CHAPTER 15 GROUNDING REQUIREMENTS FOR ELECTRICAL EQUIPMENT

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CHAPTER 15 GROUNDING REQUIREMENTS FOR ELECTRICAL EQUIPMENT"

Transcription

1 CHAPTER 15 GROUNDING REQUIREMENTS FOR ELECTRICAL EQUIPMENT A. General In a hazardous location grounding of an electrical power system and bonding of enclosures of circuits and electrical equipment in the power system is essential. Power systems which are not grounded are highly susceptible to overvoltage during a phase to ground fault. These overvoltages may produce arcs or sparks which reduce the safe conditions of the hazardous location because of an increase in explosion hazard. A phase to ground fault will generally connect an inductive reactance, such as an inductive coil or motor winding, to ground causing an overvoltage in an ungrounded power system. If an inductive reactance should accidentally be connected to earth, the reactance of the inductive element is in series with the capacitive reactance of the power system. It must be born in mind that every element in an electrical power system contains capacitance, no matter how small. This capacitance can be considered a reactance which couples the wiring of the power system to earth. Because of the capacitance coupling, the neutral of the power system cannot be considered truly divorced from earth when not purposely grounded to earth. As a result of this condition the accidental connection of an inductive reactance to ground may be the cause of serious overvoltage in the power system. When the inductive and capacitive reactance is the same, the voltage across both reactances are also the same and may become extremely high, as much as 10 times normal or more. It is the ratio of the inductive reactance to earth to the total capacitive reactance of the system to earth which controls the degree of the overvoltage. The highest overvoltage will occur when there is a large capacitance in the system and both reactances are the same. Therefore, if the neutral of a power system is not purposely grounded to earth, it must be recognized that a phase to ground fault may produce serious overvoltages. The danger of the overvoltage is that it puts insulation of circuits and electrical equipment under too much stress which will cause the insulation to break down. If the insulation breaks down a small current will flow from the point of failure to earth accompanied by arcs or sparks. Dangerous arcs or sparks as a result of ungrounded neutrals can be completely eliminated by suppressing

2 the overvoltage when a relatively high resistance is connected between the electrical system neutral and earth. A ground resistor of about the same ohmic value as the total charging capacitive reactance to earth is generally sufficient to completely eliminate a dangerous overvoltage. When the neutral of the power system is properly grounded (i.e., solidly or by low or high resistance), arcs or sparks can still occur when there is an insulation failure. It is not so that arcs or sparks will only occur when the power system is ungrounded. They may also appear under insulation failure when the power system is grounded. With the power system properly grounded the system insulation is not under high stress but will normally cause a large current to flow if the insulation breaks down. In both cases, in ungrounded and grounded power systems, a current will flow. This current may produce dangerous arcs or sparks along the path to ground. For example, arcing or sparking may occur along the conduit path of an electric motor when the conduit lacks sufficient continuity. The electric motor shown in Fig. 1-25, for example, receives its power through wiring enclosed in a metal conduit. If this metal conduit should be the sole external ground return path, current will flow along this path as a result of insulation failure when the motor enclosure becomes unintentionally energized. During the flow of the fault current a substantial potential difference could exist between the motor housing and earth. If the external return path lacks sufficient continuity, sparks or arcs will occur at the location where continuity is lacking. For example, if there should be a separation in the conduit run to the motor, a potential difference caused by an insulation failure will appear at the separated elements and arcs or sparks will be produced at this location. A small nonvisible separation could exist, for example, in the conduit union marked with an "a" in Fig This separation could easily exist if the two parts of the union are not completely tightened, or when the union is not free from dirt, grease or corrosion. When an arc or spark does appear in the separated elements of the union, and most likely they will under sufficient voltage stress, they can easily ignite any flammable gas or vapor in the immediate vicinity of the electric motor. Arcs or sparks may also be produced between the two metal pipes at location "b" as shown in Fig One pipe is in direct contact with the electric motor enclosure, and the other pipe is in direct contact with earth. Both pipes are separated from each other by a gap of high resistance. During an insulation failure the gap allows a potential difference to exist between the pipes. Arcs or sparks are generally of sufficient energy to initiate an explosion when the faulty electrical equipment is inductive and surrounded by a flammable gas or vapor. The minimum sparking energy required to ignite hydrocarbon-air mixtures ranges from approximately to 0.3 millijoules. A hydrogen gas-air mixture,

3 for example, can be ignited by a spark with an energy as low as millijoules (One joule is the electrical energy in terms of 1.0 Volt x 1.0 Amp per second.) When the neutral of the power system is grounded, dangerous arcs or sparks can also be completely eliminated by applying two grounds: 1) an internal or external grounding conductor running in close proximity with the phase conductors between the electrical equipment housing and the neutral of the power supplying equipment, and 2) by bonding the housing of the electrical equipment to a supplementary grounding system which also must be connected to the grounded neutral of the power supply equipment. This supplementary grounding system has a dual function. It eliminates arcs or sparks and it eliminates shock hazards when a fault current is flowing as a result of an insulation failure. The supplementary ground alone, without an internal or external grounding conductor is not permitted. The power supplying conduit to the electric motor as shown in Fig which is partially buried in earth is generally inadequate to function as a supplementary ground. Proper grounding of circuits and electric equipment in a hazardous location is, therefore, of vital importance. Consequently, the recommended grounding practice for a hazardous location, is not only grounding of the system neutral, at the power source, but also by using an external or internal grounding conductor in combination with a supplementary grounding system. B. Internal and External Grounding Conductors There are two types of grounding conductors: an internal grounding conductor and an external grounding conductor. Both types are required for carrying phase to ground fault currents from an unintentionally energized circuit or equipment enclosure to the neutral of the electrical power source. An internal grounding conductor may consist of a copper wire, solid or stranded, insulated or bare. An external grounding conductor usually consists of rigid metal conduit, electrical metallic tubing, flexible metal conduit approved for the purpose, a cable tray, armor of type AC cables, or other raceway approved for carrying ground fault currents. Both types of grounding conductors are applied for bonding and grounding enclosures for circuits and electrical equipment. Only one of the types is normally used for grounding purposes. If an internal grounding conductor is used for grounding electrical equipment it is normally colored green, insulated or bare. External grounding conductors consisting of rigid metal conduits are usually less reliable than internal copper grounding conductors. The reason for this is that conduit joints may be of poor workmanship causing high resistance or preventing continuity as explained before. Therefore, external grounding conductors may allow arcs or sparks to occur under fault conditions. Arcing may start between the threads of the joints at certain

