Designing of Charge Pump for Fast-Locking and Low-Power PLL

Size: px
Start display at page:

Download "Designing of Charge Pump for Fast-Locking and Low-Power PLL"

Transcription

1 Designing of Charge Pump for Fast-Locking and Low-Power PLL Swati Kasht, Sanjay Jaiswal, Dheeraj Jain, Kumkum Verma, Arushi Somani Abstract The specific property of fast locking of PLL is required in many clock and data recovery circuits. Many researchers [1], [3], [5] have tried to reduce this locking time but at the expense of power, phase noise and jitter. This paper presented a PLL with redesigning of individual blocks like- PFD is designed using edge triggered D flip flop to reduce area and static phase error, CP is designed using current mirrored structure to minimize the current mismatch with increased output voltage and VCO has been designed using self bias differential ring oscillator to achieve low jitter operation of PLL. The PLL is designed using 180 nm CMOS technology for high performance with 1.0 V power supply. Keywords charge pump (CP), power delay product (PDP), phase frequency detector (PFD), Phase locked loop (PLL), voltage controlled oscillator (VCO). I. INTRODUCTION A Phase lock loop (PLL) is a closed loop control system which synchronizes an output signal with input signal in terms of frequency and phase. This synchronized state is referred as locked state of PLL [8]. The PLL are widely employed in clock generation, frequency multiplication, clock and data recovery circuits and distribution of timing pulses. At this locked state, the phase and the frequency deviation between output and input signal is ideally zero or constant but in practical, frequency remains same but small phase error occurs in the output signal [11]. The time at which PLL s output frequency matches the input frequency is known as locking time of PLL. This fast locking property is required in many clock and data recovery circuits. Many researchers have tried to design PLL which offers either of the following property- low power consumption, fast locking, high speed, less jitter, less phase noise and hence less area or even grouping of them. However, the two design criteria are often in conflicts and improving one particular aspect of the design constrains the other. The need of high performance PLL gives rise to redesign of individual blocks in PLL. This paper presents a PLL with designing of each block to achieve fast locking time with reduced power consumption, less jitter and phase noise [8]. This paper summarizes the detail study of PLL with its individual blocks using Tanner Tool in 180nm CMOS technology. Section II presented basics of PLL. Section III explained Implementation of PLL circuits. Simulation results are described in Section IV. Finally the conclusion of the paper is given in Section V. II. BASICS OF PLL A PLL is a feedback system as shown in figure 1, compares the output signal with the input signal. The comparison is performed by a phase frequency detector. The basic building blocks of a Phase locked Loop (PLL) are Phase frequency detector (PFD), Charge Pump (CP), Low Pass Filter (LPF) and Voltage Controlled Oscillator (VCO) in a feedback loop through a frequency divider [8]. Manuscript received Nov 19, Swati Kasht, Electronics & Communication, Institute of Technology & management, Bhilwara, Bhilwarar(Raj.), India, ( swati.kasht.26@gmail.com). Sanjay Jaiswal, Electronics & Communication, Institute of Technology & management, Bhilwara, Bhilwarar(Raj.), India, ( to.sanjay1985@gmail.com). Dheeraj Jain, Electronics & Communication, Institute of Technology & management, Bhilwara, Bhilwarar(Raj.), India, ( dheeraj.suryamtech@gmail.com). Kumkum Verma, Electronics & Communication, Institute of Technology & management, Bhilwara, Bhilwarar(Raj.), India, ( kumkum.verma1983@gmail.com). Arushi Somani, Electronics & Communication, Institute of Technology & management, Bhilwara, Bhilwarar(Raj.), India, ( arushisomani@gmail.com). Fig.1 Basic block diagram of Phase locked Loop [8] The role of phase frequency detector is to generate a digital signal (difference or error signal) which drives the charge pump to either increase the control voltage of the VCO or decrease it or keep it without change [10]. The charge pump then converts this digital signal into an analog signal. This analog signal has high frequency (undesired) signal as well as low frequency (desired) signal. Then this high frequency signal is filtered out by a low pass filter and applied to the voltage controlled oscillator. This VCO output frequency (fout) is divided by the divider N. 33

2 When the phase and frequency of input (fin) and the divider output (f D ) are aligned then the loop is said to be locked i.e. fin = f D Where f D = fout / N and fout = frequency of output signal. At this state the control voltage of the oscillator must remain constant. The proposed charge pump implementation is shown in figure 3. This circuit consists of UP and DN switches like M1 and M2, current source transistors are M3 and M4, a variable current reference providing current Icp and current mirrors transistors are M5-M9. The dummy transistors M10-M12 are used to match the voltage drop across the switches, so that the current reference can be accurately mirrored to M3 and M4. III. IMPLEMENTATION OF PLL CIRCUIT A. Phase Frequency Detector (PFD) As the name suggest that the phase detector and the frequency detector are merged, such that it can detect both phase and frequency differences. It is only possible for the periodic signals [11]. It consists of two edge-triggered resettable D-flip-flops with their D inputs connected to logic 1. The reference frequency signal (A) and the signal derived from its divider output (B) form the two inputs of the flip-flops and Q A (UP) and Q B (DOWN) are the outputs [7]. This circuit shown in figure 2 compares the phase and frequency of these two input signals and generates an error signal which is proportional to the phase deviation between them. Fig.3 Schematic diagram of proposed Charge Pump C. Low Pass Filter It is imperative to note that the output translated from the phase detector output consists of a undesirable high-frequency components and a desirable dc component. Thus, the low pass filter is one of the key design components which serve to effectively filter out the undesired AC component and provides a steady control voltage or the dc level to operate the VCO [8]. D. Voltage Controlled Oscillator The voltage controlled oscillator is the circuit block where the control voltage of CP controls the oscillator s output frequency so that it matches the reference signal frequency [9]. This VCO is designed using self bias ring oscillator to reduce jitter in PLL [6]. A ring oscillator is a closed loop cascade connection of odd number of inverters, where the output node of the last inverter is connected to the input node of the first inverter. The schematic diagram of this VCO is shown in figure 4. B. Proposed Charge Pump (CP) The charge pump is the heart of the PLL. To further reduce the error signal to a very small value a charge pump is used between the phase frequency detector and the low pass filter as an amplifier. It transfers the digital signals from phase/frequency detector (PFD) to an analog signal for controlling the voltage-controlled oscillator (VCO). The frequency of voltage control oscillator (VCO) is controlled by the output signal of charge pump circuit [9]. The output voltage of the charge pump circuit must be held on a constant voltage. The objective is to obtain minimum power dissipation with a large output voltage range under a low power supply [9]. Fig.4 Schematic diagram of Current starved voltage controlled oscillator [1] 34

