Ahmed Nabih Zaki Rashed

Size: px
Start display at page:

Download "Ahmed Nabih Zaki Rashed"

Transcription

1 ISSN: X Interaction of Signal and Forward Pumping Raman Amplification Technology in Optical Fiber Transmission Systems Categories Ahmed Nabih Zaki Rashed Electronics and Electrical Communications Engineering Department Faculty of Electronic Engineering, Menouf 3291, Menoufia University, EGYPT Abstract-This paper has presented the transmission systems with employing Raman amplifier technology in forward pumping directions in order to have put up with much higher level of design complexities, when compared to conventional transmission lines with doped fiber optical amplifier. Even for the construction of a fundamental, basic building block a unit of a fiber Raman amplifier (FRA), the designer have to struggle with the problems associated with the interactions between pump/signal waves mediated by Raman process, have to wander within the vast degrees of freedom given the choice of pumping directions/ratios, and have to contemplate with the wavelength dependent fiber loss/noise figure profiles. Optimizing optical signal to noise ratio (OSNR) and designing ultra-long haul links with best signal quality factor performances and minimum bit error rates, while adjusting variables in the fiber length, Rayleigh penalty, pump noise, nonlinear penalty, dispersion and gain distribution is a problem which can be easily stated, but in reality is not a process which can be easily achieved. Index Terms Optical signal processing, Performance signature, Raman Amplifiers, and Photonic Communications Engineering. I. INTRODUCTION Wavelength division multiplexing (WDM) is basically frequency division multiplexing in the optical frequency domain, where on a single optical fiber there are multiple communication channels at different wavelengths [1]. A WDM system uses a multiplexer at the transmitter to join the signals together and a demultiplexer at the receiver to split them apart. By using WDM and optical amplifiers, they can accommodate several generations of technology development in their optical infrastructure [2]. Optical gain depends on the frequency of the incident signal and also on the local beam intensity. Dense wavelength division multiplexing (DWDM) is a technology that puts data from different sources together on an optical fiber, with each signal carried at the same time on its own separate light wavelength [3]. Optical amplifiers have several advantages over regenerators. Optical amplifiers can be more easily upgraded to a higher bit rate. In an optical communication system, as the optical signals from the transmitter propagate through optical fiber are attenuated by it and losses are added by other optical components, such as multiplexers and couplers which causes the signal to become too weak to be detected. Before this the signal strength has to be regenerated [4]. Most optical amplifiers amplify incident light through stimulated emission, its main ingredient is the optical gain realized when the amplifier is pumped to achieve population inversion. The optical gain, in general, depends not only on the frequency of the incident signal, but also on the local beam intensity at any point inside the amplifier []. To understand how optical amplification works, the mutual or reciprocal action of electromagnetic radiation with matter must be understood [6]. Optical amplification uses the principle of stimulated emission same as used in a laser. Optical amplifiers can be divided into two basic classes: optical fiber amplifiers (OFAs) and semiconductor optical amplifiers (SOAs) [1]. An amplifier can boost the (average) power of a laser output to higher levels. It can generate extremely high peak powers, particularly in ultra short pulses, if the stored energy is extracted within a short time. It can amplify weak signals before photo detection, and thus reduce the detection noise, unless the added amplifier noise is large. In long fiber-optic links for optical fiber communications, the optical power level has to be raised between long sections of fiber before the information is lost in the noise. The combination of an erbium-doped fiber amplifier (EDFA) and a fiber Raman amplifier (FRA or RA) is called a hybrid amplifier (HA), the Raman-EDFA. Hybrid amplifier provides high power gain. Raman amplifier is better because it provides distributed amplification within the fiber. Distributed amplification uses the transmission fiber as the gain medium by multiplexing a pump wavelength and signal wavelength. It increases the length of spans between the amplifiers and regeneration sites. So this provides amplification over wider and different regions [7]. Hybrid Raman/erbium-doped fiber amplifiers (HFAs) are an advance technology for future. Hybrid Raman/erbium doped fiber amplifiers are designed to maximize the long-haul transmission distance [8]. II. MODEL AND EQUATIONS ANALYSIS The evolution of the input signal power (P s ) and the input pump power (P p ) propagating along the single mode optical fiber in watt; can be quantitatively described by different equations called propagation equations. The rate of change of signal and pump power with the distance z, can be expressed as mentioned in [9]: dpp s LpPp gre ff Ps Pp (1) dz p dps s LsPs gre ff Ps Pp (2) dz p 1

