TERRESTRIAL television broadcasting has been widely

Size: px
Start display at page:

Download "TERRESTRIAL television broadcasting has been widely"

Transcription

1 IEEE TRANSACTIONS ON BROADCASTING, VOL. 52, NO. 2, JUNE A General SFN Structure With Transmit Diversity for TDS-OFDM System Jian-Tao Wang, Jian Song, Jun Wang, Chang-Yong Pan, Zhi-Xing Yang, Lin Yang Abstract In the digital television terrestrial broadcasting, the Single Frequency Network (SFN) has much advantage. SFN can serve an arbitrary large area with the same information broadcasted at the same frequency, resulting in the potential diversity gain. To improve the transmission performance of the Time Domain Synchronous-Orthogonal Frequency Division Multiplexing (TDS-OFDM) system in SFN, a general SFN structure with transmit diversity is introduced, theoretically analyzed computer simulated. The proposed SFN structure is flexible to set up. Simulations show that this method can greatly improve the reliability of the signal transmission over the frequency selective fading channels is suitable for the TDS-OFDM system in SFN. Index Terms Digital television terrestrial broadcasting (DTTB), single frequency network (SFN), space-time block code (STBC), terrestrial digital multimedia/television broadcasting (DMB-T), time domain synchronous-orthogonal frequency division multiplexing (TDS-OFDM), transmit diversity. I. INTRODUCTION TERRESTRIAL television broadcasting has been widely used, especially in those countries with very large area. The traditional analog television transmitters usually broadcast to the adjacent areas with different RF channels to avoid the so-called artificial multi-path propagation as the viewers are extremely sensitive to the in-b interference. This is called Multi-Frequency Network (MFN) which has inefficient radio spectrum utilization. With the rapid development of the digital television terrestrial broadcasting (DTTB), a special network structure called Single Frequency Network (SFN) is proposed. In SFN, all the transmitters broadcast the identical information simultaneously at the same frequency. High spectrum efficiency is therefore, the major advantage of the SFN [1], [23]. In SFN, the received signal can be seen as a mixture of multiple delays of the transmitted signal [2]. This observation leads to an equivalent convolutional channel between the transmitted received signal. With the SFN structure, as every transmitter emits the same signal at the same frequency, it is quite often that the received signal has a large delay spread, which is quite different from the scenario under MFN structure. In the traditional SFN scheme, the time dispersion, including the so-called artificial multi-path propagation caused by the SFN structure the natural propagation caused by the reflection in the vicinity of the receiver, are usually mitigated by equalization Manuscript received October 17, 2005; revised January 19, This work was supported in part by the China National Science Foundation under Grant by the Ministry of Information Industry Foundation under Grant J.-T. Wang, J. Wang, C.-Y. Pan, Z.-X. Yang, L. Yang are with the Department of Electronic Engineering, Tsinghua University, Beijing , China ( wjt01@mails.tsinghua.edu.cn). J. Song is with the Research Institute of Information Technology, Tsinghua University, Beijing , China ( jsong@tsinghua.edu.cn). Digital Object Identifier /TBC multi-carrier scheme [3], [4]. However, if some of the transmitters are located too far away from the receiver, the delays of the signals from those transmitters will be too large the traditional methods mitigating the interference will pay high cost. So it still faces the tough challenge of the strong echoes of very large delay spreads due to the signal transmission from the different transmitters within SFN. Considering the received signal is a superposition of signals coming from quite a few transmitters in SFN, if one or several transmitters are shadowed, others are still receivable. This merit results in the possible diversity gain. Over the fading channels, spatial diversity technique can effectively improve the receiving performance of the system [5]. It has been implemented at the receiver end with the request of the multiple RF front-end circuits high complexity [6]. This complexity issue is a major drawback for the portable or mobile receivers where physical size power consumption are the most important constrains. Comparing with the receiver diversity approach, transmit diversity scheme achieves diversity gain without greatly increasing the complexity of the receivers is more suitable cost effective for the broadcasting networks. So the transmit diversity technique has received strong interests in recent years [7] [12]. A simple yet efficient SFN structure with transmit diversity for the Time Domain Synchronous-Orthogonal Frequency Division Multiplexing (TDS-OFDM) system is proposed analyzed in this paper, showing the significant performance improvement. Based on the frame structure of the TDS-OFDM system, the proposed SFN structure is flexible to set up the computation complexity for the transmitter is very small, almost the same as that of the single antenna system. The rest of this paper is organized as follows. Section II describes the system model of TDS-OFDM the equivalent channel express for SFN. As an effective transmit diversity approach, space-time block code (STBC) is also briefly reviewed. In Section III, the general SFN structure for TDS-OFDM system is introduced. Section IV gives the analysis of the system performance computational complexity. Bit error rate (BER) simulation results demonstrating the performance are provided in Section V. Finally, some conclusions are drawn in Section VI. II. SYSTEM DESCRIPTION A. TDS-OFDM System TDS-OFDM is the modulation scheme for the Terrestrial Digital Multimedia/Television Broadcasting (DMB-T) system. DMB-T system is proposed by Tsinghua University as one of the major cidates for Chinese DTTB stard [13]. The transmitter modulates data with inverse discrete Fourier transform (IDFT), which is the same as in DVB-T stard [14]. However, pseudorom noise (PN) sequences are inserted into the header of the frame as the guard intervals as well as /$ IEEE 转载

2 246 IEEE TRANSACTIONS ON BROADCASTING, VOL. 52, NO. 2, JUNE 2006 Fig. 1. The structure of signal frame in TDS-OFDM system. the training symbols for the channel estimation the timing recovery. At the receiver end, TDS-OFDM is equivalent to the zero-padded OFDM (ZP-OFDM) after removing the PN sequences. More research results on TDS-OFDM system can be referred to [13], [15] [20] the literatures therein. In the TDS-OFDM system, a signal frame consists of the data (frame body) the guard interval (frame header). There are 3780 symbols in the frame body which is always 500 long. So the frequency interval between the adjacent sub-carriers is 2 khz. The length of guard interval may be 1/9 or 1/4 of the length of the frame body. Fig. 1 shows the structure of the signal frame in TDS-OFDM system. Fig. 2. The simplified SFN structure. B. Equivalent Channel Express for SFN In SFN, the received signal is the mixture of multiple delays of the transmitted signals. A simplified SFN system is shown in Fig. 2, where the transmitted signals arrive at the receiver along four directions. It is noted that the natural propagation paths are omitted in the simplified figure. A field testing result of the impulse response in a SFN channel is shown in Fig. 3. From the figure, we can observe two path clusters, i.e. the receiver can receive the enough strong signals from two transmitters in the network these transmitters are called contributing transmitters in the following. So, each cluster in the figure corresponds to a contributing transmitter. There is always a main path in each cluster, representing the direct path of each transmitter/receiver pair. The other paths within the cluster st for the local scattering. It can be seen from Fig. 3 that large delay spread strong echoes exist in the equivalent channel, introducing the serious frequency selective fading. Later on in the next section, we will demonstrate that large delay spread strong echoes will not appear if the transmit diversity technique is applied. Because the channel state information (CSI) for each transmitter can be obtained through certain arrangement, that is, the channel condition of each transmitter/receiver pair is identified. The whole SFN channel can then be decomposed into several equivalent channels corresponding to each transmitter/receiver pair with much smaller delay spread. C. Review of STBCs Recently, transmitter diversity has been extensively studied as one of the promising approach to combat the detrimental effects in the wireless fading channels. With the very simple maximum-likelihood (ML) decoding algorithm implemented at the receiver, space-time block coding scheme has are still receiving much attention as an effective method to achieve the transmit diversity. STBC from the orthogonal designs is first proposed by Alamouti [7], then generalized by Tarokh, Fig. 3. An example of impulse response in SFN channel. Jafarkhani, Calderbank [8]. The main property of these codes is the orthogonality between each pair of the columns in the transmission matrices. Thus, the transmitted symbols can be decoded separately, not jointly. The orthogonal codes can achieve full diversity, but it is impossible to achieve the full transmission rate (i.e. rate 1) when there are more than two transmit antennas [8]. To get rate 1 codes, the STBC s from quasiorthogonal designs have been proposed [11], [12] with the columns of the transmission matrix divided into groups. The columns within the same group are not orthogonal to each other, while the columns from different groups are orthogonal to each other. The ML decoding can still be performed by searching for the symbol-pairs in each group with the complexity reasonably small. The OFDM systems can also employ STBC method to obtain the better signal quality from the diversity gain [9], [10]. The proposed scheme in the next section is based on the STBC method. III. THE GENERAL SFN STRUCTURE WITH TRANSMIT DIVERSITY FOR TDS-OFDM SYSTEM Generally, considering the SFN planning, we assume that there are no more than four contributing transmitters received anywhere in the network. The signals from other transmitters in the network have greatly faded for the long distance away from the receiver. In the following, we describe the SFN structure analyze the system performance in detail according to