3 E. Frequency Divider Table I: Simulation for proposed Charge Pump The output of the VCO has to be divided before it is fed back to the input of the PLL. A programmable divider circuit as shown in figure 5 is used, which receives a reference clock signal of a predetermined frequency and is structured to divide the reference clock signal by N and provide an output pulse signal for every N cycles of reference clock signal [2]. Parameters Values Power Supply (Vdd) 1.0 V Output Voltage V Power Consumption 0.127mW Delay ns PDP 2.46ps No of Transistors 64 Technology 180nm Another block of PLL is VCO whose characteristic shows a linear relationship between VCO voltage and frequency and the frequency range is given by the linearity in the characteristic curve as shown in figure 7. Fig.5 Frequency divide-by-2 counter [2] IV. SIMULATION RESULTS To achieve good PLL performance a charge pump is proposed which has following characteristics: Increased output voltage. This charge pump show charging waveform when UP signal is high and discharging when DOWN signal triggers high. Low Power consumption. The output waveform and simulation result of proposed charge pump is shown in figure 6 and Table I respectively. Fig.7 Characteristic of VCO The output frequency of VCO is divided by the frequency divider which produces output pulse for every two cycles of input pulse as shown in figure 8. Fig.8 Output waveform of frequency divider Fig.6 Output Waveform of proposed charge pump Thus by combining all these individual blocks a PLL is proposed which has following properties: Very less locking time Low power consumption Less Delay Reduced phase noise Less Jitter 35

4 In the output waveform of proposed PLL, shown in figure 9, the frequency of reference clock (f A ) is same as the frequency of the divider output (f div ) at the time 554 ns. This is called the locked state as mentioned earlier. At this state the control voltage of VCO (V control ) remains constant. Phase noise performance of PLL shown in figure 10 is also analyzed in this work. The phase noise is decreased with increase in frequency. Power 0.38mW 4.1mW 16.38mW 19.8mW Consumption Delay 6.5 ns Power Delay 2.47ps Product Phase Noise at 100 KHz Jitter 159.5ps 160ps - - V. CONCLUSION In this paper fast locking and low power PLL has been designed and simulated using 180 nm CMOS technology of tanner tool and for the analysis of phase noise and jitter an another software named as National Clock Design tool is used. For these specific properties of PLL a charge pump of current mirrored structure of increased output voltage and low power consumption is used with appropriate parameters of PFD, LPF and VCO. Thus the PLL is designed with a very less locking time of 554ns and it is observed to consume a power of 0.38mW with a root mean square (RMS) jitter of 159.5ps and a phase noise of at 100 khz. REFERENCES Fig.9 Proposed PLL output waveform Fig.10 Phase Noise Characteristic The design performance of the PLL is summarized in Table II. Table II. comparison with proposed PLL Parameters of Current work reported in [5] reported in [3] reported in [4] Technology 180nm 500nm 180nm 180nm Supply 1.0 V 3.0 V 1.8 V 1.8 V Voltage Input 40 MHz to 50MHz to 38 MHz 10 MHz Frequency Range 70 MHz 162 MHz VCO 80 MHz to 200MHz 3 GHz 5.27 GHz Frequency Range 140 MHz to 650 MHz Divider Locking Time 554ns 17.1µs 10µs 20µs [1] P. K. Rout, B. P. Panda, D. P. Acharya and G. Panda, Analysis and Design of a 1GHz PLL for Fast Phase and Frequency Acquisition International Conference on Electronic Systems, National Institute of Technology, Rourkela, pp ,january [2] Jayabalan Ramesh, Ponnusamy Thangapandian Vanathi, and Kandasamy Gunavathi, Fault Classification in Phase-Locked Loops Using Back Propagation Neural Networks ETRI Journal, Vol. 30, No. 4, pp , August [3] H. Hedayati, B. Bakkaloglu, A 3 GHz Σ Wideband Fractional-N Synthesizer with Switched-RC Sample-and-Hold PFD IEE Transactions on very large scale integration (VLSI) Systems, pp.1-10, June [4] Wei-Hao Chiu, Yu-Hsiang Huang, Tsung-Hsien Lin, A Dynamic Phase Error Compensation Technique for Fast-Locking Phase-Locked Loops IEEE Journal of solid-state circuits, Vol. 45, No. 6, pp , June [5] Kuo-Hsing Chen, Huan-Sen Liao, Lin-Jiunn Tzou, A Low-Jitter and Low-Power Phase -Locked Loop Design IEEE pp , [6] Jianbin Pan, Yuanfu Zhao, Design of a Charge-Pump PLL for LVDS SerDes International multi conference of Engineers and Computers Scientists, Vol. II, March [7] Bortecene Terlemez and John P. Uyemura, The design of a differential CMOS Charge pumps for high performance phase-locked loops IEEE pp , [8] Abishek Mann, Amit Karalkar, Lili He, and Morris Jones, The Design of A Low-Power Low-Noise Phase Lock Loop IEEE, pp , [9] Jyoti Gupta, Ankur Sangal, Hemlata Verma, High Speed CMOS Charge Pump Circuit for PLL Applications using 90nm CMOS Technology IEEE, pp , [10] Nesreen Ismail, Masuri Othman, A Simple CMOS PFD for High Speed Applications European Journal of Scientific Research, Vol 33, No. 2, pp , [11] Behzad Razavi, Design of Analog CMOS Integrated Circuits, Tata-McGraw Hill 2002, Ch. 15, pp

5 Author s Profile: Swati Kasht received her B.E degree in Electronics and Communication Engineering with honors from Rajasthan University, Jaipur in 2009, and pursuing M.Tech in VLSI Design from Rajasthan Technical University, Kota. Her research interests are Analog and Digital Integrated Circuit Design, Biomedical, Wireless Communication, and Microprocessor. Sanjay Kumar Jaiswal received his M.Tech. Degree in VLSI Design from the Centre for Development of Advanced Computing (C-DAC), Ministry of I.T. Government Noida. He is an Assistant Professor in Electronics and Communication Engineering, from Institute of Technology and Management Bhilwara (Rajasthan). His field of interest includes VLSI Design, Communication system, Null convention Logic Design, SRAM Memory Design, and Sense Amplifier. He is also a member of IETE, Delhi. Dheeraj Jain received his M.Tech. Degree in VLSI Design from the Centre for Development of Advanced Computing (C-DAC), Ministry of I.T. Government Noida. He is an Assistant Professor in Electronics and Communication Engineering, from Institute of Technology and Management Bhilwara (Rajasthan). He is pursuing Ph.d from Dr. K.N. Modi University (Raj.). His field of interest includes VLSI Design, Communication system, Electronics Devices and Circuit, and Embedded System. Kumkum Verma received her M.Tech. Degree in VLSI Design from the Centre for Development of Advanced Computing (C-DAC), Ministry of I.T. Government Noida. She is an Assistant Professor in Electronics and Communication Engineering, from Institute of Technology and Management Bhilwara (Rajasthan). Her field of interest includes VLSI Design, SRAM Memory Design, Communication system, Null convention Logic Design, and Sense Amplifier. She is also a member of IETE, Delhi. Arushi Somani received her B.E degree in Electronics and Communication Engineering with honors from Rajasthan University, Jaipur in 2007, and pursuing M.Tech in VLSI Design from Rajasthan Technical University, Kota. Her research interests include digital integrated circuit design, Signal and System, Digital Signal Processing, Wireless Communication and Microprocessor. 37