2 ISSN: X Where λ s and λ p are the signal and pump wavelengths in µm respectively, z is the distance in km from z= to z=l, Ls and Lp are the linear attenuation coefficient of the signal and pump power in the optical fiber in km -1 respectively. Equation (1) can be solved when both sides of the equation are integrated. When using forward pumping, the pump power can be expressed as the following expression []: z P z PPF where P PoF is the input pump power in the forward direction in watt at z=. If the values of P P are substituted in differential Eq. 2, and is integrated from z= to z=l for the signal power in the forward, then the result mathematical equation can be written as mentioned in []: pof exp Lp (3) gr P S z Pso exp P L z po eff Ls (4) Aeff where P so and P po denotes to the input signal and pump power respectively. This means that P po = P pof in case of forward pump and P po =P pob in case of backward pump, and L eff, is the effective length in km, over which the nonlinearities still holds or stimulated Raman scattering (SRS) occurs in the fiber and is defined as [11]: 1exp Lp z Leff () Lp Recently, there have been many efforts to utilize fiber Raman amplifier (FRA) in long-distance, high capacity WDM systems. The net gain [12] is one of the most significant parameters of the FRA. It describes the signal power increase in the end of the transmission span and presents the ratio between the amplifier accumulated gain and the signal loss. It can be simply described by: PS Gnet, (6) PS () The intensity of the stimulated scattered light grows exponentially once the incident pump power exceeds a certain threshold value. The threshold pump power P th is defined as the incident power at which half of the pump power is transferred to the Stokes field at the output end of a fiber of length L. The threshold pump power satisfies the condition [13]: 16 Pth, (7) L g eff Re ff For standard silica cable fiber, the transmitted signal bandwidth per transmitted channel can be given by [14]:.4848 BW. sig, (8) Nch z Where N ch is the number of transmitted channels, τ is the total pulse broadening after distance z which is given by [1]: D z, (9) Where D is the total dispersion coefficient in fiber link media in ps/nm.km, and Δλ is the spectral linewidth of the optical source. This is mainly because FRA can improve the optical signal to noise ratio (OSNR) and reduce the impacts of fiber nonlinearities [16], that is the OSNR of the system after amplification can be expressed as: PS OSNRdB log, () 2 h c BW. Sig. Where h is the Planck's constant (6.2 x -34 J.sec), P S (z) is the transmitted signal power after z distance, c is the speed of light (3x 8 m/sec), λ is the operating signal wavelength in μm, and B.W sig is the transmitted signal bandwidth. According to modified Shannon theorem, the maximum bit rate per optical channel for supported number of users, or the maximum capacity of the channel for maximum subscribers is given by [17]: B Sh BW. log 2 1 OSNR, (11) sig Based on MATLAB curve fitting program, the relationship between the signal quality factor (Q) with both number of transmitted channels (N ch ) and effective length L eff in km and transmitted signal power after distance z can be expressed as the following formula: Q 28.6 P S Nch Leff Nch Leff Nch L,dB(12) eff Then the bit error rate (BER) can be expressed as a function of Q in the following formula [18]: 2 Q BER.exp,. (13) Q 8 III. RESULTS AND PERFORMANCE ANALYSIS The optical FRAs have been modeled and have been parametrically investigated in different fiber cable medias such as true wave reach fiber, non return to zero dispersion shifted fiber (), and single mode fiber () with employing different multiplexing techniques namely ultra wide wavelength division multiplexing (UW-WDM) based on the coupled differential equations of first order, and also based on the set of the assumed of affecting operating parameters on the system model. In fact, the employed software computed the variables under the following operating parameters as shown in Table 1. Table 1. Proposed operating parameters for performance signature of Raman amplifiers [3,, 12, 18]..4 W -.38 W - Operating Symbol Value and unit parameter Operating signal λ s 1.3 μm wavelength Operating pump λ p 1.28 μm wavelength Input signal wavelength P So dbm Input pump power P po 3 dbm Forward pump r f. ratio Signal attenuation α s.2 db/km Pump attenuation α p.3 db/km Spectral linewidth Δλ.1 nm of optical source UW-WDM N ch(uw- channels channels WDM) Transmission distance z z, km 4 Types of fiber cable media True wave reach fiber Effective area A eff μm 2 72 μm 2 8 μm 2 Raman gain g Reff.6 W - efficiency 1 km -1 1 km -1 1 km -1 Dispersion coefficient D 2 ps/nm.km ps/nm.km 16 ps/nm.km Then the set of the series of the following figures are shown below as the following can be obtained: 2

3 Pump power, Pp, dbm Transmitted signal power, Ps, dbm ISSN: X i) Fig. (1, 2) have assured that transmitted signal power and pump power decrease with increasing transmission distance. It is observed that true wave reach fiber has presented transmitted signal and pump powers with compared other transmission mediums. ii) Fig. (3, 4) have assured that signal gain and threshold pump power decrease with increasing transmission distance. It is observed that true wave reach fiber has presented transmitted signal gain and threshold pump power with compared other transmission mediums. iii) Fig. has indicated that transmitted signal bandwidth decreases with increasing transmission distance. It is theoretically found that single mode fiber medium has presented the highest transmitted signal bandwidth with compared to other transmission fiber mediums. iv) Fig. 6 has indicated that optical signal to noise ratio increases with increasing transmission distance. It is theoretically found that true wave reach fiber medium has presented the highest optical signal to noise ratio with compared to other transmission fiber mediums. v) Fig. 7 has assured that Shannon transmission bit rate decreases with increasing transmission distance. It is observed that single mode fiber has presented the highest transmitted signal bit rate with compared other transmission mediums. vi) Fig. 8 has indicated that signal transmission quality decreases with increasing transmission distance. It is theoretically found that true wave reach fiber medium has presented the highest signal transmission quality with compared to other transmission fiber mediums. vii) Fig. 9 has indicated that signal transmission bit rate increases with increasing transmission distance. It is theoretically found that true wave reach fiber medium has presented the lowest signal transmission bit rate with compared to other transmission fiber mediums Fig. 1. Variations of transmitted signal power against variations of transmission distance at the assumed set of the operating parameters Fig. 2. Variations of pump power against variations of transmission distance at the assumed set of the operating parameters. 3

4 Transmitted signal bandwidth, BWsig., GHz Threshold pump power, Pth dbm Signal gain, G db ISSN: X Fig. 3. Signal gain in relation to transmission distance at the assumed set of the operating parameters Fig. 4. Threshold pump power in relation to transmission distance at the assumed set of the operating parameters Fig.. Transmitted signal bandwidth in relation to transmission distance at the assumed set of the operating parameters. 4

5 Signal transmission quality, Q, db Shannon transmission bit rate, BSh, Tb/s Optical signal to noise ratio, OSNR, db ISSN: X Fig. 6. Optical signal to noise ratio in relation to transmission distance at the assumed set of the operating parameters Fig. 7. Shannon transmission bit rate in relation to transmission distance at the assumed set of the operating parameters Fig. 8. Signal transmission quality in relation to transmission distance at the assumed set of the operating parameters.

