ARTIFICIAL INTELLIGENCE BASED ELECTRIC FAULT DETECTION IN PMSM

Size: px
Start display at page:

Download "ARTIFICIAL INTELLIGENCE BASED ELECTRIC FAULT DETECTION IN PMSM"

Transcription

1 ARTIFICIAL INTELLIGENCE BASED ELECTRIC FAULT DETECTION IN PMSM Jayarama Pradeep 1, R.Devanathan 2 and Kannan Prashanth 3 1 Research Scholar, Sathyabama University. 2 Professor, Hindustan Institute of Technology. 3 Student, St. Joseph s College of Engineering. Abstract In Electrical drive system, occurrence of any fault may degrade the entire system s performance. Online fault detection plays a vital role in drive system to detect and rectifying the fault in drive systems used in safety critical applications. In this paper, suitable Electrical fault detection for Permanent Magnet Synchronous Motor using Artificial Neural Network is proposed. The neural network based method is highly efficient computing method and is suited to detect faults that develop gradually in a system. An appropriate selection of the feature extractor will provide the neural network with adequate significant details in the pattern set, so that the highest degree of accuracy in the neural network performance can be obtained. The discrete wavelet transform permits a systematic decomposition of a signal into its sub-band levels as a preprocessing of the system. Since different faults have different effects for stator currents, the wavelet transform can extract the features efficiently. The proposed approach deals with the fault detection system incorporating a neural network which is trained using Levenberg-Marquart algorithm and a Discrete Wavelet Transform based feature extraction block for Permanent magnet synchronous motor drive system. Keywords: Fault detections, Feature Extraction, Discrete wavelet transform, Permanent Magnet Synchronous Motor, Electrical fault, Levenberg-Marquart algorithm INTRODUCTION A fault is defined as an unpermitted deviation of at least one characteristic property of a variable from an acceptable behavior. Faults in a system may lead to degraded performance, malfunctions, or failures. Different from fault, the consequences of a failure are usually more serious, such as partial or complete system breakdown [1]. Faults in engineering systems are difficult to avoid. In complex systems, any fault possesses the potential to impact the entire system s behavior. In a manufacturing process, a simple fault may result in off specification products, higher operation costs, shutdown of production lines, and environmental damage, etc. In a continuously operated system, ignoring 1

2 a small fault can lead to disastrous consequences. In order to avoid such situation, there has been an increase in the number of fault detection techniques that are generic in nature. There are basically two generic ways to approach the analytical fault detection problem: The model based approach and the data-based approach. In the model-based approach, the engineer has access to a model of the system whose behavior is being monitored. The model could be analytical, or knowledge-based. Most applications of this approach have dealt with linear systems, since they can be easily described and studied. In the data-based approach one bypasses the step of obtaining a mathematical model and deals directly with the data. This is more appealing when the process being monitored is not known to be linear or when it is too complicated to be extracted from the data. It is conceivable that a neural net can be used as a monitoring device, in order to detect major changes in the operation of the system. Specifically, one approach may be that the neural net is trained on a well-behaving system, and then operated with no more training in parallel to the actual system. The neural net output will then be compared to that of the physical system, and any anomalies in the output of our system will be detected. FAULT DETECTION Generally Fault detection in motors is done by incorporating a relay circuit in the main device circuitry. A relay is an electrically operated switch. Many relays use an electromagnet to operate a switching mechanism mechanically, but other operating principles are also used. Relays are used where it is necessary to control a circuit by a lowpower signal (with complete electrical isolation between control and controlled circuits), or where several circuits must be controlled by one signal. Permanent magnet synchronous motors use three phase solid state relays in practical applications. However effective fault diagnosis requires highly efficient relay mechanism using various elements. The total cost of the relay circuitry must not exceed the cost of the machine it intends to protect. This means that lower the cost of a machine, lower would be its relay circuitry cost. Another aspect of a good fault detection system is the time takes to detect a fault. An ideal fault detection system should detect the fault and its location immediately so that the fault can be isolated for further corrective action. This plays a vital role, as faults can have an avalanche effect on the entire system thereby creating more faults and damage. Relays are also affected by temperature changes and aging process. Most electrical systems widely succumb to two types of faults, namely short circuit and open circuit faults. In a permanent magnet synchronous machine these faults can occur either on the inverter side or in the machine windings itself. The effect of the fault on the circuit is the same irrespective on which side the fault has occurred. Short circuit fault is defined as a low-resistance connection established by accident or intention between two points in an electric circuit. The current tends to flow through the area of low resistance, bypassing the rest of the circuit [2]. Open circuit fault is defined as any interruption in the circuit, such as an open switch, a break in the wiring, or a component such as a resistor that has changed its resistance to an extremely high value will cause current to cease. The EMF will still be present, but voltages and currents around the circuit will have changed or ceased altogether [3]. 2

3 NEURAL NETWORK USED IN FAULT DETECTION The objective of the paper is to provide a neural network based fault detecting system that is highly efficient and cost effective. The neural network solution for the machine is more accurate and faster than other types as its behavior is much like the human brain. The various outputs of the machine are provided to the neural network after applying a wellresearched feature extraction technique. The neural network is initially trained with a selected range of data. This could include the performance of the machine during ideal and faulted conditions. The neural network must be properly trained as it plays an important role in detecting faults. The neural network acts on the input it receives based on the activation function it is provided. The weights and bias of the neural network are changed for each instance of input it receives [4].When a faulted condition occurs in the permanent magnet synchronous machine either in the inverter side or in the machine windings, the neural network can recognize the faulted condition immediately. The detection of faulted condition by the neural network works similar to the human biological neural network. The input for the neural network is taken from the motor output instead of the inverter as shown in Fig.1. By this the short circuit and open circuit faults that occur at both the inverter and machine windings can be detected easily. Fig 1. Basic Block Diagram The direct and quadrature axis currents drawn from the machine are subjected to discrete wavelet transform. The Fourier transform is a useful tool to analyze the frequency components of the signal. However, if we take the Fourier transform over the whole time axis, we cannot tell at what instant a particular frequency rises. Short-time Fourier transform (STFT) uses a sliding window to find spectrogram, which gives the information of both time and frequency. But still another problem exists: The length of window limits the resolution in frequency. Wavelet transform seems to be a solution to the problem above. Wavelet transforms are based on small wavelets with limited duration. The translated-version wavelets locate where we are concerned, whereas the scaled-version wavelets allow us to analyze the signal in different scale [5]. 3

4 PERMANENT MAGNET SYNCHRONOUS MOTOR PMSMs are attractive for industrial applications, their high power density, which is defined as the amount of output power for a unit weight (power (watts) / weight), is a distinct advantage over other types of electric machines. The stator winding fault is the most likely electrical fault in PMSM. Stator winding faults are usually caused by insulation breakdown between coils in the same phase or different phases [6]. While the winding short usually emerges locally as an incipient fault, it may propagate rapidly and result in the failure of the entire phase. This is due to the increased ohmic heating associated with the large current in the shorted portion of the winding. The excessive heating will lead to significant temperature increase and faster deterioration of the insulation system. The PMSM control is equivalent to that of the dc motor by a decoupling control known as field oriented control or vector control. The vector control separates the torque component of current and flux channels in the motor through its stator excitation. The stator currents must be transformed to the rotor reference frame with the rotor speed ω, using Park s transformation. The q and d axis currents are constants in the rotor reference frames since α is a constant for a given load torque. As these constants, they are similar to the armature and field currents in the separately excited dc machine. The q axis current is distinctly equivalent to the armature current of the dc machine; the d axis current is field current, but not in its entirety. It is only a partial field current; the other part is contributed by the equivalent current source representing the permanent magnet field. For this reason the q axis current is called the torque producing component of the stator current and the d axis current is called the flux producing component of the stator current. ARTIFICIAL NEURAL NETWORKS An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons) working in unison to solve specific problems. ANNs, like people, learn by example. An ANN is configured for a specific application, such as pattern recognition or data classification, through a learning process. Learning in biological systems involves adjustments to the synaptic connections that exist between the neurons. This is true of ANNs as well [7]. Neural networks, with their remarkable ability to derive meaning from complicated or imprecise data, can be used to extract patterns and detect trends that are too complex to be noticed by either humans or other computer techniques. A trained neural network can be thought of as an "expert" in the category of information it has been given to analyze [7]. This expert can then be used to provide projections given new situations of interest and answer "what if" questions. Artificial neural networks consist of many nodes. Each node has a node function, associated with it which along with a set of local parameters determines the output of the node, given an 4

