Multi Antenna Solutions in Vehicle Environment

Size: px
Start display at page:

Download "Multi Antenna Solutions in Vehicle Environment"

Transcription

1 Multi Antenna Solutions in Vehicle Environment Hiro Onishi (Alpine Electronics Research of America, Inc.) Fanny Mlinarsky (octoscope, Inc.) 2014 Alpine Electronics, Inc. Not for commercial distribution. 1

2 INDEX 1. Introduction Various multi antenna solutions 2. Multi Antenna Solutions in Vehicle Environment Contributions in vehicle environment Factors affecting multi antenna performance Advantages and challenges Multi antenna performance in vehicle environment 3. Advanced Multi Antenna Solutions Multi User MIMO(Multiple Input Multiple Output) ) CoMP(Cooperative Multi Points) 4. Next Steps 2

3 1. Introduction + How can we utilize advanced wireless technologies to automotive/its applications? + What is the challengefortheirimplementation? Pictures: Courtesy of Dept. of Transportation 3

4 1. Introduction MIMO concept exists long time ago, but it wasn t being implemented till the 90 s. ~ B. Sklar, lecture, (Mar , at CA state Univ. Long Beach) 4

5 1. Introduction Multi antenna solutions are keys for modern wireless technologies, such as, n/ac, LTE and WiMax. a) Improve transmission reliability against channel impairments, i.e. fading, multi path or interference. a Tx a a a a Rx b) Increase transmission rate by using multi channels, without using additional wireless spectrum. ba Tx a b a + b b + a Rx ba Reference: L. Wang, Advances in Coordinated Multi Cell Multi User MIMO system, IEEE web seminar 5

6 1. Introduction Solutions Rx diversity * Tx diversity * Combination of Tx and Rx diversity * Various multi antenna solutions Explanation Combine multiple received versions of the same signal in order to minimize PER(Packet Error Rate). Transmit different versions of the same signal in order to optimize reception of at least one of these versions. Use Tx diversity at the transmitting device in combination with Rx diversity at the receiving device. MIMO(Multi Input Multi Output) Transmit two or more data streams in the same channel. Spatial Multiplexing * MIMO Beamforming * Create a focused beam, thereby extending the range of the link or enabling SM(Spatial Multiplexing). Closed loop ** Feedback channel information from receiver to transmitter. (cf. Open loop) Pilot Signal (Antenna) *** Transmit pilot signal from receiver to transmitter before data transmission. Transmitter adjust transmission parameter by using pilot signal. Reference: *: F. Mlinarsky, Testing MIMO Radios, Digi Key web seminar, (Jan 27 31, 14 ) **: Y. Hara, et al., Basic Algorithm of Multi Antenna Technologies, Japan IEEE conference ( 10) ***: D. Phan Huy, et al., Adaptive Large MISO Downlink with Predictor Antenna Array for very fast moving vehicles, IEEE ICCVE (Dec. 13, Las Vegas, NV) 6

7 1. Introduction a) Rx diversity: Various multi antenna solutions Combine multiple received versions of the same signal in order to minimize PER(Packet Error rate). Typical diversity algorithms are Switching Selecting Combining: MRC(Maximal Ratio Combining) is typical. Weighting: Zero Forcing weight, MMSE(Minimum Mean Square Error) weight, etc Rx diversity Reference: F. Mlinarsky, Testing MIMO Radios, Digi Key web seminar, (Jan 27 31, 14) wikipedia, Antenna diversity Y. Hara, et al., Basic Algorithm of Multi Antenna Technologies, Japan IEEE conference ( 10) 7

8 1. Introduction b) Tx diversity: Various multi antenna solutions Transmit different versions of the same signal in order to optimize reception of at least one of these versions. Typical diversity algorithms are + STBC (Space Time Block Coding) Alamouti code is one of them + SFBC (Space Frequency Block Coding ) + CDD (Cyclic Delay Diversity) Tx diversity Reference: F. Mlinarsky, Testing MIMO Radios, Digi Key web seminar (Jan 27 31, 14 ) 8

9 1. Introduction c) Spatial Multiplexing Various multi antenna solutions Multiple signals on the same channel (=same( space and same frequency) can be recognized as multiple original signals by receivers. Increased spatial streams improve transmission reliability and dta transmission sso rate. Spatial Multiplexing Spatial Multiplexing Concept Transmitted signal St1 Wireless channel H11 Received signal Sr1 Transmitted signal St1 H1 Received signal Sr1 Tx Rx Tx Rx H St2 H22 Sr2 St2 H2 Sr2 2 signals transmitted on same space and same frequency can be recognized by receivers Transmitter and receiver are linked by 2 spatial streams Reference: The Cisco Learning Network, What is Spatial Multiplexing 9

10 1. Introduction d) Beamforming Various multi antenna solutions Focus RF beams by combining multiple phase locked antenna elements. Enhance Enhance transmission Transmission reliability reliability Spatial multiplexing p Enhance signal to Beamforming example Signal desired 3 direction Depress signal to unnecessary direction Enhance spatial multiplexing Signal 2 Signal 11 Signal 3 Reference: F. Mlinarsky, Testing MIMO Radios, Digi Key web seminar (Jan 27 31, 14) Y. Hara, et al., Basic Algorithm of Multi Antenna Technologies, Japan IEEE conference ( 10) 10

11 1. Introduction e) Closed loop Various multi antenna solutions Receiver feedback channel information to transmitter. Transmitter adjusts transmission parameters, by using feedback Information. cf. Open loop Basestation MIMO channel Mobile terminal Feedback (channel) information Reference: Y. Hara, et al., Basic Algorithm of Multi Antenna Technologies, Japan IEEE conference ( 10) 11

12 1. Introduction f) One example of pilot antenna Various multi antenna solutions Receiver transmits pilot signal from a 0 (pilot antenna) to transmitter. Transmitter sends data signal targeting a 0. Per vehicle speed, one of a 0 ~ a 3 receives the optimum data signal. Reference: D. Phan Huy, et al., Adaptive Large MISO Downlink with Predictor Antenna Array for very fast moving vehicles, IEEE ICCVE (Dec. 13, Las Vegas, NV) 12

