. A transistor amplifier with positive feedback. 2. The total phase shift around the loop is or Loop gain Aβ = 1 i.e.., A = voltage gain of amplifier without feedback. Β = Feedback fraction. NEED FOR AUDIO FREQUENCY OSCILLATOR: The oscillator operate in the audio frequencies is known as audio oscillator. In radio receivers, T.V receiver P.A. system and other appliances related to sound output consists of audio circuits. To service the audio circuits there is a need to have known audio signal. The known audio signals are generated using audio oscillators. Therefore the audio frequency oscillators are used in laboratories. Basically RC circuits are used in audio oscillators. RC PHASE SHIFT OSCILLATOR: As shows the circuit of a phase shift oscillator. It consists of a conventional single transistor amplifier and a RC phase shift network. The phase shift network consists of three sections R 1 C 1, R 2 C 2 and R 3 C 3. At some particular frequency fo, the phase shift of each section is 60º, so that the total phase-shift produced by the RC network is (3*60º)=180º. The frequency of oscillations is given by 1 f 2 RC 6 Where R1=R2=R3=R C1=C2=C3=C. Circuit Operation: When the circuit is switched on it produces oscillations. The output Eo of the amplifier is feedback to RC feedback network. KONA LAKSHMANARAO 2

3 This network produces phase shift of 180º and a voltage E1 appears at its output which is applied to the transistor amplifier. The feedback factor β=e 1 /E 0. The feedback factor β=1/29, has an important significance. For self-starting the oscillations, we must have Aβ>1, it means the gain A of the amplifier must be greater than 29 only then the oscillations can start. A phase shift of 180º is produced by the transistor amplifier. A further phase shift of 180º is produced by the RC network. As a result the phase shift around the loop is 360º. Phase Shift Network: A phase shift circuit essentially consists of an RC network. Fig.2.(b) shows a single section of RC network. It can be shown that alternating voltage V 1 across R leads the applied voltage V 1 by an angle θ. The value of θ depends upon the value of R and C. If resistance R is varied, the value of θ also changes KONA LAKSHMANARAO 3

4 If R were reduced to zero V 1 will lead V 1 by 90 that is θ=90º By adjusting the value of R the value θ can be obtained to 60º. Fig.2. (c) shows the three section of RC network. Each section produces a phase shift of 60º. Consequently, a total phase shift of 180º is produced i.e voltage V 2 leads the voltage V 1 by 180º. ADVANTAGES It does not require transformers or inductors. It can be used to produce very low frequencies. It provides good frequency stability. Pure sine wave output is possible.. DISADVANTAGES It is difficult for the circuit to start oscillations as the feedback is generally small. The circuit gives small output. It requires high voltage battery VCC 12V. NEED FOR RADIO FREQUENCY OSCILLATOR: The oscillators operates at frequencies typically from 200 KHz to few GHz is known as Radio frequency oscillators. Radio receiver, TV receiver and other communication receivers first stages are operates in the radio frequency range. To service these stages of receivers the RF oscillators is used. Basically LC circuits are used in radio frequency oscillators. HARTLEY OSCILLATOR: As shows the circuit of Hartley oscillator. The tank circuit is C, L 1 and L 2. The coil L 1 is inductively coupled to L 2, the combination functions as an autotransformer. The self-bias is provided here for biasing. The capacitor C b blocks the DC components. KONA LAKSHMANARAO 4

5 Circuit operation: When the power is ON, collector current starts rising and charges the capacitor C. When this capacitor is fully charged, it discharges through coils L 1 and L 2 setting up Oscillations. The oscillations across L 1 are applied to the base emitter junction and appears in the amplified form in the collector circuit. The coil L 2 couples the collector circuit energy back into the tank circuit by means of mutual inductance between L 1 and L 2. So energy is being continuously supplied to the tank circuit to overcome the losses. The phase shift produced in the tank circuit constituting of C, L 1 and L 2 is (i.e., phase shift between the voltages Developed across both the Inductors L 1 & L 2 is) A further phase shift of 180º is produced by transistor circuit. In this way energy feedback to the tank circuit is in phase with oscillations. The frequency of oscillations is given by f 2 ( L 1 1 L ) C COLPITT S OSCILLATOR: Fig.1 shows the circuit of Colpitts oscillator. The tank circuit is made up of C 1, C 2 and L. 2 Circuit operation: When power is ON, collector current starts rising and charges the capacitor C 1 and C 2. When these capacitors are fully charged, it discharges through coil L 1 setting up oscillations. The oscillations across C 2 are applied to the base-emitter junction and appears in the amplified form in the collector circuit to supply losses to the tank circuit. KONA LAKSHMANARAO 5

6 The amount of feedback depends upon the values of C 1 and C 2. The phase of feedback is correct, the tank circuit comprising of L, C 1 and C 2 produce 180º phase shift. A further 180º phase shift is provided by the transistor. In this way feedback is properly provided to produce continuous undamped oscillations. The frequency of oscillations is given by f 2 1 LC T C1C 2 CT 1 2 Where, C C NEED OF SQUARE WAVE OSCILLATOR The oscillator generates square wave output is known as square wave oscillator. The digital circuit s works in synchronism with square wave signal known as clock signal. TO generate clock signals wave oscillators are needed. In such application square wave oscillators are used. ASTABLE MULTIVIBRATOR: In which the circuit is not stable in either state. It continuously oscillates from one state to the other. Circuit operation: The two transistors Q1 and Q2 should be of the same specifications. Rc1 and Rc2 are collector load resistances of Q1 and Q2. The values of Rc1 and Rc2 are same. C1 and C2 are the capacitors used for cross coupling. R1, C1 and R2, C2 decides the frequency of the circuit. KONA LAKSHMANARAO 6