5 input. Modifying the local parameters may alter the node function. Artificial Neural Networks thus is an information-processing system. In this information-processing system, the elements called neurons, process the information. The signals are transmitted by means of connection links. The links possess an associated weight, which is multiplied long with the incoming signal (net input) for any typical neural net. The output signal is obtained by applying activations to the net input. The arrangement of neurons into layers and the pattern of connection within and inbetween layer are generally called as the architecture of the net as shown in Fig.2. Fig.2 Neural Network Architecture The neurons within a layer are found to be fully interconnected or not interconnected. The number of layers in the net can be defined to be the number of layers of weighted interconnected links between the particular slabs of neurons. If two layers of interconnected weights are present, then it is found to have hidden layers. There are various types of network architectures: Feed forward, feedback, fully interconnected net, competitive net, etc. TRAINING THE NEURAL NETWORK What has attracted interest in neural networks is the possibility of learning. Given a specific task to solve, and a class of function, learning means using a set of observations to find which solves the task in some optimal sense. This entails defining a cost function such that, for the optimal solution, - i.e., no solution has a cost less than the cost of the optimal solution The cost function is an important concept in learning, as it is a measure of how far away a particular solution is from an optimal solution to the problem to be solved. Learning algorithms search through the solution space to find a function that has the smallest possible cost. For applications where the solution is dependent on some data, the cost must necessarily be a function of the observations; otherwise we would not be modeling anything related to the data. It is frequently defined as a statistic to which only approximations can be made. As a simple example, consider the problem of finding the model, which minimizes, for data pairs drawn from some distribution. In practical situations we would only have samples from and thus, for the above example, we would only 5

6 minimize. Thus, the cost is minimized over a sample of the data rather than the entire data set. When some form of online machine learning must be used, where the cost is partially minimized as each new example is seen. While online machine learning is often used when is fixed, it is most useful in the case where the distribution changes slowly over time. In neural network methods, some form of online machine learning is frequently used for finite datasets. LEVENBERG MARQUART ALGORITHM The Levenberg Marquardt algorithm was independently developed by Kenneth. Levenberg and Donald Marquardt, provides a numerical solution to the problem of minimizing a nonlinear function. It is fast and has stable convergence. In the artificial neuralnetworks field, this algorithm is suitable for training small- and medium-sized problems[9] [10]. The Levenberg-Marquardt method is an efficient and popular damped least square technique. This method is a combination between the Gauss and the steepest gradient descent methods, where the amount of damping used in each iteration is central in establishing the behavior of the system. Further, the damping is determined by four parameters, whose optimum values vary from model to model. An inappropriate selection of the damping parameters could trigger a decrease in the rapidness of convergence, convergence to local minimum, or system instability. Therefore, finding proper values for these parameters is fundamental in the use of this method and implies a great deal of extra time. This lack of efficiency is considered a disadvantage in comparison to other techniques FEATURE EXTRACTION The computation unit cannot directly visualize as a human does. The signals are difficult to sample as an important characteristic and have high correlation coefficient for classifying a fault hypothesis. Therefore, a signal transformation technique is required. Sampling number is deficient it is difficult for diagnosis, and a large sampling number is a burden for transferring and calculation. So feature extraction of the signal is a critical initial step in any monitoring and fault diagnosis system. Its accuracy directly affects the final monitoring results. Thus, the feature extraction should preserve the critical information for decision making. An appropriate selection of the feature extractor is to provide the neural network with adequate significant details in the pattern set so that the highest degree of accuracy in the neural network performance can be obtained. DISCRETE WAVELET TRANSFORM Often times, the information that cannot be readily seen in the time-domain can be seen in the frequency domain. When current signals show non-stationary or transient conditions, the conventional fourier transform technique is not suitable. The analysis of non-stationary signals can be performed 6

7 using time-frequency techniques (short-time Fourier transform) or time-scale techniques (wavelet transforms) [10]. The discrete wavelet transform (DWT) permits a systematic decomposition of a signal into its sub-band levels as a preprocessing of the system. Since different faults have different effects for stator currents, the wavelet transform can extract the features, which provides a good basis for the next feature extraction. Although the discretized continuous wavelet transform enables the computation of the continuous wavelet transform by computers, it is not a true discrete transform. As a matter of fact, the wavelet series is simply a sampled version of the CWT, and the information it provides is highly redundant as far as the reconstruction of the signal is concerned. This redundancy, on the other hand, requires a significant amount of computation time and resources. The DWT, on the other hand, provides sufficient information both for analysis and synthesis of the original signal, with a significant reduction in the computation time. The DWT is considerably easier to implement when compared to the CWT. DWT employs two sets of functions, called scaling functions and wavelet functions, which are associated with low pass and high-pass filters, respectively. The decomposition of the signal into different frequency bands is simply obtained by successive high-pass and low-pass filtering of the time domain signal. The original signal x[n] is first passed through a halfband high-pass filter g[n] and a low-pass filter h[n]. After the filtering, half of the samples can be eliminated according to the Nyquist s rule, since the signal now has a highest frequency of π /2 radians instead of π. The signal can therefore be sub-sampled by 2, simply by discarding every other sample. This decomposition halves the time resolution since only half the number of samples now characterizes the entire signal. However, this operation doubles the frequency resolution, since the frequency band of the signal now spans only half the previous frequency band, effectively reducing the uncertainty in the frequency by half. The above procedure, which is also known as the sub-band coding, can be repeated for further decomposition. At every level, the filtering and sub-sampling will result in half the number of samples (and hence half the time resolution) and half the frequency band spanned (and hence doubles the frequency) interpreting the DWT coefficients can sometimes be rather difficult because the way DWT coefficients are presented is rather peculiar. In brief, DWT coefficients of each level are concatenated, starting with the last level. SIMULINK MODELLING OF THE SYSTEM PMSM Drive System is simulated as shown in Fig.3 using Matlab/Simulink package for fault diagnosis using neural network Discrete wavelet transform algorithm. The machine is controlled by the phase switching provided by the MOSFET inverter which is controlled by the triggering system. The permanent magnet synchronous motor is given a constant torque input and is assumed to be running at a stable speed. 7 Fig 3. PMSM Drive System