6 ISSN: X Signal bit error rate, BERx Fig. 9. Signal bit error rate in relation to transmission distance at the assumed set of the operating parameters. IV. CONCLUSIONS In a summary, the model has been investigated forward pumping based fiber optical Raman amplifiers in different optical fiber transmission medium systems over wide range of the affecting parameters. It is observed that transmitted signal power, pump power and its threshold value, signal gain, optical signal to noise ratio, transmitted signal bandwidth, signal transmission quality and transmission bit rates decrease with increasing transmission distance. As well as true wave reach fiber has presented the highest systems transmission performance compared to other transmission fiber mediums under the same operating of conditions. REFERENCES [1] Abd El-Naser A. Mohammed, Mohamed M. E. El-Halawany, Ahmed Nabih Zaki Rashed, and Mohamoud M. Eid Optical Add Drop Multiplexers with UW-DWDM Technique in Metro Optical Access Communication Networks, Nonlinear Optics and Quantum Optics, Vol. 44, No. 1, pp. 2 39, 12. [2] Abd El-Naser A. Mohammed, Mohamed M. E. El-Halawany, Ahmed Nabih Zaki Rashed, and Mohammed S. F. Tabour High Transmission Performance of Radio over Fiber Systems over Traditional Optical Fiber Communication Systems Using Different Coding Formats for Long Haul Applications, Nonlinear Optics and Quantum Optics, Vol. 44, No. 1, pp , 12. [3] Ch. Headley, G. Agrawal, Raman Amplification in Fiber Optical Communication Systems, Elsevier, 9. [4] M. Islam, Raman Amplifiers for Telecommunications and Physical Principles, Springer, 4. [] L. Binh, T. Lhuynh, S. Sargent, A. Kirpalani, Fiber Raman Amplification in Ultra-high Speed Ultra-long Haul Transmission: Gain Profile, Noises and Transmission Performance, Technical Report MECSE-1-7, CTIE, Monash University, 7. [6] H. B. Sharma1,T. Gulati, and B. Rawat, Evaluation of Optical Amplifiers, International Journal of Engineering Research and Applications (IJERA), Vol. 2, No. 1, pp. pp , 12. [7] Q. Hen, J. Ning, H. Zhang, and Z. Chen, Novel Shooting Algorithm for Highly Efficient Analysis of Fiber Raman Amplifiers, IEEE J. Lightwave Technol., Vol. 24, No. 4, pp , 6. [8] Abd El-Naser A. Mohammed, Abd El-Fattah Saad, Ahmed Nabih Zaki Rashed, and Hazem Hageen Low Performance Characteristics of Optical Laser Diode Sources Based on NRZ Coding Formats under Thermal Irradiated Environments, International Journal of Computer Science and Telecommunications (IJCST), Vol. 2, No. 2, pp. -3, 11. [9] M. N. Islam, Raman Amplifiers for Telecommunications, IEEE J. of Select. Topics in Quantum Electron., Vol. 8, No. 3, pp. 48 9, 8. [] A. Galtarossa, L. Palmieri, M. Santagiustina, and L. Ursini, Polarized Backward Raman Amplification in Randomly Birefringent Fibers, J. Lightwave Technol., Vol. 24, No. 3, pp , 9. [11] Abd El Naser A. Mohammed, Osama S. Fragallah, Ahmed Nabih Zaki Rashed, and Mohamed El-Abyad, New Trends of Multiplexing Techniques Based Submarine Optical Transmission Links for High Transmission Capacity Computing Network Systems, Canadian Journal on Science and Engineering Mathematics, Vol. 3, No. 3, pp , 12. [12] X. Liu, J. Chen, C. Lu, and X. Zhou, Optimizing Gain Profile and Noise Performance for Distributed Fiber Raman Amplifiers, Opt. Express, Vol. 12, No. 24, pp , 11. [13] G. P. Agrawal, Fiber Optical Communication Systems, New York, John Wiley and Sons,. [14] I. Mandelbaum, M. Bolshtyansky, Raman Amplifier Model in Single Mode Optical Fiber, IEEE Photon. Technol. Lett., Vol. 1, No. 12, pp , 9. [1] Abd El Naser A. Mohamed, Ahmed Nabih Zaki Rashed, and Amina El-Nabawy, The Effects of the Bad Weather on the Transmission and Performance Efficiency of Optical Wireless Communication Systems, Canadian Journal on Electrical ad Electronics Engineering, Vol. 3, No,, pp , May 12. [16] S. Hu, H. Zhang and Y. Guo, Stiffness Analysis in the Numerical Solution of Raman Amplifier Propagation Equations, Opt. Exp., Vol. 12, No. 2, pp ,. [17] S. Kumar, and H. Singh, Transmission Performance 64 Gb/s WDM System Based on Optical Hybrid Amplifiers Using RZ- Soliton Modulation Format at Different 6

7 ISSN: X Transmission Distance, IOSR Journal of Engineering, Vol. 2, No. 7, pp. 7-12, July 12. [18] Abd El Naser A. Mohamed, Ahmed Nabih Zaki Rashed, Sakr A. S. Hanafy, and Amira I. M. Bendary Electrooptic Polymer Modulators Performance Improvement With Pulse Code Modulation Scheme in Modern Optical Communication Networks, International Journal of Computer Science and Telecommunications (IJCST), Vol. 2, No. 6, pp. 3-39, 11. Author s Profile Dr. Ahmed Nabih Zaki Rashed was born in Menouf city, Menoufia State, Egypt country in 23 July, Received the B.Sc., M.Sc., and Ph.D. scientific degrees in the Electronics and Electrical Communications Engineering Department from Faculty of Electronic Engineering, Menoufia University in 1999,, and respectively. Currently, his job carrier is a scientific lecturer in Electronics and Electrical Communications Engineering Department, Faculty of Electronic Engineering, Menoufia university, Menouf. Postal Menouf city code: 3291, EGYPT. His scientific master science thesis has focused on polymer fibers in optical access communication systems. Moreover his scientific Ph. D. thesis has focused on recent applications in linear or nonlinear passive or active in optical networks. His interesting research mainly focuses on transmission capacity, a data rate product and long transmission distances of passive and active optical communication networks, wireless communication, radio over fiber communication systems, and optical network security and management. He has published many high scientific research papers in high quality and technical international journals in the field of advanced communication systems, optoelectronic devices, and passive optical access communication networks. His areas of interest and experience in optical communication systems, advanced optical communication networks, wireless optical access networks, analog communication systems, optical filters and Sensors, digital communication systems, optoelectronics devices, and advanced material science, network management systems, multimedia data base, network security, encryption and optical access computing systems. As well as he is editorial board member in high academic scientific International research Journals. Moreover he is a reviewer member and editorial board member in high impact scientific research international journals in the field of electronics, electrical communication systems, optoelectronics, information technology and advanced optical communication systems and networks. 7

Forward Pumping Based Fiber Optical Raman Amplifiers in Different Optical Fiber Transmission Medium Systems *Ahmed Nabih Zaki Rashed

Forward Pumping Based Fiber Optical Raman Amplifiers in Different Optical Fiber Transmission Medium Systems *Ahmed Nabih Zaki Rashed IJRREST: International Journal of Research Review in Engineering Science and Technology (ISSN 2278-6643) Volume-2 Issue-1, March 13 Forward Pumping Based Fiber Optical Raman Amplifiers in Different Optical

More information

Optical Fiber Transmission Amplifications for Ultra Long Haul Applications

Optical Fiber Transmission Amplifications for Ultra Long Haul Applications 176 Optical Fiber Transmission Amplifications for Ultra Long Haul Applications Ahmed Nabih Zaki Rashed Electronics and Electrical Communications Engineering Department Faculty of Electronic Engineering,

More information

Recent Advances of Distributed Optical Fiber Raman Amplifiers in Ultra Wide Wavelength Division Multiplexing Telecommunication Networks

Recent Advances of Distributed Optical Fiber Raman Amplifiers in Ultra Wide Wavelength Division Multiplexing Telecommunication Networks IJCST Vo l. 3, Is s u e 1, Ja n. - Ma r c h 2012 ISSN : 0976-8491 (Online) ISSN : 2229-4333 (Print) Recent Advances of Distributed Optical Fiber Raman Amplifiers in Ultra Wide Wavelength Division Multiplexing

More information

High performance efficiency of distributed optical fiber Raman amplifiers for different pumping configurations in different fiber cable schemes