Phase Locked Loop Design for Fast Phase and Frequency Acquisition

Phase Locked Loop Design for Fast Phase and Frequency Acquisition Phase Locked Loop Design for Fast Phase and Frequency Acquisition S.Anjaneyulu 1,J.Sreepavani 2,K.Pramidapadma 3,N.Varalakshmi 4,S.Triven 5 Lecturer,Dept.of ECE,SKU College of Engg. & Tech.,Ananthapuramu

More information

Sudatta Mohanty, Madhusmita Panda, Dr Ashis kumar Mal

Sudatta Mohanty, Madhusmita Panda, Dr Ashis kumar Mal International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 45 Design and Performance Analysis of a Phase Locked Loop using Differential Voltage Controlled Oscillator Sudatta

More information

Energy Efficient and High Speed Charge-Pump Phase Locked Loop

Energy Efficient and High Speed Charge-Pump Phase Locked Loop Energy Efficient and High Speed Charge-Pump Phase Locked Loop Sherin Mary Enosh M.Tech Student, Dept of Electronics and Communication, St. Joseph's College of Engineering and Technology, Palai, India.

More information

Analysis and Design of a 1GHz PLL for Fast Phase and Frequency Acquisition

Analysis and Design of a 1GHz PLL for Fast Phase and Frequency Acquisition Analysis and Design of a 1GHz PLL for Fast Phase and Frequency Acquisition P. K. Rout, B. P. Panda, D. P. Acharya and G. Panda 1 Department of Electronics and Communication Engineering, School of Electrical

More information

Analysis of phase Locked Loop using Ring Voltage Controlled Oscillator

Analysis of phase Locked Loop using Ring Voltage Controlled Oscillator Analysis of phase Locked Loop using Ring Voltage Controlled Oscillator Abhishek Mishra Department of electronics &communication, suresh gyan vihar university Mahal jagatpura, jaipur (raj.), india Abstract-There

More information

Design and Implementation of Phase Locked Loop using Current Starved Voltage Controlled Oscillator in GPDK 90nM

Design and Implementation of Phase Locked Loop using Current Starved Voltage Controlled Oscillator in GPDK 90nM International Journal of Advanced Research Foundation Website: www.ijarf.com, Volume 2, Issue 7, July 2015) Design and Implementation of Phase Locked Loop using Starved Voltage Controlled Oscillator in

More information

A 2.2GHZ-2.9V CHARGE PUMP PHASE LOCKED LOOP DESIGN AND ANALYSIS

A 2.2GHZ-2.9V CHARGE PUMP PHASE LOCKED LOOP DESIGN AND ANALYSIS A 2.2GHZ-2.9V CHARGE PUMP PHASE LOCKED LOOP DESIGN AND ANALYSIS Diary R. Sulaiman e-mail: diariy@gmail.com Salahaddin University, Engineering College, Electrical Engineering Department Erbil, Iraq Key

More information

DESIGN AND ANALYSIS OF PHASE-LOCKED LOOP AND PERFORMANCE PARAMETERS

DESIGN AND ANALYSIS OF PHASE-LOCKED LOOP AND PERFORMANCE PARAMETERS DESIGN AND ANALYSIS OF PHASE-LOCKED LOOP AND PERFORMANCE PARAMETERS Nilesh D. Patel 1, Gunjankumar R. Modi 2, Priyesh P. Gandhi 3, Amisha P. Naik 4 1 Research Scholar, Institute of Technology, Nirma University,

More information

DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT

DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT PRADEEP G CHAGASHETTI Mr. H.V. RAVISH ARADHYA Department of E&C Department of E&C R.V.COLLEGE of ENGINEERING R.V.COLLEGE of ENGINEERING Bangalore

More information

DESIGN AND ANALYSIS OF PHASE FREQUENCY DETECTOR USING D FLIP-FLOP FOR PLL APPLICATION

DESIGN AND ANALYSIS OF PHASE FREQUENCY DETECTOR USING D FLIP-FLOP FOR PLL APPLICATION International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 9 (2017) pp. 1389-1395 Research India Publications http://www.ripublication.com DESIGN AND ANALYSIS OF PHASE FREQUENCY

More information

DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS

DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS Aman Chaudhary, Md. Imtiyaz Chowdhary, Rajib Kar Department of Electronics and Communication Engg. National Institute of Technology,

More information

Design of Phase Locked Loop as a Frequency Synthesizer Muttappa 1 Akalpita L Kulkarni 2

Design of Phase Locked Loop as a Frequency Synthesizer Muttappa 1 Akalpita L Kulkarni 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online): 2321-0613 Design of Phase Locked Loop as a Frequency Synthesizer Muttappa 1 Akalpita L Kulkarni

More information

FFT Analysis, Simulation of Computational Model and Netlist Model of Digital Phase Locked Loop

FFT Analysis, Simulation of Computational Model and Netlist Model of Digital Phase Locked Loop IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 10 April 2016 ISSN (online): 2349-784X FFT Analysis, Simulation of Computational Model and Netlist Model of Digital Phase

More information

Low Power Phase Locked Loop Design with Minimum Jitter

Low Power Phase Locked Loop Design with Minimum Jitter Low Power Phase Locked Loop Design with Minimum Jitter Krishna B. Makwana, Prof. Naresh Patel PG Student (VLSI Technology), Dept. of ECE, Vishwakarma Engineering College, Chandkheda, Gujarat, India Assistant

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 11, NOVEMBER 2006 1205 A Low-Phase Noise, Anti-Harmonic Programmable DLL Frequency Multiplier With Period Error Compensation for

More information

CMOS Current Starved Voltage Controlled Oscillator Circuit for a Fast Locking PLL