13 2. Multi Antenna Solutions in Vehicle Environment Contributions in vehicle environment a) Improve transmission reliability against channel impairments, such as Doppler, fading, multi path or interference. Contribute to automotive/its applications in various radio environments. (e.g. building canyon, tunnel, mountain/hilly area) b) Increase transmission i rate (~ communication i capacity). b.1) Quick response to transmit large data, i.e. map, traffic, music, movies, etc. b.2) In general, the size of safety messages (for crash warning) is very small, but more vehicles can communicate within pre defined duration (e.g. critical crash warning timing) in high density areas of communication modules (e.g. freeway intersection) Large safety contribution! 13

14 2. Multi Antenna Solutions in Vehicle Environment Factors affecting multi antenna performance Factors MIMO channel correlation Angular spread of the received signal Device antenna spacing and orientation Antenna polarization Explanation/Impact Function of several variables including device antenna spacing, antenna polarization and multipath Related to correlation and strongly influenced by multipath in the channel Related to angular spread and correlation Vertical, horizontal or circular Noise and Interference High noise power with respect to signal power results in low SNR (signal to noise ratio) Motion of devices or Causes Doppler spread of the signal multipath reflectors Delay spread of Causes clusters of reflections to arrive at the receiver at reflections different times Reference: F. Mlinarsky, Testing MIMO Radios, Digi Key web seminar (Jan 27 31, 14) 14

15 2. Multi Antenna Solutions in Vehicle Environment Advantages and challenges Advantages Challenges Freedom of antenna (array) size and Larger moving speed (compared to pedestrians) shape (compared to mobile phones or laptops) + Freedom of antenna spacing and orientation ti + Benefit of antenna polarization + Ease of Beamforming to target to large vehicle antennas with long distances + Small MIMO channel correlation + Dynamic change of channel condition Difficulty in adjusting parameters for Spatial multiplexing Difficulty of Closed loop operation Difficulty of Beamforming to target to vehicle antennas Dynamic change of antenna orientation + Large Doppler effects 15

16 2. Multi Antenna Solutions in Vehicle Environment Multi antenna performance in vehicle environment What solutions fit each automotive/its application? Simulation ~ Fujitsu, Text Proposal for MIMO and Tx Diversity Comparison Section, (TSGR1#19(01) 0410) in TSG RAN Working Group meeting (Feb. 01, Las Vegas, NV) Flat fading channel (3G) Tx closed loop diversity (30km/h) FER rame error rate) (Fr STTD (space time transmit diversity) Open loop Closed loop Tx diversity 4X4 MIMO (30km/h) 2X2 MIMO (30km/h) Eb/No (db) (Energy bit to noise ratio) 16

17 2. Multi Antenna Solutions in Vehicle Environment Multi antenna performance in vehicle environment ~ T. M. Fernandez Carames, et al., Performance Evaluation of Multiple Antenna IEEE p Transceivers Using an FPGA based MIMO Vehicular Channel Emulator, EURASIP Journal on Wireless Communications and Networking 2012, 2012:215 (Jul. 12) Baseline: Frequency flat block fading Rayleigh channel (802.11p) te) FER (Frame error rat Minimum i mean square error Maximum-likelihood detector Maximum ratio combining Alamouti Space time block code Quasi orthogonal Space Time Block Code 4X4 MIMO 1X4 SIMO SNR (db) (Signal noise ratio) 17

18 2. Multi Antenna Solutions in Vehicle Environment Multi antenna performance in vehicle environment Vehicle to road in urban canyon (802.11p) BER r rate) (Bit erro Minimum mean square error Maximum ratio combining Maximum-likelihood detector Alamouti Space time block code Quasi orthogonal Space time block code 1X4 SIMO 4X4 MIMO SNR (db) (Signal noise ratio) 18

19 2. Multi Antenna Solutions in Vehicle Environment Multi antenna performance in vehicle environment Vehicle to vehicle on coming vehicle in urban canyon (802.11p) FER (Fram me error rate) Minimum mean square error Maximum-likelihood detector Maximum ratio combining Alamouti Space time block code Quasi orthogonal Space time block code SNR (db) (Signal noise ratio) 1X4 SIMO 4X4 MIMO Deeper numerical evaluations are required. 19

20 3. Advanced Multi Antenna Solutions Multi User MIMO(Multiple Input Multiple Output) Forming multiple focused beams or using Tx diversity techniques to enable simultaneous communications with multiple users( ~ devices). (Typically beamforming is done by a base station or an access point.) Increase total throughput of the transmissions to multiple users by spatially distributed transmission resources. (Single User) MIMO Base Station Base Station MU(Multi User) MIMO Mobile Station 1 Mobile Station 2 Mobile Station Mobile Station 3 Reference: F. Mlinarsky, Testing MIMO Radios, ( Digi Key web seminar, Jan 27 31) Y. Hara, et al., Basic Algorithm of Multi Antenna Technologies, Japan IEEE conference ( 10) 20

21 3. Advanced Multi Antenna Solutions CoMP(Cooperative Multi Points) Multiple base stations cooperate to transmit to single users or multiple users. CoMP was originally invented for the improvement of the reception in cell(coverage of base station) edges. Coordinated Scheduling Joint Processing CSI(Channel State Information) and data exchange between each base station Coordinated transmission to the mobile station Coordinated Beamforming Reference: L. Wang, Advances in Coordinated Multi Cell Multi User MIMO system, (ieee web seminar) 21

22 4. Next Steps Because of the time limitation, we focused on introducing various multi antenna solutions. Near term planning: Conduct deeper numerical analysis of multi antenna solutions for each automotive or ITS application. We are planning to show our progress at the next opportunity. Longer term planning: Propose utilizingadvanced multi antennasolutions solutions, for automotive or ITS applications. Study advantages and challenges on how to apply them to each automotive or ITS application. 22

23 Thank you for your attention!! Hiro Onishi Alpine Electronics Research of America, Inc. la.com, Tel: Fanny Mlinarsky octoscope, Inc. Tel: Slide design: Mari Hatazawa la.com 23

