Wireless Communications with sub-mm Waves - Specialties of THz Indoor Radio Channels

Size: px
Start display at page:

Download "Wireless Communications with sub-mm Waves - Specialties of THz Indoor Radio Channels"

Transcription

1 Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Wireless Communications with sub-mm Waves - Specialties of THz Indoor Radio Channels Sebastian Priebe, Thomas Kürner,

2 Wireless Communications with sub-mm Waves - Specialties of THz Indoor Radio Channels 1. Introduction Why THz Frequencies for Communications? Feasibility Study Towards a Standard for THz Communications 2. The THz Indoor Radio Channel 3. Channel Measurements/Modeling 4. Summary Sebastian Priebe Wireless Communications with sub-mm Waves 2/22

3 Why THz Frequencies for Indoor Communications? (1) Common ground with nanonetworks: Terahertz frequencies, i.e. 300 GHz 3 THz, for data communications What are the drivers? Nanonetworks: Natural radiation of THz frequencies with graphene antennas Wireless indoor communications: Up to 100 Gbit/s required within a few years from now Sebastian Priebe Wireless Communications with sub-mm Waves 3/22

4 Why THz Frequencies for Indoor Communications? (2) Problem: Hardly any unregulated spectrum available below 300 GHz 3 khz 300 khz 300 khz 3 MHz 3 MHz 30 MHz 30 MHz 300 MHz 300 MHz 3 GHz 3 GHz 30 GHz 30 GHz 300 GHz à Shift to carrier frequencies in the THz range from 300 GHz onwards Sebastian Priebe Wireless Communications with sub-mm Waves 4/22

5 Why THz Frequencies for Indoor Communications? (3) Aim: Ultra high data rates of 100 Gbit/s and beyond over rather short distances Potential scenarios: Gbit/s Gbit/s (1) WPAN (2) Kiosk downloads Gbit/s Gbit/s à But: Is THz communication feasible? (3) WLAN (4) Video streaming Sebastian Priebe Wireless Communications with sub-mm Waves 5/22

6 Feasibility Study Transmission of a DVB-T test signal at 300 GHz: à Data rate: 36 Mbit/s with 64 QAM modulation à Achieved distance: 52 m à THz data transmission is technically feasible à Strong, increasing interest in sub mm-wave communications Sebastian Priebe Wireless Communications with sub-mm Waves 6/22

7 Towards a Standard for THz Communications On the way to 100 Gbit/s THz WPANs/WLANs: An international system standard will be required Feasibility studies Initiation of the IEEE THz Interest Group Propagation investigations Channel measurements Propagation modeling System simulations System design guidelines IEEE standard IEEE standard for for THz WPANs/ WLANs WLANs THz WPANs/ Accurate propagation modeling is necessary as input for system simulations à How does the THz indoor radio channel behave? à What are arising challenges? Sebastian Priebe Wireless Communications with sub-mm Waves 7/22

8 Wireless Communications with sub-mm Waves - Specialties of THz Indoor Radio Channels 1. Introduction 2. The THz Indoor Radio Channel Conventional vs. THz Radio Channels Propagation Mechanisms 3. Channel Measurements/Modeling 4. Summary Sebastian Priebe Wireless Communications with sub-mm Waves 8/22

9 Conventional vs. THz Radio Channels Comparison of conventional and THz communication channels: 2.4 GHz, 5 GHz 60 GHz 300 GHz Data rates 600 Mbit/s 4 Gbit/s Up to 100 Gbit/s Bandwidths 40 MHz 2 GHz GHz Output powers Limited by regulations 22 dbm Limited by technology and regulations; typically 10 dbm Currently limited by technology only << 10 dbm Path loss at 10 m 60 db 88 db 101 db Antenna gains Low ( 3 dbi) Medium ( dbi) High ( dbi) à Huge bandwidths à Very high path losses low output powers à Specific propagation mechanisms? Sebastian Priebe Wireless Communications with sub-mm Waves 9/22