7 Working: At t = 0-. Circuit is in OFF condition. At t = 0. Circuit is switched ON and both the transistors are in quasi stable state. At t = 0+. Because of small variations in the values of Q1 and Q2. One of the two transistors will go to ON state and other will go to OFF state. R1, C1 and R2, C2 decides the ON and OFF time periods of Q1 and Q2, and frequency of the circuit. From t = 0+ to t = T1 The circuit keeps one transistor switched ON and the other switched OFF. Suppose that initially, i.e., at t = 0+, Q2 is switched ON and Q1 is switched OFF. From t = 0+ to t = T1 State 1: Since Q2 is ON, the capacitor C2 charges through Rc1, and the charging voltage across C2 is Vcc. The capacitor C1 discharges through resistor R1. The voltage across C1, when it is about to start discharging is Vcc. As C1 discharges, the voltage at base of Q1 becomes more positive and cross the cutin voltage of Q1. At time t = T1, the positive increase of base voltage Exceeds the cut in voltage of Q1. Transistor Q1 starts conducting, and transistor Q2 becomes OFF. This now takes us to State 2 : Where Q1 is switched ON and Q2 is switched OFF. Since Q1 is ON, the capacitor C1 charges through Rc2, and the charging voltage across C1 becomes Vcc. The capacitor C2 discharges through resistor R2. The voltage across C2 when it is about to start discharging is Vcc. The time Period from t = T1 (+) to T2 (-) As C2 discharges, the voltage at base of Q2 becomes more positive and cross the cutin voltage. At time t = T2, the positive increase of base voltage exceeds the cut in voltage of Q2. Transistor Q2 starts conducting, and transistor Q1 becomes OFF. This now takes back to State 1, the mirror image of the initial state, where Q1 is switched off and Q2 is switched on. This now takes us to State 2 : Where Q1 is switched ON and Q2 is switched OFF. KONA LAKSHMANARAO 7

8 Since Q1 is ON, the capacitor C1 charges through Rc2, and the charging voltage across C1 becomes Vcc. The capacitor C2 discharges through resistor R2. The voltage across C2 when it is about to start discharging is Vcc. As C2 discharges, the voltage at base of Q2 becomes more positive and cross the cutin voltage. At time t = T2, the positive increase of base voltage exceeds the cut in voltage of Q2. Transistor Q2 starts conducting, and transistor Q1 becomes OFF. This now takes back to State 1, the mirror image of the initial state, where Q1 is switched off and Q2 is switched on. The cycle repeats. WAVE FORMS: KONA LAKSHMANARAO 8

9 UJT RELAXATION OSCILLATOR: An oscillator which produces non sinusoidal waveforms like square wave, rectangular wave, saw tooth wave, triangular wave etc.., is called as relaxation oscillator. The relaxation oscillator using UJT as shown in fig. The below fig shows the discharging of a capacitor through UJT can develop saw tooth output as shown in fig. When battery V bb is turned ON, the capacitor C charges through resistor R 1. During the charging period, the voltage across the capacitor rises in an exponential manner until it reaches the peak point voltage. At this instant of time, the UJT switches to its low resistance conducting mode and the capacitor is discharge between E and B 1. As the capacitor voltage flys back to zero, the emitter ceases to conduct and the UJT is switched OFF. The next cycle then begins, allowing the capacitor C to charge again. The frequency of the output saw tooth wave can be varied by changing the value of R 1 since this controls the time constant R 1 C of the capacitor charging current. APPLICATIONS OF RC PHASE SHIFT OSCILLATORS: 1. Signal Generators. 2. Function generators. 3. AFO APPLICATIONS OF HARTELY AND COLPITTS OSCILLATORS: 1. Radio receivers as a local oscillators. 2. T.V receivers as a local oscillators. KONA LAKSHMANARAO 9

10 3. For induction and dielectric heating purpose. 4. High frequency applications. APPLICATIONS OF SQUARE WAVE OSCILLATORS: 1. Voltage to frequency converter. 2. Clock generator for logic signals. 3. In digital meters. 4. In SMPS. APPLICATIONS OF RELAXATION OSCILLATORS: 1. For generation of saw tooth wave form in CRO. 2. In timer circuits to drive SCR, DIAC, TRIAC. KONA LAKSHMANARAO 10

Feedback Amplifier & Oscillators

Feedback Amplifier & Oscillators 256 UNIT 5 Feedback Amplifier & Oscillators 5.1 Learning Objectives Study definations of positive /negative feedback. Study the camparions of positive and negative feedback. Study the block diagram and

More information

Expect to be successful, expect to be liked,

Expect to be successful, expect to be liked, Thought of the Day Expect to be successful, expect to be liked, expect to be popular everywhere you go. Oscillators 1 Oscillators D.C. Kulshreshtha Oscillators 2 Need of an Oscillator An oscillator circuit

More information

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier.