High performance efficiency of distributed optical fiber Raman amplifiers for different pumping configurations in different fiber cable schemes International Journal of Computer Engineering Research Vol. 3(2), pp. 25-41, April 2012 Available online at http://www.academicjournals.org/ijcer DOI: 10.5897/IJCER12.010 ISSN 2141-6494 2012 Academic Journals

More information

High Transmission Data Rate of Plastic Optical Fibers over Silica Optical Fibers Based Optical Links for Short Transmission Ranges

High Transmission Data Rate of Plastic Optical Fibers over Silica Optical Fibers Based Optical Links for Short Transmission Ranges International Journal of Computer Science and Telecommunications [Volume, Issue, September ] ISSN 7-333 High Transmission Data Rate of Plastic Optical Fibers over Silica Optical Fibers Based Optical Links

More information

Characteristics of Multi Pumped Raman Amplifiers in Dense Wavelength Division Multiplexing (DWDM) Optical Access Networks

Characteristics of Multi Pumped Raman Amplifiers in Dense Wavelength Division Multiplexing (DWDM) Optical Access Networks IJCSNS International Journal of Computer Science and Network Security VOL.9 No.2 February 2009 277 Characteristics of Multi Pumped Raman Amplifiers in Dense Wavelength Division Multiplexing (DWDM) Optical

More information

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier Aied K. Mohammed, PhD Department of Electrical Engineering, University

More information

Abd El Naser A. Mohammed and Ahmed Nabih Zaki Rashed*

Abd El Naser A. Mohammed and Ahmed Nabih Zaki Rashed* International Journal of the hysical Sciences Vol. 5(5) pp. 8-95 May 1 Available online at http://www.academicjournals.org/ijs ISSN 199-195 1 Academic Journals Full Length Research aper Comparison performance

More information

Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System

Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System Gagandeep Singh Walia 1, Kulwinder Singh 2, Manjit Singh Bhamrah 3

More information

Comparison of Various Configurations of Hybrid Raman Amplifiers

Comparison of Various Configurations of Hybrid Raman Amplifiers IJCST Vo l. 3, Is s u e 4, Oc t - De c 2012 ISSN : 0976-8491 (Online) ISSN : 2229-4333 (Print) Comparison of Various Configurations of Hybrid Raman Amplifiers Sunil Gautam Dept. of ECE, Shaheed Bhagat

More information

The Parameters affecting on Raman Gain and Bandwidth for Distributed Multi-Raman Amplifier

The Parameters affecting on Raman Gain and Bandwidth for Distributed Multi-Raman Amplifier www.ijcsi.org 225 The Parameters affecting on Raman Gain and Bandwidth for Distributed Multi-Raman Amplifier Fathy M. Mustafa 1, Ashraf A. Khalaf 2 and F. A. El-Geldawy 3 1 Electronics and Communications

More information

High Speed Performance of Electrooptic Polymer Modulator Devices in Advanced Optical Communication Systems

High Speed Performance of Electrooptic Polymer Modulator Devices in Advanced Optical Communication Systems International Journal of Computer Science and Telecommunications [Volume, Issue 5, August 0] ISSN 047-8 High Speed Performance of Electrooptic Polymer Modulator Devices in Advanced Optical Communication

More information

CHAPTER 5 SPECTRAL EFFICIENCY IN DWDM

CHAPTER 5 SPECTRAL EFFICIENCY IN DWDM 61 CHAPTER 5 SPECTRAL EFFICIENCY IN DWDM 5.1 SPECTRAL EFFICIENCY IN DWDM Due to the ever-expanding Internet data traffic, telecommunication networks are witnessing a demand for high-speed data transfer.

More information

Transmission Characteristics of Radio over Fiber (ROF) Millimeter Wave Systems in Local Area Optical Communication Networks

Transmission Characteristics of Radio over Fiber (ROF) Millimeter Wave Systems in Local Area Optical Communication Networks Int. J. Advanced Networking and Applications 876 Transmission Characteristics of Radio over Fiber (ROF) Millimeter Wave Systems in Local Area Optical Communication Networks Abd El Naser A. Mohamed 1, Ahmed

More information

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion 36 Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion Supreet Singh 1, Kulwinder Singh 2 1 Department of Electronics and Communication Engineering, Punjabi

More information

Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using DCF

Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using DCF Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using Sabina #1, Manpreet Kaur *2 # M.Tech(Scholar) & Department of Electronics & Communication

More information

RECENT ADVANCES OF WIDE BAND MAGNETO-OPTICAL MODULATORS IN ADVANCED HIGH SPEED OPTICAL COMMUNICATION SYSTEM

RECENT ADVANCES OF WIDE BAND MAGNETO-OPTICAL MODULATORS IN ADVANCED HIGH SPEED OPTICAL COMMUNICATION SYSTEM International Journal of Engineering and Management Research, Vol., Issue-, April 01 ISSN No.: 50-0758 Pages: 14- www.ijemr.net RECENT ADVANCES OF WIDE BAND MAGNETO-OPTICAL MODULATORS IN ADVANCED HIGH

More information

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Khaled O. Basulaim, Samah Ali Al-Azani Dept. of Information Technology Faculty of Engineering,

More information

NANO SCALE PHOTONIC CRYSTAL SWITCH FOR INTEGRATED PHOTONIC CIRCUIT APPLICATIONS

NANO SCALE PHOTONIC CRYSTAL SWITCH FOR INTEGRATED PHOTONIC CIRCUIT APPLICATIONS International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN 78 88 Volume 3, Issue 7, October 14 NANO SCALE PHOTONIC CRYSTAL SWITCH FOR INTEGRATED PHOTONIC CIRCUIT APPLICATIONS

More information

All Optical Broad-Band Multi-Raman Amplifier for Long-Haul UW-WDM Optical Communication Systems

All Optical Broad-Band Multi-Raman Amplifier for Long-Haul UW-WDM Optical Communication Systems D8 1 All Optical Broad-Band ulti-raman Amplifier for Long-Haul UW-WD Optical Communication Systems Fathi. ustafa 1 (fmmg80@gawab.com), Farag Z. El-Halafawy 2* (faragelhalafawy@yahoo.com ) and oustafa H.