10 Propagation Mechanisms (1) Propagation attenuation: Total attenuation = free space loss + atmospheric attenuation db FSL [db] db db 900 MHz (GSM) GHz (WLAN) 60 GHz (WPAN) 300 GHz d [m] à Challenge: Very high (atmospheric) attenuation à Solution (1): Line-of-sight connection à Solution (2): Highly directive antennas à Solution (3): Transmission in atmospheric windows, e.g GHz, GHz Sebastian Priebe Wireless Communications with sub-mm Waves 10/22

11 Propagation Mechanisms (2) Huge occupied bandwidths >> 10 GHz Channel frequency dependency: Demonstration: Ray tracing in an empty room at GHz 96 4 m RX Path P CIR Gain [db] [db] Total Power LOS only Reflections only TX 6 m f [GHz] à Challenge: Significant frequency dispersion è pulse form distortion à Solution: Equalization or pulse pre-distortion Sebastian Priebe Wireless Communications with sub-mm Waves 11/22

12 Propagation Mechanisms (3) Typical building materials must be considered as rough at THz frequencies Wallpaper Plaster Diffuse rough surface scattering occurs à Challenge: Multipath propagation and high reflection losses à Solution: Directive antennas for spatial multipath suppression Sebastian Priebe Wireless Communications with sub-mm Waves 12/22

13 Propagation Mechanisms (4) Dynamic ray shadowing by person movement: à Challenge: Blockage of line-of-sight path with high additional attenuation à Solution: - Dynamic antenna redirection to a different indirect transmission path - Electrically steerable antennas Sebastian Priebe Wireless Communications with sub-mm Waves 13/22

14 Propagation Mechanisms (5) Ray shadowing by objects: Office room in top view Direction of antenna beam TX RX RX Non-line-of-sight area Screen causing shadowing à Challenge: No line-of-sight available, very high transmission attenuation à Solution: Use of directed non-line-of-sight path with steerable antennas Sebastian Priebe Wireless Communications with sub-mm Waves 14/22

15 Wireless Communications with sub-mm Waves - Specialties of THz Indoor Radio Channels 1. Introduction 2. The THz Indoor Radio Channel 3. Channel Measurements/Modeling 4. Summary Sebastian Priebe Wireless Communications with sub-mm Waves 15/22

16 Channel Measurements/Modeling (1) Measurement campaign: Channel transfer functions in typical indoor scenarios Channel sounding in frequency domain with vector network analyzer Ultra broadband at GHz Spatially resolved MIMO antenna configurations Vector Network Analyzer Frequency sweep: GHz Indoor Channel Aims: 1. Experimental investigation and understanding of THz radio channels 2. Validation of ray tracing propagation modeling 3. Calibration of the ray tracing tool 4. Development of a THz channel model Test Head Lens Automatic Rotation Unit VNA Sebastian Priebe Wireless Communications with sub-mm Waves 16/22

17 Channel Measurements/Modeling (2) Methodology: 1.) Measurements in an actual office scenario 2.) Digital 3D model of the scenario 3.) Ray tracing simulations 4.) Comparison of measurements and simulations à Validation of ray tracing modeling 3.59 m Windows Test Head Lens TX 2 Tables Ray 4 Ray 3 TX 1 LOS Ray Automatic Rotation Unit 4.52 m RX MIMO Shift Ray 2 Ray 1 VNA Wardrobes TX 3 z y x Door Sebastian Priebe Wireless Communications with sub-mm Waves 17/22

18 Channel Measurements/Modeling (3) Considered scenarios: Different offices Hallway Exemplary evaluations: Angular power spectrum Angular power delay profile 4.52 m TX 2 RX Tables Ray 4 MIMO Shift Ray m Ray 2 Ray 3 Windows TX 1 LOS Ray AoD [ ] Path Loss [db] Ray Ray LOS Ray 2 2 Ray Reflection at Lens Mount AoA [ ] Ray Relative Received Power [db] > Wardrobes 85 à Comparison with ray tracing propagation simulations y z x Door TX AoA [ ] τ [ns] Sebastian Priebe Wireless Communications with sub-mm Waves 18/22