CMOS Current Starved Voltage Controlled Oscillator Circuit for a Fast Locking PLL IEEE INDICON 2015 1570186537 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 60 61 62 63

More information

Design of an Efficient Phase Frequency Detector for a Digital Phase Locked Loop

Design of an Efficient Phase Frequency Detector for a Digital Phase Locked Loop Design of an Efficient Phase Frequency Detector for a Digital Phase Locked Loop Shaik. Yezazul Nishath School Of Electronics Engineering (SENSE) VIT University Chennai, India Abstract This paper outlines

More information

A Fast Locking Digital Phase-Locked Loop using Frequency Difference Stage

A Fast Locking Digital Phase-Locked Loop using Frequency Difference Stage International Journal of Engineering & Technology IJET-IJENS Vol:14 No:04 75 A Fast Locking Digital Phase-Locked Loop using Frequency Difference Stage Mohamed A. Ahmed, Heba A. Shawkey, Hamed A. Elsemary,

More information

A Low Noise, Voltage Control Ring Oscillator Based on Pass Transistor Delay Cell

A Low Noise, Voltage Control Ring Oscillator Based on Pass Transistor Delay Cell A Low Noise, Voltage Control Ring Oscillator Based on Pass Transistor Delay Cell Devi Singh Baghel 1, R.C. Gurjar 2 M.Tech Student, Department of Electronics and Instrumentation, Shri G.S. Institute of

More information

Available online at ScienceDirect. International Conference On DESIGN AND MANUFACTURING, IConDM 2013

Available online at  ScienceDirect. International Conference On DESIGN AND MANUFACTURING, IConDM 2013 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 64 ( 2013 ) 377 384 International Conference On DESIGN AND MANUFACTURING, IConDM 2013 A Novel Phase Frequency Detector for a

More information

VCO Based Injection-Locked Clock Multiplier with a Continuous Frequency Tracking Loop

VCO Based Injection-Locked Clock Multiplier with a Continuous Frequency Tracking Loop IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 13, Issue 4, Ver. I (Jul.-Aug. 2018), PP 26-30 www.iosrjournals.org VCO Based Injection-Locked

More information

A New Phase-Locked Loop with High Speed Phase Frequency Detector and Enhanced Lock-in

A New Phase-Locked Loop with High Speed Phase Frequency Detector and Enhanced Lock-in A New Phase-Locked Loop with High Speed Phase Frequency Detector and Enhanced Lock-in HWANG-CHERNG CHOW and NAN-LIANG YEH Department and Graduate Institute of Electronics Engineering Chang Gung University

More information

A Comparative review and analysis of different phase frequency detectors for Phase Locked Loops

A Comparative review and analysis of different phase frequency detectors for Phase Locked Loops A Comparative review and analysis of different phase frequency detectors for Phase Locked Loops Anu Tonk Department of Electronics & Communication Engineering, F/o Engineering and Technology, Jamia Millia

More information

Study of Recent Charge Pump Circuits in Phase Locked Loop

Study of Recent Charge Pump Circuits in Phase Locked Loop I.J. Modern Education and Computer Science, 2016, 8, 59-65 Published Online August 2016 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijmecs.2016.08.08 Study of Recent Charge Pump Circuits in Phase

More information

High Speed PFD with Charge Pump and Loop Filter for Low Jitter and Low Power PLL

High Speed PFD with Charge Pump and Loop Filter for Low Jitter and Low Power PLL High Speed PFD with Charge Pump and Loop Filter for Low Jitter and Low Power PLL 1 Kruti P. Thakore, 2 Harikrishna C. Parmar, 3 Dr.N.M. Devashrayee 1 Dept. of EC, L.D.R.P. Institute of Technology, Gandhinagar,

More information

Design of Low Power Wake-up Receiver for Wireless Sensor Network

Design of Low Power Wake-up Receiver for Wireless Sensor Network Design of Low Power Wake-up Receiver for Wireless Sensor Network Nikita Patel Dept. of ECE Mody University of Sci. & Tech. Lakshmangarh (Rajasthan), India Satyajit Anand Dept. of ECE Mody University of

More information

CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC

CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC 138 CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC 6.1 INTRODUCTION The Clock generator is a circuit that produces the timing or the clock signal for the operation in sequential circuits. The circuit

More information

A SiGe 6 Modulus Prescaler for a 60 GHz Frequency Synthesizer

A SiGe 6 Modulus Prescaler for a 60 GHz Frequency Synthesizer A SiGe 6 Modulus Prescaler for a 6 GHz Frequency Synthesizer Noorfazila Kamal,YingboZhu, Said F. Al-Sarawi, Neil H.E. Weste,, and Derek Abbott The School of Electrical & Electronic Engineering, University

More information

ISSN:

ISSN: 507 CMOS Digital-Phase-Locked-Loop for 1 Gbit/s Clock Recovery Circuit KULDEEP THINGBAIJAM 1, CHIRAG SHARMA 2 1 Department of E&CE, Nitte Meenaskhi Institute of Technology, Yelahanka, Bangalore-560064,

More information

Design of CMOS Phase Locked Loop

Design of CMOS Phase Locked Loop 2018 IJSRST Volume 4 Issue 2 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology Design of CMOS Phase Locked Loop Kaviyadharshini Sivaraman PG Scholar, Department of Electrical

More information

Design and Analysis of Low Power Phase Locked Loop Based Frequency Synthesizer using Cadence Tool

Design and Analysis of Low Power Phase Locked Loop Based Frequency Synthesizer using Cadence Tool Design and Analysis of Low Power Phase Locked Loop Based Frequency Synthesizer using Cadence Tool K.Deepa 1, R.Shankar 2 1, 2 Department of ECE 1, 2 Kongunadu College of Engineering & Technology Abstract-

More information

All Digital Phase Locked Loop Architecture Design Using Vernier Delay Time-to- Digital Converter

All Digital Phase Locked Loop Architecture Design Using Vernier Delay Time-to- Digital Converter ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com All Digital Phase Locked Loop Architecture Design Using Vernier Delay Time-to- Digital Converter 1 T.M.

More information

Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1

Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1 Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1 LECTURE 160 CDR EXAMPLES INTRODUCTION Objective The objective of this presentation is: 1.) Show two examples of clock and data recovery

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2012

ECEN620: Network Theory Broadband Circuit Design Fall 2012 ECEN620: Network Theory Broadband Circuit Design Fall 2012 Lecture 11: Charge Pump Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements & Agenda Exam 1 is on Wed. Oct 3

More information

Dr. K.B.Khanchandani Professor, Dept. of E&TC, SSGMCE, Shegaon, India.