WiMAX Summit Testing Requirements for Successful WiMAX Deployments. Fanny Mlinarsky. 28-Feb-07

WiMAX Summit Testing Requirements for Successful WiMAX Deployments. Fanny Mlinarsky. 28-Feb-07 WiMAX Summit 2007 Testing Requirements for Successful WiMAX Deployments Fanny Mlinarsky 28-Feb-07 Municipal Multipath Environment www.octoscope.com 2 WiMAX IP-Based Architecture * * Commercial off-the-shelf

More information

for Crash Warning Applications

for Crash Warning Applications DSRC Performance Assessment for Crash Warning Applications Fumio Watanabe (Alps Electric North America, Inc.) Carlos Velasquez (Alps Electric North America, Inc.) Hiro Onishi (Alpine Electronics Research

More information

HOW DO MIMO RADIOS WORK? Adaptability of Modern and LTE Technology. By Fanny Mlinarsky 1/12/2014

HOW DO MIMO RADIOS WORK? Adaptability of Modern and LTE Technology. By Fanny Mlinarsky 1/12/2014 By Fanny Mlinarsky 1/12/2014 Rev. A 1/2014 Wireless technology has come a long way since mobile phones first emerged in the 1970s. Early radios were all analog. Modern radios include digital signal processing

More information

3G Evolution. Outline. Chapter: Multi-antenna configurations. Introduction. Introduction. Multi-antenna techniques. Multiple receiver antennas, SIMO

3G Evolution. Outline. Chapter: Multi-antenna configurations. Introduction. Introduction. Multi-antenna techniques. Multiple receiver antennas, SIMO Chapter: 3G Evolution 6 Outline Introduction Multi-antenna configurations Multi-antenna t techniques Vanja Plicanic vanja.plicanic@eit.lth.se lth Multi-antenna techniques Multiple transmitter antennas,

More information

MIMO I: Spatial Diversity

MIMO I: Spatial Diversity MIMO I: Spatial Diversity COS 463: Wireless Networks Lecture 16 Kyle Jamieson [Parts adapted from D. Halperin et al., T. Rappaport] What is MIMO, and why? Multiple-Input, Multiple-Output (MIMO) communications

More information

THROUGHPUT TEST METHODS FOR MIMO RADIOS

THROUGHPUT TEST METHODS FOR MIMO RADIOS THROUGHPUT TEST METHODS FOR MIMO RADIOS 9-Jan-2014 Fanny Mlinarsky fm@octoscope.com Telephone: +1.978.376.5841 www.octoscope.com Massachusetts, USA Wireless capacity / throughput Brief History of Wireless

More information

CHAPTER 2 WIRELESS CHANNEL

CHAPTER 2 WIRELESS CHANNEL CHAPTER 2 WIRELESS CHANNEL 2.1 INTRODUCTION In mobile radio channel there is certain fundamental limitation on the performance of wireless communication system. There are many obstructions between transmitter

More information

MIMO Systems and Applications

MIMO Systems and Applications MIMO Systems and Applications Mário Marques da Silva marques.silva@ieee.org 1 Outline Introduction System Characterization for MIMO types Space-Time Block Coding (open loop) Selective Transmit Diversity

More information

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications ELEC E7210: Communication Theory Lecture 11: MIMO Systems and Space-time Communications Overview of the last lecture MIMO systems -parallel decomposition; - beamforming; - MIMO channel capacity MIMO Key

More information

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN Evolved UTRA and UTRAN Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA Evolved UTRA (E-UTRA) and UTRAN represent long-term evolution (LTE) of technology to maintain continuous

More information

Multiple Antenna Processing for WiMAX

Multiple Antenna Processing for WiMAX Multiple Antenna Processing for WiMAX Overview Wireless operators face a myriad of obstacles, but fundamental to the performance of any system are the propagation characteristics that restrict delivery

More information

MIMO in 4G Wireless. Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC

MIMO in 4G Wireless. Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC MIMO in 4G Wireless Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC About the presenter: Iqbal is the founder of training and consulting firm USPurtek LLC, which specializes

More information

MU-MIMO with Fixed Beamforming for

MU-MIMO with Fixed Beamforming for MU-MIMO with Fixed Beamforming for FDD Systems Manfred Litzenburger, Thorsten Wild, Michael Ohm Alcatel-Lucent R&I Stuttgart, Germany MU-MIMO - Motivation MU-MIMO Supporting multiple users in a cell on

More information

Wireless Physical Layer Concepts: Part III

Wireless Physical Layer Concepts: Part III Wireless Physical Layer Concepts: Part III Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

2-2 Advanced Wireless Packet Cellular System using Multi User OFDM- SDMA/Inter-BTS Cooperation with 1.3 Gbit/s Downlink Capacity

2-2 Advanced Wireless Packet Cellular System using Multi User OFDM- SDMA/Inter-BTS Cooperation with 1.3 Gbit/s Downlink Capacity 2-2 Advanced Wireless Packet Cellular System using Multi User OFDM- SDMA/Inter-BTS Cooperation with 1.3 Gbit/s Downlink Capacity KAWAZAWA Toshio, INOUE Takashi, FUJISHIMA Kenzaburo, TAIRA Masanori, YOSHIDA

More information

Prof. Xinyu Zhang. Dept. of Electrical and Computer Engineering University of Wisconsin-Madison

Prof. Xinyu Zhang. Dept. of Electrical and Computer Engineering University of Wisconsin-Madison Prof. Xinyu Zhang Dept. of Electrical and Computer Engineering University of Wisconsin-Madison 1" Overview of MIMO communications Single-user MIMO Multi-user MIMO Network MIMO 3" MIMO (Multiple-Input Multiple-Output)

More information

Ten Things You Should Know About MIMO

Ten Things You Should Know About MIMO Ten Things You Should Know About MIMO 4G World 2009 presented by: David L. Barner www/agilent.com/find/4gworld Copyright 2009 Agilent Technologies, Inc. The Full Agenda Intro System Operation 1: Cellular

More information

Exam 3 is two weeks from today. Today s is the final lecture that will be included on the exam.