4 UNION (a) VERTICAL PUMP FIG SUPPLEMENTARY GROUNDING OF ELECTRICAL EQUIPMENT

5 current levels when the joints are not completely tightened or when they are not sufficiently clean. These joints may not only produce arcs or sparks but also a stream of molten metal during heavy fault conditions. External grounding conductors consisting of aluminum conduits are more suitable for a fault return path because the probability of producing arcs between the threads is much less. The reason is that the softer the material, the more the threads tend to deform. Use of aluminum will therefore ensure a better electrical continuity when the couplings are tightened. However, external grounding conductors and fittings made of aluminum shall not be used in earth or concrete when subject to corrosive conditions. Where general purpose enclosures are used in hazardous locations the ground return path may become even more unreliable because metal threaded conduits may be used in conjunction with ordinary locknuts and bushings. Ordinary locknuts may be used, but only if bonding jumpers are applied between the enclosure and the raceway. Bonding jumpers could be deleted if both locknuts are of the carving type. These locknuts, when applied to rigid steel conduits entering a general purpose enclosure, will carve into the metal of the enclosure and will provide a low impedance between raceway and enclosure. However, the application of carving type locknuts must be considered unreliable because their application depends entirely on proper workmanship. When this is lacking, arcing and sparking may occur between raceway and enclosure under fault condition. Bonding jumpers may be deleted if the bushings are of the bonding type in which a jumper must be applied between the bushing and a ground terminal in the general purpose enclosures. An external grounding conductor, for example, is the vertical conduit to the electric motor in Fig Whether an internal or external grounding conductor is used, they are required to run in close proximity with their phase conductors. This is to minimize the impedance of the ground return path. The impedance of the phase conductors and of the grounding conductors depends greatly on the size of the conductors but mostly on the distance between the individual conductors. A low impedance of the ground return path is important because it allows fast tripping of the overcurrent devices under fault condition and it will shorten the life span of arcs or sparks if they do appear under a phase to ground fault. The tripping time of overcurrent devices is dependent on the magnitude of the phase to ground fault current which in turn is a function of the impedance of the ground fault return path. If the impedance of the grounding conductor is high, the higher impedance will reduce the fault current to a lower magnitude resulting in a longer tripping time. The arrangement in Fig. 1-26, for example, is in violation of the requirements for fast tripping. The fault current in the lamp is required to follow the same route as the current in the supply conductors. But, instead, the fault current will flow through the metallic return path as shown by arrows in Fig

6 BRANCH CIRCUITS W LAMP PHASE-TO-GROUND FAULT LIGHTING PANEL PANEL BOLTED TO AND IN METALLIC CONTACT WITH GROUNDED STEEL STRUCTURE METAL FLOOR PVC PIPE PVC PIPE SERVICE SWITCH CONCRETE FLOOR GROUND GRID OR GROUND ELECTRODE FIG INCORRECTGROUNDING METHOD

7 Since the metallic return path has a much higher impedance, the magnitude of the fault current will be smaller, resulting in a longer tripping time. With the equipment ground not kept physically close to the supply conductors, the impedance of the fault circuit will have a greater inductive reactance and a greater AC resistance due to a smaller mutual cancellation of the magnetic fields around the conductors, resulting in a greater voltage to ground while the circuit overcurrent devices will operate slower because of the smaller current. Therefore, the steel framework of a building that is constructed without regard for a low impedance for the flow of fault current, does not comply with the fast tripping requirements when it is used as the sole grounding conductor. Internal and external grounding conductors are shown in Fig The power supplying equipment shown in Fig represents a "service supplied AC system" which requires two system grounds: one grounding conductor is to be connected from the transformer neutral to an electrode in earth, the other grounding conductor is to be connected from the neutral in the service panel to another electrode in the earth. This system shown in Fig is not a "separately derived system." If the power system should consist of a separately derived system, then only a single ground connection is required either at the transformer neutral or at the service panel depending on whether the service panel is provided with a main disconnecting means or not. If not, the grounding connection can only be made at the transformer even when the service panel is provided with individual branch overcurrent devices. C. Supplementary Ground System The basic concept for applying supplementary grounding in a hazardous location is to reduce the potential differences between the electrical equipment and earth during a phase to ground fault. Reducing the potential differences is accomplished by bonding the enclosures of circuits and electrical equipment to the supplementary ground system by means of a bonding jumper "c" as shown in Fig A supplementary ground system may consist of the following: (1) A ground grid system of copper conductors buried in earth 2 1/2 feet or more deep, each conductor not smaller than 1/0 AWG. (2) A single bare copper conductor sized 1/0 AWG. minimum buried in earth at least 2 1/2 feet deep and looped around the electrical equipment. (3) The metal frame of a medium-sized building with the building columns thermally welded to a copper grounding conductor looped around the building. The ground loop is required to be buried a minimum of 18" below the finished

8 grade. If a water pipe is available, the loop must be connected to the water pipe if it is of sufficient length (10 feet or more). Underground metal gas pipes and aluminum electrodes are prohibited. The size of the ground loop is determined by the magnitude of the current and the time of the current flow based on an allowable maximum temperature. The following equation may be used in determining the size of the ground loop: For an initial temperature of 25 0 C and a final temperature of 25O 0 C, the minimum size of the ground loop will be: CM = I 5 V(f). Where I s is the RMS short circuit current and t is the tripping time in seconds. If, for example, I 5 = 25,000 amps and t = 0.57 seconds, then CM = x 25,000 V(0.57) = 211,600 CM or 4/0 AWG. (4) The metal frame of a large building provided with a network of copper conductors underneath the foundation of the building. With the grounding network supplemented by galvanized or copper-coated grounding rods of at least 8 feet in length and 3/4" in diameter. Electrical equipment located in these buildings must be grounded to the building structure by means of ground leads or by bolting or welding the electrical equipment to the steel frame of the building. There are practical limits which will determine the minimum and maximum size of the supplementary grounding system. For mechanical strength, the buried conductors shall not be smaller than 1/0 AWG but it is not necessary to exceed 500 MCM. A supplementary grounding system is not permitted to be used in lieu of internal or external grounding conductors. They may only be used for supplementary protection. Where a metal sleeve is used for protection of the grounding conductor to the supplementary ground system, the sleeve must be bonded at both ends to the grounding conductor. The supplementary ground system must also be connected to the neutral of the power supplying equipment as shown in Fig