19 Channel Measurements/Modeling (4) In-house development of a ray tracing tool Verification of ray tracing simulations with channel measurements at 300 GHz: Small office scenario TX Relative received power [db] Power delay profile c Simulations, x = 40 l r corr Measurements RX t [ns] à Very good agreement between simulations and measurements is achieved à Ray tracing proves well-suited to model THz propagation channels Sebastian Priebe Wireless Communications with sub-mm Waves 19/22

20 Channel Measurements/Modeling (5) Current status: Accurate propagation model available Feasibility studies Initiation of the IEEE THz Interest Group Propagation investigations Channel measurements Propagation modeling System simulations System design guidelines IEEE standard IEEE standard for for THz WPANs/ WLANs WLANs THz WPANs/ Future steps: à System simulations based on the propagation model à Development of an appropriate system design Sebastian Priebe Wireless Communications with sub-mm Waves 20/22

21 Wireless Communications with sub-mm Waves - Specialties of THz Indoor Radio Channels 1. Introduction 2. The THz Indoor Radio Channel 3. Channel Measurements/Modeling 4. Summary Sebastian Priebe Wireless Communications with sub-mm Waves 21/22

22 Summary THz communications......opens up huge unregulated bandwidths > 100 GHz...allows for wireless data rates of 100 Gbit/s and more...has plenty potential applications THz radio channels impose the challenges of......very high free space losses...additional atmospheric attenuation...significant frequency dispersion...rough surface scattering...ray shadowing by objects or persons Solutions are......high antenna gains...transmission in atmospheric windows...pulse form equalization...beam switching/beam steering Can be modeled with ray tracing FSL [db] db 28 db db 900 MHz (GSM) GHz (WLAN) 60 GHz (WPAN) 300 GHz d [m] Sebastian Priebe Wireless Communications with sub-mm Waves 22/22

23 Thank you for paying attention. Dipl.-Ing. Sebastian Priebe Sebastian Priebe Wireless Communications with sub-mm Waves 23/22

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Link Level Simulations of THz-Communications Date Submitted: 15 July, 2013 Source: Sebastian Rey, Technische Universität

More information

doc.: IEEE thz_Channel_Characteristics_Study_100GHz_300GHz

doc.: IEEE thz_Channel_Characteristics_Study_100GHz_300GHz Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: Channel Characteristics Study for Future Indoor Millimeter And Submillimeter Wireless Communications Date

More information

May doc.: thz-Two-Step-AoA-Estimation

May doc.: thz-Two-Step-AoA-Estimation Project: IEEE P802.15 Working Group for Wireless Speciality Networks (WSNs WSNs) Title: Two-Step Angle-of-Arrival Estimation for Terahertz Communications Date Submitted: 7 May 2018 Source: Thomas Kürner

More information

Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen. THz communication from today s Demonstrators to future Nano Communications

Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen. THz communication from today s Demonstrators to future Nano Communications Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen THz communication from today s Demonstrators to future Nano Communications Thomas Kürner, Sebastian Rey, Alexander Fricke, Bile Peng,

More information

November doc.: thz-multifrequency_measurements

November doc.: thz-multifrequency_measurements Project: IEEE P82.15 Working Group for Wireless Speciality Networks (WSNs WSNs) Title: Multi-Frequency Measurements at 9, 64 and 34 GHz using an Ultra-Wideband Channel Sounder Date Submitted: 6 November

More information

5G Antenna Design & Network Planning

5G Antenna Design & Network Planning 5G Antenna Design & Network Planning Challenges for 5G 5G Service and Scenario Requirements Massive growth in mobile data demand (1000x capacity) Higher data rates per user (10x) Massive growth of connected

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: TERAPAN: Ultra-high Data Rate Transmission with steerable Antennas at 300 GHz Date Submitted: 10 March, 2015 Source:

More information

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Measuring the Channel Characteristics at 300 GHz - Preliminary Results Date Submitted: 13, Source: Thomas Kürner,

More information

Experimental Evaluation Scheme of UWB Antenna Performance

Experimental Evaluation Scheme of UWB Antenna Performance Tokyo Tech. Experimental Evaluation Scheme of UWB Antenna Performance Sathaporn PROMWONG Wataru HACHITANI Jun-ichi TAKADA TAKADA-Laboratory Mobile Communication Research Group Graduate School of Science

More information

EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY. Why do we need UWB channel models?

EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY. Why do we need UWB channel models? Wireless Communication Channels Lecture 9:UWB Channel Modeling EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY Overview What is Ultra-Wideband (UWB)? Why do we need UWB channel

More information

The Measurement and Characterisation of Ultra Wide-Band (UWB) Intentionally Radiated Signals

The Measurement and Characterisation of Ultra Wide-Band (UWB) Intentionally Radiated Signals The Measurement and Characterisation of Ultra Wide-Band (UWB) Intentionally Radiated Signals Rafael Cepeda Toshiba Research Europe Ltd University of Bristol November 2007 Rafael.cepeda@toshiba-trel.com

More information

UWB Channel Modeling

UWB Channel Modeling Channel Modeling ETIN10 Lecture no: 9 UWB Channel Modeling Fredrik Tufvesson & Johan Kåredal, Department of Electrical and Information Technology fredrik.tufvesson@eit.lth.se 2011-02-21 Fredrik Tufvesson

More information

Influence of moving people on the 60GHz channel a literature study

Influence of moving people on the 60GHz channel a literature study Influence of moving people on the 60GHz channel a literature study Authors: Date: 2009-07-15 Name Affiliations Address Phone email Martin Jacob Thomas Kürner Technische Universität Braunschweig Technische

More information

This document is intended to provide input to the development of a Technical Expectation Document by

This document is intended to provide input to the development of a Technical Expectation Document by Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Scenarios for the Application of THz Communications Date Submitted: 8 Source: Thomas Kürner Company: TU Braunschweig,

More information

The potential of dielectric mirrors as key elements in future non-line-of-sight indoor terahertz communication systems

The potential of dielectric mirrors as key elements in future non-line-of-sight indoor terahertz communication systems The potential of dielectric mirrors as key elements in future non-line-of-sight indoor terahertz communication systems R. Piesiewicz, K. Baaske, K. Gerlach,. Koch, T. Kürner Abstract We present results

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) March 2015 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Direct and Directed NLOS Channel Measurements for Intra-Device Communications Date Submitted: 09 July 2015

More information

Channel Modeling ETI 085

Channel Modeling ETI 085 Channel Modeling ETI 085 Overview Lecture no: 9 What is Ultra-Wideband (UWB)? Why do we need UWB channel models? UWB Channel Modeling UWB channel modeling Standardized UWB channel models Fredrik Tufvesson

More information

Channel Models, Regulation and

Channel Models, Regulation and Technische Universität Carolo-Wilhelmina zu Braunschweig tubs.city Jahrestagung g 2009 Towards Wireless Multi-Gigabit Systems Channel Models, Regulation and Standardisation Thomas Kürner 02.07.2009 Towards

More information

International Journal of Engineering & Computer Science IJECS-IJENS Vol:13 No:03 1

International Journal of Engineering & Computer Science IJECS-IJENS Vol:13 No:03 1 International Journal of Engineering & Computer Science IJECS-IJENS Vol:13 No:03 1 Characterization of Millimetre waveband at 40 GHz wireless channel Syed Haider Abbas, Ali Bin Tahir, Muhammad Faheem Siddique

More information

Ultrawideband Radiation and Propagation

Ultrawideband Radiation and Propagation Ultrawideband Radiation and Propagation by Werner Sörgel, Christian Sturm and Werner Wiesbeck LS telcom Summit 26 5. July 26 UWB Applications high data rate fine resolution multimedia localisation UWB

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: A first 300 GHz Phased Array Antenna Date Submitted: 11. July 2017 Source: Sebastian Rey, Technische Universität Braunschweig

More information

Submission Title: Propagation Characteristics for Intra-Device Comunications

Submission Title: Propagation Characteristics for Intra-Device Comunications Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: Propagation Characteristics for Intra-Device Comunications Date Submitted: 19 March 2014 Source: Thomas