3 IEEE TRANSACTIONS ON BROADCASTING, VOL. 52, NO. 2, JUNE The transmitter of the second branch is denoted as Tx2. In the space-frequency encoder module, we perform the block coding across the two adjacent sub-carriers to get the following signals, (3) Then the time domain signal for Tx2 can be constructed as Fig. 4. The diagram of the proposed SFN structure with transmit diversity for TDS-OFDM system. According to the property of DFT, the results of DFT of may be written as (4) -point the number of the contributing transmitters in the network, respectively. The diagram of the introduced SFN structure with transmit diversity is shown in Fig. 4. Because multiple transmitters are used at the same frequency at the same time, each transmitter should use a unique PN sequence, orthogonal to each other. It is assumed that different transmit branches are statistically independent the perfect CSI is obtained at the receiver. In the following, a complex conjugation, transposition Hermitian operator are denoted as the superscript,,, respectively. denotes the congruent number of with modulus, that is. We consider the TDS-OFDM system with sub-carriers. Let represent the frequency domain input sequence after symbol mapping denote the symbol of the th sub-carrier in the th frame. are half length vectors denoting the even odd component of the vector, respectively. A. Two Contributing Transmitters If there are at most two contributing transmitters in SFN, only the modules outside the dashed polygon exist in Fig. 4. At first, the input bit stream is mapped into the symbol stream according to the modulation scheme. Then, the time domain signal after the inverse discrete Fourier transform (IDFT) is given by (in this subsection, is omitted for notational simplicity) So the equivalent signal configurations of the two transmit branches are given by At the receiver, the symbol-wise ML decoding can be applied to, similarly to [7]. So this method achieves the 2-order transmit diversity. The detailed description of the decoding procedure is given in the Appendix. B. Three Four Contributing Transmitters First, we discuss the case with four contributing transmitters in SFN. The modules inside the dashed polygon are included in Fig. 4. The time domain signals for Tx1 Tx2 are the same as that in Section III-A. However, the -point IDFT results of the consecutive two frames, i.e.,,, are all stored in the memory. The space-time encoder module performs the block coding across the two adjacent OFDM frames. For Tx3, we get (5) (6) (1) where. Let, which are stored in the memory, denote the results of -point IDFT of, respectively. Then from (1), the time domain signal for the first antenna Tx1 can be rewritten as (2) (7) Then it is similar to (2), the time domain signals for the third antenna Tx3, i.e., can be obtained. Again, according to the characteristic of DFT, the results of -point DFT of,, are,,, respectively. So the equivalent consecutive inputs of the OFDM frames for Tx3 are (8)

4 248 IEEE TRANSACTIONS ON BROADCASTING, VOL. 52, NO. 2, JUNE 2006 As shown in Fig. 4, the signals for the fourth antenna Tx4 are based on,, through the space-time encoder module. (9) Also similar to (2), the time domain signals for Tx4, i.e., can be achieved. The results of -point DFT of,,, i.e.,,, are (10) From (6), (8) (10), we can observe that the equivalent transmitted signal matrix of the proposed scheme is shown in the equation at bottom of page. It is easy to prove that is a quasiorthogonal STBC matrix with four transmit antennas [11]. So the symbol pairs of can be decoded separately the diversity is 2. Again, the detailed description of the decoding procedure is also given in the Appendix. In order to achieve full diversity, i.e. the diversity order is 4, we introduce the phase-shift module before the space-frequency encoder in the proposed structure as shown in Fig. 4 with dotted line. Referring to [12], the optimal rotation angle is. For the case with three contributing transmitters in SFN, we can only simply take out the fourth transmit branch Tx4. The quasiorthogonal structure is still valid for the rest of three branches [11], i.e. Tx1, Tx2 Tx3. The diversity order is still 2 without the constellation rotation (CR) module. IV. SYSTEM ANALYSIS A. Performance Because each transmitter uses a unique PN sequence as the guard interval (GI) of TDS-OFDM system, orthogonal to each other, the CSI of each transmitter/receiver pair can be identified at the receiver end. Then, the whole SFN channel can be decomposed into several equivalent channels corresponding to each transmitter/receiver pair with much smaller delay spread. Meanwhile, the potential diversity gain is achieved. From the analysis in the Appendix, it is observed that the introduced transmit diversity method is similar to that of the maximal ratio combining (MRC) receiver diversity system [21]. In the following, we use the case with two contributing transmitters as an example to state how the diversity gain is obtained. In order to compare the performance of one-transmitter system with two-transmitter system fairly, the transmission power for each transmitter in the two-transmitter case is halved so that the average received signal powers are the same in both cases. The signal to noise ratio (SNR) on the th sub-carrier is given by (referring to () in the Appendix) (12) where represents the signal to noise ratio of every symbol, assuming the same modulation scheme is applied to all the sub-carriers. Suppose that the different echoes in the multi-path channel are wide sensed stationary uncorrelated complex Gaussian process the channel response are both zero-mean complex Gaussian rom variables with variance of 1. So the rom variable satisfies the central -distribution whose degree of freedom is 4. The variance of every degree is 1/2. Then the mean variance of can be expressed as While in the one-transmitter system, the SNR is given by (13) (14) (15) The rom variable is also the central -distribution with degree of freedom equal to 2. The variance of every degree is 1/2. Then the mean variance of will be (16) (17) Comparing with the equations of (13) to (14) with (16) to (17), the mean of SNR doesn t change with the increase of number of transmitters within the network. This is different (11)