8 Fig.4. Simulink model of fault detection System Fig.5 Feature Extraction system Fig.4 shows the Simulink model of the fault detection system for various fault condition as mentioned in section VI. The information from the motor is given to the Matrix Concatenate block as the Neural Network cannot work on data provided to it in discrete form. The neural network output is given to a quantizer. The neural network is provided with three layers and gives the output as 1 if a fault is detected and remains 0 in the absence of a fault. Fig 5. shows the Simulink model of feature extraction system. The direct axis and the quadrature axis stator currents are extracted for the neural network. The stator currents possess efficient information in its characteristics for the neural network to detect the presence of fault in either the converter or the motor circuit. The extracted currents are passed to a zero-order hold and then into a buffer to send the data to the Discrete Wavelet Transform block. PMSM FAULT DETECTION 8

9 In a PMSM, open and short circuit faults can occur either in the inverter side or in the machine windings. Fault phenomenon is provided with a respective neural network setup. The resultant effect is however similar when the PMSM does not have any fault the output of the neural network is 0 which is shown in Fig 6. When the neural network detects any fault in either the inverter or the motor system the output becomes 1as shown in Fig 7. Fig.6 Output of Fault Indicator under normal condition. Fig.7 Output of Fault Indicator under one inverter switch condition at t= 0.1s. Fig.8 Motor phase voltage under normal condition. switch Fig.9 Motor phase voltage under one inverter open circuit at t=0.1s. 9

10 Fig. 10 Stator Currents under normal condition. Fig. 11 Stator Currents under fault condition. Fig. 12 Quadrature and Direct axes under normal condition Fig. 13 Quadrature and Direct axes under fault condition Fig.14 Speed response under normal operation. 10

11 Fig. 15 Speed response under fault condition Fig. 16 Torque response under normal operation Fig.17 Torque response under fault condition Fig. 8 indicates the normal response of phase voltage fed to the motor. When a fault is developed in the windings of the motor or in an inverter side, for e.g., an open circuit of any one switch in the inverter part is simulated at t=0.1s and immediately the neural identifies the fault and fault type indicator show level 1 as shown in Fig.7. The phase voltage of motor is shown in Fig.9 under fault condition. Fig.10 & 11 indicates the three phase stator currents of the motor under normal and fault condition. Fig. 12 & 13 represents the quadrature and direct axes current under normal and abnormal condition. It can be observed that the quadrature current is decreases and direct axis current increases around 20A which is well above the rated value under fault condition. Fig 13 & 14 indicates the speed response of the motor under normal and inverter switch open circuit fault condition where the motor normally runs at 700rpm and when fault occurs at t=0.1s the speed reaches zero after oscillation. The torque response is shown Fig.15 & 16 under normal and fault condition. CONCLUSION 11

12 Electric machines are important components for industries and special applications. The continuous healthy operation of machines is critical for the reliability of the entire system. PMSM has been provided with a fault detecting system by incorporating a neural network which is trained using Levenberg-Marquart algorithm and a DWT based feature extraction block. The various parameters of the permanent magnet synchronous motor were considered and the direct axis stator current and quadrature axis stator currents were found to contain more information instances in its characteristics. Hence they were given as inputs for the neural network after sampling and transformation. The present project deals with providing a fast fault detection system that can detect any kind of fault occurring in the inverter or motor circuitry. However the idea can be extended to diagnose the fault and provide an effective isolation technique REFERENCES 1. LI LIU Robust Fault Detection And Diagnosis For Permanent Magnet Synchronous Motors Dissertation submitted to the Department of Mechanical Engineering, The Florida State University, College Of Engineering June 9th, 2006, pp Introduction to short circuit analysis, 3. Open circuit fault definition, 4. Hua Su and Kil To Chong, Induction Machine Condition Monitoring Using Neural Network Modeling, IEEE Transactions on Industrial Electronics, vol. 54, no. 1, February 2007, pp Robi Polikar, The Engineer's Ultimate Guide To Wavelet Analysis The Wavelet Tutorial, Part I, May 2, 2001, pp D.R. Hush, C.T. Abdallah, G.L. Heileman, and D. Docampo, Neural Networks In Fault Detection: A Case Study, University of New Mexico,Albuquerque, NM 87131, USA., pp Fiona Nielsen, Neural Networks algorithms and applications, Ph.D thesis, Brock Business College, page 2 8. P.Baby, P.Bhuvaneswari and K.Sasirekha, A Study on Learning Techniques in Artificial Neural Network, JESCSET 13 & vol. 2,no.4, pp Bogdan M. Wilamowski, and Hao Yu, Improved Computation for Levenberg Marquardt IEEE Transactions on Neural Networks, vol. 21, no. 6, June 2010,v pp Evelyn Araneda, A Variation of the Levenberg Marquardt Method An attempt to improve efficiency, M.Sc Thesis, Massachusetts Institute of Technology, May Ru-Shan Wu and Ling Chen, Wave Propagation and Imaging Using Gabor-Daubechies Beamlets, Proc. 5th International Conference on Theoretical and Computational Acoustics, May 21-25, 2001, Beijing, China. Jayarama Pradeep Research Scholar, Sathyabama University. 12

13 13

IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL

IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL * A. K. Sharma, ** R. A. Gupta, and *** Laxmi Srivastava * Department of Electrical Engineering,

More information

Decriminition between Magnetising Inrush from Interturn Fault Current in Transformer: Hilbert Transform Approach

Decriminition between Magnetising Inrush from Interturn Fault Current in Transformer: Hilbert Transform Approach SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) volume 1 Issue 10 Dec 014 Decriminition between Magnetising Inrush from Interturn Fault Current in Transformer: Hilbert

More information

FAULT DIAGNOSIS AND PERFORMANCE ASSESSMENT FOR A ROTARY ACTUATOR BASED ON NEURAL NETWORK OBSERVER

FAULT DIAGNOSIS AND PERFORMANCE ASSESSMENT FOR A ROTARY ACTUATOR BASED ON NEURAL NETWORK OBSERVER 7 Journal of Marine Science and Technology, Vol., No., pp. 7-78 () DOI:.9/JMST-3 FAULT DIAGNOSIS AND PERFORMANCE ASSESSMENT FOR A ROTARY ACTUATOR BASED ON NEURAL NETWORK OBSERVER Jian Ma,, Xin Li,, Chen

More information

Swinburne Research Bank

Swinburne Research Bank Swinburne Research Bank http://researchbank.swinburne.edu.au Tashakori, A., & Ektesabi, M. (2013). A simple fault tolerant control system for Hall Effect sensors failure of BLDC motor. Originally published

More information

Detection and classification of faults on 220 KV transmission line using wavelet transform and neural network

Detection and classification of faults on 220 KV transmission line using wavelet transform and neural network International Journal of Smart Grid and Clean Energy Detection and classification of faults on 220 KV transmission line using wavelet transform and neural network R P Hasabe *, A P Vaidya Electrical Engineering

More information

DETECTION AND CLASSIFICATION OF POWER QUALITY DISTURBANCES

DETECTION AND CLASSIFICATION OF POWER QUALITY DISTURBANCES DETECTION AND CLASSIFICATION OF POWER QUALITY DISTURBANCES Ph.D. THESIS by UTKARSH SINGH INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE-247 667 (INDIA) OCTOBER, 2017 DETECTION AND CLASSIFICATION OF POWER

More information

AN ANN BASED FAULT DETECTION ON ALTERNATOR

AN ANN BASED FAULT DETECTION ON ALTERNATOR AN ANN BASED FAULT DETECTION ON ALTERNATOR Suraj J. Dhon 1, Sarang V. Bhonde 2 1 (Electrical engineering, Amravati University, India) 2 (Electrical engineering, Amravati University, India) ABSTRACT: Synchronous