9 EXTERNALGROUND POWER SOURCE SERVICE BRANCH LOAD EQUIPMENT NEUTRAL BOND BOND GROUNDING CONDUCTOR INTERNAL GROUND BOND X: CONNECTION FOR EXTERNAL GROUND SUPPLEMENTARY GROUND FIGURE INTERNAL/EXTERNAL GROUND WITH SUPPLEMENTARY GROUND

CONTINUING EDUC ATION

CONTINUING EDUC ATION 3 CONTINUING EDUC ATION FOR WISCONSIN ELECTRICIANS 2017 NEC Article 250 2 Hours WISCONSIN CONTRACTORS INSTITUTE N16 W23217 Stone Ridge Drive Suite 290 Waukesha, WI 53188 262-409-4282 www.wcitraining.com

More information

2/15/2015. Current will always try to return to its source. In order for there to be current, there must be a complete circuit

2/15/2015. Current will always try to return to its source. In order for there to be current, there must be a complete circuit Current will always try to return to its source In order for there to be current, there must be a complete circuit Current will take as many paths or circuits available to it to return to the source The

More information

American Electrical Institute

American Electrical Institute American Electrical Institute Oregon Electricians Continuing Education Grounding & Bonding (Article 250) 4 Hours American Electrical Institute PO Box 31131 Spokane, WA 99223 www.aeitraining.com Article

More information

Article 250 Grounding & Bonding

Article 250 Grounding & Bonding Article 250 Grounding & Bonding AMERICAN ELECTRICAL INSTITUTE N16 W23217 Stone Ridge Dr. Waukesha, WI 53188 855-780-5046 www.aeitraining.com DISCLAIMER NOTE: This course is APPROVED for continuing education

More information

Wisconsin Contractors Institute Continuing Education

Wisconsin Contractors Institute Continuing Education IMPORTANT NOTE: You should have received an email from us with a link and password to take your final exam online. Please check your email for this link. Be sure to check your spam folder as well. If you

More information

Jake Leahy s Electrical Code Connection. A look at Grounding and Bonding of Electrical Services Article Florida Building Code 5 th Edition

Jake Leahy s Electrical Code Connection. A look at Grounding and Bonding of Electrical Services Article Florida Building Code 5 th Edition Jake Leahy s Electrical Code Connection A look at Grounding and Bonding of Electrical Services Article 250 2014 Florida Building Code 5 th Edition Wiring Integrity. Completed wiring installations shall

More information

Overview of Grounding for Industrial and Commercial Power Systems Presented By Robert Schuerger, P.E.

Overview of Grounding for Industrial and Commercial Power Systems Presented By Robert Schuerger, P.E. Overview of Grounding for Industrial and Commercial Power Systems Presented By Robert Schuerger, P.E. HP Critical Facility Services delivered by EYP MCF What is VOLTAGE? Difference of Electric Potential

More information

EPG. by Chris C. Kleronomos

EPG. by Chris C. Kleronomos April 1994 EFFECTIVE EQUIPMENT GROUNDING ECOS Electronics Corporation by Chris C. Kleronomos The quality of the electrical wiring and grounding in a facility containing sensitive electronic equipment is

More information

Chapter 1. Applied Grounding and Bonding. Applied Grounding and Bonding 9/18/2011. Introduction. Introduction. Paul Dobrowsky Member NEC Panel 5

Chapter 1. Applied Grounding and Bonding. Applied Grounding and Bonding 9/18/2011. Introduction. Introduction. Paul Dobrowsky Member NEC Panel 5 Applied Grounding and Bonding Paul Dobrowsky Member NEC Panel 5 1 Introduction This presentation is a representative sample from the following Chapters of Applied Grounding and Bonding. Chapter 1, Introduction

More information

Upgrading Your Electrical Distribution System To Resistance Grounding

Upgrading Your Electrical Distribution System To Resistance Grounding Upgrading Your Electrical Distribution System To Resistance Grounding The term grounding is commonly used in the electrical industry to mean both equipment grounding and system grounding. Equipment grounding

More information

Continued from Part 1 Rules 1 25.

Continued from Part 1 Rules 1 25. Continued from Part 1 Rules 1 25. 26 225.32 Disconnect Location The disconnecting means for a building or structure must be installed at a readily accessible location, either outside the building or structure

More information

A DUMMIES GUIDE TO GROUND FAULT PROTECTION

A DUMMIES GUIDE TO GROUND FAULT PROTECTION A DUMMIES GUIDE TO GROUND FAULT PROTECTION A DUMMIES GUIDE TO GROUND FAULT PROTECTION What is Grounding? The term grounding is commonly used in the electrical industry to mean both equipment grounding

More information

Industrial and Commercial Power Systems Topic 7 EARTHING

Industrial and Commercial Power Systems Topic 7 EARTHING The University of New South Wales School of Electrical Engineering and Telecommunications Industrial and Commercial Power Systems Topic 7 EARTHING 1 INTRODUCTION Advantages of earthing (grounding): Limitation

More information

MECKLENBURG COUNTY. Land Use and Environmental Service Agency Code Enforcement 9/8/10 ELECTRICAL CONSISTENCY MEETING. Code Consistency Questions

MECKLENBURG COUNTY. Land Use and Environmental Service Agency Code Enforcement 9/8/10 ELECTRICAL CONSISTENCY MEETING. Code Consistency Questions conduit? 9/8/10 ELECTRICAL CONSISTENCY MEETING Code Consistency Questions 1. Can branch circuits of different services be installed in the same Yes, see 300.3(C)(1) for conductors of different systems

More information

Grounding System Theory and Practice

Grounding System Theory and Practice Grounding System Theory and Practice Course No. E-3046 Credit: 3 PDH Grounding System Theory and Practice Velimir Lackovic, Electrical Engineer System grounding has been used since electrical power systems