More information

Optical Transport Tutorial

Optical Transport Tutorial Optical Transport Tutorial 4 February 2015 2015 OpticalCloudInfra Proprietary 1 Content Optical Transport Basics Assessment of Optical Communication Quality Bit Error Rate and Q Factor Wavelength Division

More information

Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates

Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates Simarpreet Kaur Gill 1, Gurinder Kaur 2 1Mtech Student, ECE Department, Rayat- Bahra University,

More information

Different Pumping Categories of Erbium Doped Fiber Amplifiers Performance Signature With Both Wide Multiplexing and Modulation Techniques

Different Pumping Categories of Erbium Doped Fiber Amplifiers Performance Signature With Both Wide Multiplexing and Modulation Techniques International Journal of Science, Engineering and Technology Research (IJSETR), Volume 5, Issue 3, March 2 Different Pumping Categories of Erbium Doped Fiber Amplifiers Performance Signature With Both

More information

Improvement the Flatness, Gain and Bandwidth of Cascaded Raman Amplifiers for Long- Haul UW-WDM Optical Communications Systems

Improvement the Flatness, Gain and Bandwidth of Cascaded Raman Amplifiers for Long- Haul UW-WDM Optical Communications Systems ISSN (Online): 164-0814 www.ijcsi.org 377 Improvement the Flatness, Gain and Bandwidth of Cascaded Raman Amplifiers for Long- Haul UW-WDM Optical Communications Systems Fathy M. Mustafa 1, Ashraf A. Khalaf

More information

Implementing of High Capacity Tbps DWDM System Optical Network

Implementing of High Capacity Tbps DWDM System Optical Network , pp. 211-218 http://dx.doi.org/10.14257/ijfgcn.2016.9.6.20 Implementing of High Capacity Tbps DWDM System Optical Network Daleep Singh Sekhon *, Harmandar Kaur Deptt.of ECE, GNDU Regional Campus, Jalandhar,Punjab,India

More information

Rapid Progress of a Thermal Arrayed Waveguide Grating Module for Dense Wavelength Division Multiplexing Applications

Rapid Progress of a Thermal Arrayed Waveguide Grating Module for Dense Wavelength Division Multiplexing Applications Int. J. Advanced Networking and Applications 1044 Volume: 03, Issue: 0, Pages: 1044-105 (011) Rapid Progress of a Thermal Arrayed Waveguide Grating Module for Dense Wavelength Division Multiplexing Applications

More information

Photonics and Optical Communication Spring 2005

Photonics and Optical Communication Spring 2005 Photonics and Optical Communication Spring 2005 Final Exam Instructor: Dr. Dietmar Knipp, Assistant Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Final Exam: 2 hour You

More information

Analyzing the Non-Linear Effects in DWDM Optical Network Using MDRZ Modulation Format

Analyzing the Non-Linear Effects in DWDM Optical Network Using MDRZ Modulation Format Analyzing the Non-Linear Effects in DWDM Optical Network Using MDRZ Modulation Format Ami R. Lavingia Electronics & Communication Dept. SAL Institute of Technology & Engineering Research Gujarat Technological

More information

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion M. A. Khayer Azad and M. S. Islam Institute of Information and Communication

More information

A PIECE WISE LINEAR SOLUTION FOR NONLINEAR SRS EFFECT IN DWDM FIBER OPTIC COMMUNICATION SYSTEMS

A PIECE WISE LINEAR SOLUTION FOR NONLINEAR SRS EFFECT IN DWDM FIBER OPTIC COMMUNICATION SYSTEMS 9 A PIECE WISE LINEAR SOLUION FOR NONLINEAR SRS EFFEC IN DWDM FIBER OPIC COMMUNICAION SYSEMS M. L. SINGH and I. S. HUDIARA Department of Electronics echnology Guru Nanak Dev University Amritsar-005, India

More information

UPGRADING EFFICIENCY AND IMPROVEMENT OF THE PERFORMANCE OF BROADBAND WIRELESS OPTICAL ACCESS COMMUNICATION NETWORKS

UPGRADING EFFICIENCY AND IMPROVEMENT OF THE PERFORMANCE OF BROADBAND WIRELESS OPTICAL ACCESS COMMUNICATION NETWORKS ISSN (Online) : 2229-666 Volume 2 Issue 2 May 20 UPGRADING EFFICIENCY AND IMPROVEMENT OF THE PERFORMANCE OF BROADBAND WIRELESS OPTICAL ACCESS COMMUNICATION NETWORKS Ibrahim M. El-dokany, Abd El Naser A.

More information

Performance Evaluation of Different Hybrid Optical Amplifiers for 64 10, and Gbps DWDM transmission system

Performance Evaluation of Different Hybrid Optical Amplifiers for 64 10, and Gbps DWDM transmission system Performance Evaluation of Different Hybrid Optical Amplifiers for 64 10, 96 10 and 128 10 Gbps DWDM transmission system Rashmi a, Anurag Sharma b, Vikrant Sharma c a Deptt. of Electronics & Communication

More information

Ultra High Speed Semiconductor Electrooptic Modulator Devices for Gigahertz Operation in Optical Communication Systems

Ultra High Speed Semiconductor Electrooptic Modulator Devices for Gigahertz Operation in Optical Communication Systems Vol. (011) No. 3, pp. 560-570 ISSN 078-365 Ultra High Speed Semiconductor Electrooptic Modulator Devices for Gigahertz Operation in Optical Communication Systems Abd El Naser A. Mohamed, Mohamed A. Metawe'e

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 37

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 37 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 37 Introduction to Raman Amplifiers Fiber Optics, Prof. R.K. Shevgaonkar, Dept.

More information

Optical Fiber Amplifiers

Optical Fiber Amplifiers Optical Fiber Amplifiers Yousif Ahmed Omer 1 and Dr. Hala Eldaw Idris 2 1,2 Department of communication Faculty of Engineering, AL-Neelain University, Khartoum, Sudan Publishing Date: June 15, 2016 Abstract

More information

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers Chapter 8 Wavelength-Division Multiplexing (WDM) Part II: Amplifiers Introduction Traditionally, when setting up an optical link, one formulates a power budget and adds repeaters when the path loss exceeds

More information

A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF

A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF Research Manuscript Title A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF Dr.Punal M.Arabi, Nija.P.S PG Scholar, Professor, Department of ECE, SNS College of Technology,

More information

Performance Analysis of Gb/s DWDM Metropolitan Area Network using SMF-28 and MetroCor Optical Fibres

Performance Analysis of Gb/s DWDM Metropolitan Area Network using SMF-28 and MetroCor Optical Fibres Research Cell: An International Journal of Engineering Sciences ISSN: 2229-6913 Issue Sept 2011, Vol. 4 11 Performance Analysis of 32 2.5 Gb/s DWDM Metropolitan Area Network using SMF-28 and MetroCor Optical

More information

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks 363 Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks CHAOUI Fahd 3, HAJAJI Anas 1, AGHZOUT Otman 2,4, CHAKKOUR Mounia 3, EL YAKHLOUFI Mounir

More information

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University Photonics Group Department of Micro- and Nanosciences Aalto University Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Last Lecture Topics Course introduction Ray optics & optical

More information

Role of distributed amplification in designing high-capacity soliton systems

Role of distributed amplification in designing high-capacity soliton systems Role of distributed amplification in designing high-capacity soliton systems Zhi M. Liao and Govind P. Agrawal The Institute of Optics, University of Rochester, Rochester, New York 1467 gpa@optics.rochester.edu

More information

Optical systems have carrier frequencies of ~100 THz. This corresponds to wavelengths from µm.