Dr. K.B.Khanchandani Professor, Dept. of E&TC, SSGMCE, Shegaon, India. Design and Implementation of High Performance, Low Dead Zone Phase Frequency Detector in CMOS PLL based Frequency Synthesizer for Wireless Applications Priti N. Metange Asst. Prof., Dept. of E&TC, MET

More information

DESIGNING PHASE FREQUENCY DETECTOR USING DIFFERENT DESIGN TECHNOLOGIES

DESIGNING PHASE FREQUENCY DETECTOR USING DIFFERENT DESIGN TECHNOLOGIES INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 6480(Print), ISSN 0976 6499(Online), AND TECHNOLOGY

More information

Taheri: A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop

Taheri: A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop Engineering, Technology & Applied Science Research Vol. 7, No. 2, 2017, 1473-1477 1473 A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop Hamidreza Esmaeili Taheri Department of Electronics

More information

An Fpga Implementation Of N/N+1 Prescaler For A Low Power Single Phase Clock Distribution System

An Fpga Implementation Of N/N+1 Prescaler For A Low Power Single Phase Clock Distribution System An Fpga Implementation Of N/N+1 Prescaler For A Low Power Single Phase Clock Distribution System V Satya Deepthi 1, SnehaSuprakash 2, USBK MahaLakshmi 3 1 M.Tech student, 2 Assistant Professor, 3 Assistant

More information

[Prajapati, 3(3): March, 2014] ISSN: Impact Factor: 1.852

[Prajapati, 3(3): March, 2014] ISSN: Impact Factor: 1.852 [Prajapati, 3(3): March, 2014] IN: 2277-9655 IJERT INTERNATIONAL JOURNAL OF ENGINEERING CIENCE & REEARCH TECHNOLOGY Low Power and Low Dead Zone Phase Frequency Detector in PLL Jaimini Prajapati *1, Kiran

More information

Research on Self-biased PLL Technique for High Speed SERDES Chips

Research on Self-biased PLL Technique for High Speed SERDES Chips 3rd International Conference on Machinery, Materials and Information Technology Applications (ICMMITA 2015) Research on Self-biased PLL Technique for High Speed SERDES Chips Meidong Lin a, Zhiping Wen

More information

Study and Implementation of Phase Frequency Detector and Frequency Divider 45nm using CMOS Technology

Study and Implementation of Phase Frequency Detector and Frequency Divider 45nm using CMOS Technology Study and Implementation of Phase Frequency Detector and Frequency Divider 45nm using CMOS Technology Dhaval Modi Electronics and Communication, L. D. College of Engineering, Ahmedabad, India Abstract--This

More information

Delay-Locked Loop Using 4 Cell Delay Line with Extended Inverters

Delay-Locked Loop Using 4 Cell Delay Line with Extended Inverters International Journal of Electronics and Electrical Engineering Vol. 2, No. 4, December, 2014 Delay-Locked Loop Using 4 Cell Delay Line with Extended Inverters Jefferson A. Hora, Vincent Alan Heramiz,

More information

Optimization of Digitally Controlled Oscillator with Low Power

Optimization of Digitally Controlled Oscillator with Low Power IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 6, Ver. I (Nov -Dec. 2015), PP 52-57 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Optimization of Digitally Controlled

More information

A 1.2-to-1.4 GHz low-jitter frequency synthesizer for GPS application

A 1.2-to-1.4 GHz low-jitter frequency synthesizer for GPS application Journal of Chongqing University (English Edition) [ISSN 1671-8224] Vol. 12 No. 2 June 2013 doi:10.11835/j.issn.1671-8224.2013.02.008 To cite this article: HU Zheng-fei, HUANG Min-di, ZHANG Li. A 1.2-to-1.4

More information

Designing Nano Scale CMOS Adaptive PLL to Deal, Process Variability and Leakage Current for Better Circuit Performance

Designing Nano Scale CMOS Adaptive PLL to Deal, Process Variability and Leakage Current for Better Circuit Performance International Journal of Innovative Research in Electronics and Communications (IJIREC) Volume 1, Issue 3, June 2014, PP 18-30 ISSN 2349-4042 (Print) & ISSN 2349-4050 (Online) www.arcjournals.org Designing

More information

A LOW JITTER LOW PHASE NOISE WIDEBAND DIGITAL PHASE LOCKED LOOP IN NANOMETER CMOS TECHNOLOGY

A LOW JITTER LOW PHASE NOISE WIDEBAND DIGITAL PHASE LOCKED LOOP IN NANOMETER CMOS TECHNOLOGY International Journal of Electronics and Communication Engineering and (IJECET) Volume 9, Issue 3, May-June 2018, pp. 1 12, Article ID: IJECET_09_03_001 Available online at http://www.iaeme.com/ijecet/issues.asp?jtype=ijecet&vtype=9&itype=3

More information

Fractional- N PLL with 90 Phase Shift Lock and Active Switched- Capacitor Loop Filter

Fractional- N PLL with 90 Phase Shift Lock and Active Switched- Capacitor Loop Filter J. Park, F. Maloberti: "Fractional-N PLL with 90 Phase Shift Lock and Active Switched-Capacitor Loop Filter"; Proc. of the IEEE Custom Integrated Circuits Conference, CICC 2005, San Josè, 21 September

More information

ECE1352. Term Paper Low Voltage Phase-Locked Loop Design Technique

ECE1352. Term Paper Low Voltage Phase-Locked Loop Design Technique ECE1352 Term Paper Low Voltage Phase-Locked Loop Design Technique Name: Eric Hu Student Number: 982123400 Date: Nov. 14, 2002 Table of Contents Abstract pg. 04 Chapter 1 Introduction.. pg. 04 Chapter 2

More information

A Performance Comparision of OTA Based VCO and Telescopic OTA Based VCO for PLL in 0.18um CMOS Process

A Performance Comparision of OTA Based VCO and Telescopic OTA Based VCO for PLL in 0.18um CMOS Process A Performance Comparision of OTA Based VCO and Telescopic OTA Based VCO for PLL in 0.18um CMOS Process Krishna B. Makwana Master in VLSI Technology, Dept. of ECE, Vishwakarma Enginnering College, Chandkheda,

More information

DESIGN OF A MODULAR FEEDFORWARD PHASE/FREQUENCY DETECTOR FOR HIGH SPEED PLL

DESIGN OF A MODULAR FEEDFORWARD PHASE/FREQUENCY DETECTOR FOR HIGH SPEED PLL DESIGN OF A MODULAR FEEDFORWARD PHASE/FREQUENCY DETECTOR FOR HIGH SPEED PLL Raju Patel, Mrs. Aparna Karwal M TECH Student, Electronics & Telecommunication, DIMAT, Chhattisgarh, India Assistant Professor,