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier. Oscillators An oscillator may be described as a source of alternating voltage. It is different than amplifier. An amplifier delivers an output signal whose waveform corresponds to the input signal but

More information

Chapter.8: Oscillators

Chapter.8: Oscillators Chapter.8: Oscillators Objectives: To understand The basic operation of an Oscillator the working of low frequency oscillators RC phase shift oscillator Wien bridge Oscillator the working of tuned oscillator

More information

CHAPTER 3 OSCILOSCOPE AND SIGNAL CONDITIONING

CHAPTER 3 OSCILOSCOPE AND SIGNAL CONDITIONING CHAPTER 3 OSCILOSCOPE AND SIGNAL CONDITIONING OUTLINE Introduction to Signal Generator Oscillator Requirement for Oscillation Positive Feedback Amplifier Oscillator Radio Frequency Oscillator Introduction

More information

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi 2.1 INTRODUCTION An electronic circuit which is designed to generate a periodic waveform continuously at

More information

Figure 1: Closed Loop System

Figure 1: Closed Loop System SIGNAL GENERATORS 3. Introduction Signal sources have a variety of applications including checking stage gain, frequency response, and alignment in receivers and in a wide range of other electronics equipment.

More information

Multivibrators. Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multivibrators. Department of Electrical & Electronics Engineering, Amrita School of Engineering Multivibrators Multivibrators Multivibrator is an electronic circuit that generates square, rectangular, pulse waveforms. Also called as nonlinear oscillators or function generators. Multivibrator is basically

More information

The Hartley Oscillator

The Hartley Oscillator The Hartley Oscillator One of the main disadvantages of the basic LC Oscillator circuit we looked at in the previous tutorial is that they have no means of controlling the amplitude of the oscillations

More information

State the application of negative feedback and positive feedback (one in each case)

State the application of negative feedback and positive feedback (one in each case) (ISO/IEC - 700-005 Certified) Subject Code: 073 Model wer Page No: / N Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer

More information

ELECTRONIC CIRCUITS LAB

ELECTRONIC CIRCUITS LAB ELECTRONIC CIRCUITS LAB 1 2 STATE INSTITUTE OF TECHNICAL TEACHERS TRAINING AND RESEARCH GENERAL INSTRUCTIONS Rough record and Fair record are needed to record the experiments conducted in the laboratory.

More information

Low frequency tuned amplifier. and oscillator using simulated. inductor*

Low frequency tuned amplifier. and oscillator using simulated. inductor* CHAPTER 5 Low frequency tuned amplifier and oscillator using simulated inductor* * Partial contents of this Chapter has been published in. D.Susan, S.Jayalalitha, Low frequency amplifier and oscillator

More information

e base generators Tim 1

e base generators Tim 1 Time base generators 1 LINEAR TIME BASE GENERATORS Circuits thatprovide An Output Waveform Which Exhibits Linear Variation Of Voltage or current With Time. Linear variation of Voltage :Voltage time base

More information

EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER

EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER 1. What is feedback? What are the types of feedback? 2. Define positive feedback. What are its merits and demerits? 3. Define negative feedback.

More information

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation It should be noted that the frequency of oscillation ω o is determined by the phase characteristics of the feedback loop. the loop oscillates at the frequency for which the phase is zero The steeper the

More information

Lab 4 : Transistor Oscillators

Lab 4 : Transistor Oscillators Objective: Lab 4 : Transistor Oscillators In this lab, you will learn how to design and implement a colpitts oscillator. In part II you will implement a RC phase shift oscillator Hardware Required : Pre

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6401 ELECTRONICS CIRCUITS-II SEM / YEAR: IV / II year B.E.

More information

UNIT 1 MULTI STAGE AMPLIFIES

UNIT 1 MULTI STAGE AMPLIFIES UNIT 1 MULTI STAGE AMPLIFIES 1. a) Derive the equation for the overall voltage gain of a multistage amplifier in terms of the individual voltage gains. b) what are the multi-stage amplifiers? 2. Describe

More information

Table of Contents Lesson One Lesson Two Lesson Three Lesson Four Lesson Five PREVIEW COPY

Table of Contents Lesson One Lesson Two Lesson Three Lesson Four Lesson Five PREVIEW COPY Oscillators Table of Contents Lesson One Lesson Two Lesson Three Introduction to Oscillators...3 Flip-Flops...19 Logic Clocks...37 Lesson Four Filters and Waveforms...53 Lesson Five Troubleshooting Oscillators...69

More information

Feedback and Oscillator Circuits

Feedback and Oscillator Circuits Chapter 14 Chapter 14 Feedback and Oscillator Circuits Feedback Concepts The effects of negative feedback on an amplifier: Disadvantage Lower gain Advantages Higher input impedance More stable gain Improved

More information

BHARATHIDASAN ENGINEERING COLLEGE

BHARATHIDASAN ENGINEERING COLLEGE BHARATHIDASAN ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6401 - ELECTRONIC CIRCUITS - II QUESTION BANK II- YEAR IV SEM ACDEMIC YEAR: 2016-2017 EVEN SEMESTER EC6401 ELECTRONIC

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS UNIT-I - PN DIODEAND ITSAPPLICATIONS 1. What is depletion region in PN junction?