5 IEEE TRANSACTIONS ON BROADCASTING, VOL. 52, NO. 2, JUNE from the receiver diversity system. However, the variance of SNR in the two-transmitter system is half of that in the onetransmitter system. This is an excellent example of how the transmit diversity method can smooth the channel fading improve the system performance. Moreover, in all the cases mentioned in Section III, if one transmit branch doesn t work, i.e., the corresponding terms of is zero, the ML decision can still work. So the introduced SFN structure with the transmit diversity method can also support Soft Failure. TABLE I TYPICAL DTTB CHANNEL MODEL B. Complexity We consider the more complicated case, i.e. the case with four contributing transmitters in SFN. From the signal configurations given by (3), (7) (9), based on the symmetric property of DFT/IDFT, the time domain signals for Tx2, Tx3, Tx4 could be generated by the simple computations on,,, which have already been obtained through the IDFT operation for Tx1. Therefore, to obtain all the transmitted signals for the four transmit antennas, there will be one -point IDFT operation, additional complex multiplications complex additional additions required for each OFDM frame time slot. While, if the straightforward implementation of transmit diversity for OFDM scheme is adopted [9], four -point IDFT operations are needed within one OFDM frame time slot in four-antenna case. So comparing with the straightforward implementation, the computational complexity of the transmitter is greatly reduced. In the proposed scheme, each transmitter uses a unique PN sequence as the frame header. Then at the receiver end, we can use the multiple known PN sequences to perform the channel estimation time synchronization by means of the shift correlation [13], [15], [18]. Since the PN sequences for the different transmitters are orthogonal to each other, the channels corresponding to each transmitter/receiver pair can be easily separated, i.e. the whole SFN channel is decomposed into several equivalent channels. So the complexity at the receiver end is only linearly increased comparing with those scheme without the transmit diversity. Moreover, since the proposed SFN structure adopts a hierarchical diversity form as shown in Fig. 4, the network is flexible to set up. V. SIMULATIONS The BER performance of the introduced SFN scheme with the transmit diversity for TDS-OFDM system was further verified by simulations. This channel model is romly picked from the Brazil digital television test report [22] for the simulations with the parameters listed in Table I. It is a typical frequency selective fading channel model in DTTB. We only use this channel model as an example to demonstrate the effectiveness the proposed scheme can perform well under other channel conditions. The parameters of the TDS-OFDM system for simulations are listed in Table II. In our simulations, it was assumed that the transmit power of all the transmitters in SFN were equal, the fading paths from TABLE II THE PARAMETERS OF TDS-OFDM SYSTEM each transmitter to the receiver were independent, the CSI of each transmit branch was perfectly estimated at the receiver. Although in the analysis of Section III Appendix, some channel assumptions are made to meet the requirement of STBC structure, we still omit the assumptions in the simulations use Rayleigh model for each transmit branch to approximate to the practical channels. We now investigate the relationship between BER SNR for the portable reception [24], [25] in SFN environment. Simulation results for the system with QPSK, 16QAM 64QAM modulation on each sub-carrier are shown from Figs. 5 to 7, respectively. The maximum Doppler shift is set to 20 Hz, corresponding to the low receiver velocity of about 26 to 50 km/h in the TV UHF b (@ MHz). The simulation results give the excellent performance to show how the proposed scheme achieves the potential diversity gain in SFN. We first consider the SFN structure with two contributing transmitters the BER of is used as the bench mark. It can be seen from the figures that the proposed scheme achieves no less than 9-dB diversity gain in all three modulation cases, comparing with the conventional SFN system without transmit diversity. Then, from the slopes of the BER curves in the figures, we can observe that due to the quasiorthogonal design structure, the three-antenna four-antenna cases have the same diversity order as that of the two-antenna case, only a little difference among them. But, if the constellation rotation method is adopted, the four-antenna case can obtain full diversity order [12], as shown by the BER curves with in the figures. Here in the simulations, the optimal rotation angle is set to. So the proposed SFN scheme can greatly improve the system performance over the frequency selective fading environment.

6 250 IEEE TRANSACTIONS ON BROADCASTING, VOL. 52, NO. 2, JUNE 2006 Fig. 5. The BER performance comparison of the TDS-OFDM systems with without transmit diversity method with QPSK modulation on each sub-carrier. Fig. 7. The BER performance comparison of the TDS-OFDM systems with without transmit diversity method with 64QAM modulation on each sub-carrier. the hierarchical diversity structure shown in Fig. 4, the network is flexible to set up. APPENDIX In this appendix, we will provide the detailed descriptions on how the ML detection is performed at the receiver. A. Symbol Detection for Two-Antenna Case Let denote the complex channel gains from transmitter to the receiver denote complex noise. Assume that the channel responses between adjacent sub-carriers are approximately the same, i.e.,, 2. Then from (6), the received signal can be expressed as Fig. 6. The BER performance comparison of the TDS-OFDM systems with without transmit diversity method with 16QAM modulation on each sub-carrier. VI. CONCLUSIONS SFN is believed to be a most viable solution for the terrestrial digital TV broadcasting network with supreme performance of high spectrum efficiency. In SFN, the natural multi-path interferences are generally much smaller than the main signal its impact on the receiver can be easily eliminated. The strong artificial multi-path from SFN itself appears when the signals from several transmitters are received. To combat against this particular problem, an efficient SFN structure with the transmit diversity method is introduced. The performance improvement of TDS-OFDM system in SFN with this method is theoretically analyzed simulated in this paper, showing its superior performance over the frequency selective fading environment. The decomposition of the artificial multi-path from SFN is easily done with the proposed scheme. Other than mitigate this artificial multi-path issue, this method can also achieve the diversity gain support the soft failure. Moreover, due to Let denote the channel response matrix, i.e. Both sides of (7) are multiplied by given by where terms are, (18) (19) the result is (20) the complex noise Then from the decision (20), we can perform the ML detection on separately.

7 IEEE TRANSACTIONS ON BROADCASTING, VOL. 52, NO. 2, JUNE B. Symbol Detection for Four (or Three)-Antenna Case For the case with four contributing transmitters, it has been shown that the proposed method is a quasiorthogonal STBC scheme. Let denote the complex channel gain of the th sub-channel from the antenna to the receiver at the th time slot denote the complex Gaussian noise. Assume the channel responses between both two adjacent frames sub-carriers are approximately the same, i.e. (21) Then, the two consecutive OFDM frame signals at the receiver can be expressed as where Then left multiply denote the channel response matrix, i.e. (22) to the both sides of (15) we get (23) with complex Gaussian noise,. Then from (16), we can get the pair-wise ML detection, i.e. the symbol pairs of can be decoded separately. In the three-antenna case, the fourth transmit branch Tx4 in Fig. 4 is taken out. The decision (16) can still be used, only is zero. So in this case,. ACKNOWLEDGMENT The authors would like to thank the anonymous reviewers for their valuable comments. REFERENCES [1] G. Malmgren, On the performance of single frequency networks in correlated shadow fading, IEEE Trans. Broadcasting, vol. 43, no. 2, pp , Jun [2] P. Magniez A. Gorokhov, Space-time equalization for DVB-T in single frequency networks, in Proc. Thirty-Third Asilomar Conference on Signals, Systems Computers, vol. 1, Oct. 1999, pp [3] A. Ligeti J. Zer, Minimal cost coverage planning for single frequency networks, IEEE Trans. Broadcasting, vol. 45, no. 1, pp , Mar [4] P. Angueira, M. Velez, D. de la Vega, G. Prieto, D. Guerra et al., DTV reception quality field tests for portable outdoor reception in a single frequency network, IEEE Trans. Broadcasting, vol. 50, no. 1, pp , Mar [5] T. S. Rappaport, Wireless Communications. Englewood Cliffs, NJ: Prentice-Hall, [6] Mobile DVB-T using antenna diversity receivers, G. Faria. (2001). [Online] [7] S. M. Alamouti, A simple transmit diversity technique for wireless communications, IEEE J. Select Areas in Communications, vol. 16, no. 8, pp , Oct [8] V. Tarokh, H. Jafarkhani, A. R. Calderbank, Space-time block codes from orthogonal designs, IEEE Trans. Inform. Theory, vol. 45, no. 5, pp , Jul [9] K. F. Lee D. B. Williams, A space-frequency transmitter diversity technique for OFDM systems, in Proc. IEEE GLOBECOM 00, San Francisco, 2000, pp [10] Y. Gong K. B. Letaief, An efficient space-frequency coded OFDM system for broadb wireless communications, IEEE Trans. Communications, vol. 51, no. 11, pp , Nov [11] H. Jafarkhani, A quasiorthogonal space-time block code, IEEE Trans. Commun., vol. 49, pp. 1 4, Jan [12] W. Su X.-G. Xia, Signal constellations for quasiorthogonal spacetime block codes with full diversity, IEEE Trans. Inform. Theory, vol. 50, no. 10, pp , Oct [13] Terrestrial Digital Multimedia/Television Broadcasting System, Patent [14] Digital Video Broadcasting (DVB); Framing Structure, Channel Coding Modulation for Digital Terrestrial Television,, Tech. Rep. EN v1.1.2, ETSI, Aug [15] J. Wang, Z.-X. Yang, C.-Y. Pan, M. Han, L. Yang, A combined code acquisition symbol timing recovery method for TDS-OFDM, IEEE Trans. Broadcasting, vol. 49, no. 3, pp , Sep [16] Z. Yang, L. Tong, L. Yang, Outage probability comparison of CP-OFDM TDS-OFDM for broadcast channels, in Proc. IEEE GLOBECOM 02, Nov. 2002, pp [17] Z.-W. Zheng, Z.-X. Yang, C.-Y. Pan, Y.-S. Zhu, Novel synchronization for TDS-OFDM-Based digital television terrestrial broadcast systems, IEEE Trans. Broadcasting, vol. 50, no. 2, pp , Jun [18] Z. W. Zheng, Z. X. Yang, C. Y. Pan, Y. S. Zhu, Synchronization channel estimation for TDS-OFDM systems, in Proc. IEEE VTC 2003-Fall, Oct. 2003, pp [19] Z.-X. Yang, M. Han, C.-Y. Pan et al., A coding modulation scheme for HDTV services in DMB-T, IEEE Trans. Broadcasting, vol. 50, no. 1, pp , Mar [20] Z.-X. Yang, Y.-P. Hu, C.-Y. Pan, L. Yang, Design of a 3780-Point IFFT processor for TDS-OFDM, IEEE Trans. Broadcasting, vol. 48, no. 1, pp , Mar [21] T. Eng, N. Kong, L. B. Milstein, Comparison of diversity combining techniques for Rayleigh-fading channels, IEEE Trans. Communications, vol. 44, no. 9, pp , Sep [22] Digital Television Systems Brazilian Tests Final Report, F. Pollara. [Online] [23] A. Mattsson, Single frequency networks in DTV, IEEE Trans. Broadcasting, vol. 51, no. 4, pp , Dec [24] Implementation Guidelines for DVB Terrestrial Services: Transmission Aspects, ETSI, Tech. Rep. TR v1.1.1, Dec [25] P. Angueira, M. Velez, D. de la Vega, A. Arrinda et al., DTV (COFDM) SFN signal variation field tests in urban environments for portable outdoor reception, IEEE Trans. Broadcasting, vol. 49, no. 1, pp , Mar