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Effects of Phase Shift Errors on the Antenna Directivity of Phased Arrays in Indoor Terahertz Communications Date

More information

Antennas and Propagation. Chapter 6a: Propagation Definitions, Path-based Modeling

Antennas and Propagation. Chapter 6a: Propagation Definitions, Path-based Modeling Antennas and Propagation a: Propagation Definitions, Path-based Modeling Introduction Propagation How signals from antennas interact with environment Goal: model channel connecting TX and RX Antennas and

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Link Budget Analysis for Terahertz Fixed Wireless Links Date Submitted: 14 November, 2012 Source: Michael Grigat,

More information

Ultra Wideband Indoor Radio Channel Measurements

Ultra Wideband Indoor Radio Channel Measurements Ultra Wideband Indoor Radio Channel Measurements Matti Hämäläinen, Timo Pätsi, Veikko Hovinen Centre for Wireless Communications P.O.Box 4500 FIN-90014 University of Oulu, FINLAND email: matti.hamalainen@ee.oulu.fi

More information

WLAN Location Methods

WLAN Location Methods S-7.333 Postgraduate Course in Radio Communications 7.4.004 WLAN Location Methods Heikki Laitinen heikki.laitinen@hut.fi Contents Overview of Radiolocation Radiolocation in IEEE 80.11 Signal strength based

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [60 GHz Channel Measurements for Video Supply in Trains, Busses and Aircraft Scenario] Date Submitted: [14

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P82.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [UWB Channel Measurement Results in Indoor Residential Environment High-Rise Apartments] Date Submitted: [19

More information

Handset MIMO antenna measurement using a Spatial Fading Emulator

Handset MIMO antenna measurement using a Spatial Fading Emulator Handset MIMO antenna measurement using a Spatial Fading Emulator Atsushi Yamamoto Panasonic Corporation, Japan Panasonic Mobile Communications Corporation, Japan NTT DOCOMO, INC., Japan Aalborg University,

More information

Number of Multipath Clusters in. Indoor MIMO Propagation Environments

Number of Multipath Clusters in. Indoor MIMO Propagation Environments Number of Multipath Clusters in Indoor MIMO Propagation Environments Nicolai Czink, Markus Herdin, Hüseyin Özcelik, Ernst Bonek Abstract: An essential parameter of physical, propagation based MIMO channel

More information

Interference Scenarios and Capacity Performances for Femtocell Networks

Interference Scenarios and Capacity Performances for Femtocell Networks Interference Scenarios and Capacity Performances for Femtocell Networks Esra Aycan, Berna Özbek Electrical and Electronics Engineering Department zmir Institute of Technology, zmir, Turkey esraaycan@iyte.edu.tr,

More information

UWB Double-Directional Channel Sounding

UWB Double-Directional Channel Sounding 2004/01/30 Oulu, Finland UWB Double-Directional Channel Sounding - Why and how? - Jun-ichi Takada Tokyo Institute of Technology, Japan takada@ide.titech.ac.jp Table of Contents Background Antennas and

More information

mm-wave communication: ~30-300GHz Recent release of unlicensed mm-wave spectrum

mm-wave communication: ~30-300GHz Recent release of unlicensed mm-wave spectrum 1 2 mm-wave communication: ~30-300GHz Recent release of unlicensed mm-wave spectrum Frequency: 57 66 GHz (4.7 to 5.3mm wavelength) Bandwidth: 7-9 GHz (depending on region) Current Wi-Fi Frequencies: 2.4

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P82.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [UWB Channel Model for Indoor Residential Environment] Date Submitted: [2 September, 24] Source: [Chia-Chin

More information

Written Exam Channel Modeling for Wireless Communications - ETIN10

Written Exam Channel Modeling for Wireless Communications - ETIN10 Written Exam Channel Modeling for Wireless Communications - ETIN10 Department of Electrical and Information Technology Lund University 2017-03-13 2.00 PM - 7.00 PM A minimum of 30 out of 60 points are

More information

Air Interface and Physical Layer techniques for 60 GHz WPANs

Air Interface and Physical Layer techniques for 60 GHz WPANs Air Interface and Physical Layer techniques for 60 GHz WPANs (first author, presenter) Jimmy Nsenga Wim Van Thillo François Horlin Liesbet Van der Perre IMEC, Belgium SCVT 2006 Liège, November 2006 Standardization,

More information

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P.