Exam 3 is two weeks from today. Today s is the final lecture that will be included on the exam. ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010 Lecture 19 Today: (1) Diversity Exam 3 is two weeks from today. Today s is the final lecture that will be included on the exam.

More information

The Impact of EVA & EPA Parameters on LTE- MIMO System under Fading Environment

The Impact of EVA & EPA Parameters on LTE- MIMO System under Fading Environment The Impact of EVA & EPA Parameters on LTE- MIMO System under Fading Environment Ankita Rajkhowa 1, Darshana Kaushik 2, Bhargab Jyoti Saikia 3, Parismita Gogoi 4 1, 2, 3, 4 Department of E.C.E, Dibrugarh

More information

Abstract. Marío A. Bedoya-Martinez. He joined Fujitsu Europe Telecom R&D Centre (UK), where he has been working on R&D of Second-and

Abstract. Marío A. Bedoya-Martinez. He joined Fujitsu Europe Telecom R&D Centre (UK), where he has been working on R&D of Second-and Abstract The adaptive antenna array is one of the advanced techniques which could be implemented in the IMT-2 mobile telecommunications systems to achieve high system capacity. In this paper, an integrated

More information

ADVANCED WIRELESS TECHNOLOGIES. Aditya K. Jagannatham Indian Institute of Technology Kanpur

ADVANCED WIRELESS TECHNOLOGIES. Aditya K. Jagannatham Indian Institute of Technology Kanpur ADVANCED WIRELESS TECHNOLOGIES Aditya K. Jagannatham Indian Institute of Technology Kanpur Wireless Signal Fast Fading The wireless signal can reach the receiver via direct and scattered paths. As a result,

More information

K.NARSING RAO(08R31A0425) DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING (NOVH).

K.NARSING RAO(08R31A0425) DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING (NOVH). Smart Antenna K.NARSING RAO(08R31A0425) DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING (NOVH). ABSTRACT:- One of the most rapidly developing areas of communications is Smart Antenna systems. This paper

More information

Performance Evaluation of STBC-OFDM System for Wireless Communication

Performance Evaluation of STBC-OFDM System for Wireless Communication Performance Evaluation of STBC-OFDM System for Wireless Communication Apeksha Deshmukh, Prof. Dr. M. D. Kokate Department of E&TC, K.K.W.I.E.R. College, Nasik, apeksha19may@gmail.com Abstract In this paper

More information

2. LITERATURE REVIEW

2. LITERATURE REVIEW 2. LITERATURE REVIEW In this section, a brief review of literature on Performance of Antenna Diversity Techniques, Alamouti Coding Scheme, WiMAX Broadband Wireless Access Technology, Mobile WiMAX Technology,

More information

The 5th Smart Antenna Workshop 21 April 2003, Hanyang University, Korea Broadband Mobile Technology Fumiyuki Adachi

The 5th Smart Antenna Workshop 21 April 2003, Hanyang University, Korea Broadband Mobile Technology Fumiyuki Adachi The 5th Smart Antenna Workshop 21 April 2003, Hanyang University, Korea Broadband Mobile Technology Fumiyuki Adachi Dept. of Electrical and Communications Engineering, Tohoku University, Japan adachi@ecei.tohoku.ac.jp

More information

SNS COLLEGE OF ENGINEERING COIMBATORE DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK

SNS COLLEGE OF ENGINEERING COIMBATORE DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK SNS COLLEGE OF ENGINEERING COIMBATORE 641107 DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK EC6801 WIRELESS COMMUNICATION UNIT-I WIRELESS CHANNELS PART-A 1. What is propagation model? 2. What are the

More information

Contents at a Glance

Contents at a Glance Contents at a Glance Preface Acknowledgments V VII Chapter 1 MIMO systems: Multiple Antenna Techniques Yiqing Zhou, Zhengang Pan, Kai-Kit Wong 1 Chapter 2 Modeling of MIMO Mobile-to-Mobile Channels Matthias

More information

Testing c2k Mobile Stations Using a Digitally Generated Faded Signal

Testing c2k Mobile Stations Using a Digitally Generated Faded Signal Testing c2k Mobile Stations Using a Digitally Generated Faded Signal Agenda Overview of Presentation Fading Overview Mitigation Test Methods Agenda Fading Presentation Fading Overview Mitigation Test Methods

More information

CHAPTER 5 DIVERSITY. Xijun Wang

CHAPTER 5 DIVERSITY. Xijun Wang CHAPTER 5 DIVERSITY Xijun Wang WEEKLY READING 1. Goldsmith, Wireless Communications, Chapters 7 2. Tse, Fundamentals of Wireless Communication, Chapter 3 2 FADING HURTS THE RELIABILITY n The detection

More information

Transmit Diversity Schemes for CDMA-2000

Transmit Diversity Schemes for CDMA-2000 1 of 5 Transmit Diversity Schemes for CDMA-2000 Dinesh Rajan Rice University 6100 Main St. Houston, TX 77005 dinesh@rice.edu Steven D. Gray Nokia Research Center 6000, Connection Dr. Irving, TX 75240 steven.gray@nokia.com

More information

BER PERFORMANCE IMPROVEMENT USING MIMO TECHNIQUE OVER RAYLEIGH WIRELESS CHANNEL with DIFFERENT EQUALIZERS

BER PERFORMANCE IMPROVEMENT USING MIMO TECHNIQUE OVER RAYLEIGH WIRELESS CHANNEL with DIFFERENT EQUALIZERS BER PERFORMANCE IMPROVEMENT USING MIMO TECHNIQUE OVER RAYLEIGH WIRELESS CHANNEL with DIFFERENT EQUALIZERS Amit Kumar Sahu *, Sudhansu Sekhar Singh # * Kalam Institute of Technology, Berhampur, Odisha,

More information

MIMO Systems in Wireless Networks

MIMO Systems in Wireless Networks MIMO Systems in Wireless Networks Michail Matthaiou Signal Processing Group Department of Signals and Systems Chalmers University of Technology 12 April 2011 Personal background 1999-2004: Diploma in Electrical