MULTIPATH fading could severely degrade the performance

MULTIPATH fading could severely degrade the performance 1986 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 12, DECEMBER 2005 Rate-One Space Time Block Codes With Full Diversity Liang Xian and Huaping Liu, Member, IEEE Abstract Orthogonal space time block

More information

ORTHOGONAL frequency division multiplexing (OFDM)

ORTHOGONAL frequency division multiplexing (OFDM) 144 IEEE TRANSACTIONS ON BROADCASTING, VOL. 51, NO. 1, MARCH 2005 Performance Analysis for OFDM-CDMA With Joint Frequency-Time Spreading Kan Zheng, Student Member, IEEE, Guoyan Zeng, and Wenbo Wang, Member,

More information

An Equalization Technique for Orthogonal Frequency-Division Multiplexing Systems in Time-Variant Multipath Channels

An Equalization Technique for Orthogonal Frequency-Division Multiplexing Systems in Time-Variant Multipath Channels IEEE TRANSACTIONS ON COMMUNICATIONS, VOL 47, NO 1, JANUARY 1999 27 An Equalization Technique for Orthogonal Frequency-Division Multiplexing Systems in Time-Variant Multipath Channels Won Gi Jeon, Student

More information

Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes

Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes Volume 4, Issue 6, June (016) Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes Pranil S Mengane D. Y. Patil

More information

Measurement and Prediction of DTMB Reception Quality in Single Frequency Networks

Measurement and Prediction of DTMB Reception Quality in Single Frequency Networks Measurement and Prediction of DTMB Reception Quality in Single Frequency Networks Keqian Yan, Wenbo Ding, Liwei Zhang +, Yanbin Yin +, Fang Yang, and Changyong Pan Electronic Engineering Department, Tsinghua

More information

SPACE TIME coding for multiple transmit antennas has attracted

SPACE TIME coding for multiple transmit antennas has attracted 486 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 3, MARCH 2004 An Orthogonal Space Time Coded CPM System With Fast Decoding for Two Transmit Antennas Genyuan Wang Xiang-Gen Xia, Senior Member,

More information

Performance Analysis of n Wireless LAN Physical Layer

Performance Analysis of n Wireless LAN Physical Layer 120 1 Performance Analysis of 802.11n Wireless LAN Physical Layer Amr M. Otefa, Namat M. ElBoghdadly, and Essam A. Sourour Abstract In the last few years, we have seen an explosive growth of wireless LAN

More information

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary M.Tech Scholar, ECE Department,SKIT, Jaipur, Abstract Orthogonal Frequency Division

More information

Performance Evaluation of STBC-OFDM System for Wireless Communication

Performance Evaluation of STBC-OFDM System for Wireless Communication Performance Evaluation of STBC-OFDM System for Wireless Communication Apeksha Deshmukh, Prof. Dr. M. D. Kokate Department of E&TC, K.K.W.I.E.R. College, Nasik, apeksha19may@gmail.com Abstract In this paper

More information

IN AN MIMO communication system, multiple transmission

IN AN MIMO communication system, multiple transmission 3390 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 55, NO 7, JULY 2007 Precoded FIR and Redundant V-BLAST Systems for Frequency-Selective MIMO Channels Chun-yang Chen, Student Member, IEEE, and P P Vaidyanathan,

More information

MULTIPLE transmit-and-receive antennas can be used

MULTIPLE transmit-and-receive antennas can be used IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 1, NO. 1, JANUARY 2002 67 Simplified Channel Estimation for OFDM Systems With Multiple Transmit Antennas Ye (Geoffrey) Li, Senior Member, IEEE Abstract

More information

Orthogonal Cyclic Prefix for Time Synchronization in MIMO-OFDM

Orthogonal Cyclic Prefix for Time Synchronization in MIMO-OFDM Orthogonal Cyclic Prefix for Time Synchronization in MIMO-OFDM Gajanan R. Gaurshetti & Sanjay V. Khobragade Dr. Babasaheb Ambedkar Technological University, Lonere E-mail : gaurshetty@gmail.com, svk2305@gmail.com

More information

Performance analysis of MISO-OFDM & MIMO-OFDM Systems

Performance analysis of MISO-OFDM & MIMO-OFDM Systems Performance analysis of MISO-OFDM & MIMO-OFDM Systems Kavitha K V N #1, Abhishek Jaiswal *2, Sibaram Khara #3 1-2 School of Electronics Engineering, VIT University Vellore, Tamil Nadu, India 3 Galgotias

More information

Receiver Design for Single Carrier Equalization in Fading Domain

Receiver Design for Single Carrier Equalization in Fading Domain 65 International Journal of Computer Science & Management Studies, Vol. 12, Issue 02, April 2012 Receiver Design for Single Carrier Equalization in Fading Domain Rajesh Kumar 1, Amit 2, Priyanka Jangra

More information

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications ELEC E7210: Communication Theory Lecture 11: MIMO Systems and Space-time Communications Overview of the last lecture MIMO systems -parallel decomposition; - beamforming; - MIMO channel capacity MIMO Key

More information

INTERSYMBOL interference (ISI) is a significant obstacle

INTERSYMBOL interference (ISI) is a significant obstacle IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 1, JANUARY 2005 5 Tomlinson Harashima Precoding With Partial Channel Knowledge Athanasios P. Liavas, Member, IEEE Abstract We consider minimum mean-square

More information

Block Processing Linear Equalizer for MIMO CDMA Downlinks in STTD Mode

Block Processing Linear Equalizer for MIMO CDMA Downlinks in STTD Mode Block Processing Linear Equalizer for MIMO CDMA Downlinks in STTD Mode Yan Li Yingxue Li Abstract In this study, an enhanced chip-level linear equalizer is proposed for multiple-input multiple-out (MIMO)

More information

Channel Estimation by 2D-Enhanced DFT Interpolation Supporting High-speed Movement

Channel Estimation by 2D-Enhanced DFT Interpolation Supporting High-speed Movement Channel Estimation by 2D-Enhanced DFT Interpolation Supporting High-speed Movement Channel Estimation DFT Interpolation Special Articles on Multi-dimensional MIMO Transmission Technology The Challenge

More information

Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access

Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access NTT DoCoMo Technical Journal Vol. 8 No.1 Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access Kenichi Higuchi and Hidekazu Taoka A maximum throughput