Optical systems have carrier frequencies of ~100 THz. This corresponds to wavelengths from µm. Introduction A communication system transmits information form one place to another. This could be from one building to another or across the ocean(s). Many systems use an EM carrier wave to transmit information.

More information

Current Trends in Unrepeatered Systems

Current Trends in Unrepeatered Systems Current Trends in Unrepeatered Systems Wayne Pelouch (Xtera, Inc.) Email: wayne.pelouch@xtera.com Xtera, Inc. 500 W. Bethany Drive, suite 100, Allen, TX 75013, USA. Abstract: The current trends in unrepeatered

More information

Balanced hybrid and Raman and EDFA Configuration for Reduction in Span Length

Balanced hybrid and Raman and EDFA Configuration for Reduction in Span Length Balanced hybrid and Raman and EDFA Configuration for Reduction in Span Length Shantanu Jagdale 1, Dr.S.B.Deosarkar 2, Vikas Kaduskar 3, Savita Kadam 4 1 Vidya Pratisthans College of Engineering, Baramati,

More information

Operation Performance Evaluation of Intersatellite Optical Wireless Communication Systems in Low Earth Orbits

Operation Performance Evaluation of Intersatellite Optical Wireless Communication Systems in Low Earth Orbits Operation Performance Evaluation of Intersatellite Optical Wireless Communication Systems in Low Earth Orbits Hamdy A. Sharsher 1, Eman Mohsen El-gammal 2 1,2 Electronics and Electrical Communications

More information

Optical Fibre Amplifiers Continued

Optical Fibre Amplifiers Continued 1 Optical Fibre Amplifiers Continued Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus ECE 445 Lecture 09 Fall Semester 2016 2 ERBIUM-DOPED FIBRE AMPLIFIERS BASIC

More information

Elements of Optical Networking

Elements of Optical Networking Bruckner Elements of Optical Networking Basics and practice of optical data communication With 217 Figures, 13 Tables and 93 Exercises Translated by Patricia Joliet VIEWEG+ TEUBNER VII Content Preface

More information

PERFORMANCE ANALYSIS OF WDM AND EDFA IN C-BAND FOR OPTICAL COMMUNICATION SYSTEM

PERFORMANCE ANALYSIS OF WDM AND EDFA IN C-BAND FOR OPTICAL COMMUNICATION SYSTEM www.arpapress.com/volumes/vol13issue1/ijrras_13_1_26.pdf PERFORMANCE ANALYSIS OF WDM AND EDFA IN C-BAND FOR OPTICAL COMMUNICATION SYSTEM M.M. Ismail, M.A. Othman, H.A. Sulaiman, M.H. Misran & M.A. Meor

More information

8 10 Gbps optical system with DCF and EDFA for different channel spacing

8 10 Gbps optical system with DCF and EDFA for different channel spacing Research Article International Journal of Advanced Computer Research, Vol 6(24) ISSN (Print): 2249-7277 ISSN (Online): 2277-7970 http://dx.doi.org/10.19101/ijacr.2016.624002 8 10 Gbps optical system with

More information

Design of Ultra High Capacity DWDM System with Different Modulation Formats

Design of Ultra High Capacity DWDM System with Different Modulation Formats Design of Ultra High Capacity DWDM System with Different Modulation Formats A. Nandhini 1, K. Gokulakrishnan 2 1 PG Scholar, Department of Electronics & Communication Engineering, Regional Center, Anna

More information

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture No. # 27 EDFA In the last lecture, we talked about wavelength

More information

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

Recent Applications of Optical Parametric Amplifiers in Hybrid WDM/TDM Local Area Optical Networks

Recent Applications of Optical Parametric Amplifiers in Hybrid WDM/TDM Local Area Optical Networks Vol 3, No 1, 9 Recent plications of Optical Parametric Amplifiers in Hybrid WDM/TDM Local Area Optical Networks Abd El Naser A Mohamed 1, Mohamed M E El-Halawany Ahmed Nabih Zaki Rashed 3* and Mahmoud

More information

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Prof. Dr. Yaocheng SHI ( 时尧成 ) yaocheng@zju.edu.cn http://mypage.zju.edu.cn/yaocheng 1 Traditional Optical Communication System Loss

More information

Optical Amplifiers (Chapter 6)

Optical Amplifiers (Chapter 6) Optical Amplifiers (Chapter 6) General optical amplifier theory Semiconductor Optical Amplifier (SOA) Raman Amplifiers Erbium-doped Fiber Amplifiers (EDFA) Read Chapter 6, pp. 226-266 Loss & dispersion

More information

Investigation of Performance Analysis of EDFA Amplifier. Using Different Pump Wavelengths and Powers

Investigation of Performance Analysis of EDFA Amplifier. Using Different Pump Wavelengths and Powers Investigation of Performance Analysis of EDFA Amplifier Using Different Pump Wavelengths and Powers Ramandeep Kaur, Parkirti, Rajandeep Singh ABSTRACT In this paper, an investigation of the performance

More information

Power penalty caused by Stimulated Raman Scattering in WDM Systems

Power penalty caused by Stimulated Raman Scattering in WDM Systems Paper Power penalty caused by Stimulated Raman Scattering in WDM Systems Sławomir Pietrzyk, Waldemar Szczęsny, and Marian Marciniak Abstract In this paper we present results of an investigation into the

More information

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber H. Ahmad 1, S. Shahi 1 and S. W. Harun 1,2* 1 Photonics Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia 2 Department

More information

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing Viyoma Sarup* and Amit Gupta Chandigarh University Punjab, India *viyoma123@gmail.com Abstract A RoF

More information

Fiber-Optic Communication Systems

Fiber-Optic Communication Systems Fiber-Optic Communication Systems Second Edition GOVIND P. AGRAWAL The Institute of Optics University of Rochester Rochester, NY A WILEY-iNTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

ANALYSIS OF THE CROSSTALK IN OPTICAL AMPLIFIERS

ANALYSIS OF THE CROSSTALK IN OPTICAL AMPLIFIERS MANDEEP SINGH AND S K RAGHUWANSHI: ANALYSIS OF THE CROSSTALK IN OPTICAL AMPLIFIERS DOI: 10.1917/ijct.013.0106 ANALYSIS OF THE CROSSTALK IN OPTICAL AMPLIFIERS Mandeep Singh 1 and S. K. Raghuwanshi 1 Department