More information

Experimental Results for Low-Jitter Wide-Band Dual Cascaded Phase Locked Loop System

Experimental Results for Low-Jitter Wide-Band Dual Cascaded Phase Locked Loop System , October 0-, 010, San Francisco, USA Experimental Results for Low-Jitter Wide-Band Dual Cascaded Phase Locked Loop System Ahmed Telba and Syed Manzoor Qasim, Member, IAENG Abstract Jitter is a matter

More information

A LOW POWER SINGLE PHASE CLOCK DISTRIBUTION USING 4/5 PRESCALER TECHNIQUE

A LOW POWER SINGLE PHASE CLOCK DISTRIBUTION USING 4/5 PRESCALER TECHNIQUE A LOW POWER SINGLE PHASE CLOCK DISTRIBUTION USING 4/5 PRESCALER TECHNIQUE MS. V.NIVEDITHA 1,D.MARUTHI KUMAR 2 1 PG Scholar in M.Tech, 2 Assistant Professor, Dept. of E.C.E,Srinivasa Ramanujan Institute

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN620: Network Theory Broadband Circuit Design Fall 2014 Lecture 8: Charge Pump Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements & Agenda HW2 is due Oct 6 Exam 1 is

More information

Comparison And Performance Analysis Of Phase Frequency Detector With Charge Pump And Voltage Controlled Oscillator For PLL In 180nm Technology

Comparison And Performance Analysis Of Phase Frequency Detector With Charge Pump And Voltage Controlled Oscillator For PLL In 180nm Technology IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 4, Ver. I (Jul - Aug. 2015), PP 22-30 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Comparison And Performance Analysis

More information

Implementation of Low Power All Digital Phase Locked Loop

Implementation of Low Power All Digital Phase Locked Loop Implementation of Low Power All Digital Phase Locked Loop Rajani Kanta Sutar 1, M.Jasmin 2 and S. Beulah Hemalatha 3 PG Scholar, Bharath University, Tamilnadu, India 1 Assistant Professor, Department of

More information

Integrated Circuit Design for High-Speed Frequency Synthesis

Integrated Circuit Design for High-Speed Frequency Synthesis Integrated Circuit Design for High-Speed Frequency Synthesis John Rogers Calvin Plett Foster Dai ARTECH H O US E BOSTON LONDON artechhouse.com Preface XI CHAPTER 1 Introduction 1 1.1 Introduction to Frequency

More information

NRZ DPLL CMOS Frequency Synthesizer Using Active PI Filter

NRZ DPLL CMOS Frequency Synthesizer Using Active PI Filter NRZ DPLL CMOS Frequency Synthesizer Using Active PI Filter Krishna Kant Singh 1, Akansha Mehrotra 2 Associate Professor, Electronics & Computer Engineering, Dronacharya College of Engineering, Gurgaon,

More information

Biju Viswanath Rajagopal P C Ramya Nair S R Jobin Cyriac. QuEST Global

Biju Viswanath Rajagopal P C Ramya Nair S R Jobin Cyriac. QuEST Global an effective design and verification methodology for digital PLL This Paper depicts an effective simulation methodology to overcome the spice simulation time overhead of digital dominant, low frequency

More information

A Frequency Synthesis of All Digital Phase Locked Loop

A Frequency Synthesis of All Digital Phase Locked Loop A Frequency Synthesis of All Digital Phase Locked Loop S.Saravanakumar 1, N.Kirthika 2 M.E.VLSI DESIGN Sri Ramakrishna Engineering College Coimbatore, Tamilnadu 1 s.saravanakumar21@gmail.com, 2 kirthi.com@gmail.com

More information

Low Power, Wide Bandwidth Phase Locked Loop Design

Low Power, Wide Bandwidth Phase Locked Loop Design Low Power, Wide Bandwidth Phase Locked Loop Design Hariprasath Venkatram and Taehwan Oh Abstract A low power wide bandwidth phase locked loop is presented in the paper. The phase frequency detector, charge

More information

Design of Low Power CMOS Startup Charge Pump Based on Body Biasing Technique

Design of Low Power CMOS Startup Charge Pump Based on Body Biasing Technique Design of Low Power CMOS Startup Charge Pump Based on Body Biasing Technique Juliet Abraham 1, Dr. B. Paulchamy 2 1 PG Scholar, Hindusthan institute of Technology, coimbtore-32, India 2 Professor and HOD,

More information

DESIGN OF FREQUENCY SYNTHESIZER

DESIGN OF FREQUENCY SYNTHESIZER DESIGN OF FREQUENCY SYNTHESIZER A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIRMENTS FOR THE DEGREE OF MASTER OF TECHNOLOGY IN VLSI DESIGN & EMBEDDED SYSTEM By GAURAV KUMAR Roll No: 212EC2135 DEPARTMENT

More information

I. INTRODUCTION. Architecture of PLL-based integer-n frequency synthesizer. TABLE I DIVISION RATIO AND FREQUENCY OF ALL CHANNELS, N =16, P =16

I. INTRODUCTION. Architecture of PLL-based integer-n frequency synthesizer. TABLE I DIVISION RATIO AND FREQUENCY OF ALL CHANNELS, N =16, P =16 320 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 56, NO. 2, FEBRUARY 2009 A 5-GHz CMOS Frequency Synthesizer With an Injection-Locked Frequency Divider and Differential Switched Capacitors

More information

FPGA IMPLEMENTATION OF POWER EFFICIENT ALL DIGITAL PHASE LOCKED LOOP

FPGA IMPLEMENTATION OF POWER EFFICIENT ALL DIGITAL PHASE LOCKED LOOP INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976

More information

Synchronous Mirror Delays. ECG 721 Memory Circuit Design Kevin Buck

Synchronous Mirror Delays. ECG 721 Memory Circuit Design Kevin Buck Synchronous Mirror Delays ECG 721 Memory Circuit Design Kevin Buck 11/25/2015 Introduction A synchronous mirror delay (SMD) is a type of clock generation circuit Unlike DLLs and PLLs an SMD is an open

More information

Phase Locked Loops, Report Writing, Layout Tuesday, April 5th, 9:15 11:00

Phase Locked Loops, Report Writing, Layout Tuesday, April 5th, 9:15 11:00 Phase Locked Loops, Report Writing, Layout Tuesday, April 5th, 9:15 11:00 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo Last time and today, Tuesday 5th