More information

PERFORMANCE ANALYSIS OF DOWNLINK MIMO IN 2X2 MOBILE WIMAX SYSTEM

PERFORMANCE ANALYSIS OF DOWNLINK MIMO IN 2X2 MOBILE WIMAX SYSTEM PERFORMANCE ANALYSIS OF DOWNLINK MIMO IN 2X2 MOBILE WIMAX SYSTEM N.Prabakaran Research scholar, Department of ETCE, Sathyabama University, Rajiv Gandhi Road, Chennai, Tamilnadu 600119, India prabakar_kn@yahoo.co.in

More information

Filter Bank Multi-Carrier (FBMC) for Future Wireless Systems

Filter Bank Multi-Carrier (FBMC) for Future Wireless Systems Filter Bank Multi-Carrier (FBMC) for Future Wireless Systems CD Laboratory Workshop Ronald Nissel November 15, 2016 Motivation Slide 2 / 27 Multicarrier Modulation Frequency index, l 17 0 0 x l,k...transmitted

More information

1

1 sebastian.caban@nt.tuwien.ac.at 1 This work has been funded by the Christian Doppler Laboratory for Wireless Technologies for Sustainable Mobility and the Vienna University of Technology. Outline MIMO

More information

Application Note. StarMIMO. RX Diversity and MIMO OTA Test Range

Application Note. StarMIMO. RX Diversity and MIMO OTA Test Range Application Note StarMIMO RX Diversity and MIMO OTA Test Range Contents Introduction P. 03 StarMIMO setup P. 04 1/ Multi-probe technology P. 05 Cluster vs Multiple Cluster setups Volume vs Number of probes

More information

Evolution of Cellular Systems. Challenges for Broadband Wireless Systems. Convergence of Wireless, Computing and Internet is on the Way

Evolution of Cellular Systems. Challenges for Broadband Wireless Systems. Convergence of Wireless, Computing and Internet is on the Way International Technology Conference, 14~15 Jan. 2003, Hong Kong Technology Drivers for Tomorrow Challenges for Broadband Systems Fumiyuki Adachi Dept. of Electrical and Communications Engineering, Tohoku

More information

Transforming MIMO Test

Transforming MIMO Test Transforming MIMO Test MIMO channel modeling and emulation test challenges Presented by: Kevin Bertlin PXB Product Engineer Page 1 Outline Wireless Technologies Review Multipath Fading and Antenna Diversity

More information

Improvement of the Throughput-SNR Tradeoff using a 4G Adaptive MCM system

Improvement of the Throughput-SNR Tradeoff using a 4G Adaptive MCM system , June 30 - July 2, 2010, London, U.K. Improvement of the Throughput-SNR Tradeoff using a 4G Adaptive MCM system Insik Cho, Changwoo Seo, Gilsang Yoon, Jeonghwan Lee, Sherlie Portugal, Intae wang Abstract

More information

Performance Study of MIMO-OFDM System in Rayleigh Fading Channel with QO-STB Coding Technique

Performance Study of MIMO-OFDM System in Rayleigh Fading Channel with QO-STB Coding Technique e-issn 2455 1392 Volume 2 Issue 6, June 2016 pp. 190 197 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com Performance Study of MIMO-OFDM System in Rayleigh Fading Channel with QO-STB Coding

More information

Advanced Antenna Technology

Advanced Antenna Technology Advanced Antenna Technology Abdus Salam ICTP, February 2004 School on Digital Radio Communications for Research and Training in Developing Countries Ermanno Pietrosemoli Latin American Networking School

More information

STBC (SPACE - TIME BLOCK CODED) MIMO SYSTEM

STBC (SPACE - TIME BLOCK CODED) MIMO SYSTEM STBC (SPACE - TIME BLOCK CODED) MIMO SYSTEM Submitted to Dr. Satya Prasad Majumder Submitted by Mafruza Ruba Lina Student ID : 05210012 Anindita Islam Student ID : 06110011 Sajerin Jahan Student ID : 06110029

More information

Optimization of Coded MIMO-Transmission with Antenna Selection

Optimization of Coded MIMO-Transmission with Antenna Selection Optimization of Coded MIMO-Transmission with Antenna Selection Biljana Badic, Paul Fuxjäger, Hans Weinrichter Institute of Communications and Radio Frequency Engineering Vienna University of Technology

More information

Beamforming for 4.9G/5G Networks

Beamforming for 4.9G/5G Networks Beamforming for 4.9G/5G Networks Exploiting Massive MIMO and Active Antenna Technologies White Paper Contents 1. Executive summary 3 2. Introduction 3 3. Beamforming benefits below 6 GHz 5 4. Field performance

More information

Doppler Frequency Effect on Network Throughput Using Transmit Diversity

Doppler Frequency Effect on Network Throughput Using Transmit Diversity International Journal of Sciences: Basic and Applied Research (IJSBAR) ISSN 2307-4531 (Print & Online) http://gssrr.org/index.php?journal=journalofbasicandapplied ---------------------------------------------------------------------------------------------------------------------------

More information

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 10 - LTE (4G) -Technologies used in 4G and 5G The Need for LTE Long Term Evolution (LTE) With the growth of mobile data and mobile users, it becomes essential

More information

MU-MIMO in LTE/LTE-A Performance Analysis. Rizwan GHAFFAR, Biljana BADIC

MU-MIMO in LTE/LTE-A Performance Analysis. Rizwan GHAFFAR, Biljana BADIC MU-MIMO in LTE/LTE-A Performance Analysis Rizwan GHAFFAR, Biljana BADIC Outline 1 Introduction to Multi-user MIMO Multi-user MIMO in LTE and LTE-A 3 Transceiver Structures for Multi-user MIMO Rizwan GHAFFAR

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Marc Barberis 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile Broadband IoT

More information

Effectiveness of a Fading Emulator in Evaluating the Performance of MIMO Systems by Comparison with a Propagation Test

Effectiveness of a Fading Emulator in Evaluating the Performance of MIMO Systems by Comparison with a Propagation Test Effectiveness of a Fading in Evaluating the Performance of MIMO Systems by Comparison with a Propagation Test A. Yamamoto *, T. Sakata *, T. Hayashi *, K. Ogawa *, J. Ø. Nielsen #, G. F. Pedersen #, J.