More information

CHAPTER 3: OSCILLATORS AND WAVEFORM-SHAPING CIRCUITS

CHAPTER 3: OSCILLATORS AND WAVEFORM-SHAPING CIRCUITS CHAPTER 3: OSCILLATORS AND WAVEFORM-SHAPING CIRCUITS In the design of electronic systems, the need frequently arises for signals having prescribed standard waveforms (e.g., sinusoidal, square, triangle,

More information

Oscillators. Hartley, Colpitts, UJT relaxation. ECE/MEA Engg College S.R.K. 9/13/2007 Authored by: Ramesh.K

Oscillators. Hartley, Colpitts, UJT relaxation. ECE/MEA Engg College S.R.K. 9/13/2007 Authored by: Ramesh.K Oscillators Hartley, Colpitts, UJT relaxation. S.R.K 9//007 Authored by: Ramesh.K This documents contains a brief note about the principle of sinusoidal oscillator and some general oscillator circuits

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK Subject with Code : Electronic Circuit Analysis (16EC407) Year & Sem: II-B.Tech & II-Sem

More information

UNIT - IV FEEDBACK AMPLIFIERS & OSCILATTORS

UNIT - IV FEEDBACK AMPLIFIERS & OSCILATTORS UNIT - IV FEEDBAK AMPLIFIES & OSILATTOS OBJETIVES i)the basics of feedback. ii)the properties of negative feedback. iii)the basic feedback topologies. iv)an example of the ideal feedback case. v)some realistic

More information

HIGH LOW Astable multivibrators HIGH LOW 1:1

HIGH LOW Astable multivibrators HIGH LOW 1:1 1. Multivibrators A multivibrator circuit oscillates between a HIGH state and a LOW state producing a continuous output. Astable multivibrators generally have an even 50% duty cycle, that is that 50% of

More information

UNIT 1. 9 What is the Causes of Free Response in Electrical Circuit. 12 Write the Expression for transient current and voltages of RL circuit.

UNIT 1. 9 What is the Causes of Free Response in Electrical Circuit. 12 Write the Expression for transient current and voltages of RL circuit. SUB: Electric Circuits and Electron Devices Course Code: UBEE309 UNIT 1 PART A 1 State Transient and Transient Time? 2 What is Tansient State? 3 What is Steady State? 4 Define Source Free Response 5 Define

More information

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans. Electronic Measurements & Instrumentation

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans.   Electronic Measurements & Instrumentation UNIT 2 Q.1) Describe the functioning of standard signal generator Ans. STANDARD SIGNAL GENERATOR A standard signal generator produces known and controllable voltages. It is used as power source for the

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. QUESTION BANK DEPARTMENT: EEE SUBJECT CODE: EE2203 SEMESTER : III SUBJECT NAME: ELECTRONIC DEVICES &CIRCUITS UNIT 4-AMPLIFIERS AND OSCILLATORS PART

More information

NOORUL ISLAM COLLEGE OF ENGG, KUMARACOIL. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGG. SUBJECT CODE: EC 1251 SUBJECT NAME: ELECTRONIC CIRCUITS-II

NOORUL ISLAM COLLEGE OF ENGG, KUMARACOIL. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGG. SUBJECT CODE: EC 1251 SUBJECT NAME: ELECTRONIC CIRCUITS-II NOORUL ISLAM COLLEGE OF ENGG, KUMARACOIL. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGG. SUBJECT CODE: EC 1251 SUBJECT NAME: ELECTRONIC CIRCUITS-II Prepared by, C.P.SREE BALA LEKSHMI (Lect/ECE) ELECTRONICS

More information

Applied Electronics II

Applied Electronics II Applied Electronics II Chapter 4: Wave shaping and Waveform Generators School of Electrical and Computer Engineering Addis Ababa Institute of Technology Addis Ababa University Daniel D./Getachew T./Abel

More information

Bharat Electronics Ltd (BEL) paper 2

Bharat Electronics Ltd (BEL) paper 2 Bharat Electronics Ltd (BEL) paper 2 1. VSWR on a transmission line is always 1. Equal to 1 2. Equal to 0 3. Less than 1 4. Greater than 1 2. In a amplitude modulated wave, the value of Vmax is 10V and

More information

OBJECTIVE TYPE QUESTIONS

OBJECTIVE TYPE QUESTIONS OBJECTIVE TYPE QUESTIONS Q.1 The breakdown mechanism in a lightly doped p-n junction under reverse biased condition is called (A) avalanche breakdown. (B) zener breakdown. (C) breakdown by tunnelling.