More information

TRANSIENT STABILITY ENHANCEMENT OF POWER SYSTEM USING INTELLIGENT TECHNIQUE

TRANSIENT STABILITY ENHANCEMENT OF POWER SYSTEM USING INTELLIGENT TECHNIQUE TRANSIENT STABILITY ENHANCEMENT OF POWER SYSTEM USING INTELLIGENT TECHNIQUE K.Satyanarayana 1, Saheb Hussain MD 2, B.K.V.Prasad 3 1 Ph.D Scholar, EEE Department, Vignan University (A.P), India, ksatya.eee@gmail.com

More information

FACE RECOGNITION USING NEURAL NETWORKS

FACE RECOGNITION USING NEURAL NETWORKS Int. J. Elec&Electr.Eng&Telecoms. 2014 Vinoda Yaragatti and Bhaskar B, 2014 Research Paper ISSN 2319 2518 www.ijeetc.com Vol. 3, No. 3, July 2014 2014 IJEETC. All Rights Reserved FACE RECOGNITION USING

More information

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS 66 CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS INTRODUCTION The use of electronic controllers in the electric power supply system has become very common. These electronic

More information

Wavelet Transform Based Islanding Characterization Method for Distributed Generation

Wavelet Transform Based Islanding Characterization Method for Distributed Generation Fourth LACCEI International Latin American and Caribbean Conference for Engineering and Technology (LACCET 6) Wavelet Transform Based Islanding Characterization Method for Distributed Generation O. A.

More information

Analysis Of Induction Motor With Broken Rotor Bars Using Discrete Wavelet Transform Princy P 1 and Gayathri Vijayachandran 2

Analysis Of Induction Motor With Broken Rotor Bars Using Discrete Wavelet Transform Princy P 1 and Gayathri Vijayachandran 2 Analysis Of Induction Motor With Broken Rotor Bars Using Discrete Wavelet Transform Princy P 1 and Gayathri Vijayachandran 2 1 Dept. Of Electrical and Electronics, Sree Buddha College of Engineering 2

More information

[Nayak, 3(2): February, 2014] ISSN: Impact Factor: 1.852

[Nayak, 3(2): February, 2014] ISSN: Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Classification of Transmission Line Faults Using Wavelet Transformer B. Lakshmana Nayak M.TECH(APS), AMIE, Associate Professor,

More information

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 9 CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 2.1 INTRODUCTION AC drives are mainly classified into direct and indirect converter drives. In direct converters (cycloconverters), the AC power is fed

More information

Indirect Vector Control of Induction Motor Using Pi Speed Controller and Neural Networks

Indirect Vector Control of Induction Motor Using Pi Speed Controller and Neural Networks Vol.3, Issue.4, Jul - Aug. 2013 pp-1980-1987 ISSN: 2249-6645 Indirect Vector Control of Induction Motor Using Pi Speed Controller and Neural Networks C. Mohan Krishna M. Tech 1, G. Meerimatha M.Tech 2,

More information

FAULT DETECTION AND DIAGNOSIS OF HIGH SPEED SWITCHING DEVICES IN POWER INVERTER

FAULT DETECTION AND DIAGNOSIS OF HIGH SPEED SWITCHING DEVICES IN POWER INVERTER FAULT DETECTION AND DIAGNOSIS OF HIGH SPEED SWITCHING DEVICES IN POWER INVERTER R. B. Dhumale 1, S. D. Lokhande 2, N. D. Thombare 3, M. P. Ghatule 4 1 Department of Electronics and Telecommunication Engineering,

More information

Wavelet Transform for Classification of Voltage Sag Causes using Probabilistic Neural Network

Wavelet Transform for Classification of Voltage Sag Causes using Probabilistic Neural Network International Journal of Electrical Engineering. ISSN 974-2158 Volume 4, Number 3 (211), pp. 299-39 International Research Publication House http://www.irphouse.com Wavelet Transform for Classification

More information

Keywords: Wavelet packet transform (WPT), Differential Protection, Inrush current, CT saturation.

Keywords: Wavelet packet transform (WPT), Differential Protection, Inrush current, CT saturation. IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Differential Protection of Three Phase Power Transformer Using Wavelet Packet Transform Jitendra Singh Chandra*, Amit Goswami

More information

Artificial Neural Networks approach to the voltage sag classification

Artificial Neural Networks approach to the voltage sag classification Artificial Neural Networks approach to the voltage sag classification F. Ortiz, A. Ortiz, M. Mañana, C. J. Renedo, F. Delgado, L. I. Eguíluz Department of Electrical and Energy Engineering E.T.S.I.I.,

More information

EE216B: VLSI Signal Processing. Wavelets. Prof. Dejan Marković Shortcomings of the Fourier Transform (FT)

EE216B: VLSI Signal Processing. Wavelets. Prof. Dejan Marković Shortcomings of the Fourier Transform (FT) 5//0 EE6B: VLSI Signal Processing Wavelets Prof. Dejan Marković ee6b@gmail.com Shortcomings of the Fourier Transform (FT) FT gives information about the spectral content of the signal but loses all time

More information

LabVIEW Based Condition Monitoring Of Induction Motor

LabVIEW Based Condition Monitoring Of Induction Motor RESEARCH ARTICLE OPEN ACCESS LabVIEW Based Condition Monitoring Of Induction Motor 1PG student Rushikesh V. Deshmukh Prof. 2Asst. professor Anjali U. Jawadekar Department of Electrical Engineering SSGMCE,

More information

Journal of Engineering Technology

Journal of Engineering Technology A novel mitigation algorithm for switch open-fault in parallel inverter topology fed induction motor drive M. Dilip *a, S. F. Kodad *b B. Sarvesh *c a Department of Electrical and Electronics Engineering,

More information

Artificial Neural Network Based Fault Locator for Single Line to Ground Fault in Double Circuit Transmission Line

Artificial Neural Network Based Fault Locator for Single Line to Ground Fault in Double Circuit Transmission Line DOI: 10.7763/IPEDR. 2014. V75. 11 Artificial Neural Network Based Fault Locator for Single Line to Ground Fault in Double Circuit Transmission Line Aravinda Surya. V 1, Ebha Koley 2 +, AnamikaYadav 3 and

More information

PERFORMANCE PARAMETERS CONTROL OF WOUND ROTOR INDUCTION MOTOR USING ANN CONTROLLER

PERFORMANCE PARAMETERS CONTROL OF WOUND ROTOR INDUCTION MOTOR USING ANN CONTROLLER PERFORMANCE PARAMETERS CONTROL OF WOUND ROTOR INDUCTION MOTOR USING ANN CONTROLLER 1 A.MOHAMED IBRAHIM, 2 M.PREMKUMAR, 3 T.R.SUMITHIRA, 4 D.SATHISHKUMAR 1,2,4 Assistant professor in Department of Electrical

More information

ARTIFICIAL NEURAL NETWORK BASED CLASSIFICATION FOR MONOBLOCK CENTRIFUGAL PUMP USING WAVELET ANALYSIS

ARTIFICIAL NEURAL NETWORK BASED CLASSIFICATION FOR MONOBLOCK CENTRIFUGAL PUMP USING WAVELET ANALYSIS International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print) ISSN 0976 6359(Online) Volume 1 Number 1, July - Aug (2010), pp. 28-37 IAEME, http://www.iaeme.com/ijmet.html

More information

Internal Fault Classification in Transformer Windings using Combination of Discrete Wavelet Transforms and Back-propagation Neural Networks

Internal Fault Classification in Transformer Windings using Combination of Discrete Wavelet Transforms and Back-propagation Neural Networks International Internal Fault Journal Classification of Control, in Automation, Transformer and Windings Systems, using vol. Combination 4, no. 3, pp. of 365-371, Discrete June Wavelet 2006 Transforms and

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 BACKGROUND The increased use of non-linear loads and the occurrence of fault on the power system have resulted in deterioration in the quality of power supplied to the customers.