More information

Design of a programmable CMOS Charge-Pump for phaselocked loop synthesizers

Design of a programmable CMOS Charge-Pump for phaselocked loop synthesizers Available online at www.sciencedirect.com Procedia Technology 3 (2012 ) 235 240 2012 Iberoamerican Conference on Electronics Engineering and Computer Science Design of a programmable CMOS Charge-Pump for

More information

THE reference spur for a phase-locked loop (PLL) is generated

THE reference spur for a phase-locked loop (PLL) is generated IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 54, NO. 8, AUGUST 2007 653 Spur-Suppression Techniques for Frequency Synthesizers Che-Fu Liang, Student Member, IEEE, Hsin-Hua Chen, and

More information

DESIGN OF A CURRENT STARVED RING OSCILLATOR FOR PHASE LOCKED LOOP (PLL)

DESIGN OF A CURRENT STARVED RING OSCILLATOR FOR PHASE LOCKED LOOP (PLL) DESIGN OF A CURRENT STARVED RING OSCILLATOR FOR PHASE LOCKED LOOP (PLL) 1 ZAINAB KAZEMI, 2 SAJJAD SHALIKAR, 3 A. M. BUHARI, 4 SEYED ABBAS MOUSAVI MALEKI 1 Department of Electrical, Electronic and System

More information

Bootstrapped ring oscillator with feedforward inputs for ultra-low-voltage application

Bootstrapped ring oscillator with feedforward inputs for ultra-low-voltage application This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Electronics Express, Vol.* No.*,*-* Bootstrapped ring oscillator with feedforward

More information

DESIGNING A NEW RING OSCILLATOR FOR HIGH PERFORMANCE APPLICATIONS IN 65nm CMOS TECHNOLOGY

DESIGNING A NEW RING OSCILLATOR FOR HIGH PERFORMANCE APPLICATIONS IN 65nm CMOS TECHNOLOGY DESIGNING A NEW RING OSCILLATOR FOR HIGH PERFORMANCE APPLICATIONS IN 65nm CMOS TECHNOLOGY *Yusuf Jameh Bozorg and Mohammad Jafar Taghizadeh Marvast Department of Electrical Engineering, Mehriz Branch,

More information

A Phase-Locked Loop with Embedded Analog-to-Digital Converter for Digital Control

A Phase-Locked Loop with Embedded Analog-to-Digital Converter for Digital Control A Phase-Locked Loop with Embedded Analog-to-Digital Converter for Digital Control Sooho Cha, Chunseok Jeong, and Changsik Yoo A phase-locked loop (PLL) is described which is operable from 0.4 GHz to 1.2

More information

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010 ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 010 Lecture 7: PLL Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Project Preliminary Report

More information

Design of a Frequency Synthesizer for WiMAX Applications

Design of a Frequency Synthesizer for WiMAX Applications Design of a Frequency Synthesizer for WiMAX Applications Samarth S. Pai Department of Telecommunication R. V. College of Engineering Bangalore, India Abstract Implementation of frequency synthesizers based

More information

Dedication. To Mum and Dad

Dedication. To Mum and Dad Dedication To Mum and Dad Acknowledgment Table of Contents List of Tables List of Figures A B A B 0 1 B A List of Abbreviations Abstract Chapter1 1 Introduction 1.1. Motivation Figure 1. 1 The relative

More information

A Wide-Range Delay-Locked Loop With a Fixed Latency of One Clock Cycle

A Wide-Range Delay-Locked Loop With a Fixed Latency of One Clock Cycle IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 8, AUGUST 2002 1021 A Wide-Range Delay-Locked Loop With a Fixed Latency of One Clock Cycle Hsiang-Hui Chang, Student Member, IEEE, Jyh-Woei Lin, Ching-Yuan

More information

ISSN: International Journal of Engineering and Innovative Technology (IJEIT) Volume 1, Issue 2, February 2012

ISSN: International Journal of Engineering and Innovative Technology (IJEIT) Volume 1, Issue 2, February 2012 A Performance Comparison of Current Starved VCO and Source Coupled VCO for PLL in 0.18µm CMOS Process Rashmi K Patil, Vrushali G Nasre rashmikpatil@gmail.com, vrushnasre@gmail.com Abstract This paper describes

More information

Phase Locked Loop using VLSI Technology for Wireless Communication

Phase Locked Loop using VLSI Technology for Wireless Communication Phase Locked Loop using VLSI Technology for Wireless Communication Tarde Chaitali Chandrakant 1, Prof. V.P.Bhope 2 1 PG Student, Department of Electronics and telecommunication Engineering, G.H.Raisoni

More information

FRACTIONAL-N FREQUENCY SYNTHESIZER DESIGN FOR RFAPPLICATIONS

FRACTIONAL-N FREQUENCY SYNTHESIZER DESIGN FOR RFAPPLICATIONS FRACTIONAL-N FREQUENCY SYNTHESIZER DESIGN FOR RFAPPLICATIONS MUDASSAR I. Y. MEER Department of Electronics and Communication Engineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039,India

More information

Design of Low Noise 16-bit CMOS Digitally Controlled Oscillator

Design of Low Noise 16-bit CMOS Digitally Controlled Oscillator Design of Low Noise 16-bit CMOS Digitally Controlled Oscillator Nitin Kumar #1, Manoj Kumar *2 # Ganga Institute of Technology & Management 1 nitinkumarvlsi@gmail.com * Guru Jambheshwar University of Science

More information

Design of a 3.3-V 1-GHz CMOS Phase Locked Loop with a Two-Stage Self-Feedback Ring Oscillator

Design of a 3.3-V 1-GHz CMOS Phase Locked Loop with a Two-Stage Self-Feedback Ring Oscillator Journal of the Korean Physical Society, Vol. 37, No. 6, December 2000, pp. 803 807 Design of a 3.3-V 1-GHz CMOS Phase Locked Loop with a Two-Stage Self-Feedback Ring Oscillator Yeon Kug Moon Korea Advanced

More information

Design of the High Frequency Synthesizer with In-Phase Coupled VCO

Design of the High Frequency Synthesizer with In-Phase Coupled VCO Design of the High Frequency Synthesizer with In-Phase Coupled VCO Sreenivasulu G 1, Suganthi K 2 1 Student, Department of Electronics and Communication/VLSI Design, 2 Assistant Professor(Sr.G), Department

More information

Self-Biased PLL/DLL. ECG minute Final Project Presentation. Wenlan Wu Electrical and Computer Engineering University of Nevada Las Vegas

Self-Biased PLL/DLL. ECG minute Final Project Presentation. Wenlan Wu Electrical and Computer Engineering University of Nevada Las Vegas Self-Biased PLL/DLL ECG721 60-minute Final Project Presentation Wenlan Wu Electrical and Computer Engineering University of Nevada Las Vegas Outline Motivation Self-Biasing Technique Differential Buffer