More information

VETRI VINAYAHA COLLEGE OF ENGINEERING & TECHNOLOGY THOTTIAM, TIRUCHIRAPPALLI Department of Electronics and communication Engineering Question

VETRI VINAYAHA COLLEGE OF ENGINEERING & TECHNOLOGY THOTTIAM, TIRUCHIRAPPALLI Department of Electronics and communication Engineering Question VETRI VINAYAHA COLLEGE OF ENGINEERING & TECHNOLOGY THOTTIAM, TIRUCHIRAPPALLI-621215 Department of Electronics and communication Engineering Question Bank EC6401: ELECTRONIC CIRCUITS II (Regulation 2013)

More information

Emitter base bias. Collector base bias Active Forward Reverse Saturation forward Forward Cut off Reverse Reverse Inverse Reverse Forward

Emitter base bias. Collector base bias Active Forward Reverse Saturation forward Forward Cut off Reverse Reverse Inverse Reverse Forward SEMICONDUCTOR PHYSICS-2 [Transistor, constructional characteristics, biasing of transistors, transistor configuration, transistor as an amplifier, transistor as a switch, transistor as an oscillator] Transistor

More information

Question Bank EC6401 ELECTRONIC CIRCUITS - II

Question Bank EC6401 ELECTRONIC CIRCUITS - II FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Madurai Sivagangai Main Road Madurai - 625 020. [An ISO 9001:2008 Certified Institution] SEMESTER: IV / ECE Question Bank EC6401 ELECTRONIC CIRCUITS -

More information

Unijunction Transistor. T.Y.B.Sc - Eletronics POWER ELETRONICS

Unijunction Transistor. T.Y.B.Sc - Eletronics POWER ELETRONICS Unijunction Transistor T.Y.B.Sc - Eletronics POWER ELETRONICS Unijunction Transistor Symbol and Construction The Unijunction Transistor is solid state three terminal device that can be used in gate pulse,

More information

Signal Generators and Waveform-Shaping Circuits

Signal Generators and Waveform-Shaping Circuits CHAPTER 18 Signal Generators and Waveform-Shaping Circuits Figure 18.1 The basic structure of a sinusoidal oscillator. A positive-feedback loop is formed by an amplifier and a frequency-selective network.

More information

Sub Code & Name: EC2251- ELECTRONIC CIRCUITS II Unit : I Branch : ECE Year:II

Sub Code & Name: EC2251- ELECTRONIC CIRCUITS II Unit : I Branch : ECE Year:II Unit : I Branch : ECE Year:II Page 01 of 06 UNIT 1 FEEDBACK AMPLIFIERS 9 Block diagram, Loop gain, Gain with feedback, Effects of negative feedback Sensitivity and desensitivity of gain, Cut-off frequencies,

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK IV SEMESTER EC6401 ELECTRONICS CIRCUITS-II Regulation 2013 Academic

More information

Government Polytechnic Muzaffarpur Name of the Lab: Applied Electronics Lab

Government Polytechnic Muzaffarpur Name of the Lab: Applied Electronics Lab Government Polytechnic Muzaffarpur Name of the Lab: Applied Electronics Lab Subject Code: 1620408 Experiment-1 Aim: To obtain the characteristics of field effect transistor (FET). Theory: The Field Effect

More information

MARIA COLLEGE OF ENGINEERING AND TECHNOLOGY, ATTOOR UNIT-1. Feedback Amplifiers

MARIA COLLEGE OF ENGINEERING AND TECHNOLOGY, ATTOOR UNIT-1. Feedback Amplifiers MARIA COLLEGE OF ENGINEERING AND TECHNOLOGY, ATTOOR DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING ELECTRONIC CIRCUITS-II 2 MARKS QUESTIONS & ANSWERS UNIT-1 Feedback Amplifiers 1. What is meant

More information

Project 6: Oscillator Circuits

Project 6: Oscillator Circuits : Oscillator Circuits Ariel Moss The purpose of this experiment was to design two oscillator circuits: a Wien-Bridge oscillator at 3 khz oscillation and a Hartley Oscillator using a BJT at 5 khz oscillation.

More information

SKP Engineering College

SKP Engineering College SKP Engineering College Tiruvannamalai 606611 A Course Material on Electronics Circuits-II M.Jerin Jose Associate Professor Electronics and Communication Engineering Department By Electronics and Communication

More information

EXPERIMENT #2 CARRIER OSCILLATOR

EXPERIMENT #2 CARRIER OSCILLATOR EXPERIMENT #2 CARRIER OSCILLATOR INTRODUCTION: The oscillator is usually the first stage of any transmitter. Its job is to create a radio-frequency carrier that can be amplified and modulated before being

More information

OSCILLATORS AND WAVEFORM-SHAPING CIRCUITS

OSCILLATORS AND WAVEFORM-SHAPING CIRCUITS OSILLATORS AND WAVEFORM-SHAPING IRUITS Signals having prescribed standard waveforms (e.g., sinusoidal, square, triangle, pulse, etc). To generate sinusoidal waveforms: o Positive feedback loop with non-linear

More information

LECTURE NOTES ELECTRONIC CIRCUITS II SYLLABUS

LECTURE NOTES ELECTRONIC CIRCUITS II SYLLABUS FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Madurai Sivagangai Main Road Madurai - 625 020. [An ISO 9001:2008 Certified Institution] LECTURE NOTES EC6401 ELECTRONIC CIRCUITS - II SEMESTER: IV /

More information

EMT212 Analog Electronic II. Chapter 4. Oscillator

EMT212 Analog Electronic II. Chapter 4. Oscillator EMT Analog Electronic II Chapter 4 Oscillator Objectives Describe the basic concept of an oscillator Discuss the basic principles of operation of an oscillator Analyze the operation of RC, LC and crystal