More information

MECKLENBURG COUNTY. Land Use and Environmental Service Agency Code Enforcement 2/9/11 ELECTRICAL CONSISTENCY MEETING. Code Consistency Questions

MECKLENBURG COUNTY. Land Use and Environmental Service Agency Code Enforcement 2/9/11 ELECTRICAL CONSISTENCY MEETING. Code Consistency Questions MECKLENBURG COUNTY Land Use and Environmental Service Agency Code Enforcement 2/9/11 ELECTRICAL CONSISTENCY MEETING Code Consistency Questions 1. I have a 500 KVA generator, with no overcurrent protection

More information

Electrical Wiring: Commercial, Seventh Canadian Edition

Electrical Wiring: Commercial, Seventh Canadian Edition Electrical Wiring Commercial Canadian 7th Edition Mullin SOLUTIONS MANUAL Full download at: https://testbankreal.com/download/electrical-wiring-commercialcanadian-7th-edition-mullin-solutions-manual/ Unit

More information

Section 6: System Grounding Bill Brown, P.E., Square D Engineering Services

Section 6: System Grounding Bill Brown, P.E., Square D Engineering Services Section 6: System Grounding Bill Brown, P.E., Square D Engineering Services Introduction The topic of system grounding is extremely important, as it affects the susceptibility of the system to voltage

More information

Grounding and Bonding

Grounding and Bonding Grounding and Bonding 2017 Communications Academy Joe Blaschka Jr., PE Grounding/Bonding What is it? Why do we do it? What does the National Electrical Code say? What about fixed locations? What about

More information

Grounding for Power Quality

Grounding for Power Quality Presents Grounding for Power Quality Grounding for Power Quality NEC 250.53 states that ground resistance should be less than 25 ohms. Is this true? Grounding for Power Quality No! NEC 250.53 states

More information

SDCS-03 DISTRIBUTION NETWORK GROUNDING CONSTRUCTION STANDARD (PART-I) UNDERGROUND NETWORK GROUNDING. Rev. 01

SDCS-03 DISTRIBUTION NETWORK GROUNDING CONSTRUCTION STANDARD (PART-I) UNDERGROUND NETWORK GROUNDING. Rev. 01 SDCS-03 DISTRIBUTION NETWORK GROUNDING CONSTRUCTION STANDARD (PART-I) UNDERGROUND NETWORK GROUNDING Rev. 01 This specification is property of SEC and subject to change or modification without any notice

More information

Copper Sheathed Cable Sheath Currents

Copper Sheathed Cable Sheath Currents Pyrotenax Copper heathed Cable heath Currents ingle Conductor Cable ingle conductor cables present certain application considerations that do not arise in multiconductor cable installations. These considerations

More information

Field Instrument Cable. Electrical Noise

Field Instrument Cable. Electrical Noise Field Instrument Cable Electrical Noise 1 Electrical Noise Instrument Cables are Susceptible to 4 Types of Noise: Static Magnetic Cross-Talk Common Mode 2 Static Noise Static Noise is caused by an electric

More information

Outdoor Installation 2: Lightning Protection and Grounding

Outdoor Installation 2: Lightning Protection and Grounding Outdoor Installation 2: Lightning Protection and Grounding Training materials for wireless trainers This one hour talk covers lightning protection, grounding techniques and problems, and electrolytic incompatibility.

More information

RADIO AND TELEVISION SATELLITE EQUIPMENT

RADIO AND TELEVISION SATELLITE EQUIPMENT ARTICLE 810 RADIO AND TELEVISION SATELLITE EQUIPMENT Introduction to Article 810 Radio and Television Satellite Equipment This article covers transmitter and receiver (antenna) equipment and the wiring

More information

ET 40 - Electrician Theory Examination Marking Schedule

ET 40 - Electrician Theory Examination Marking Schedule ET 40 - Electrician Theory Examination Marking Schedule Notes:1. means that the preceding statement/answer earns 1 mark. 2. This schedule sets out the accepted answers to the examination questions. A marker

More information

3Ø Short-Circuit Calculations

3Ø Short-Circuit Calculations 3Ø Short-Circuit Calculations Why Short-Circuit Calculations Several sections of the National Electrical Code relate to proper overcurrent protection. Safe and reliable application of overcurrent protective

More information

NOTICE OF RULE MAKING PROCEEDINGS AND PUBLIC HEARING

NOTICE OF RULE MAKING PROCEEDINGS AND PUBLIC HEARING 1 1 1 1 1 NOTICE OF RULE MAKING PROCEEDINGS AND PUBLIC HEARING NORTH CAROLINA BUILDING CODE COUNCIL Notice of Rule-making Proceedings is hereby given by NC Building Code Council in accordance with G.S.

More information

Power Quality. Case Study. Conrad Bottu Laborelec January 2008

Power Quality. Case Study. Conrad Bottu Laborelec January 2008 Case Study Electromagnetic compatibility (EMC) study Breakdown of low voltage electronic equipment in a 25 kv substation Conrad Bottu Laborelec January 2008 Power Quality Power Quality 1 Introduction Description

More information

Article 225: Outside Branch Circuits And Feeders

Article 225: Outside Branch Circuits And Feeders Part C: Code Book Questions Article 225: Outside Branch Circuits And Feeders 1.! Open (individual) aerial overhead conductors shall be insulated or covered when within! feet of a building.! (a) 10! (c)

More information

SDCS-03 DISTRIBUTION NETWORK GROUNDING CONSTRUCTION STANDARD (PART-II) OVERHEAD NETWORK GROUNDING. Rev. 01

SDCS-03 DISTRIBUTION NETWORK GROUNDING CONSTRUCTION STANDARD (PART-II) OVERHEAD NETWORK GROUNDING. Rev. 01 SEC DISTRIBUTION GROUNDING STANDARD SDCS-03 Part-II Rev.01 SDCS-03 DISTRIBUTION NETWORK GROUNDING CONSTRUCTION STANDARD (PART-II) OVERHEAD NETWORK GROUNDING Rev. 01 This specification is property of SEC

More information

Surge Protection and Grounding Issues

Surge Protection and Grounding Issues Surge Protection and Grounding Issues Presented to SCTE Chicago Chapter January 21, 2004 By: Nisar Chaudhry VP Electrical Engineering, CTO Introduction Transients caused by disturbances on the power lines

More information

Grounding and Bonding of Service Equipment

Grounding and Bonding of Service Equipment Grounding and Bonding of Service Equipment 1. Grounding means: attached to an earth ground. 2. Bonding means: physically connected to insure electrical continuity. NEC 250.4 1. Grounding: Electrical Systems

More information

Article 700: Emergency Systems. 2.! Audible and visual signal devices shall be provided, where practicable to indicate.