More information

Adaptive Digital Video Transmission with STBC over Rayleigh Fading Channels

Adaptive Digital Video Transmission with STBC over Rayleigh Fading Channels 2012 7th International ICST Conference on Communications and Networking in China (CHINACOM) Adaptive Digital Video Transmission with STBC over Rayleigh Fading Channels Jia-Chyi Wu Dept. of Communications,

More information

Advanced Communication Systems -Wireless Communication Technology

Advanced Communication Systems -Wireless Communication Technology Advanced Communication Systems -Wireless Communication Technology Dr. Junwei Lu The School of Microelectronic Engineering Faculty of Engineering and Information Technology Outline Introduction to Wireless

More information

IMPLEMENTATION OF ADVANCED TWO-DIMENSIONAL INTERPOLATION-BASED CHANNEL ESTIMATION FOR OFDM SYSTEMS

IMPLEMENTATION OF ADVANCED TWO-DIMENSIONAL INTERPOLATION-BASED CHANNEL ESTIMATION FOR OFDM SYSTEMS IMPLEMENTATION OF ADVANCED TWO-DIMENSIONAL INTERPOLATION-BASED CHANNEL ESTIMATION FOR OFDM SYSTEMS Chiyoung Ahn, Hakmin Kim, Yusuk Yun and Seungwon Choi HY-SDR Research Center, Hanyang University, Seoul,

More information

Implementation of MIMO-OFDM System Based on MATLAB

Implementation of MIMO-OFDM System Based on MATLAB Implementation of MIMO-OFDM System Based on MATLAB Sushmitha Prabhu 1, Gagandeep Shetty 2, Suraj Chauhan 3, Renuka Kajur 4 1,2,3,4 Department of Electronics and Communication Engineering, PESIT-BSC, Bangalore,

More information

Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes

Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes Volume 4, Issue 6, June (016) Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes Pranil S Mengane D. Y. Patil

More information

Channel Modelling ETIN10. Directional channel models and Channel sounding

Channel Modelling ETIN10. Directional channel models and Channel sounding Channel Modelling ETIN10 Lecture no: 7 Directional channel models and Channel sounding Ghassan Dahman / Fredrik Tufvesson Department of Electrical and Information Technology Lund University, Sweden 2014-02-17

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 What s Behind 5G Wireless Communications? 서기환과장 2015 The MathWorks, Inc. 2 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile

More information

Alvarion Advanced Antenna Systems

Alvarion Advanced Antenna Systems 4Motion Alvarion Advanced Antenna Systems Leveraging MIMO and diversity schemes to take WiMAX infrastructure to the next level of wireless broadband White Paper SentieM TM Contents Abstract 3 AAS Enables

More information

Keysight Technologies MIMO Channel Modeling and Emulation Test Challenges. Application Note

Keysight Technologies MIMO Channel Modeling and Emulation Test Challenges. Application Note Keysight Technologies MIMO Channel Modeling and Emulation Test Challenges Application Note This application note begins with a review of MIMO technologies and the basic properties of wireless channels

More information

Hybrid Index Modeling Model for Memo System with Ml Sub Detector

Hybrid Index Modeling Model for Memo System with Ml Sub Detector IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 PP 14-18 www.iosrjen.org Hybrid Index Modeling Model for Memo System with Ml Sub Detector M. Dayanidhy 1 Dr. V. Jawahar Senthil

More information

Nomadic Communications n/ac: MIMO and Space Diversity

Nomadic Communications n/ac: MIMO and Space Diversity Nomadic Communications 802.11n/ac: MIMO and Space Diversity Renato Lo Cigno ANS Group locigno@disi.unitn.it http://disi.unitn.it/locigno/teaching-duties/nomadic-communications CopyRight Quest opera è protetta

More information

Test strategy towards Massive MIMO

Test strategy towards Massive MIMO Test strategy towards Massive MIMO Using LTE-Advanced Pro efd-mimo Shatrughan Singh, Technical Leader Subramaniam H, Senior Technical Leader Jaison John Puliyathu Mathew, Senior Engg. Project Manager Abstract

More information

Orthogonal Cyclic Prefix for Time Synchronization in MIMO-OFDM

Orthogonal Cyclic Prefix for Time Synchronization in MIMO-OFDM Orthogonal Cyclic Prefix for Time Synchronization in MIMO-OFDM Gajanan R. Gaurshetti & Sanjay V. Khobragade Dr. Babasaheb Ambedkar Technological University, Lonere E-mail : gaurshetty@gmail.com, svk2305@gmail.com

More information

EE360: Lecture 6 Outline MUD/MIMO in Cellular Systems

EE360: Lecture 6 Outline MUD/MIMO in Cellular Systems EE360: Lecture 6 Outline MUD/MIMO in Cellular Systems Announcements Project proposals due today Makeup lecture tomorrow Feb 2, 5-6:15, Gates 100 Multiuser Detection in cellular MIMO in Cellular Multiuser

More information

Keywords MISO, BER, SNR, EGT, SDT, MRT & BPSK.

Keywords MISO, BER, SNR, EGT, SDT, MRT & BPSK. Volume 5, Issue 6, June 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Comparison of Beamforming

More information

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline Multiple Antennas Capacity and Basic Transmission Schemes Mats Bengtsson, Björn Ottersten Basic Transmission Schemes 1 September 8, 2005 Presentation Outline Channel capacity Some fine details and misconceptions

More information

Adaptive Precoded MIMO for LTE Wireless Communication

Adaptive Precoded MIMO for LTE Wireless Communication IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Adaptive Precoded MIMO for LTE Wireless Communication To cite this article: A F Nabilla and T C Tiong 2015 IOP Conf. Ser.: Mater.