More information

Lecture 28 RC Phase Shift Oscillator using Op-amp

Lecture 28 RC Phase Shift Oscillator using Op-amp Integrated Circuits, MOSFETs, OP-Amps and their Applications Prof. Hardik J Pandya Department of Electronic Systems Engineering Indian Institute of Science, Bangalore Lecture 28 RC Phase Shift Oscillator

More information

FREQUENTLY ASKED QUESTIONS

FREQUENTLY ASKED QUESTIONS FREQUENTLY ASKED QUESTIONS UNIT-1 SUBJECT : ELECTRONIC DEVICES AND CIRCUITS SUBJECT CODE : EC6202 BRANCH: EEE PART -A 1. What is meant by diffusion current in a semi conductor? (APR/MAY 2010, 2011, NOV/DEC

More information

Project (02) Dc 2 AC Inverter

Project (02) Dc 2 AC Inverter Project (02) Dc 2 AC Inverter By: Dr. Ahmed ElShafee 1 12v DC to 220v AC Converter Circuit Using Astable Multivibrator Inverter circuits can either use thyristors as switching devices or transistors. Normally

More information

TUNED AMPLIFIERS 5.1 Introduction: Coil Losses:

TUNED AMPLIFIERS 5.1 Introduction: Coil Losses: TUNED AMPLIFIERS 5.1 Introduction: To amplify the selective range of frequencies, the resistive load R C is replaced by a tuned circuit. The tuned circuit is capable of amplifying a signal over a narrow

More information

V out A v. Feedback Circuit

V out A v. Feedback Circuit Oscillators V out A v Feedback Circuit Figure.: Positive Feed Back The feedback network in an oscillator an input to the amplifier, which in turn an input to the feedback network. Since positive feedback

More information

1. LINEAR WAVE SHAPING

1. LINEAR WAVE SHAPING Aim: 1. LINEAR WAVE SHAPING i) To design a low pass RC circuit for the given cutoff frequency and obtain its frequency response. ii) To observe the response of the designed low pass RC circuit for the

More information

21/10/58. M2-3 Signal Generators. Bill Hewlett and Dave Packard s 1 st product (1939) US patent No HP 200A s schematic

21/10/58. M2-3 Signal Generators. Bill Hewlett and Dave Packard s 1 st product (1939) US patent No HP 200A s schematic M2-3 Signal Generators Bill Hewlett and Dave Packard s 1 st product (1939) US patent No.2267782 1 HP 200A s schematic 2 1 The basic structure of a sinusoidal oscillator. A positive feedback loop is formed

More information

WASSCE / WAEC BASIC ELECTRONICS / ELECTRONICS SYLLABUS

WASSCE / WAEC BASIC ELECTRONICS / ELECTRONICS SYLLABUS WASSCE / WAEC BASIC ELECTRONICS / ELECTRONICS SYLLABUS WWW.LARNEDU.COM Visit www.larnedu.com for WASSCE / WAEC syllabus on different subjects and more great stuff to help you ace the WASSCE in flying colours.

More information

BE Assignment. (1) Explain Active component and Passive component in Detail. (1) Explain practical voltage source and ideal voltage source.

BE Assignment. (1) Explain Active component and Passive component in Detail. (1) Explain practical voltage source and ideal voltage source. BE Assignment chapter-1 (1) Explain Active component and Passive component in Detail. (1) Explain practical voltage source and ideal voltage source. (2) Explain practical current source and ideal current

More information

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION JULY-2012 SCHEME OF VALUATION

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION JULY-2012 SCHEME OF VALUATION GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION JULY-0 SCHEME OF VALUATION Subject Code: 40 Subject: PART - A 0. Which region of the transistor

More information

TUNED AMPLIFIERS. Tank circuits.

TUNED AMPLIFIERS. Tank circuits. Tank circuits. TUNED AMPLIFIERS Analysis of single tuned amplifier, Double tuned, stagger tuned amplifiers. Instability of tuned amplifiers, stabilization techniques, Narrow band neutralization using coil,

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 16 404 Signal Generators and Waveform-shaping Circuits Ch 17 405 Input summing, output sampling voltage amplifier Series

More information

Exam Booklet. Pulse Circuits

Exam Booklet. Pulse Circuits Exam Booklet Pulse Circuits Pulse Circuits STUDY ASSIGNMENT This booklet contains two examinations for the six lessons entitled Pulse Circuits. The material is intended to provide the last training sought

More information

WAVEFORM GENERATOR CIRCUITS USING OPERATIONAL AMPLIFIERS

WAVEFORM GENERATOR CIRCUITS USING OPERATIONAL AMPLIFIERS 15EEE287 Electronic Circuits & Simulation Lab - II Lab #8 WAVEFORM GENERATOR CIRCUITS USING OPERATIONAL AMPLIFIERS OBJECTIVE The purpose of the experiment is to design and construct circuits to generate

More information

M.D. Singh J.G. Joshi MECHATRONICS

M.D. Singh J.G. Joshi MECHATRONICS M.D. Singh J.G. Joshi MECHATRONICS MECHATRONICS MECHATRONICS M.D. SINGH Formerly Principal Sagar Institute of Technology and Research Bhopal J.G. JOSHI Lecturer Department of Electronics and Telecommunication