Article 700: Emergency Systems. 2.! Audible and visual signal devices shall be provided, where practicable to indicate. Part N: Code Book Questions Article 700: Emergency Systems 1.! For emergency systems, the authority having jurisdiction shall conduct or witness a test on the! complete system upon installation and periodically

More information

Journeyman's Practice Exam

Journeyman's Practice Exam Journeyman's Practice Exam [Time limit 4.0 hrs.] (The test is open book. I've started at the front of the Code Book and worked toward the back for instructional purposes. The real test will not be in order

More information

Basic Principles and Operation of Transformer

Basic Principles and Operation of Transformer Basic Principles and Operation of Transformer CONSTRUCTIONAL ASPECTS Cores In order to enhance core s magnetic properties, it is constructed from an iron and silicon mixture (alloy). The magnetic core

More information

Short Circuit Current Calculations

Short Circuit Current Calculations Introduction Several sections of the National Electrical Code relate to proper overcurrent protection. Safe and reliable application of overcurrent protective devices based on these sections mandate that

More information

Grounding Recommendations for On Site Power Systems

Grounding Recommendations for On Site Power Systems Grounding Recommendations for On Site Power Systems Revised: February 23, 2017 2017 Cummins All Rights Reserved Course Objectives Participants will be able to: Explain grounding best practices and code

More information

SECTION CABLE TRAYS

SECTION CABLE TRAYS SECTION 16139 CABLE TRAYS PART 1 - GENERAL 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections,

More information

National Radio Astronomy Observatory Socorro, NM EVLA Memorandum 41 Lightning Protection for Fiber Optic Cable. T. Baldwin June 05, 2002

National Radio Astronomy Observatory Socorro, NM EVLA Memorandum 41 Lightning Protection for Fiber Optic Cable. T. Baldwin June 05, 2002 National Radio Astronomy Observatory Socorro, NM 87801 EVLA Memorandum 41 Lightning Protection for Fiber Optic Cable T. Baldwin June 05, 2002 Summary Double-armor triple-sheath fiber optic cable will be

More information

Minimizing Lightning and Static Discharge in Broadcasting

Minimizing Lightning and Static Discharge in Broadcasting Minimizing Lightning and Static Discharge in Broadcasting Lightning and static discharge represent two of the most damaging and unpredictable events faced by broadcasters. Together or separately they are

More information

Stray Electricity. Occurs as small voltage differences between

Stray Electricity. Occurs as small voltage differences between Stray Electricity Occurs as small voltage differences between structure and the floor structure and installed equipment floor and equipment or through liquids Voltage difference - current will flow Generally

More information

ENGINEERING REPORT PHASES I & II MITIGATOR PERFORMANCE TESTS

ENGINEERING REPORT PHASES I & II MITIGATOR PERFORMANCE TESTS ENGINEERING REPORT PHASES I & II MITIGATOR PERFORMANCE TESTS INDUCED AC MITIGATION PERFORMANCE ON A STEEL GAS TRANSMISSION PIPELINE REPORT OF JANUARY 29, 2014 Copyright MATCOR, Inc. 2014 MITIGATOR TM VS.

More information

First Revision No. 141-NFPA [ Global Input ]

First Revision No. 141-NFPA [ Global Input ] of 161 2/8/2018, 2:49 PM First Revision No. 141-NFPA 780-2017 [ Global Input ] In Annex L text, tables and formulas replace all symbols with lower case italics r and upper case subscripts with lower case

More information

Summary of the Impacts of Grounding on System Protection

Summary of the Impacts of Grounding on System Protection Summary of the Impacts of Grounding on System Protection Grounding System grounding big impact on ability to detect ground faults Common ground options:» Isolated ground (ungrounded)» High impedance ground»

More information

ELECTRIC GROUNDING AND WIRING REQUIREMENTS BOOTHS-METAL

ELECTRIC GROUNDING AND WIRING REQUIREMENTS BOOTHS-METAL BELL SYSTEM PRACTICES Plant Series SECTION 508-100-100 Issue 3, October 1970 AT&TCo Standard ELECTRIC GROUNDING AND WIRING REQUIREMENTS BOOTHS-METAL I. GENERAL 1.01 This section is reissued to: Revise

More information

AC Voltage- Pipeline Safety and Corrosion MEA 2015

AC Voltage- Pipeline Safety and Corrosion MEA 2015 AC Voltage- Pipeline Safety and Corrosion MEA 2015 WHAT ARE THE CONCERNS ASSOCIATED WITH AC VOLTAGES ON PIPELINES? AC concerns Induced AC Faults Lightning Capacitive coupling Safety Code Induced AC Corrosion

More information

CORFLEX VFD CORFLEX VFD Part Number: Drive Cable

CORFLEX VFD CORFLEX VFD Part Number: Drive Cable Part Number: Drive Cable Armored Variable Frequency Drive Cable UL Type MC HL, 600V, 90 C rated - LEAD FREE Description 3 conductor with 3 ground wires, continuous corrugated and welded, impervious aluminum

More information

Basic Information Required for Photovoltaic Plan Check Submittal *Informational Purposes Only*

Basic Information Required for Photovoltaic Plan Check Submittal *Informational Purposes Only* 1444 West Garvey Avenue West Covina, CA 91793 Phone: 626-939-8425 Basic Information Required for Photovoltaic Plan Check Submittal *Informational Purposes Only* ADMINISTRATIVE 1. The following clearances

More information

SAFETY AND HEALTH STANDARD ELECTRICAL GROUNDING Effective Date: 07/17/10 Standard: Document Number: KUCSH0039 Rev: 4

SAFETY AND HEALTH STANDARD ELECTRICAL GROUNDING Effective Date: 07/17/10 Standard: Document Number: KUCSH0039 Rev: 4 SAFETY AND HEALTH STANDARD ELECTRICAL GROUNDING Effective Date: 07/17/10 Standard: 16.10 Document Number: KUCSH0039 Rev: 4 16.10.1 INTRODUCTION 16.10.1.1 The intent of this standard is to ensure that continuity

More information

The InterNational Electrical Testing Association Journal. BY STEVE TURNER, Beckwith Electric Company, Inc.