More information

POWER TRANSFORMER PROTECTION USING ANN, FUZZY SYSTEM AND CLARKE S TRANSFORM

POWER TRANSFORMER PROTECTION USING ANN, FUZZY SYSTEM AND CLARKE S TRANSFORM POWER TRANSFORMER PROTECTION USING ANN, FUZZY SYSTEM AND CLARKE S TRANSFORM 1 VIJAY KUMAR SAHU, 2 ANIL P. VAIDYA 1,2 Pg Student, Professor E-mail: 1 vijay25051991@gmail.com, 2 anil.vaidya@walchandsangli.ac.in

More information

Image Processing and Artificial Neural Network techniques in Identifying Defects of Textile Products

Image Processing and Artificial Neural Network techniques in Identifying Defects of Textile Products Image Processing and Artificial Neural Network techniques in Identifying Defects of Textile Products Mrs.P.Banumathi 1, Ms.T.S.Ushanandhini 2 1 Associate Professor, Department of Computer Science and Engineering,

More information

Fault Diagnosis in H-Bridge Multilevel Inverter Drive Using Wavelet Transforms

Fault Diagnosis in H-Bridge Multilevel Inverter Drive Using Wavelet Transforms Fault Diagnosis in H-Bridge Multilevel Inverter Drive Using Wavelet Transforms V.Vinothkumar 1, Dr.C.Muniraj 2 PG Scholar, Department of Electrical and Electronics Engineering, K.S.Rangasamy college of

More information

PERMANENT magnet brushless DC motors have been

PERMANENT magnet brushless DC motors have been Inverter Switch Fault Diagnosis System for BLDC Motor Drives A. Tashakori and M. Ektesabi Abstract Safe operation of electric motor drives is of prime research interest in various industrial applications.

More information

Fault Detection in Double Circuit Transmission Lines Using ANN

Fault Detection in Double Circuit Transmission Lines Using ANN International Journal of Research in Advent Technology, Vol.3, No.8, August 25 E-ISSN: 232-9637 Fault Detection in Double Circuit Transmission Lines Using ANN Chhavi Gupta, Chetan Bhardwaj 2 U.T.U Dehradun,

More information

CHAPTER 3 WAVELET TRANSFORM BASED CONTROLLER FOR INDUCTION MOTOR DRIVES

CHAPTER 3 WAVELET TRANSFORM BASED CONTROLLER FOR INDUCTION MOTOR DRIVES 49 CHAPTER 3 WAVELET TRANSFORM BASED CONTROLLER FOR INDUCTION MOTOR DRIVES 3.1 INTRODUCTION The wavelet transform is a very popular tool for signal processing and analysis. It is widely used for the analysis

More information

Detection, localization, and classification of power quality disturbances using discrete wavelet transform technique

Detection, localization, and classification of power quality disturbances using discrete wavelet transform technique From the SelectedWorks of Tarek Ibrahim ElShennawy 2003 Detection, localization, and classification of power quality disturbances using discrete wavelet transform technique Tarek Ibrahim ElShennawy, Dr.

More information

Electrical Machines Diagnosis

Electrical Machines Diagnosis Monitoring and diagnosing faults in electrical machines is a scientific and economic issue which is motivated by objectives for reliability and serviceability in electrical drives. This concern for continuity

More information

DC Motor Speed Control Using Machine Learning Algorithm

DC Motor Speed Control Using Machine Learning Algorithm DC Motor Speed Control Using Machine Learning Algorithm Jeen Ann Abraham Department of Electronics and Communication. RKDF College of Engineering Bhopal, India. Sanjeev Shrivastava Department of Electronics

More information

CHAPTER 6 BACK PROPAGATED ARTIFICIAL NEURAL NETWORK TRAINED ARHF

CHAPTER 6 BACK PROPAGATED ARTIFICIAL NEURAL NETWORK TRAINED ARHF 95 CHAPTER 6 BACK PROPAGATED ARTIFICIAL NEURAL NETWORK TRAINED ARHF 6.1 INTRODUCTION An artificial neural network (ANN) is an information processing model that is inspired by biological nervous systems

More information

A DWT Approach for Detection and Classification of Transmission Line Faults

A DWT Approach for Detection and Classification of Transmission Line Faults IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 02 July 2016 ISSN (online): 2349-6010 A DWT Approach for Detection and Classification of Transmission Line Faults

More information

A New Localization Algorithm Based on Taylor Series Expansion for NLOS Environment

A New Localization Algorithm Based on Taylor Series Expansion for NLOS Environment BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 16, No 5 Special Issue on Application of Advanced Computing and Simulation in Information Systems Sofia 016 Print ISSN: 1311-970;

More information

AC : APPLICATIONS OF WAVELETS IN INDUCTION MACHINE FAULT DETECTION

AC : APPLICATIONS OF WAVELETS IN INDUCTION MACHINE FAULT DETECTION AC 2008-160: APPLICATIONS OF WAVELETS IN INDUCTION MACHINE FAULT DETECTION Erick Schmitt, Pennsylvania State University-Harrisburg Mr. Schmitt is a graduate student in the Master of Engineering, Electrical

More information

Analysis of Power Quality Disturbances using DWT and Artificial Neural Networks

Analysis of Power Quality Disturbances using DWT and Artificial Neural Networks Analysis of Power Quality Disturbances using DWT and Artificial Neural Networks T.Jayasree ** M.S.Ragavi * R.Sarojini * Snekha.R * M.Tamilselvi * *BE final year, ECE Department, Govt. College of Engineering,

More information

Ferroresonance Signal Analysis with Wavelet Transform on 500 kv Transmission Lines Capacitive Voltage Transformers

Ferroresonance Signal Analysis with Wavelet Transform on 500 kv Transmission Lines Capacitive Voltage Transformers Signal Analysis with Wavelet Transform on 500 kv Transmission Lines Capacitive Voltage Transformers I Gusti Ngurah Satriyadi Hernanda, I Made Yulistya Negara, Adi Soeprijanto, Dimas Anton Asfani, Mochammad

More information

PERFORMANCE ANALYSIS OF PERMANENT MAGNET SYNCHRONOUS MOTOR WITH PI & FUZZY CONTROLLERS

PERFORMANCE ANALYSIS OF PERMANENT MAGNET SYNCHRONOUS MOTOR WITH PI & FUZZY CONTROLLERS International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST) Vol. 2, Special Issue 16, May 2016 PERFORMANCE ANALYSIS OF PERMANENT MAGNET SYNCHRONOUS MOTOR WITH PI

More information

Broken Rotor Bar Fault Detection using Wavlet

Broken Rotor Bar Fault Detection using Wavlet Broken Rotor Bar Fault Detection using Wavlet sonalika mohanty Department of Electronics and Communication Engineering KISD, Bhubaneswar, Odisha, India Prof.(Dr.) Subrat Kumar Mohanty, Principal CEB Department

More information

Analysis of LMS Algorithm in Wavelet Domain

Analysis of LMS Algorithm in Wavelet Domain Conference on Advances in Communication and Control Systems 2013 (CAC2S 2013) Analysis of LMS Algorithm in Wavelet Domain Pankaj Goel l, ECE Department, Birla Institute of Technology Ranchi, Jharkhand,