More information

WDM Transmitter Based on Spectral Slicing of Similariton Spectrum

WDM Transmitter Based on Spectral Slicing of Similariton Spectrum WDM Transmitter Based on Spectral Slicing of Similariton Spectrum Leila Graini and Kaddour Saouchi Laboratory of Study and Research in Instrumentation and Communication of Annaba (LERICA), Department of

More information

Optical Communications and Networking 朱祖勍. Oct. 9, 2017

Optical Communications and Networking 朱祖勍. Oct. 9, 2017 Optical Communications and Networking Oct. 9, 2017 1 Optical Amplifiers In optical communication systems, the optical signal from the transmitter are attenuated by the fiber and other passive components

More information

32-Channel DWDM System Design and Simulation by Using EDFA with DCF and Raman Amplifiers

32-Channel DWDM System Design and Simulation by Using EDFA with DCF and Raman Amplifiers 2012 International Conference on Information and Computer Networks (ICICN 2012) IPCSIT vol. 27 (2012) (2012) IACSIT Press, Singapore 32-Channel DWDM System Design and Simulation by Using EDFA with DCF

More information

Wideband Rare-earth-doped Fiber Amplification Technologies Gain Bandwidth Expansion in the C and L bands

Wideband Rare-earth-doped Fiber Amplification Technologies Gain Bandwidth Expansion in the C and L bands Wideband Rare-earth-doped Fiber Amplification Technologies Gain Bandwidth Expansion in the C and L bands Tadashi Sakamoto, Atsushi Mori, Hiroji Masuda, and Hirotaka Ono Abstract We are expanding the gain

More information

CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE

CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE Progress In Electromagnetics Research Letters, Vol. 6, 107 113, 2009 CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE S.-J. Tzeng, H.-H. Lu, C.-Y. Li, K.-H. Chang,and C.-H.

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW #5 is assigned (due April 9) April 9 th class will be in

More information

Ultra-long Span Repeaterless Transmission System Technologies

Ultra-long Span Repeaterless Transmission System Technologies Ultra-long Span Repeaterless Transmission System Technologies INADA Yoshihisa Abstract The recent increased traffic accompanying the rapid dissemination of broadband communications has been increasing

More information

International Journal of Advanced Research in Computer Engineering &Technology (IJARCET) Volume 2, Issue 4, April 2013

International Journal of Advanced Research in Computer Engineering &Technology (IJARCET) Volume 2, Issue 4, April 2013 Surface and Embedded Micro Strip Lines Characteristic Impedance and its Signal Propagation Delay Time in Optical Spectrum Transmission Regions Ahmed Nabih Zaki Rashed Electronics and Electrical Communications

More information

Performance Evaluation of Post and Symmetrical DCF Technique with EDFA in 32x10, 32x20 and 32x40 Gbps WDM Systems

Performance Evaluation of Post and Symmetrical DCF Technique with EDFA in 32x10, 32x20 and 32x40 Gbps WDM Systems International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Performance

More information

UNREPEATERED SYSTEMS: STATE OF THE ART CAPABILITY

UNREPEATERED SYSTEMS: STATE OF THE ART CAPABILITY UNREPEATERED SYSTEMS: STATE OF THE ART CAPABILITY Nicolas Tranvouez, Eric Brandon, Marc Fullenbaum, Philippe Bousselet, Isabelle Brylski Nicolas.tranvouez@alcaltel.lucent.fr Alcatel-Lucent, Centre de Villarceaux,

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: Performance Analysis of WDM/SCM System Using EDFA Mukesh Kumar

More information

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source JOURNAL OF L A TEX CLASS FILES, VOL. X, NO. XX, XXXX XXX 1 Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source Jérôme Vasseur, Jianjun Yu Senior Member,

More information

Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique

Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique Avneet Kour 1, Neena Gupta 2 1,2 Electronics and Communication Department, PEC University of Technology, Chandigarh

More information

Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers

Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers Optical Amplifiers Optical Amplifiers Optical signal propagating in fiber suffers attenuation Optical power level of a signal must be periodically conditioned Optical amplifiers are a key component in

More information

Eye-Diagram-Based Evaluation of RZ and NRZ Modulation Methods in a 10-Gb/s Single-Channel and a 160-Gb/s WDM Optical Networks

Eye-Diagram-Based Evaluation of RZ and NRZ Modulation Methods in a 10-Gb/s Single-Channel and a 160-Gb/s WDM Optical Networks International Journal of Optics and Applications 2017, 7(2): 31-36 DOI: 10.5923/j.optics.20170702.01 Eye-Diagram-Based Evaluation of RZ and NRZ Modulation Methods in a 10-Gb/s Single-Channel and a 160-Gb/s

More information

Optimizing of Raman Gain and Bandwidth for Dual Pump Fiber Optical Parametric Amplifiers Based on Four-Wave Mixing

Optimizing of Raman Gain and Bandwidth for Dual Pump Fiber Optical Parametric Amplifiers Based on Four-Wave Mixing Optimizing of Raman Gain and Bandwidth for Dual Pump Fiber Optical Parametric Amplifiers Based on Four-Wave Mixing HatemK. El-khashab 1, Fathy M. Mustafa 2 and Tamer M. Barakat 3 Student, Dept. of Electrical

More information

OFC SYSTEMS Performance & Simulations. BC Choudhary NITTTR, Sector 26, Chandigarh

OFC SYSTEMS Performance & Simulations. BC Choudhary NITTTR, Sector 26, Chandigarh OFC SYSTEMS Performance & Simulations BC Choudhary NITTTR, Sector 26, Chandigarh High Capacity DWDM OFC Link Capacity of carrying enormous rates of information in THz 1.1 Tb/s over 150 km ; 55 wavelengths

More information

A novel 3-stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier *

A novel 3-stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier * Journal of Zhejiang University SCIENCE ISSN 9-9 http://www.zju.edu.cn/jzus E-mail: jzus@zju.edu.cn A novel -stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier

More information

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber I. H. M. Nadzar 1 and N. A.Awang 1* 1 Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, Johor,

More information

Performance Analysis of dispersion compensation using Fiber Bragg Grating (FBG) in Optical Communication

Performance Analysis of dispersion compensation using Fiber Bragg Grating (FBG) in Optical Communication Research Article International Journal of Current Engineering and Technology E-ISSN 2277 416, P-ISSN 2347-5161 214 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Performance