More information

Estimation of I/Q Imblance in Mimo OFDM System

Estimation of I/Q Imblance in Mimo OFDM System Estimation of I/Q Imblance in Mimo OFDM System K.Anusha Asst.prof, Department Of ECE, Raghu Institute Of Technology (AU), Vishakhapatnam, A.P. M.kalpana Asst.prof, Department Of ECE, Raghu Institute Of

More information

IMPACT OF SPATIAL CHANNEL CORRELATION ON SUPER QUASI-ORTHOGONAL SPACE-TIME TRELLIS CODES. Biljana Badic, Alexander Linduska, Hans Weinrichter

IMPACT OF SPATIAL CHANNEL CORRELATION ON SUPER QUASI-ORTHOGONAL SPACE-TIME TRELLIS CODES. Biljana Badic, Alexander Linduska, Hans Weinrichter IMPACT OF SPATIAL CHANNEL CORRELATION ON SUPER QUASI-ORTHOGONAL SPACE-TIME TRELLIS CODES Biljana Badic, Alexander Linduska, Hans Weinrichter Institute for Communications and Radio Frequency Engineering

More information

Performance Study of MIMO-OFDM System in Rayleigh Fading Channel with QO-STB Coding Technique

Performance Study of MIMO-OFDM System in Rayleigh Fading Channel with QO-STB Coding Technique e-issn 2455 1392 Volume 2 Issue 6, June 2016 pp. 190 197 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com Performance Study of MIMO-OFDM System in Rayleigh Fading Channel with QO-STB Coding

More information

DVB-H and DVB-SH-A Performance in Mobile and Portable TV

DVB-H and DVB-SH-A Performance in Mobile and Portable TV VOL. 2, NO. 4, DECEMBER 211 DVB-H and DVB-SH-A Performance in Mobile and Portable TV Ladislav Polák, Tomáš Kratochvíl Department of Radio Electronics, Brno University of Technology, Purkyňova 118, 612

More information

Multi-GI Detector with Shortened and Leakage Correlation for the Chinese DTMB System. Fengkui Gong, Jianhua Ge and Yong Wang

Multi-GI Detector with Shortened and Leakage Correlation for the Chinese DTMB System. Fengkui Gong, Jianhua Ge and Yong Wang 788 IEEE Transactions on Consumer Electronics, Vol. 55, No. 4, NOVEMBER 9 Multi-GI Detector with Shortened and Leakage Correlation for the Chinese DTMB System Fengkui Gong, Jianhua Ge and Yong Wang Abstract

More information

AWGN Channel Performance Analysis of QO-STB Coded MIMO- OFDM System

AWGN Channel Performance Analysis of QO-STB Coded MIMO- OFDM System AWGN Channel Performance Analysis of QO-STB Coded MIMO- OFDM System Pranil Mengane 1, Ajitsinh Jadhav 2 12 Department of Electronics & Telecommunication Engg, D.Y. Patil College of Engg & Tech, Kolhapur

More information

IN MOST situations, the wireless channel suffers attenuation

IN MOST situations, the wireless channel suffers attenuation IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 3, MARCH 1999 451 Space Time Block Coding for Wireless Communications: Performance Results Vahid Tarokh, Member, IEEE, Hamid Jafarkhani, Member,

More information

SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS

SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS RASHMI SABNUAM GUPTA 1 & KANDARPA KUMAR SARMA 2 1 Department of Electronics and Communication Engineering, Tezpur University-784028,

More information

Experimental Investigation of IEEE802.11n Reception with Fractional Sampling

Experimental Investigation of IEEE802.11n Reception with Fractional Sampling 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications Experimental Investigation of IEEE802.11n Reception with Fractional Sampling Ryosuke Nakamura, Yukitoshi Sanada

More information

Pilot Assisted Channel Estimation in MIMO-STBC Systems Over Time-Varying Fading Channels

Pilot Assisted Channel Estimation in MIMO-STBC Systems Over Time-Varying Fading Channels Pilot Assisted Channel Estimation in MIMO-STBC Systems Over Time-Varying Fading Channels Emna Ben Slimane Laboratory of Communication Systems, ENIT, Tunis, Tunisia emna.benslimane@yahoo.fr Slaheddine Jarboui

More information

ORTHOGONAL frequency division multiplexing (OFDM)

ORTHOGONAL frequency division multiplexing (OFDM) IEEE TRANSACTIONS ON BROADCASTING, VOL. 50, NO. 3, SEPTEMBER 2004 335 Modified Selected Mapping Technique for PAPR Reduction of Coded OFDM Signal Seung Hee Han, Student Member, IEEE, and Jae Hong Lee,

More information

Efficient Decoding for Extended Alamouti Space-Time Block code

Efficient Decoding for Extended Alamouti Space-Time Block code Efficient Decoding for Extended Alamouti Space-Time Block code Zafar Q. Taha Dept. of Electrical Engineering College of Engineering Imam Muhammad Ibn Saud Islamic University Riyadh, Saudi Arabia Email:

More information

Performance Analysis of Maximum Likelihood Detection in a MIMO Antenna System

Performance Analysis of Maximum Likelihood Detection in a MIMO Antenna System IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 2, FEBRUARY 2002 187 Performance Analysis of Maximum Likelihood Detection in a MIMO Antenna System Xu Zhu Ross D. Murch, Senior Member, IEEE Abstract In

More information

A Review of Second Generation of Terrestrial Digital Video Broadcasting System

A Review of Second Generation of Terrestrial Digital Video Broadcasting System A Review of Second Generation of Terrestrial Digital Video Broadcasting System Abstract *Kruti Shukla 1, Shruti Dixit 2,Priti Shukla 3, Satakshi Tiwari 4 1.M.Tech Scholar, EC Dept, SIRT, Bhopal 2.Associate

More information

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE) Volume 3, Issue 11, November 2014

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE) Volume 3, Issue 11, November 2014 An Overview of Spatial Modulated Space Time Block Codes Sarita Boolchandani Kapil Sahu Brijesh Kumar Asst. Prof. Assoc. Prof Asst. Prof. Vivekananda Institute Of Technology-East, Jaipur Abstract: The major

More information

A Differential Detection Scheme for Transmit Diversity

A Differential Detection Scheme for Transmit Diversity IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 7, JULY 2000 1169 A Differential Detection Scheme for Transmit Diversity Vahid Tarokh, Member, IEEE, Hamid Jafarkhani, Member, IEEE Abstract

More information

Low complexity iterative receiver for Non-Orthogonal Space-Time Block Code with channel coding

Low complexity iterative receiver for Non-Orthogonal Space-Time Block Code with channel coding Low complexity iterative receiver for Non-Orthogonal Space-Time Block Code with channel coding Pierre-Jean Bouvet, Maryline Hélard, Member, IEEE, Vincent Le Nir France Telecom R&D 4 rue du Clos Courtel

More information

THE DRM (digital radio mondiale) system designed

THE DRM (digital radio mondiale) system designed A Comparison between Alamouti Transmit Diversity and (Cyclic) Delay Diversity for a DRM+ System Henrik Schulze University of Applied Sciences South Westphalia Lindenstr. 53, D-59872 Meschede, Germany Email:

More information

Frequency-domain space-time block coded single-carrier distributed antenna network

Frequency-domain space-time block coded single-carrier distributed antenna network Frequency-domain space-time block coded single-carrier distributed antenna network Ryusuke Matsukawa a), Tatsunori Obara, and Fumiyuki Adachi Department of Electrical and Communication Engineering, Graduate

More information

Reception for Layered STBC Architecture in WLAN Scenario

Reception for Layered STBC Architecture in WLAN Scenario Reception for Layered STBC Architecture in WLAN Scenario Piotr Remlein Chair of Wireless Communications Poznan University of Technology Poznan, Poland e-mail: remlein@et.put.poznan.pl Hubert Felcyn Chair

More information

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context 4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context Mohamed.Messaoudi 1, Majdi.Benzarti 2, Salem.Hasnaoui 3 Al-Manar University, SYSCOM Laboratory / ENIT, Tunisia 1 messaoudi.jmohamed@gmail.com,