The InterNational Electrical Testing Association Journal. BY STEVE TURNER, Beckwith Electric Company, Inc. The InterNational Electrical Testing Association Journal FEATURE PROTECTION GUIDE 64S Theory, Application, and Commissioning of Generator 100 Percent Stator Ground Fault Protection Using Low Frequency

More information

Transformer Protection

Transformer Protection Transformer Protection Nature of transformer faults TXs, being static, totally enclosed and oil immersed develop faults only rarely but consequences large. Three main classes of faults. 1) Faults in Auxiliary

More information

INTRINSIC SAFETY BASIC PRINCIPLES

INTRINSIC SAFETY BASIC PRINCIPLES INTRINSIC SAFETY BASIC PRINCIPLES IGNITION TRIANGLE Ignition Energy In many industrial processes, the presence of flammable materials (gases, vapours, liquids, dusts, fibres and flyings) requires the adoption

More information

Arrester Disconnector

Arrester Disconnector Arrester Disconnector ArresterFacts 005 Photo ArresterWorks Prepared by Jonathan Woodworth Consulting Engineer ArresterWorks May 4, 2008 Copyright ArresterWorks 2008 Jonathan J. Woodworth Page1 The Arrester

More information

Earthing of Electrical Devices and Safety

Earthing of Electrical Devices and Safety Earthing of Electrical Devices and Safety JOŽE PIHLER Faculty of Electrical Engineering and Computer Sciences University of Maribor Smetanova 17, 2000 Maribor SLOVENIA joze.pihler@um.si Abstract: - This

More information

Our Brands. Where we are?

Our Brands. Where we are? CATALOG 2019 Our Brands Aktif trade mark for Measuring, Protection, Automatic Meter Reading, Billing and Energy Management Software. by Aktif Aktif trade mark for Measuring, Protection, Control and Power

More information

LEARNING GUIDE G-3 INSTALL GROUNDING AND BONDING

LEARNING GUIDE G-3 INSTALL GROUNDING AND BONDING CONSTRUCTION ELECTRICIAN APPRENTICESHIP PROGRAM Level 1 Line G: Install Low-Voltage Distribution Systems G-3 G-2 LEARNING GUIDE G-3 INSTALL GROUNDING AND BONDING Foreword The Industry Training Authority

More information

high RESISTANCE GROUNDING SYSTEM the power to protect www. ElectricalPartManuals. com Instruction Manual C-102

high RESISTANCE GROUNDING SYSTEM the power to protect www. ElectricalPartManuals. com Instruction Manual C-102 G e m i n i high RESISTANCE GROUNDING SYSTEM the power to protect Instruction Manual C-102 HIGH RESISTANCE GROUNDING SYSTEM Gemini is a unique, fail safe, all-in-one neutral grounding system, combining

More information

GOOD GROUNDING PRACTICES. A Brief Introduction to the Basics of Electrical Grounding for Power Systems

GOOD GROUNDING PRACTICES. A Brief Introduction to the Basics of Electrical Grounding for Power Systems GOOD GROUNDING PRACTICES A Brief Introduction to the Basics of Electrical Grounding for Power Systems Introduction to Grounding TABLE OF CONTENTS 1.0 Introduction to Grounding 2.0 Standard Industrial Grounding

More information

ECE 528 Understanding Power Quality

ECE 528 Understanding Power Quality ECE 528 Understanding Power Quality http://www.ece.uidaho.edu/ee/power/ece528/ Paul Ortmann portmann@uidaho.edu 208-316-1520 (voice) 1 Today Wiring and grounding Why it s important References Terms and

More information

2 Grounding of power supply system neutral

2 Grounding of power supply system neutral 2 Grounding of power supply system neutral 2.1 Introduction As we had seen in the previous chapter, grounding of supply system neutral fulfills two important functions. 1. It provides a reference for the

More information

National Marine Manufacturers Association Compliance Specialist Examination A.C. Electrical (2018 Model Year) ABYC E-11 Supplement 56

National Marine Manufacturers Association Compliance Specialist Examination A.C. Electrical (2018 Model Year) ABYC E-11 Supplement 56 1. Two Electrical Technicians are discussing markings that are required for AC wiring. Tech A says that AC conductors must be rated for 600 volts and must have their jackets and individual conductors marked

More information

FTTH ENGINEERING AND INSTALLATION INTRODUCTION

FTTH ENGINEERING AND INSTALLATION INTRODUCTION 1 FTTH ENGINEERING AND INSTALLATION INTRODUCTION GROUNDING FTTH SYSTEMS AT THE HOME. By Dean Mischke, P.E., V.P. Grounding and bonding. Why are we worried about such an old school concept in the modern

More information

2014 NEC Changes Part 1

2014 NEC Changes Part 1 www.garyklinka.com Page 1 of 8 Instructions: Fee $20 1. Print these pages. 2. Circle the correct answers and transfer them to the answer sheet. 3. Page down to the last page for the verification forms

More information

GROUNDED ELECTRICAL POWER DISTRIBUTION. Excerpt from Inverter Charger Series Manual BY: VIJAY SHARMA ENGINEER

GROUNDED ELECTRICAL POWER DISTRIBUTION. Excerpt from Inverter Charger Series Manual BY: VIJAY SHARMA ENGINEER GROUNDED ELECTRICAL POWER DISTRIBUTION Excerpt from Inverter Charger Series Manual BY: VIJAY SHARMA ENGINEER .0 Conductors for Electrical Power Distribution For single-phase transmission of AC power or

More information

GROUNDING. What is it? Al Lewey K7ABL. Disclaimer

GROUNDING. What is it? Al Lewey K7ABL. Disclaimer GROUNDING What is it? Al Lewey K7ABL Disclaimer Disclamier Mechanical Engineer with some electrical background My primary reference is References UP THE TOWER The Complete Guide to Tower Construction By

More information

Field Instruction. Induced voltages can occur in overhead lines, underground cables, or in switchyards.