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. The Radio Channel COS 463: Wireless Networks Lecture 14 Kyle Jamieson [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. Steenkiste] Motivation The radio channel is what limits most radio

More information

Opportunities and Challenges for High-Speed Optical-Wireless Links

Opportunities and Challenges for High-Speed Optical-Wireless Links Fraunhofer Networks Heinrich Hertz + Systems Institute Opportunities and Challenges for High-Speed Optical-Wireless Links Jelena Vučić and Klaus-Dieter Langer Fraunhofer Heinrich-Hertz-Institut Fraunhofer

More information

Millimetre Wave Wireless Access:

Millimetre Wave Wireless Access: Millimetre Wave Wireless Access: The Path to 5G Enhanced Mobile Broadband Professor Mark Beach Communication and Networks Group, University of Bristol, Bristol. UK http://www.bristol.ac.uk/engineering/research/csn/

More information

Overview. Measurement of Ultra-Wideband Wireless Channels

Overview. Measurement of Ultra-Wideband Wireless Channels Measurement of Ultra-Wideband Wireless Channels Wasim Malik, Ben Allen, David Edwards, UK Introduction History of UWB Modern UWB Antenna Measurements Candidate UWB elements Radiation patterns Propagation

More information

Harvesting Millimeter Wave Spectrum for 5G Ultra High Wireless Capacity Challenges and Opportunities Thomas Haustein & Kei Sakaguchi

Harvesting Millimeter Wave Spectrum for 5G Ultra High Wireless Capacity Challenges and Opportunities Thomas Haustein & Kei Sakaguchi Harvesting Millimeter Wave Spectrum for 5G Ultra High Wireless Capacity Challenges and Opportunities Thomas Haustein & Kei Sakaguchi Millimeter for 5G Workshop at CEATEC Tokyo, Japan, Global Capacity Demand

More information

Lecture 7/8: UWB Channel. Kommunikations

Lecture 7/8: UWB Channel. Kommunikations Lecture 7/8: UWB Channel Kommunikations Technik UWB Propagation Channel Radio Propagation Channel Model is important for Link level simulation (bit error ratios, block error ratios) Coverage evaluation

More information

Submission Title: Study on Statistical Characteristics of Human Blockage Effects in Future Indoor Millimeter Wave and THz Wireless Communications

Submission Title: Study on Statistical Characteristics of Human Blockage Effects in Future Indoor Millimeter Wave and THz Wireless Communications Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Study on Statistical Characteristics of Human Blockage Effects in Future Indoor Millimeter Wave and THz Wireless Communications

More information

A Hybrid Indoor Tracking System for First Responders

A Hybrid Indoor Tracking System for First Responders A Hybrid Indoor Tracking System for First Responders Precision Indoor Personnel Location and Tracking for Emergency Responders Technology Workshop August 4, 2009 Marc Harlacher Director, Location Solutions

More information

Purpose: Tutorial on the activities and the status of the IEEE IG THz presented to the IEEE 802 Plenary

Purpose: Tutorial on the activities and the status of the IEEE IG THz presented to the IEEE 802 Plenary Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: What s next? Wireless Communication beyond 60 GHz (Tutorial IG THz) Date Submitted: 15 July 2012 Source:

More information

MIMO Wireless Communications

MIMO Wireless Communications MIMO Wireless Communications Speaker: Sau-Hsuan Wu Date: 2008 / 07 / 15 Department of Communication Engineering, NCTU Outline 2 2 MIMO wireless channels MIMO transceiver MIMO precoder Outline 3 3 MIMO