More information

Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method

Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 16, NO. 1, MARCH 2001 55 Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method S. L. Ho and W. N. Fu Abstract

More information

DC Motor Speed Control using Artificial Neural Network

DC Motor Speed Control using Artificial Neural Network International Journal of Modern Communication Technologies & Research (IJMCTR) ISSN: 2321-0850, Volume-2, Issue-2, February 2014 DC Motor Speed Control using Artificial Neural Network Yogesh, Swati Gupta,

More information

Fault Location Technique for UHV Lines Using Wavelet Transform

Fault Location Technique for UHV Lines Using Wavelet Transform International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 1 (2013), pp. 77-88 International Research Publication House http://www.irphouse.com Fault Location Technique for UHV Lines

More information

Artificial Neural Networks. Artificial Intelligence Santa Clara, 2016

Artificial Neural Networks. Artificial Intelligence Santa Clara, 2016 Artificial Neural Networks Artificial Intelligence Santa Clara, 2016 Simulate the functioning of the brain Can simulate actual neurons: Computational neuroscience Can introduce simplified neurons: Neural

More information

A new application of neural network technique to sensorless speed identification of induction motor

A new application of neural network technique to sensorless speed identification of induction motor Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 29, July-December 2016 p. 33-42 Engineering, Environment A new application of neural network technique to sensorless speed

More information

IN MANY industrial applications, ac machines are preferable

IN MANY industrial applications, ac machines are preferable IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 1, FEBRUARY 1999 111 Automatic IM Parameter Measurement Under Sensorless Field-Oriented Control Yih-Neng Lin and Chern-Lin Chen, Member, IEEE Abstract

More information

RCL filter to suppress motor terminal overvoltage in PWM inverter fed Permanent Magnet synchronous motor with long cable leads

RCL filter to suppress motor terminal overvoltage in PWM inverter fed Permanent Magnet synchronous motor with long cable leads RCL filter to suppress motor terminal overvoltage in PWM inverter fed Permanent Magnet synchronous motor with long cable leads M.B.RATHNAPRIYA1 A.JAGADEESWARAN2 M.E scholar, Department of EEE Sona College

More information

ISSN: [Taywade* et al., 5(12): December, 2016] Impact Factor: 4.116

ISSN: [Taywade* et al., 5(12): December, 2016] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DETECTION AND CLASSIFICATION OF TRANSMISSION LINES FAULTS USING DISCRETE WAVELET TRANSFORM AND ANN AS CLASSIFIER Dhanashri D.

More information

Stator Winding Fault in Induction Motor

Stator Winding Fault in Induction Motor Chapter 7 Stator Winding Fault in Induction Motor Chapter Outline Stator is one of the major fault areas in an induction motor. Stator fault initiates as a turn to turn short fault of its winding which

More information

Learning Algorithms for Servomechanism Time Suboptimal Control

Learning Algorithms for Servomechanism Time Suboptimal Control Learning Algorithms for Servomechanism Time Suboptimal Control M. Alexik Department of Technical Cybernetics, University of Zilina, Univerzitna 85/, 6 Zilina, Slovakia mikulas.alexik@fri.uniza.sk, ABSTRACT

More information

DIAGNOSIS OF STATOR FAULT IN ASYNCHRONOUS MACHINE USING SOFT COMPUTING METHODS

DIAGNOSIS OF STATOR FAULT IN ASYNCHRONOUS MACHINE USING SOFT COMPUTING METHODS DIAGNOSIS OF STATOR FAULT IN ASYNCHRONOUS MACHINE USING SOFT COMPUTING METHODS K. Vinoth Kumar 1, S. Suresh Kumar 2, A. Immanuel Selvakumar 1 and Vicky Jose 1 1 Department of EEE, School of Electrical

More information

Introduction to Wavelets Michael Phipps Vallary Bhopatkar

Introduction to Wavelets Michael Phipps Vallary Bhopatkar Introduction to Wavelets Michael Phipps Vallary Bhopatkar *Amended from The Wavelet Tutorial by Robi Polikar, http://users.rowan.edu/~polikar/wavelets/wttutoria Who can tell me what this means? NR3, pg

More information

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online):

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online): JJEE Volume, Number, 2 Pages 3-24 Jordan Journal of Electrical Engineering ISSN (Print): 249-96, ISSN (Online): 249-969 Analysis of Brushless DC Motor with Trapezoidal Back EMF using MATLAB Taha A. Hussein

More information

Introduction to Wavelet Transform. Chapter 7 Instructor: Hossein Pourghassem

Introduction to Wavelet Transform. Chapter 7 Instructor: Hossein Pourghassem Introduction to Wavelet Transform Chapter 7 Instructor: Hossein Pourghassem Introduction Most of the signals in practice, are TIME-DOMAIN signals in their raw format. It means that measured signal is a

More information

Regulated Voltage Simulation of On-board DC Micro Grid Based on ADRC Technology

Regulated Voltage Simulation of On-board DC Micro Grid Based on ADRC Technology 2017 2 nd International Conference on Artificial Intelligence and Engineering Applications (AIEA 2017) ISBN: 978-1-60595-485-1 Regulated Voltage Simulation of On-board DC Micro Grid Based on ADRC Technology

More information

VECTOR CONTROL SCHEME FOR INDUCTION MOTOR WITH DIFFERENT CONTROLLERS FOR NEGLECTING THE END EFFECTS IN HEV APPLICATIONS

VECTOR CONTROL SCHEME FOR INDUCTION MOTOR WITH DIFFERENT CONTROLLERS FOR NEGLECTING THE END EFFECTS IN HEV APPLICATIONS VECTOR CONTROL SCHEME FOR INDUCTION MOTOR WITH DIFFERENT CONTROLLERS FOR NEGLECTING THE END EFFECTS IN HEV APPLICATIONS M.LAKSHMISWARUPA 1, G.TULASIRAMDAS 2 & P.V.RAJGOPAL 3 1 Malla Reddy Engineering College,

More information

Neural Network Based Optimal Switching Pattern Generation for Multiple Pulse Width Modulated Inverter

Neural Network Based Optimal Switching Pattern Generation for Multiple Pulse Width Modulated Inverter Vol.3, Issue.4, Jul - Aug. 2013 pp-1910-1915 ISSN: 2249-6645 Neural Network Based Optimal Switching Pattern Generation for Multiple Pulse Width Modulated Inverter K. Tamilarasi 1, C. Suganthini 2 1, 2

More information

Power Quality Disturbaces Clasification And Automatic Detection Using Wavelet And ANN Techniques

Power Quality Disturbaces Clasification And Automatic Detection Using Wavelet And ANN Techniques International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 13, Issue 6 (June 2017), PP.61-67 Power Quality Disturbaces Clasification And Automatic

More information

Simulation of Solar Powered PMBLDC Motor Drive

Simulation of Solar Powered PMBLDC Motor Drive Simulation of Solar Powered PMBLDC Motor Drive 1 Deepa A B, 2 Prof. Maheshkant pawar 1 Students, 2 Assistant Professor P.D.A College of Engineering Abstract - Recent global developments lead to the use

More information

Symmetrical Components in Analysis of Switching Event and Fault Condition for Overcurrent Protection in Electrical Machines