More information

Comparison of MIMO OFDM System with BPSK and QPSK Modulation

Comparison of MIMO OFDM System with BPSK and QPSK Modulation e t International Journal on Emerging Technologies (Special Issue on NCRIET-2015) 6(2): 188-192(2015) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Comparison of MIMO OFDM System with BPSK

More information

MULTICARRIER communication systems are promising

MULTICARRIER communication systems are promising 1658 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 52, NO. 10, OCTOBER 2004 Transmit Power Allocation for BER Performance Improvement in Multicarrier Systems Chang Soon Park, Student Member, IEEE, and Kwang

More information

Indoor MIMO Transmissions with Alamouti Space -Time Block Codes

Indoor MIMO Transmissions with Alamouti Space -Time Block Codes Indoor MIMO Transmissions with Alamouti Space -Time Block Codes Sebastian Caban, Christian Mehlführer, Arpad L. Scholtz, and Markus Rupp Vienna University of Technology Institute of Communications and

More information

HDTV Mobile Reception in Automobiles

HDTV Mobile Reception in Automobiles HDTV Mobile Reception in Automobiles NOBUO ITOH AND KENICHI TSUCHIDA Invited Paper Mobile reception of digital terrestrial broadcasting carrying an 18-Mb/s digital HDTV signals is achieved. The effect

More information

A New PAPR Reduction in OFDM Systems Using SLM and Orthogonal Eigenvector Matrix

A New PAPR Reduction in OFDM Systems Using SLM and Orthogonal Eigenvector Matrix A New PAPR Reduction in OFDM Systems Using SLM and Orthogonal Eigenvector Matrix Md. Mahmudul Hasan University of Information Technology & Sciences, Dhaka Abstract OFDM is an attractive modulation technique

More information

Asynchronous Space-Time Cooperative Communications in Sensor and Robotic Networks

Asynchronous Space-Time Cooperative Communications in Sensor and Robotic Networks Proceedings of the IEEE International Conference on Mechatronics & Automation Niagara Falls, Canada July 2005 Asynchronous Space-Time Cooperative Communications in Sensor and Robotic Networks Fan Ng, Juite

More information

SPARSE CHANNEL ESTIMATION BY PILOT ALLOCATION IN MIMO-OFDM SYSTEMS

SPARSE CHANNEL ESTIMATION BY PILOT ALLOCATION IN MIMO-OFDM SYSTEMS SPARSE CHANNEL ESTIMATION BY PILOT ALLOCATION IN MIMO-OFDM SYSTEMS Puneetha R 1, Dr.S.Akhila 2 1 M. Tech in Digital Communication B M S College Of Engineering Karnataka, India 2 Professor Department of

More information

Turbo Coded Space-time Block codes for four transmit antennas with linear precoding

Turbo Coded Space-time Block codes for four transmit antennas with linear precoding Turbo Coded Space-time Block codes for four transmit antennas linear precoding Vincent Le Nir, Maryline Hélard, Rodolphe Le Gouable* Abstract In this paper, we combine Turbo Codes (TC) and Space-Time Block

More information

IN RECENT years, wireless multiple-input multiple-output

IN RECENT years, wireless multiple-input multiple-output 1936 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 6, NOVEMBER 2004 On Strategies of Multiuser MIMO Transmit Signal Processing Ruly Lai-U Choi, Michel T. Ivrlač, Ross D. Murch, and Wolfgang

More information

Amplitude and Phase Distortions in MIMO and Diversity Systems

Amplitude and Phase Distortions in MIMO and Diversity Systems Amplitude and Phase Distortions in MIMO and Diversity Systems Christiane Kuhnert, Gerd Saala, Christian Waldschmidt, Werner Wiesbeck Institut für Höchstfrequenztechnik und Elektronik (IHE) Universität

More information

Optimization of Coded MIMO-Transmission with Antenna Selection

Optimization of Coded MIMO-Transmission with Antenna Selection Optimization of Coded MIMO-Transmission with Antenna Selection Biljana Badic, Paul Fuxjäger, Hans Weinrichter Institute of Communications and Radio Frequency Engineering Vienna University of Technology

More information

OFDM Code Division Multiplexing with Unequal Error Protection and Flexible Data Rate Adaptation

OFDM Code Division Multiplexing with Unequal Error Protection and Flexible Data Rate Adaptation OFDM Code Division Multiplexing with Unequal Error Protection and Flexible Data Rate Adaptation Stefan Kaiser German Aerospace Center (DLR) Institute of Communications and Navigation 834 Wessling, Germany

More information

Analysis of maximal-ratio transmit and combining spatial diversity

Analysis of maximal-ratio transmit and combining spatial diversity This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. Analysis of maximal-ratio transmit and combining spatial diversity Fumiyuki Adachi a),

More information

Comparison between Performances of Channel estimation Techniques for CP-LTE and ZP-LTE Downlink Systems

Comparison between Performances of Channel estimation Techniques for CP-LTE and ZP-LTE Downlink Systems Comparison between Performances of Channel estimation Techniques for CP-LTE and ZP-LTE Downlink Systems Abdelhakim Khlifi 1 and Ridha Bouallegue 2 1 National Engineering School of Tunis, Tunisia abdelhakim.khlifi@gmail.com

More information

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels Abstract A Orthogonal Frequency Division Multiplexing (OFDM) scheme offers high spectral efficiency and better resistance to

More information

FUTURE mobile radio systems are expected to provide and

FUTURE mobile radio systems are expected to provide and 464 IEEE TRANSACTIONS ON BROADCASTING, VOL. 52, NO. 4, DECEMBER 2006 Diversity Gain for DVB-H by Using Transmitter/Receiver Cyclic Delay Diversity Yue Zhang, John Cosmas, Maurice Bard, and Yong-Hua Song

More information

Fourier Transform Time Interleaving in OFDM Modulation

Fourier Transform Time Interleaving in OFDM Modulation 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications Fourier Transform Time Interleaving in OFDM Modulation Guido Stolfi and Luiz A. Baccalá Escola Politécnica - University

More information

1. Introduction. Noriyuki Maeda, Hiroyuki Kawai, Junichiro Kawamoto and Kenichi Higuchi

1. Introduction. Noriyuki Maeda, Hiroyuki Kawai, Junichiro Kawamoto and Kenichi Higuchi NTT DoCoMo Technical Journal Vol. 7 No.2 Special Articles on 1-Gbit/s Packet Signal Transmission Experiments toward Broadband Packet Radio Access Configuration and Performances of Implemented Experimental

More information

The Framework of the Integrated Power Line and Visible Light Communication Systems

The Framework of the Integrated Power Line and Visible Light Communication Systems The Framework of the Integrated Line and Visible Light Communication Systems Jian Song 1, 2, Wenbo Ding 1, Fang Yang 1, 2, Hongming Zhang 1, 2, Kewu Peng 1, 2, Changyong Pan 1, 2, Jun Wang 1, 2, and Jintao

More information

A Novel of Low Complexity Detection in OFDM System by Combining SLM Technique and Clipping and Scaling Method Jayamol Joseph, Subin Suresh

A Novel of Low Complexity Detection in OFDM System by Combining SLM Technique and Clipping and Scaling Method Jayamol Joseph, Subin Suresh A Novel of Low Complexity Detection in OFDM System by Combining SLM Technique and Clipping and Scaling Method Jayamol Joseph, Subin Suresh Abstract In order to increase the bandwidth efficiency and receiver

More information

S PG Course in Radio Communications. Orthogonal Frequency Division Multiplexing Yu, Chia-Hao. Yu, Chia-Hao 7.2.