More information

AWGN Channel Performance Analysis of QO-STB Coded MIMO- OFDM System

AWGN Channel Performance Analysis of QO-STB Coded MIMO- OFDM System AWGN Channel Performance Analysis of QO-STB Coded MIMO- OFDM System Pranil Mengane 1, Ajitsinh Jadhav 2 12 Department of Electronics & Telecommunication Engg, D.Y. Patil College of Engg & Tech, Kolhapur

More information

Cooperative MIMO schemes optimal selection for wireless sensor networks

Cooperative MIMO schemes optimal selection for wireless sensor networks Cooperative MIMO schemes optimal selection for wireless sensor networks Tuan-Duc Nguyen, Olivier Berder and Olivier Sentieys IRISA Ecole Nationale Supérieure de Sciences Appliquées et de Technologie 5,

More information

Cooperative versus Full-Duplex Communication in Cellular Networks: A Comparison of the Total Degrees of Freedom. Amr El-Keyi and Halim Yanikomeroglu

Cooperative versus Full-Duplex Communication in Cellular Networks: A Comparison of the Total Degrees of Freedom. Amr El-Keyi and Halim Yanikomeroglu Cooperative versus Full-Duplex Communication in Cellular Networks: A Comparison of the Total Degrees of Freedom Amr El-Keyi and Halim Yanikomeroglu Outline Introduction Full-duplex system Cooperative system

More information

2.

2. PERFORMANCE ANALYSIS OF STBC-MIMO OFDM SYSTEM WITH DWT & FFT Shubhangi R Chaudhary 1,Kiran Rohidas Jadhav 2. Department of Electronics and Telecommunication Cummins college of Engineering for Women Pune,

More information

5G 무선통신시스템설계 : WLAN/LTE/5G

5G 무선통신시스템설계 : WLAN/LTE/5G 1 5G 무선통신시스템설계 : WLAN/LTE/5G 김종남 Application Engineer 2017 The MathWorks, Inc. 2 Agenda Innovations in Mobile Communications Waveform Generation and End-to-end Simulation WLAN, LTE, 5G (FBMC, UFMC) RF

More information

Study and Analysis of 2x2 MIMO Systems for Different Modulation Techniques using MATLAB

Study and Analysis of 2x2 MIMO Systems for Different Modulation Techniques using MATLAB Study and Analysis of 2x2 MIMO Systems for Different Modulation Techniques using MATLAB Ramanagoud Biradar 1, Dr.G.Sadashivappa 2 Student, Telecommunication, RV college of Engineering, Bangalore, India

More information

SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS

SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS RASHMI SABNUAM GUPTA 1 & KANDARPA KUMAR SARMA 2 1 Department of Electronics and Communication Engineering, Tezpur University-784028,

More information

Antennas Multiple antenna systems

Antennas Multiple antenna systems Channel Modelling ETIM10 Lecture no: 8 Antennas Multiple antenna systems Fredrik Tufvesson Department of Electrical and Information Technology Lund University, Sweden Fredrik.Tufvesson@eit.lth.se 2012-02-13

More information

All Beamforming Solutions Are Not Equal

All Beamforming Solutions Are Not Equal White Paper All Beamforming Solutions Are Not Equal Executive Summary This white paper compares and contrasts the two major implementations of beamforming found in the market today: Switched array beamforming

More information

EXPERIMENTAL EVALUATION OF MIMO ANTENA SELECTION SYSTEM USING RF-MEMS SWITCHES ON A MOBILE TERMINAL

EXPERIMENTAL EVALUATION OF MIMO ANTENA SELECTION SYSTEM USING RF-MEMS SWITCHES ON A MOBILE TERMINAL EXPERIMENTAL EVALUATION OF MIMO ANTENA SELECTION SYSTEM USING RF-MEMS SWITCHES ON A MOBILE TERMINAL Atsushi Honda, Ichirou Ida, Yasuyuki Oishi, Quoc Tuan Tran Shinsuke Hara Jun-ichi Takada Fujitsu Limited

More information

CHANNEL ESTIMATION FOR LTE DOWNLINK

CHANNEL ESTIMATION FOR LTE DOWNLINK MEE09:58 CHANNEL ESTIMATION FOR LTE DOWNLINK Asad Mehmood Waqas Aslam Cheema This thesis is presented as part of Degree of Master of Science in Electrical Engineering Blekinge Institute of Technology September

More information

Lecture 12: Summary Advanced Digital Communications (EQ2410) 1

Lecture 12: Summary Advanced Digital Communications (EQ2410) 1 : Advanced Digital Communications (EQ2410) 1 Monday, Mar. 7, 2016 15:00-17:00, B23 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Overview 1 2 3 4 2 / 15 Equalization Maximum

More information

Spatial Modulation Testbed

Spatial Modulation Testbed Modulation Testbed Professor Harald Haas Institute for Digital Communications (IDCOM) Joint Research Institute for Signal and Image Processing School of Engineering Classical Multiplexing MIMO Transmitter

More information

Planning of LTE Radio Networks in WinProp

Planning of LTE Radio Networks in WinProp Planning of LTE Radio Networks in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0

More information

Performance Analysis of the D-STTD Communication System with AMC Scheme

Performance Analysis of the D-STTD Communication System with AMC Scheme , 2009, 5, 325-329 doi:10.4236/ijcns.2009.25035 Published Online August 2009 (http://www.scirp.org/journal/ijcns/). Performance Analysis of the D-STTD Communication System with AMC Scheme Jeonghwan LEE

More information

MATLAB COMMUNICATION TITLES

MATLAB COMMUNICATION TITLES MATLAB COMMUNICATION TITLES -2018 ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING(OFDM) 1 ITCM01 New PTS Schemes For PAPR Reduction Of OFDM Signals Without Side Information 2 ITCM02 Design Space-Time Trellis

More information

CHAPTER 8 MIMO. Xijun Wang

CHAPTER 8 MIMO. Xijun Wang CHAPTER 8 MIMO Xijun Wang WEEKLY READING 1. Goldsmith, Wireless Communications, Chapters 10 2. Tse, Fundamentals of Wireless Communication, Chapter 7-10 2 MIMO 3 BENEFITS OF MIMO n Array gain The increase

More information

Performance analysis of MISO-OFDM & MIMO-OFDM Systems

Performance analysis of MISO-OFDM & MIMO-OFDM Systems Performance analysis of MISO-OFDM & MIMO-OFDM Systems Kavitha K V N #1, Abhishek Jaiswal *2, Sibaram Khara #3 1-2 School of Electronics Engineering, VIT University Vellore, Tamil Nadu, India 3 Galgotias