Field Instruction. Induced voltages can occur in overhead lines, underground cables, or in switchyards. 8.3 Induced Voltage Purpose The purpose of this instruction is to provide awareness of Electrostatic and Electromagnetic induced voltages and the method required to reduce or eliminate it. An induced voltage

More information

SECTION LOW-VOLTAGE ELECT. DIST. DESIGN AND CONSTRUCTION STANDARDS _ February 2015 PART I: GENERAL

SECTION LOW-VOLTAGE ELECT. DIST. DESIGN AND CONSTRUCTION STANDARDS _ February 2015 PART I: GENERAL PART I: GENERAL 1.01 Wiring Devices A. This section of the standard includes design requirements for wiring connections, including receptacles and switches to equipment specified in other sections. a.

More information

Grounding Systems and Their Implementation By: Charles Atkinson Canadian Broadcasting Corporation Toronto, Canada

Grounding Systems and Their Implementation By: Charles Atkinson Canadian Broadcasting Corporation Toronto, Canada Grounding Systems and Their Implementation By: Charles Atkinson Canadian Broadcasting Corporation Toronto, Canada and Philip Giddings Engineering Harmonics Toronto, Canada The original document and figures

More information

NEC 2014 Code Changes

NEC 2014 Code Changes NEC 2014 Code Changes Articles 200-215.3 CHANGES FROM 2011 CODE ARE IN RED Chapter 2 - Wiring and Protection ARTICLE 200 Use and Identification of Grounded Conductors 200.2 General Grounded Conductors

More information

Application Note (Revision NEW) Original Instructions. EMI Control in Electronic Governing Systems

Application Note (Revision NEW) Original Instructions. EMI Control in Electronic Governing Systems Application Note 50532 (Revision NEW) Original Instructions EMI Control in Electronic Governing Systems General Precautions Read this entire manual and all other publications pertaining to the work to

More information

Electrical IP Red Seal Practice Exam

Electrical IP Red Seal Practice Exam Electrical IP Red Seal Practice Exam PRACTICE EXAM-3 1. What size 2 pole breaker must you use on a 3HP, 115V single phase motor? A. 40A B. 50A C. 80A. D. 100A. 2. An electrical equipment approved for use

More information

6B.6 Substation Grounding

6B.6 Substation Grounding 1 No v 1 6 1 No v 1 6 Iu d a Mo r a r a n d ma n a g e r R a c h e le Ha n n o n Vo l.6 -S u b s ta tio n a n d Hig h Vo lta g e E q u ip me n t;p a r tb -S u b s ta tio n Co n fig u r a tio n s 1. Scope

More information

Topic 6 Quiz, February 2017 Impedance and Fault Current Calculations For Radial Systems TLC ONLY!!!!! DUE DATE FOR TLC- February 14, 2017

Topic 6 Quiz, February 2017 Impedance and Fault Current Calculations For Radial Systems TLC ONLY!!!!! DUE DATE FOR TLC- February 14, 2017 Topic 6 Quiz, February 2017 Impedance and Fault Current Calculations For Radial Systems TLC ONLY!!!!! DUE DATE FOR TLC- February 14, 2017 NAME: LOCATION: 1. The primitive self-inductance per foot of length

More information

CoolBLUE Inductive Absorbers NaLA Noise Line Absorbers

CoolBLUE Inductive Absorbers NaLA Noise Line Absorbers CoolBLUE Inductive Absorbers NaLA Noise Line Absorbers Motor Bearing Solution from MH&W International Corp. http://www.coolblue-mhw.com Variable Frequency Motor Drive Systems 1. What is the problem 2.

More information

FINAL - ER 70 Electrician Regulations Answer Schedule. Question 1 Marks Reference Marking notes

FINAL - ER 70 Electrician Regulations Answer Schedule. Question 1 Marks Reference Marking notes FINAL - ER 70 Electrician Regulations Answer Schedule Notes:1. (1 mark) means that the preceding statement/answer earns 1 mark. 2. This schedule sets out the expected answers to the examination questions.

More information

Table of Contents. Facility EMI Filter Products

Table of Contents. Facility EMI Filter Products Table of Contents Filter Selection Guide Facility EMI Filters...............................................4, 5 Signal/Data/Control Filters........................................6, 7 Technical Notes................................................8,

More information

High Voltage Engineering

High Voltage Engineering High Voltage Engineering Course Code: EE 2316 Prof. Dr. Magdi M. El-Saadawi www.saadawi1.net E-mail : saadawi1@gmail.com www.facebook.com/magdi.saadawi 1 Contents Chapter 1 Introduction to High Voltage

More information

Page Electric Utility Service Specifications

Page Electric Utility Service Specifications T Y P I C A L U N D E R G R O U N D S E R V I C E R E Q U I R E M E N T S 200 Amps Maximum - UG-1 Sheet 1 of 3 87 T Y P I C A L U N D E R G R O U N D S E R V I C E R E Q U I R E M E N T S 200 Amps Maximum

More information

10. DISTURBANCE VOLTAGE WITHSTAND CAPABILITY

10. DISTURBANCE VOLTAGE WITHSTAND CAPABILITY 9. INTRODUCTION Control Cabling The protection and control equipment in power plants and substations is influenced by various of environmental conditions. One of the most significant environmental factor

More information

SECTION PANELBOARDS

SECTION PANELBOARDS PART 1 - GENERAL 1.1 DESCRIPTION SECTION 26 24 16 PANELBOARDS SPEC WRITER NOTE: Delete between // --- // if not applicable to project. Also, delete any other item or paragraph not applicable in the section

More information

Module 2 Unit 6, 7, 8

Module 2 Unit 6, 7, 8 Module 2 Unit 6, 7, 8 1. What is the definition of an ideal conductor? Material that will carry the greatest current with the lowest temperature rise 2. How much does copper weigh compared to aluminum?