S PG Course in Radio Communications. Orthogonal Frequency Division Multiplexing Yu, Chia-Hao. Yu, Chia-Hao 7.2. S-72.4210 PG Course in Radio Communications Orthogonal Frequency Division Multiplexing Yu, Chia-Hao chyu@cc.hut.fi 7.2.2006 Outline OFDM History OFDM Applications OFDM Principles Spectral shaping Synchronization

More information

Lecture 13. Introduction to OFDM

Lecture 13. Introduction to OFDM Lecture 13 Introduction to OFDM Ref: About-OFDM.pdf Orthogonal frequency division multiplexing (OFDM) is well-known to be effective against multipath distortion. It is a multicarrier communication scheme,

More information

Cooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel

Cooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel Cooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel M. Rezaei* and A. Falahati* (C.A.) Abstract: In this paper, a cooperative algorithm to improve the orthogonal

More information

Performance Evaluation of MIMO-OFDM Systems under Various Channels

Performance Evaluation of MIMO-OFDM Systems under Various Channels Performance Evaluation of MIMO-OFDM Systems under Various Channels C. Niloufer fathima, G. Hemalatha Department of Electronics and Communication Engineering, KSRM college of Engineering, Kadapa, Andhra

More information

A Study of Channel Estimation in OFDM Systems

A Study of Channel Estimation in OFDM Systems A Study of Channel Estimation in OFDM Systems Sinem Coleri, Mustafa Ergen,Anuj Puri, Ahmad Bahai Abstract The channel estimation techniques for OFDM systems based on pilot arrangement are investigated.

More information

Novel Symbol-Wise ML Decodable STBC for IEEE e/m Standard

Novel Symbol-Wise ML Decodable STBC for IEEE e/m Standard Novel Symbol-Wise ML Decodable STBC for IEEE 802.16e/m Standard Tian Peng Ren 1 Chau Yuen 2 Yong Liang Guan 3 and Rong Jun Shen 4 1 National University of Defense Technology Changsha 410073 China 2 Institute

More information

Improving Data Transmission Efficiency over Power Line Communication (PLC) System Using OFDM

Improving Data Transmission Efficiency over Power Line Communication (PLC) System Using OFDM Improving Data Transmission Efficiency over Power Line Communication (PLC) System Using OFDM Charles U. Ndujiuba 1, Samuel N. John 1, Oladimeji Ogunseye 2 1 Electrical & Information Engineering, Covenant

More information

DVB-T2 (T2) MISO versus SISO Field Test

DVB-T2 (T2) MISO versus SISO Field Test DVB-T2 (T2) MISO versus SISO Field Test Author: Bjørn Skog, M.Sc. E-mail: bjorn.skog@telenor.com Company: Telenor Broadcast, Norkring AS, Norway July 3rd 2013 @ LS telcom Summit 2013 V.2 2.7.13 The Case

More information

A Novel On-Channel Repeater for Terrestrial-Digital Multimedia Broadcasting System of Korea

A Novel On-Channel Repeater for Terrestrial-Digital Multimedia Broadcasting System of Korea A Novel On-Channel Repeater for Terrestrial-Digital Multimedia Broadcasting System of Korea Sung Ik Park, Heung Mook Kim, So Ra Park, Yong-Tae Lee, and Jong Soo Lim Broadcasting Research Group Electronics

More information

CORRELATION BASED SNR ESTIMATION IN OFDM SYSTEM

CORRELATION BASED SNR ESTIMATION IN OFDM SYSTEM CORRELATION BASED SNR ESTIMATION IN OFDM SYSTEM Suneetha Kokkirigadda 1 & Asst.Prof.K.Vasu Babu 2 1.ECE, Vasireddy Venkatadri Institute of Technology,Namburu,A.P,India 2.ECE, Vasireddy Venkatadri Institute

More information

Hybrid Index Modeling Model for Memo System with Ml Sub Detector

Hybrid Index Modeling Model for Memo System with Ml Sub Detector IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 PP 14-18 www.iosrjen.org Hybrid Index Modeling Model for Memo System with Ml Sub Detector M. Dayanidhy 1 Dr. V. Jawahar Senthil

More information

DESIGN AND ANALYSIS OF MULTIBAND OFDM SYSTEM OVER ULTRA WIDE BAND CHANNELS

DESIGN AND ANALYSIS OF MULTIBAND OFDM SYSTEM OVER ULTRA WIDE BAND CHANNELS DESIGN AND ANALYSIS OF MULTIBAND OFDM SYSTEM OVER ULTRA WIDE BAND CHANNELS G.Joselin Retna Kumar Research Scholar, Sathyabama University, Chennai, Tamil Nadu, India joselin_su@yahoo.com K.S.Shaji Principal,

More information

Space Time Block Coding - Spatial Modulation for Multiple-Input Multiple-Output OFDM with Index Modulation System

Space Time Block Coding - Spatial Modulation for Multiple-Input Multiple-Output OFDM with Index Modulation System Space Time Block Coding - Spatial Modulation for Multiple-Input Multiple-Output OFDM with Index Modulation System Ravi Kumar 1, Lakshmareddy.G 2 1 Pursuing M.Tech (CS), Dept. of ECE, Newton s Institute

More information

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Lecture 3: Wireless Physical Layer: Modulation Techniques Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Modulation We saw a simple example of amplitude modulation in the last lecture Modulation how

More information

16QAM Symbol Timing Recovery in the Upstream Transmission of DOCSIS Standard

16QAM Symbol Timing Recovery in the Upstream Transmission of DOCSIS Standard IEEE TRANSACTIONS ON BROADCASTING, VOL. 49, NO. 2, JUNE 2003 211 16QAM Symbol Timing Recovery in the Upstream Transmission of DOCSIS Standard Jianxin Wang and Joachim Speidel Abstract This paper investigates

More information

CHAPTER 4 PERFORMANCE ANALYSIS OF THE ALAMOUTI STBC BASED DS-CDMA SYSTEM

CHAPTER 4 PERFORMANCE ANALYSIS OF THE ALAMOUTI STBC BASED DS-CDMA SYSTEM 89 CHAPTER 4 PERFORMANCE ANALYSIS OF THE ALAMOUTI STBC BASED DS-CDMA SYSTEM 4.1 INTRODUCTION This chapter investigates a technique, which uses antenna diversity to achieve full transmit diversity, using

More information

Peak-to-Average Power Ratio (PAPR)

Peak-to-Average Power Ratio (PAPR) Peak-to-Average Power Ratio (PAPR) Wireless Information Transmission System Lab Institute of Communications Engineering National Sun Yat-sen University 2011/07/30 王森弘 Multi-carrier systems The complex

More information

Improving Channel Estimation in OFDM System Using Time Domain Channel Estimation for Time Correlated Rayleigh Fading Channel Model

Improving Channel Estimation in OFDM System Using Time Domain Channel Estimation for Time Correlated Rayleigh Fading Channel Model International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 8 ǁ August 2013 ǁ PP.45-51 Improving Channel Estimation in OFDM System Using Time

More information

MATLAB SIMULATION OF DVB-H TRANSMISSION UNDER DIFFERENT TRANSMISSION CONDITIONS

MATLAB SIMULATION OF DVB-H TRANSMISSION UNDER DIFFERENT TRANSMISSION CONDITIONS MATLAB SIMULATION OF DVB-H TRANSMISSION UNDER DIFFERENT TRANSMISSION CONDITIONS Ladislav Polák, Tomáš Kratochvíl Department of Radio Electronics, Brno University of Technology Purkyňova 118, 612 00 BRNO

More information

RECOMMENDATION ITU-R BT Error-correction, data framing, modulation and emission methods for digital terrestrial television broadcasting

RECOMMENDATION ITU-R BT Error-correction, data framing, modulation and emission methods for digital terrestrial television broadcasting Rec. ITU-R BT.1306-3 1 RECOMMENDATION ITU-R BT.1306-3 Error-correction, data framing, modulation and emission methods for digital terrestrial television broadcasting (Question ITU-R 31/6) (1997-2000-2005-2006)

More information

Frequency-Domain Equalization for SC-FDE in HF Channel

Frequency-Domain Equalization for SC-FDE in HF Channel Frequency-Domain Equalization for SC-FDE in HF Channel Xu He, Qingyun Zhu, and Shaoqian Li Abstract HF channel is a common multipath propagation resulting in frequency selective fading, SC-FDE can better