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY PERFORMANCE IMPROVEMENT OF CONVOLUTION CODED OFDM SYSTEM WITH TRANSMITTER DIVERSITY SCHEME Amol Kumbhare *, DR Rajesh Bodade *

More information

System-Level Performance of Downlink Non-orthogonal Multiple Access (NOMA) Under Various Environments

System-Level Performance of Downlink Non-orthogonal Multiple Access (NOMA) Under Various Environments System-Level Permance of Downlink n-orthogonal Multiple Access (N) Under Various Environments Yuya Saito, Anass Benjebbour, Yoshihisa Kishiyama, and Takehiro Nakamura 5G Radio Access Network Research Group,

More information

Comb type Pilot arrangement based Channel Estimation for Spatial Multiplexing MIMO-OFDM Systems

Comb type Pilot arrangement based Channel Estimation for Spatial Multiplexing MIMO-OFDM Systems Comb type Pilot arrangement based Channel Estimation for Spatial Multiplexing MIMO-OFDM Systems Mr Umesha G B 1, Dr M N Shanmukha Swamy 2 1Research Scholar, Department of ECE, SJCE, Mysore, Karnataka State,

More information

Weight Tracking Method for OFDM Adaptive Array in Time Variant Fading Channel

Weight Tracking Method for OFDM Adaptive Array in Time Variant Fading Channel Weight Tracking Method for OFDM Adaptive Array in Time Variant Fading Channel Tomohiro Hiramoto, Atsushi Mizuki, Masaki Shibahara, Takeo Fujii and Iwao Sasase Dept. of Information & Computer Science, Keio

More information

Introduction to WiMAX Dr. Piraporn Limpaphayom

Introduction to WiMAX Dr. Piraporn Limpaphayom Introduction to WiMAX Dr. Piraporn Limpaphayom 1 WiMAX : Broadband Wireless 2 1 Agenda Introduction to Broadband Wireless Overview of WiMAX and Application WiMAX: PHY layer Broadband Wireless Channel OFDM

More information

M2M Cellular Antennas: SISO v. MIMO

M2M Cellular Antennas: SISO v. MIMO M2M Cellular Antennas: SISO v. MIMO Introduction This whitepaper discusses Single Input Single Output ( SISO ) and Multiple Input Multiple Output ( MIMO ) antennas for use in 4G 1 LTE cellular technology.

More information

s3.kth.se Opportunistic Beamforming with Dumb Antennas for Clustered OFDM

s3.kth.se Opportunistic Beamforming with Dumb Antennas for Clustered OFDM Opportunistic Beamforming with Dumb Antennas for Clustered OFDM Patrick Svedman, Katie Wilson and Len Cimini 1 November 28, 2003 Outline PSfrag replacements OFDM Multiuser Diversity Opp. Beamforming Opp.

More information

Performance Analysis of n Wireless LAN Physical Layer

Performance Analysis of n Wireless LAN Physical Layer 120 1 Performance Analysis of 802.11n Wireless LAN Physical Layer Amr M. Otefa, Namat M. ElBoghdadly, and Essam A. Sourour Abstract In the last few years, we have seen an explosive growth of wireless LAN

More information

Channel Modelling ETI 085

Channel Modelling ETI 085 Channel Modelling ETI 085 Lecture no: 7 Directional channel models Channel sounding Why directional channel models? The spatial domain can be used to increase the spectral efficiency i of the system Smart

More information

International Journal of Advance Engineering and Research Development. Channel Estimation for MIMO based-polar Codes

International Journal of Advance Engineering and Research Development. Channel Estimation for MIMO based-polar Codes Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 5, Issue 01, January -2018 Channel Estimation for MIMO based-polar Codes 1

More information

Beamforming and Synchronization Algorithms Integration for OFDM HAP-Based Communications

Beamforming and Synchronization Algorithms Integration for OFDM HAP-Based Communications Beamforming and Synchronization Algorithms Integration for OFDM HAP-Based Communications Daniele Borio, 1 Laura Camoriano, 2 Letizia Lo Presti, 1,3 and Marina Mondin 1,3 High Altitude Platforms (HAPs)

More information

MIMO RFIC Test Architectures

MIMO RFIC Test Architectures MIMO RFIC Test Architectures Christopher D. Ziomek and Matthew T. Hunter ZTEC Instruments, Inc. Abstract This paper discusses the practical constraints of testing Radio Frequency Integrated Circuit (RFIC)

More information

the measurement requirements posed by MIMO as well as a thorough discussion of MIMO itself. BROADBAND SIGNAL CHALLENGES

the measurement requirements posed by MIMO as well as a thorough discussion of MIMO itself. BROADBAND SIGNAL CHALLENGES the measurement requirements posed by MIMO as well as a thorough discussion of MIMO itself. BROADBAND SIGNAL CHALLENGES Any signal with a broad bandwidth is susceptible to the potentially destructive effects

More information

Study of Space-Time Coding Schemes for Transmit Antenna Selection

Study of Space-Time Coding Schemes for Transmit Antenna Selection American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-03, Issue-11, pp-01-09 www.ajer.org Research Paper Open Access Study of Space-Time Coding Schemes for Transmit

More information

A Practical Channel Estimation Scheme for Indoor 60GHz Massive MIMO System. Arumugam Nallanathan King s College London

A Practical Channel Estimation Scheme for Indoor 60GHz Massive MIMO System. Arumugam Nallanathan King s College London A Practical Channel Estimation Scheme for Indoor 60GHz Massive MIMO System Arumugam Nallanathan King s College London Performance and Efficiency of 5G Performance Requirements 0.1~1Gbps user rates Tens

More information

Road to High Speed WLAN. Xiaowen Wang

Road to High Speed WLAN. Xiaowen Wang Road to High Speed WLAN Xiaowen Wang Introduction 802.11n standardization process. Technologies enhanced throughput Raw data rate enhancement Overhead management Final remarks LSI Confidential 2 Background

More information