More information

Summer 2015 Examination

Summer 2015 Examination Summer 2015 Examination Subject Code: 17445 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

Sri venkateswara college of engineering. Department of ECE. EC Electronic Circuits II. 2 mark questions unit wise. UNIT I Feedback Amplifiers

Sri venkateswara college of engineering. Department of ECE. EC Electronic Circuits II. 2 mark questions unit wise. UNIT I Feedback Amplifiers Sri venkateswara college of engineering Department of ECE EC -6401 Electronic Circuits II 2 mark questions unit wise UNIT I Feedback Amplifiers 1. Define feedback? A portion of the output signal is taken

More information

LINEAR IC APPLICATIONS

LINEAR IC APPLICATIONS 1 B.Tech III Year I Semester (R09) Regular & Supplementary Examinations December/January 2013/14 1 (a) Why is R e in an emitter-coupled differential amplifier replaced by a constant current source? (b)

More information

Chapter 6. FM Circuits

Chapter 6. FM Circuits Chapter 6 FM Circuits Topics Covered 6-1: Frequency Modulators 6-2: Frequency Demodulators Objectives You should be able to: Explain the operation of an FM modulators and demodulators. Compare and contrast;

More information

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

A Course Material on. Electronics Circuits II

A Course Material on. Electronics Circuits II A Course Material on Electronics Circuits II By MS. R.P. MEENAAKSHISUNDHARI PROFESSOR DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SASURIE COLLEGE OF ENGINEERING VIJAYAMANGALAM 638 056 QUALITY

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT III TUNED AMPLIFIERS PART A (2 Marks)

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT III TUNED AMPLIFIERS PART A (2 Marks) MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. UNIT III TUNED AMPLIFIERS PART A (2 Marks) 1. What is meant by tuned amplifiers? Tuned amplifiers are amplifiers that are designed to reject a certain

More information

Transistor Digital Circuits

Transistor Digital Circuits Recapitulation Transistor Digital Circuits The transistor Operating principle and regions Utilization of the transistor Transfer characteristics, symbols Controlled switch model BJT digital circuits MOSFET

More information

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION MARCH-2012 SCHEME OF VALUATION

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION MARCH-2012 SCHEME OF VALUATION GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION MARCH-0 SCHEME OF VALUATION Subject Code: 0 Subject: Qn. PART - A 0. Which is the largest of three

More information

LIC & COMMUNICATION LAB MANUAL

LIC & COMMUNICATION LAB MANUAL LIC & Communication Lab Manual LIC & COMMUNICATION LAB MANUAL FOR V SEMESTER B.E (E& ( E&C) (For private circulation only) NAME: DEPARTMENT OF ELECTRONICS & COMMUNICATION SRI SIDDHARTHA INSTITUTE OF TECHNOLOGY

More information

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET REV. NO. : REV.

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET REV. NO. : REV. Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET LABORATORY MANUAL EXPERIMENT NO. ISSUE NO. : ISSUE DATE: July 200 REV. NO. : REV.

More information

BASIC ELECTRONICS/ ELECTRONICS

BASIC ELECTRONICS/ ELECTRONICS BASIC ELECTRONICS/ ELECTRONICS PREAMBLE The syllabus is intended to equip candidates with broad understanding of the technology of manufacturing, maintenance and repair of domestic and industrial equipment.

More information

Electronic & Telecommunication Engineering

Electronic & Telecommunication Engineering Department of Electronic & Telecommunication Engineering LAB MANUAL ADC B.Tech 3rd Semester KCT College of Engineering & Technology Village Fatehgarh (Distt. Sangrur) INDEX List Of Experiment To construct

More information

Analog Electronic Circuits Lab-manual

Analog Electronic Circuits Lab-manual 2014 Analog Electronic Circuits Lab-manual Prof. Dr Tahir Izhar University of Engineering & Technology LAHORE 1/09/2014 Contents Experiment-1:...4 Learning to use the multimeter for checking and indentifying

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad - 00 0 ELECTRONICS AND COMMUNICATION ENGINEERING ASSIGNMENT Name : ELECTRONIC CIRCUIT ANALYSIS Code : A0 Class : II - B. Tech nd semester

More information

Chapter 16: Oscillators

Chapter 16: Oscillators Chapter 16: Oscillators 16.1: The Oscillator Oscillators are widely used in most communications systems as well as in digital systems, including computers, to generate required frequencies and timing signals.

More information

GATE: Electronics MCQs (Practice Test 1 of 13)

GATE: Electronics MCQs (Practice Test 1 of 13) GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase

More information

CRO AIM:- To study the use of Cathode Ray Oscilloscope (CRO).