More information

Capstone Turbine Corporation Nordhoff Street Chatsworth CA USA Phone: (818) Fax: (818) Web:

Capstone Turbine Corporation Nordhoff Street Chatsworth CA USA Phone: (818) Fax: (818) Web: Phone: (818) 734-5300 Fax: (818) 734-5320 Web: www.capstoneturbine.com Technical Reference Capstone MicroTurbine Electrical Installation 410009 Rev F (October 2013) Page 1 of 31 Capstone Turbine Corporation

More information

EMC filters. Mounting instructions. Date: January 2006

EMC filters. Mounting instructions. Date: January 2006 Date: January 2006 EPCOS AG 2006. Reproduction, publication and dissemination of this data sheet and the information contained therein without EPCOS prior express consent is prohibited. EMC cannot be assured

More information

A controlled arc-flash, produced in a flashtube. Even though the energy level used is fairly low (85 joules), the low-impedance, low-inductance

A controlled arc-flash, produced in a flashtube. Even though the energy level used is fairly low (85 joules), the low-impedance, low-inductance An arc flash (also called a flashover), which is distinctly different from the arc blast, is part of an arc fault, a type of electrical explosion or discharge that results from a low-impedance connection

More information

3.7 Grounding Design for EAST Superconducting Tokamak

3.7 Grounding Design for EAST Superconducting Tokamak 3.7 Design for EAST Superconducting Tokamak LIU Zhengzhi 3.7.1 Introduction system is a relevant part of the layout of Tokamak. It is important and indispensable for the system reliability and safety on

More information

SECTION TRANSFORMERS

SECTION TRANSFORMERS SECTION 16460 - TRANSFORMERS PART 1 - GENERAL 1.01 RELATED DOCUMENTS A. General: Drawings and general provisions of the Contract, including General and Supplementary Conditions and Specification Section

More information

The Importance of the Neutral-Grounding Resistor. Presented by: Jeff Glenney, P.Eng. and Don Selkirk, E.I.T.

The Importance of the Neutral-Grounding Resistor. Presented by: Jeff Glenney, P.Eng. and Don Selkirk, E.I.T. The Importance of the Neutral-Grounding Resistor Presented by: Jeff Glenney, P.Eng. and Don Selkirk, E.I.T. Presentation Preview What is high-resistance grounding (HRG)? What is the purpose of HRG? Why

More information

Licensed Electricians Practical Assessment (LEP)

Licensed Electricians Practical Assessment (LEP) Licensed Electricians Practical Assessment (LEP) Surname: Date: Given Names: Time: Assessment Time (includes 10 minutes reading time): At the end of this time you will be asked to stop. 4 hours Have you

More information

Ground Clamps Cable Tray

Ground Clamps Cable Tray commercial and industrial fittings: ing Fittings and Solderless Connectors Clamps Cable Tray Terminates ground wire to cable tray. For aluminum or copper conductors. 1 4 hex wrench tightens both tray and

More information

HV Substation Earthing Design for Mines

HV Substation Earthing Design for Mines International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 4, Issue 6 (October 2012), PP. 100-107 HV Substation Earthing Design for Mines M.

More information

SECTION CABLE TRAYS FOR COMMUNICATIONS SYSTEMS

SECTION CABLE TRAYS FOR COMMUNICATIONS SYSTEMS SECTION 270536 - CABLE TRAYS FOR COMMUNICATIONS SYSTEMS PART 1 - GENERAL 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division

More information

G.F.C.I. by Sam Goldwasser -- exerpts from: Sci.Electronics.Repair FAQ:

G.F.C.I. by Sam Goldwasser -- exerpts from: Sci.Electronics.Repair FAQ: 1 of 6 8/4/2007 6:52 PM This page is from the original Code Check website. To see the latest version choose "Home Page New" Code Check 1998 by Redwood Kardon Home Page New Search What is a GFCI?: G.F.C.I.

More information

NATIONAL CERTIFICATE (VOCATIONAL) ELECTRICAL PRINCIPLES AND PRACTICE NQF LEVEL 4 NOVEMBER 2009

NATIONAL CERTIFICATE (VOCATIONAL) ELECTRICAL PRINCIPLES AND PRACTICE NQF LEVEL 4 NOVEMBER 2009 NATIONAL CERTIFICATE (VOCATIONAL) ELECTRICAL PRINCIPLES AND PRACTICE NQF LEVEL 4 NOVEMBER 2009 (12041004) 23 November (X-Paper) 09:00 12:00 Calculators may be used. This question paper consists of 7 pages.

More information

Current Probes. User Manual

Current Probes. User Manual Current Probes User Manual ETS-Lindgren Inc. reserves the right to make changes to any product described herein in order to improve function, design, or for any other reason. Nothing contained herein shall

More information

TECHNICAL INFORMATION

TECHNICAL INFORMATION NEUTRAL GROUNDING RESISTORS TECHNICAL INFORMATION 4750 Olympic Blvd. Erlanger, KY 41018 USA Phone: 859-283-0778 Toll-Free: 800-537-6144 FAX: 859-283-2978 Web: www.postglover.com With over 130 years of

More information

Collection of standards in electronic format (PDF) 1. Copyright

Collection of standards in electronic format (PDF) 1. Copyright Collection of standards in electronic format (PDF) 1. Copyright This standard is available to staff members of companies that have subscribed to the complete collection of SANS standards in accordance

More information

UNION COUNTY ENGINEER DIVISION OF BUILDING REGULATIONS

UNION COUNTY ENGINEER DIVISION OF BUILDING REGULATIONS UNION COUNTY ENGINEER DIVISION OF BUILDING REGULATIONS Residential Pool Permit Requirements FEES: A nonrefundable permit application fee of $25.25 and a nonrefundable plan review fee of $40.40 will be

More information

1. All electrical switches and outlets used shall be equal to Hubbell heavy duty, specification grade or equivalent quality.

1. All electrical switches and outlets used shall be equal to Hubbell heavy duty, specification grade or equivalent quality. PART 1: GENERAL 1.01 Wiring Devices A. This section of the standard includes design requirements for wiring connections, including receptacles and switches to equipment specified in other sections. 1.02

More information

Status Date Prepared Reviewed Endorsed Approved

Status Date Prepared Reviewed Endorsed Approved Discipline Engineering Standard NSW Category Electrical Title Reference Number PDS 05 (RIC Standard: EP 12 10 00 11 SP) Document Control Status Date Prepared Reviewed Endorsed Approved Mar 05 Standards

More information