Symmetrical Components in Analysis of Switching Event and Fault Condition for Overcurrent Protection in Electrical Machines Symmetrical Components in Analysis of Switching Event and Fault Condition for Overcurrent Protection in Electrical Machines Dhanashree Kotkar 1, N. B. Wagh 2 1 M.Tech.Research Scholar, PEPS, SDCOE, Wardha(M.S.),India

More information

Advanced Software Developments for Automated Power Quality Assessment Using DFR Data

Advanced Software Developments for Automated Power Quality Assessment Using DFR Data Advanced Software Developments for Automated Power Quality Assessment Using DFR Data M. Kezunovic, X. Xu Texas A&M University Y. Liao ABB ETI, Raleigh, NC Abstract The power quality (PQ) meters are usually

More information

Characterization of Voltage Sag due to Faults and Induction Motor Starting

Characterization of Voltage Sag due to Faults and Induction Motor Starting Characterization of Voltage Sag due to Faults and Induction Motor Starting Dépt. of Electrical Engineering, SSGMCE, Shegaon, India, Dépt. of Electronics & Telecommunication Engineering, SITS, Pune, India

More information

MODELLING OF TWIN ROTOR MIMO SYSTEM (TRMS)

MODELLING OF TWIN ROTOR MIMO SYSTEM (TRMS) MODELLING OF TWIN ROTOR MIMO SYSTEM (TRMS) A PROJECT THESIS SUBMITTED IN THE PARTIAL FUFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN ELECTRICAL ENGINEERING BY ASUTOSH SATAPATHY

More information

Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller

Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2492-2497 ISSN: 2249-6645 Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller Praveen Kumar 1, Anurag Singh Tomer 2 1 (ME Scholar, Department of Electrical

More information

Improvement of Classical Wavelet Network over ANN in Image Compression

Improvement of Classical Wavelet Network over ANN in Image Compression International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869 (O) 2454-4698 (P), Volume-7, Issue-5, May 2017 Improvement of Classical Wavelet Network over ANN in Image Compression

More information

Analysis on exciting winding electromagnetic force of Turbogenerator under rotor interturn short circuit fault

Analysis on exciting winding electromagnetic force of Turbogenerator under rotor interturn short circuit fault International Conference on Advanced Electronic Science and Technology (AEST 2016) Analysis on exciting winding electromagnetic force of Turbogenerator under rotor interturn short circuit fault a Hao Zhong,

More information

FAULT DETECTION OF FLIGHT CRITICAL SYSTEMS

FAULT DETECTION OF FLIGHT CRITICAL SYSTEMS FAULT DETECTION OF FLIGHT CRITICAL SYSTEMS Jorge L. Aravena, Louisiana State University, Baton Rouge, LA Fahmida N. Chowdhury, University of Louisiana, Lafayette, LA Abstract This paper describes initial

More information

Realising Robust Low Speed Sensorless PMSM Control Using Current Derivatives Obtained from Standard Current Sensors

Realising Robust Low Speed Sensorless PMSM Control Using Current Derivatives Obtained from Standard Current Sensors Realising Robust Low Speed Sensorless PMSM Control Using Current Derivatives Obtained from Standard Current Sensors Dr David Hind, Chen Li, Prof Mark Sumner, Prof Chris Gerada Power Electronics, Machines

More information

ELECTRIC MACHINES MODELING, CONDITION MONITORING, SEUNGDEOG CHOI HOMAYOUN MESHGIN-KELK AND FAULT DIAGNOSIS HAMID A. TOLIYAT SUBHASIS NANDI

ELECTRIC MACHINES MODELING, CONDITION MONITORING, SEUNGDEOG CHOI HOMAYOUN MESHGIN-KELK AND FAULT DIAGNOSIS HAMID A. TOLIYAT SUBHASIS NANDI ELECTRIC MACHINES MODELING, CONDITION MONITORING, AND FAULT DIAGNOSIS HAMID A. TOLIYAT SUBHASIS NANDI SEUNGDEOG CHOI HOMAYOUN MESHGIN-KELK CRC Press is an imprint of the Taylor & Francis Croup, an informa

More information

A variable step-size LMS adaptive filtering algorithm for speech denoising in VoIP

A variable step-size LMS adaptive filtering algorithm for speech denoising in VoIP 7 3rd International Conference on Computational Systems and Communications (ICCSC 7) A variable step-size LMS adaptive filtering algorithm for speech denoising in VoIP Hongyu Chen College of Information

More information

The Elevator Fault Diagnosis Method Based on Sequential Probability Ratio Test (SPRT)

The Elevator Fault Diagnosis Method Based on Sequential Probability Ratio Test (SPRT) Automation, Control and Intelligent Systems 2017; 5(4): 50-55 http://www.sciencepublishinggroup.com/j/acis doi: 10.11648/j.acis.20170504.11 ISSN: 2328-5583 (Print); ISSN: 2328-5591 (Online) The Elevator

More information

NEW ADAPTIVE SPEED CONTROLLER FOR IPMSM DRIVE

NEW ADAPTIVE SPEED CONTROLLER FOR IPMSM DRIVE NEW ADAPTIVE SPEED CONTROLLER FOR IPMSM DRIVE Aadyasha Patel 1, Karthigha D. 2, Sathiya K. 3 1, 2, 3 Assistant Professor, Electrical & Electronics Engineering, PSVP Engineering College, Tamil Nadu, India

More information

Modelling of Electrical Machines by Using a Circuit- Coupled Finite Element Method

Modelling of Electrical Machines by Using a Circuit- Coupled Finite Element Method Modelling of Electrical Machines by Using a Circuit- Coupled Finite Element Method Wei Wu CSIRO Telecommunications & Industrial Physics, PO Box 218, Lindfield, NSW 2070, Australia Abstract This paper presents

More information

HIGH QUALITY AUDIO CODING AT LOW BIT RATE USING WAVELET AND WAVELET PACKET TRANSFORM

HIGH QUALITY AUDIO CODING AT LOW BIT RATE USING WAVELET AND WAVELET PACKET TRANSFORM HIGH QUALITY AUDIO CODING AT LOW BIT RATE USING WAVELET AND WAVELET PACKET TRANSFORM DR. D.C. DHUBKARYA AND SONAM DUBEY 2 Email at: sonamdubey2000@gmail.com, Electronic and communication department Bundelkhand

More information

Digital Control of Permanent Magnet Synchronous Motor

Digital Control of Permanent Magnet Synchronous Motor Digital Control of Permanent Magnet Synchronous Motor Jayasri R. Nair 1 Assistant Professor, Dept. of EEE, Rajagiri School Of Engineering and Technology, Kochi, Kerala, India 1 ABSTRACT: The principle

More information

SIGNAL PROCESSING OF POWER QUALITY DISTURBANCES

SIGNAL PROCESSING OF POWER QUALITY DISTURBANCES SIGNAL PROCESSING OF POWER QUALITY DISTURBANCES MATH H. J. BOLLEN IRENE YU-HUA GU IEEE PRESS SERIES I 0N POWER ENGINEERING IEEE PRESS SERIES ON POWER ENGINEERING MOHAMED E. EL-HAWARY, SERIES EDITOR IEEE

More information

Transient Stability Improvement of Multi Machine Power Systems using Matrix Converter Based UPFC with ANN

Transient Stability Improvement of Multi Machine Power Systems using Matrix Converter Based UPFC with ANN IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 04, 2015 ISSN (online): 2321-0613 Transient Stability Improvement of Multi Machine Power Systems using Matrix Converter

More information

A Robust Fuzzy Speed Control Applied to a Three-Phase Inverter Feeding a Three-Phase Induction Motor.