More information

To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks

To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks 289 To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks Areet Aulakh 1, Kulwinder Singh Malhi 2 1 Student, M.Tech, ECE department, Punjabi University,

More information

Simulation of Negative Influences on the CWDM Signal Transmission in the Optical Transmission Media

Simulation of Negative Influences on the CWDM Signal Transmission in the Optical Transmission Media Simulation of Negative Influences on the CWDM Signal Transmission in the Optical Transmission Media Rastislav Róka, Martin Mokráň and Pavol Šalík Abstract This lecture is devoted to the simulation of negative

More information

Fiber Parametric Amplifiers for Wavelength Band Conversion

Fiber Parametric Amplifiers for Wavelength Band Conversion IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 8, NO. 3, MAY/JUNE 2002 527 Fiber Parametric Amplifiers for Wavelength Band Conversion Mohammed N. Islam and Özdal Boyraz, Student Member, IEEE

More information

SIMULATIVE INVESTIGATION OF SINGLE-TONE ROF SYSTEM USING VARIOUS DUOBINARY MODULATION FORMATS

SIMULATIVE INVESTIGATION OF SINGLE-TONE ROF SYSTEM USING VARIOUS DUOBINARY MODULATION FORMATS SIMULATIVE INVESTIGATION OF SINGLE-TONE ROF SYSTEM USING VARIOUS DUOBINARY MODULATION FORMATS Namita Kathpal 1 and Amit Kumar Garg 2 1,2 Department of Electronics & Communication Engineering, Deenbandhu

More information

Compensation of Dispersion in 10 Gbps WDM System by Using Fiber Bragg Grating

Compensation of Dispersion in 10 Gbps WDM System by Using Fiber Bragg Grating International Journal of Computational Engineering & Management, Vol. 15 Issue 5, September 2012 www..org 16 Compensation of Dispersion in 10 Gbps WDM System by Using Fiber Bragg Grating P. K. Raghav 1,

More information

Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System

Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 06 34 Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System Meenakshi,

More information

Simulation of Pre & Post Compensation Techniques for 16 Channels DWDM Optical Network using CSRZ & DRZ Formats

Simulation of Pre & Post Compensation Techniques for 16 Channels DWDM Optical Network using CSRZ & DRZ Formats Simulation of Pre & Post Compensation Techniques for 16 Channels DWDM Optical Network using CSRZ & DRZ Formats Richa Arya 1, Malti Rani 2 1 M. Tech, Computer Science Department, Punjab Technical University,

More information

RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM

RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM Prof. Muthumani 1, Mr. Ayyanar 2 1 Professor and HOD, 2 UG Student, Department of Electronics and Communication Engineering,

More information

Study of All-Optical Wavelength Conversion and Regeneration Subsystems for use in Wavelength Division Multiplexing (WDM) Telecommunication Networks.

Study of All-Optical Wavelength Conversion and Regeneration Subsystems for use in Wavelength Division Multiplexing (WDM) Telecommunication Networks. Study of All-Optical Wavelength Conversion and Regeneration Subsystems for use in Wavelength Division Multiplexing (WDM) Telecommunication Networks. Hercules Simos * National and Kapodistrian University

More information

Introduction Fundamental of optical amplifiers Types of optical amplifiers

Introduction Fundamental of optical amplifiers Types of optical amplifiers ECE 6323 Introduction Fundamental of optical amplifiers Types of optical amplifiers Erbium-doped fiber amplifiers Semiconductor optical amplifier Others: stimulated Raman, optical parametric Advanced application:

More information

Available online at ScienceDirect. Procedia Computer Science 93 (2016 )

Available online at   ScienceDirect. Procedia Computer Science 93 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 93 (016 ) 647 654 6th International Conference On Advances In Computing & Communications, ICACC 016, 6-8 September 016,

More information

Dramatic Atmospheric Turbulence Effects on Submarine Laser Communication Systems (SLCS) and Free Space Optics (FSO)

Dramatic Atmospheric Turbulence Effects on Submarine Laser Communication Systems (SLCS) and Free Space Optics (FSO) Dramatic Atmospheric Turbulence Effects on Submarine Laser Communication Systems (SLCS) and Free Space Optics (FSO) Ahmed Nabih Zaki Rashed 1*, and Mohamed S. F. Tabbour 1, Electronics and Electrical Communications

More information

BER Evaluation of FSO Link with Hybrid Amplifier for Different Duty Cycles of RZ Pulse in Different Conditions of Rainfall

BER Evaluation of FSO Link with Hybrid Amplifier for Different Duty Cycles of RZ Pulse in Different Conditions of Rainfall I.J. Wireless and Microwave Technologies, 2017, 1, 1-12 Published Online January 2017 in MECS(http://www.mecs-press.net) DOI: 10.5815/ijwmt.2017.01.01 Available online at http://www.mecs-press.net/ijwmt

More information

Design of an Optical Submarine Network With Longer Range And Higher Bandwidth

Design of an Optical Submarine Network With Longer Range And Higher Bandwidth Design of an Optical Submarine Network With Longer Range And Higher Bandwidth Yashas Joshi 1, Smridh Malhotra 2 1,2School of Electronics Engineering (SENSE) Vellore Institute of Technology Vellore, India

More information

Analysis of Gain and NF using Raman and hybrid RFA-EDFA

Analysis of Gain and NF using Raman and hybrid RFA-EDFA Analysis of Gain and NF using Raman and hybrid RFA-EDFA Abdallah M. Hassan 1, Ashraf Aboshosha 2, Mohamed B. El_Mashade 3 Electrical Engineering Dept., Faculty of Engineering, Al-Azhar University, Nasr

More information

Spectral Response of FWM in EDFA for Long-haul Optical Communication

Spectral Response of FWM in EDFA for Long-haul Optical Communication Spectral Response of FWM in EDFA for Long-haul Optical Communication Lekshmi.S.R 1, Sindhu.N 2 1 P.G.Scholar, Govt. Engineering College, Wayanad, Kerala, India 2 Assistant Professor, Govt. Engineering

More information

Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations

Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations Mayur Date M.E. Scholar Department of Electronics and Communication Ujjain Engineering College, Ujjain (M.P.) datemayur3@gmail.com

More information

Emerging Subsea Networks

Emerging Subsea Networks Highly efficient submarine C+L EDFA with serial architecture Douglas O. M. de Aguiar, Reginaldo Silva (Padtec S/A) Giorgio Grasso, Aldo Righetti, Fausto Meli (Fondazione Cife) Email: douglas.aguiar@padtec.com.br

More information

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian m.karbassian@arizona.edu Contents Optical Communications: Review Optical Communications and Photonics Why Photonics?

More information