More information

A CMOS Phase Locked Loop based PWM Generator using 90nm Technology Rajeev Pankaj Nelapati 1 B.K.Arun Teja 2 K.Sai Ravi Teja 3

A CMOS Phase Locked Loop based PWM Generator using 90nm Technology Rajeev Pankaj Nelapati 1 B.K.Arun Teja 2 K.Sai Ravi Teja 3 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 2015 ISSN (online): 2321-0613 A CMOS Phase Locked Loop based PWM Generator using 90nm Technology Rajeev Pankaj Nelapati

More information

American International Journal of Research in Science, Technology, Engineering & Mathematics

American International Journal of Research in Science, Technology, Engineering & Mathematics American International ournal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

Analysis of Phase Noise Profile of a 1.1 GHz Phase-locked Loop

Analysis of Phase Noise Profile of a 1.1 GHz Phase-locked Loop Analysis of Phase Noise Profile of a 1.1 GHz Phase-locked Loop J. Handique, Member, IAENG and T. Bezboruah, Member, IAENG 1 Abstract We analyzed the phase noise of a 1.1 GHz phaselocked loop system for

More information

Available online at ScienceDirect. Procedia Computer Science 57 (2015 )

Available online at  ScienceDirect. Procedia Computer Science 57 (2015 ) Available online at www.sciencedirect.com Scienceirect Procedia Computer Science 57 (2015 ) 1081 1087 3rd International Conference on ecent Trends in Computing 2015 (ICTC-2015) Analysis of Low Power and

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June ISSN International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1 Design of Low Phase Noise Ring VCO in 45NM Technology Pankaj A. Manekar, Prof. Rajesh H. Talwekar Abstract: -

More information

A Low Power Single Phase Clock Distribution Multiband Network

A Low Power Single Phase Clock Distribution Multiband Network A Low Power Single Phase Clock Distribution Multiband Network A.Adinarayana Asst.prof Princeton College of Engineering and Technology. Abstract : Frequency synthesizer is one of the important elements

More information

REDUCING power consumption and enhancing energy

REDUCING power consumption and enhancing energy 548 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 63, NO. 6, JUNE 2016 A Low-Voltage PLL With a Supply-Noise Compensated Feedforward Ring VCO Sung-Geun Kim, Jinsoo Rhim, Student Member,

More information

A Wide Tuning Range (1 GHz-to-15 GHz) Fractional-N All-Digital PLL in 45nm SOI

A Wide Tuning Range (1 GHz-to-15 GHz) Fractional-N All-Digital PLL in 45nm SOI 7- A Wide Tuning Range ( GHz-to-5 GHz) Fractional-N All-Digital PLL in 45nm SOI Alexander Rylyakov, Jose Tierno, George English 2, Michael Sperling 2, Daniel Friedman IBM T. J. Watson Research Center Yorktown

More information

AC LAB ECE-D ecestudy.wordpress.com

AC LAB ECE-D ecestudy.wordpress.com PART B EXPERIMENT NO: 1 AIM: PULSE AMPLITUDE MODULATION (PAM) & DEMODULATION DATE: To study Pulse Amplitude modulation and demodulation process with relevant waveforms. APPARATUS: 1. Pulse amplitude modulation

More information

Lecture 7: Components of Phase Locked Loop (PLL)

Lecture 7: Components of Phase Locked Loop (PLL) Lecture 7: Components of Phase Locked Loop (PLL) CSCE 6933/5933 Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages,

More information

Single-Stage Vernier Time-to-Digital Converter with Sub-Gate Delay Time Resolution

Single-Stage Vernier Time-to-Digital Converter with Sub-Gate Delay Time Resolution Circuits and Systems, 2011, 2, 365-371 doi:10.4236/cs.2011.24050 Published Online October 2011 (http://www.scirp.org/journal/cs) Single-Stage Vernier Time-to-Digital Converter with Sub-Gate Delay Time

More information

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, VOL. 17, NO. 2, 98~104, APR. 2017 http://dx.doi.org/10.5515/jkiees.2017.17.2.98 ISSN 2234-8395 (Online) ISSN 2234-8409 (Print) CMOS 120 GHz Phase-Locked

More information

Fast Digital Calibration of Static Phase Offset in Charge-Pump Phase-Locked Loops

Fast Digital Calibration of Static Phase Offset in Charge-Pump Phase-Locked Loops ISSC 2011, Trinity College Dublin, June 23 24 Fast Digital Calibration of Static Phase Offset in Charge-Pump Phase-Locked Loops Diarmuid Collins, Aidan Keady, Grzegorz Szczepkowski & Ronan Farrell Institute

More information

A 65-nm CMOS Implementation of Efficient PLL Using Self. - Healing Prescalar

A 65-nm CMOS Implementation of Efficient PLL Using Self. - Healing Prescalar A 65-nm CMOS Implementation of Efficient PLL Using Self S.Md.Imran Ali BRINDAVAN Institute & Technology & Science E-mail: imransyed460@gmail.com - Healing Prescalar Shaik Naseer Ahamed SAFA College of

More information

A LOW POWER PHASE FREQUENCY DETECTOR FOR DELAY-LOCKED LOOP

A LOW POWER PHASE FREQUENCY DETECTOR FOR DELAY-LOCKED LOOP A LOW POWER PHASE FREQUENCY DETECTOR FOR DELAY-LOCKED LOOP 1 LAU WENG LOON, 1 MAMUN BIN IBNE REAZ, 1 KHAIRUN NISA MINHAD, 1 NOORFAZILA KAMAL, 1 WAN MIMI DIYANA WAN ZAKI 1 Department of Electrical, Electronic

More information

PLL Building Blocks. Presented by: Dean Banerjee, Wireless Applications Engineer

PLL Building Blocks. Presented by: Dean Banerjee, Wireless Applications Engineer PLL Building Blocks Presented by: Dean Banerjee, Wireless Applications Engineer Phased-Locked Loop Building Blocks Basic PLL Operation VCO Dividers R Counter Divider Relation to Crystal Reference Frequency

More information

DESIGN OF A 4GHz PROGRAMABLE FREQUENCY SYNTHESIZER FOR IEEE a STANDERD

DESIGN OF A 4GHz PROGRAMABLE FREQUENCY SYNTHESIZER FOR IEEE a STANDERD DESIGN OF A 4GHz PROGRAMABLE FREQUENCY SYNTHESIZER FOR IEEE-802.11a STANDERD A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Technology In VLSI Design & Embedded

More information