A Robust Fuzzy Speed Control Applied to a Three-Phase Inverter Feeding a Three-Phase Induction Motor. A Robust Fuzzy Speed Control Applied to a Three-Phase Inverter Feeding a Three-Phase Induction Motor. A.T. Leão (MSc) E.P. Teixeira (Dr) J.R. Camacho (PhD) H.R de Azevedo (Dr) Universidade Federal de Uberlândia

More information

ROTOR FAULTS DETECTION IN SQUIRREL-CAGE INDUCTION MOTORS BY CURRENT SIGNATURE ANALYSIS

ROTOR FAULTS DETECTION IN SQUIRREL-CAGE INDUCTION MOTORS BY CURRENT SIGNATURE ANALYSIS ROTOR FAULTS DETECTION IN SQUIRREL-CAGE INDUCTION MOTORS BY CURRENT SIGNATURE ANALYSIS SZABÓ Loránd DOBAI Jenő Barna BIRÓ Károly Ágoston Technical University of Cluj (Romania) 400750 Cluj, P.O. Box 358,

More information

Efficiency Optimization of Induction Motor Drives using PWM Technique

Efficiency Optimization of Induction Motor Drives using PWM Technique Efficiency Optimization of Induction Motor Drives using PWM Technique 1 Mahantesh Gutti, 2 Manish G. Rathi, 3 Jagadish Patil M TECH Student, EEE Dept. Associate Professor, ECE Dept.M TECH Student, EEE

More information

VIBRATION ESTIMATION, ASSESSMENT AND PROGNOSIS IN ELECTRICAL MACHINES

VIBRATION ESTIMATION, ASSESSMENT AND PROGNOSIS IN ELECTRICAL MACHINES National Journal on Electronic Sciences & Systems, Vol. 6 No. 2 October 2015. 10 VIBRATION ESTIMATION, ASSESSMENT AND PROGNOSIS IN ELECTRICAL MACHINES 1C.N. Gnanaprakasam, 2 K. Chitra 1 Research scholar

More information

EEE508 GÜÇ SİSTEMLERİNDE SİNYAL İŞLEME

EEE508 GÜÇ SİSTEMLERİNDE SİNYAL İŞLEME EEE508 GÜÇ SİSTEMLERİNDE SİNYAL İŞLEME Signal Processing for Power System Applications Triggering, Segmentation and Characterization of the Events (Week-12) Gazi Üniversitesi, Elektrik ve Elektronik Müh.

More information

Simulation for Protection of Huge Hydro Generator from Short Circuit Faults

Simulation for Protection of Huge Hydro Generator from Short Circuit Faults International Journal of Engineering Research and Development eissn : 2278-067X, pissn : 2278-800X, www.ijerd.com Volume 4, Issue 8 (November 2012), PP. 21-25 Simulation for Protection of Huge Hydro Generator

More information

Renewable Energy Based Interleaved Boost Converter

Renewable Energy Based Interleaved Boost Converter Renewable Energy Based Interleaved Boost Converter Pradeepakumara V 1, Nagabhushan patil 2 PG Scholar 1, Professor 2 Department of EEE Poojya Doddappa Appa College of Engineering, Kalaburagi, Karnataka,

More information

IDENTIFICATION OF POWER QUALITY PROBLEMS IN IEEE BUS SYSTEM BY USING NEURAL NETWORKS

IDENTIFICATION OF POWER QUALITY PROBLEMS IN IEEE BUS SYSTEM BY USING NEURAL NETWORKS Fourth International Conference on Control System and Power Electronics CSPE IDENTIFICATION OF POWER QUALITY PROBLEMS IN IEEE BUS SYSTEM BY USING NEURAL NETWORKS Mr. Devadasu * and Dr. M Sushama ** * Associate

More information

A Novel Approach for MRI Image De-noising and Resolution Enhancement

A Novel Approach for MRI Image De-noising and Resolution Enhancement A Novel Approach for MRI Image De-noising and Resolution Enhancement 1 Pravin P. Shetti, 2 Prof. A. P. Patil 1 PG Student, 2 Assistant Professor Department of Electronics Engineering, Dr. J. J. Magdum

More information

Keywords: Power System Computer Aided Design, Discrete Wavelet Transform, Artificial Neural Network, Multi- Resolution Analysis.

Keywords: Power System Computer Aided Design, Discrete Wavelet Transform, Artificial Neural Network, Multi- Resolution Analysis. GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES IDENTIFICATION AND CLASSIFICATION OF POWER QUALITY DISTURBANCES BY AN EFFECTIVE WAVELET BASED NEURAL CLASSIFIER Prof. A. P. Padol Department of Electrical

More information

The Pitch Control Algorithm of Wind Turbine Based on Fuzzy Control and PID Control

The Pitch Control Algorithm of Wind Turbine Based on Fuzzy Control and PID Control Energy and Power Engineering, 2013, 5, 6-10 doi:10.4236/epe.2013.53b002 Published Online May 2013 (http://www.scirp.org/journal/epe) The Pitch Control Algorithm of Wind Turbine Based on Fuzzy Control and

More information

CHAPTER 4 MONITORING OF POWER SYSTEM VOLTAGE STABILITY THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUE

CHAPTER 4 MONITORING OF POWER SYSTEM VOLTAGE STABILITY THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUE 53 CHAPTER 4 MONITORING OF POWER SYSTEM VOLTAGE STABILITY THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUE 4.1 INTRODUCTION Due to economic reasons arising out of deregulation and open market of electricity,

More information

A new scheme based on correlation technique for generator stator fault detection-part π

A new scheme based on correlation technique for generator stator fault detection-part π International Journal of Energy and Power Engineering 2014; 3(3): 147-153 Published online July 10, 2014 (http://www.sciencepublishinggroup.com/j/ijepe) doi: 10.11648/j.ijepe.20140303.16 ISSN: 2326-957X

More information

Chapter 3 Spectral Analysis using Pattern Classification

Chapter 3 Spectral Analysis using Pattern Classification 36 Chapter 3 Spectral Analysis using Pattern Classification 3.. Introduction An important application of Artificial Intelligence (AI) is the diagnosis of fault mechanisms. The traditional approaches to

More information

PMSM Speed Regulation System using Non-Linear Control Theory D. Shalini Sindhuja 1 P. Senthilkumar 2

PMSM Speed Regulation System using Non-Linear Control Theory D. Shalini Sindhuja 1 P. Senthilkumar 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 02, 2015 ISSN (online): 2321-0613 PMSM Speed Regulation System using Non-Linear Control Theory D. Shalini Sindhuja 1 P.

More information

Detection of Abnormal Conditions of Induction Motor by using ANN

Detection of Abnormal Conditions of Induction Motor by using ANN Detection of Abnormal Conditions of Induction Motor by using ANN Rajashree V Rane 1, H. B. Chaudhari 2 1 M Tech. power system student, Electrical Engineering, VJTI, Matunga, Mumbai, India 2 Professor,

More information

Literature Review for Shunt Active Power Filters

Literature Review for Shunt Active Power Filters Chapter 2 Literature Review for Shunt Active Power Filters In this chapter, the in depth and extensive literature review of all the aspects related to current error space phasor based hysteresis controller

More information

A Sliding Mode Controller for a Three Phase Induction Motor

A Sliding Mode Controller for a Three Phase Induction Motor A Sliding Mode Controller for a Three Phase Induction Motor Eman El-Gendy Demonstrator at Computers and systems engineering, Mansoura University, Egypt Sabry F. Saraya Assistant professor at Computers

More information