CRO AIM:- To study the use of Cathode Ray Oscilloscope (CRO). 1. 1 To study CRO. CRO AIM:- To study the use of Cathode Ray Oscilloscope (CRO). Apparatus: - C.R.O, Connecting probe (BNC cable). Theory:An CRO is easily the most useful instrument available for testing

More information

ELECTRONIC DEVICES AND CIRCUITS (EDC) LABORATORY MANUAL

ELECTRONIC DEVICES AND CIRCUITS (EDC) LABORATORY MANUAL ELECTRONIC DEVICES AND CIRCUITS (EDC) LABORATORY MANUAL (B.E. THIRD SEMESTER - BEENE302P / BEECE302P/ BEETE302P) Prepared by Prof. S. Irfan Ali HOD PROF. M. NASIRUDDIN DEPARTMENT OF ELECTRONICS & TELECOMMUNICATION

More information

LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN

LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN OBJECTIVES 1. To design and DC bias the JFET transistor oscillator for a 9.545 MHz sinusoidal signal. 2. To simulate JFET transistor oscillator using MicroCap

More information

Subject Code: Model Answer Page No: / N

Subject Code: Model Answer Page No: / N Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

11. What is fall time (tf) in transistor? The time required for the collector current to fall from 90% to 10% of its DEPARTMENT OF ECE EC 6401 Electronic Circuits II UNIT-IV WAVE SHAPING AND MULTIVIBRATOR

More information

Scheme Q.1 Attempt any SIX of following: 12-Total Marks a) Draw symbol NPN and PNP transistor. 2 M Ans: Symbol Of NPN and PNP BJT (1M each)

Scheme Q.1 Attempt any SIX of following: 12-Total Marks a) Draw symbol NPN and PNP transistor. 2 M Ans: Symbol Of NPN and PNP BJT (1M each) Q. No. WINTER 16 EXAMINATION (Subject Code: 17319) Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer

More information

multivibrator; Introduction to silicon-controlled rectifiers (SCRs).

multivibrator; Introduction to silicon-controlled rectifiers (SCRs). Appendix The experiments of which details are given in this book are based largely on a set of 'modules' specially designed by Dr. K.J. Close. These 'modules' are now made and marketed by Irwin-Desman

More information

Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras

Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Lecture 38 Unit junction Transistor (UJT) (Characteristics, UJT Relaxation oscillator,

More information

CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER

CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER 59 CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER 4.1 Conventional Method A buck-boost converter circuit is a combination of the buck converter topology and a boost converter

More information

In-Class Exercises for Lab 2: Input and Output Impedance

In-Class Exercises for Lab 2: Input and Output Impedance In-Class Exercises for Lab 2: Input and Output Impedance. What is the output resistance of the output device below? Suppose that you want to select an input device with which to measure the voltage produced

More information

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION MARCH-2013 SCHEME OF VALUATION

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION MARCH-2013 SCHEME OF VALUATION GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION MARCH-03 SCHEME OF VALUATION Subject Code: 0 Subject: PART - A 0. What does the arrow mark indicate

More information

R & D Electronics DIGITAL IC TRAINER. Model : DE-150. Feature: Object: Specification:

R & D Electronics DIGITAL IC TRAINER. Model : DE-150. Feature: Object: Specification: DIGITAL IC TRAINER Model : DE-150 Object: To Study the Operation of Digital Logic ICs TTL and CMOS. To Study the All Gates, Flip-Flops, Counters etc. To Study the both the basic and advance digital electronics

More information

are equally illuminated, the lamp I 1

are equally illuminated, the lamp I 1 Student ID: 21643431 Exam: 387018RR - PRACTICAL EXERCISE ADVANCED ELECTRONIC COMPONENTS When you have completed your exam and reviewed your answers, click Submit Exam. Answers will not be recorded until

More information

B.Sc. Syllabus for Electronics under CBCS. Semester-I

B.Sc. Syllabus for Electronics under CBCS. Semester-I Semester-I Title: Electronic Circuit Analysis Course Code: UELTC101 Credits: 4 Total Marks: 100 Internal Examination: 20 marks End Semester Examination: 80 marks Duration: 3 hours Validity of Syllabus:

More information

For the purpose of this problem sheet use the model given in the lecture notes.

For the purpose of this problem sheet use the model given in the lecture notes. Analogue Electronics Questions Todd Huffman & Tony Weidberg, MT 2018 (updated 30/10/18). For the purpose of this problem sheet use the model given in the lecture notes. The current gain is defined by a

More information

UNIT I PN JUNCTION DEVICES

UNIT I PN JUNCTION DEVICES UNIT I PN JUNCTION DEVICES 1. Define Semiconductor. 2. Classify Semiconductors. 3. Define Hole Current. 4. Define Knee voltage of a Diode. 5. What is Peak Inverse Voltage? 6. Define Depletion Region in

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Colpitt s Oscillator Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643 e mail : info@scientech.bz

More information

Lesson Plan. Electronics 1-Total 51 Hours

Lesson Plan. Electronics 1-Total 51 Hours Lesson Plan. Electronics 1-Total 5s Unit I: Electrical Engineering materials:(10) Crystal structure & defects; Ceramic materials-structures, composites, processing and uses; Insulating laminates for electronics,

More information

shorted to ground In an NPN transistor, the majority carriers in the base are:

shorted to ground In an NPN transistor, the majority carriers in the base are: الدورة الشتوية لعام 0 00.. 3. 4. 5. A silicon diode measures a high value of resistance with the meter leads in both positions. The trouble, if any, the diode is: open internally shorted shorted to ground

More information