More information

DESIGN OF STBC ENCODER AND DECODER FOR 2X1 AND 2X2 MIMO SYSTEM

DESIGN OF STBC ENCODER AND DECODER FOR 2X1 AND 2X2 MIMO SYSTEM Indian J.Sci.Res. (): 0-05, 05 ISSN: 50-038 (Online) DESIGN OF STBC ENCODER AND DECODER FOR X AND X MIMO SYSTEM VIJAY KUMAR KATGI Assistant Profesor, Department of E&CE, BKIT, Bhalki, India ABSTRACT This

More information

Systems for Audio and Video Broadcasting (part 2 of 2)

Systems for Audio and Video Broadcasting (part 2 of 2) Systems for Audio and Video Broadcasting (part 2 of 2) Ing. Karel Ulovec, Ph.D. CTU in Prague, Faculty of Electrical Engineering xulovec@fel.cvut.cz Only for study purposes for students of the! 1/30 Systems

More information

Testing The Effective Performance Of Ofdm On Digital Video Broadcasting

Testing The Effective Performance Of Ofdm On Digital Video Broadcasting The 1 st Regional Conference of Eng. Sci. NUCEJ Spatial ISSUE vol.11,no.2, 2008 pp 295-302 Testing The Effective Performance Of Ofdm On Digital Video Broadcasting Ali Mohammed Hassan Al-Bermani College

More information

A COMPARATIVE STUDY OF CHANNEL ESTIMATION FOR MULTICARRIER SYSTEM FOR QAM/QPSK MODULATION TECHNIQUES

A COMPARATIVE STUDY OF CHANNEL ESTIMATION FOR MULTICARRIER SYSTEM FOR QAM/QPSK MODULATION TECHNIQUES A COPARATIVE STUDY OF CHANNEL ESTIATION FOR ULTICARRIER SYSTE FOR / ODULATION TECHNIQUES RAARISHNA.S, PRIYATAUAR Assistant Professor, Department of Electronics & Communication, BVBCET-Hubli, arnataka,

More information

MITIGATING CARRIER FREQUENCY OFFSET USING NULL SUBCARRIERS

MITIGATING CARRIER FREQUENCY OFFSET USING NULL SUBCARRIERS International Journal on Intelligent Electronic System, Vol. 8 No.. July 0 6 MITIGATING CARRIER FREQUENCY OFFSET USING NULL SUBCARRIERS Abstract Nisharani S N, Rajadurai C &, Department of ECE, Fatima

More information

2.

2. PERFORMANCE ANALYSIS OF STBC-MIMO OFDM SYSTEM WITH DWT & FFT Shubhangi R Chaudhary 1,Kiran Rohidas Jadhav 2. Department of Electronics and Telecommunication Cummins college of Engineering for Women Pune,

More information

Cognitive Radio Transmission Based on Chip-level Space Time Block Coded MC-DS-CDMA over Fast-Fading Channel

Cognitive Radio Transmission Based on Chip-level Space Time Block Coded MC-DS-CDMA over Fast-Fading Channel Journal of Scientific & Industrial Research Vol. 73, July 2014, pp. 443-447 Cognitive Radio Transmission Based on Chip-level Space Time Block Coded MC-DS-CDMA over Fast-Fading Channel S. Mohandass * and

More information

DVB-T/H Portable and Mobile TV Performance in the New Channel Profiles Modes

DVB-T/H Portable and Mobile TV Performance in the New Channel Profiles Modes DVB-T/H Portable and Mobile TV Performance in the New Channel Profiles Modes Tomáš Kratochvíl Department of Radio Electronics, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic kratot@feec.vutbr.cz

More information

MATLAB Simulation for Fixed Gain Amplify and Forward MIMO Relaying System using OSTBC under Flat Fading Rayleigh Channel

MATLAB Simulation for Fixed Gain Amplify and Forward MIMO Relaying System using OSTBC under Flat Fading Rayleigh Channel MATLAB Simulation for Fixed Gain Amplify and Forward MIMO Relaying System using OSTBC under Flat Fading Rayleigh Channel Anas A. Abu Tabaneh 1, Abdulmonem H.Shaheen, Luai Z.Qasrawe 3, Mohammad H.Zghair

More information

Embedded Orthogonal Space-Time Codes for High Rate and Low Decoding Complexity

Embedded Orthogonal Space-Time Codes for High Rate and Low Decoding Complexity Embedded Orthogonal Space-Time Codes for High Rate and Low Decoding Complexity Mohanned O. Sinnokrot, John R. Barry and Vijay K. Madisetti eorgia Institute of Technology, Atlanta, A 3033 USA, {sinnokrot,

More information

Combined Transmitter Diversity and Multi-Level Modulation Techniques

Combined Transmitter Diversity and Multi-Level Modulation Techniques SETIT 2005 3rd International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 27 3, 2005 TUNISIA Combined Transmitter Diversity and Multi-Level Modulation Techniques

More information

Evaluation of Diversity Gain in Digital Audio Broadcasting

Evaluation of Diversity Gain in Digital Audio Broadcasting Evaluation of Diversity Gain in Digital Audio Broadcasting S. Maythina Rani A. Shenbagavalli, Ph.D PG Scholar, Dept. of ECE National Engineering College Kovilpatti, Tamilnadu, India Professor and Head

More information

Source Transmit Antenna Selection for MIMO Decode-and-Forward Relay Networks

Source Transmit Antenna Selection for MIMO Decode-and-Forward Relay Networks IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 7, APRIL 1, 2013 1657 Source Transmit Antenna Selection for MIMO Decode--Forward Relay Networks Xianglan Jin, Jong-Seon No, Dong-Joon Shin Abstract

More information

MIMO I: Spatial Diversity

MIMO I: Spatial Diversity MIMO I: Spatial Diversity COS 463: Wireless Networks Lecture 16 Kyle Jamieson [Parts adapted from D. Halperin et al., T. Rappaport] What is MIMO, and why? Multiple-Input, Multiple-Output (MIMO) communications

More information

Multiuser Decorrelating Detector in MIMO CDMA Systems over Rayleigh and Rician Fading Channels

Multiuser Decorrelating Detector in MIMO CDMA Systems over Rayleigh and Rician Fading Channels ISSN Online : 2319 8753 ISSN Print : 2347-671 International Journal of Innovative Research in Science Engineering and Technology An ISO 3297: 27 Certified Organization Volume 3 Special Issue 1 February

More information

International Journal of Digital Application & Contemporary research Website: (Volume 1, Issue 7, February 2013)

International Journal of Digital Application & Contemporary research Website:   (Volume 1, Issue 7, February 2013) Performance Analysis of OFDM under DWT, DCT based Image Processing Anshul Soni soni.anshulec14@gmail.com Ashok Chandra Tiwari Abstract In this paper, the performance of conventional discrete cosine transform

More information

Combining Orthogonal Space Time Block Codes with Adaptive Sub-group Antenna Encoding

Combining Orthogonal Space Time Block Codes with Adaptive Sub-group Antenna Encoding Combining Orthogonal Space Time Block Codes with Adaptive Sub-group Antenna Encoding Jingxian Wu, Henry Horng, Jinyun Zhang, Jan C. Olivier, and Chengshan Xiao Department of ECE, University of Missouri,

More information

FFT Factorization Technique for OFDM System

FFT Factorization Technique for OFDM System International Journal of Computer Applications (975 8887) FFT Factorization Technique for OFDM System Tanvi Chawla Haryana College of Technology & Management, Kaithal, Haryana, India ABSTRACT For OFDM

More information

Performance Comparison of MIMO Systems over AWGN and Rician Channels using OSTBC3 with Zero Forcing Receivers

Performance Comparison of MIMO Systems over AWGN and Rician Channels using OSTBC3 with Zero Forcing Receivers www.ijcsi.org 355 Performance Comparison of MIMO Systems over AWGN and Rician Channels using OSTBC3 with Zero Forcing Receivers Navjot Kaur, Lavish Kansal Electronics and Communication Engineering Department

More information