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

SUB-BAND ANALYSIS IN UWB RADIO CHANNEL MODELING

SUB-BAND ANALYSIS IN UWB RADIO CHANNEL MODELING SUB-BAND ANALYSIS IN UWB RADIO CHANNEL MODELING Lassi Hentilä Veikko Hovinen Matti Hämäläinen Centre for Wireless Communications Telecommunication Laboratory Centre for Wireless Communications P.O. Box

More information

Mobile Communications: Technology and QoS

Mobile Communications: Technology and QoS Mobile Communications: Technology and QoS Course Overview! Marc Kuhn, Yahia Hassan kuhn@nari.ee.ethz.ch / hassan@nari.ee.ethz.ch Institut für Kommunikationstechnik (IKT) Wireless Communications Group ETH

More information

EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY

EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY Wireless Communication Channels Lecture 6: Channel Models EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY Content Modelling methods Okumura-Hata path loss model COST 231 model Indoor models

More information

5 GHz Radio Channel Modeling for WLANs

5 GHz Radio Channel Modeling for WLANs 5 GHz Radio Channel Modeling for WLANs S-72.333 Postgraduate Course in Radio Communications Jarkko Unkeri jarkko.unkeri@hut.fi 54029P 1 Outline Introduction IEEE 802.11a OFDM PHY Large-scale propagation

More information

Channel Modelling ETIM10. Channel models

Channel Modelling ETIM10. Channel models Channel Modelling ETIM10 Lecture no: 6 Channel models Fredrik Tufvesson Department of Electrical and Information Technology Lund University, Sweden Fredrik.Tufvesson@eit.lth.se 2012-02-03 Fredrik Tufvesson

More information

Diffuse Scattering Models for mmwave V2X Communications in Urban Scenarios

Diffuse Scattering Models for mmwave V2X Communications in Urban Scenarios Diffuse Scattering Models for mmwave V2X Communications in Urban Scenarios Bogdan Antonescu ECE Department Northeastern University Email: antonescu.b@husky.neu.edu Miead Tehrani Moayyed ECE Department

More information

SIMULATION AND ANALYSIS OF 60 GHz MILLIMETER- WAVE INDOOR PROPAGATION CHARACTERISTICS BASE ON THE METHOD OF SBR/IMAGE

SIMULATION AND ANALYSIS OF 60 GHz MILLIMETER- WAVE INDOOR PROPAGATION CHARACTERISTICS BASE ON THE METHOD OF SBR/IMAGE Progress In Electromagnetics Research C, Vol. 43, 15 28, 2013 SIMULATION AND ANALYSIS OF 60 GHz MILLIMETER- WAVE INDOOR PROPAGATION CHARACTERISTICS BASE ON THE METHOD OF SBR/IMAGE Yuan-Jian Liu, Qin-Jian

More information

Advanced Channel Measurements and Channel Modeling for Millimeter-Wave Mobile Communication. Wilhelm Keusgen

Advanced Channel Measurements and Channel Modeling for Millimeter-Wave Mobile Communication. Wilhelm Keusgen Advanced Channel Measurements and Channel Modeling for Millimeter-Wave Mobile Communication Wilhelm Keusgen International Workshop on Emerging Technologies for 5G Wireless Cellular Networks December 8

More information

5G System Concept Seminar. RF towards 5G. Researchers: Tommi Tuovinen, Nuutti Tervo & Aarno Pärssinen

5G System Concept Seminar. RF towards 5G. Researchers: Tommi Tuovinen, Nuutti Tervo & Aarno Pärssinen 04.02.2016 @ 5G System Concept Seminar RF towards 5G Researchers: Tommi Tuovinen, Nuutti Tervo & Aarno Pärssinen 5.2.2016 2 Outline 5G challenges for RF Key RF system assumptions Channel SNR and related

More information

Channel Models. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1

Channel Models. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Channel Models Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Narrowband Channel Models Statistical Approach: Impulse response modeling: A narrowband channel can be represented by an impulse

More information

NOISE, INTERFERENCE, & DATA RATES

NOISE, INTERFERENCE, & DATA RATES COMP 635: WIRELESS NETWORKS NOISE, INTERFERENCE, & DATA RATES Jasleen Kaur Fall 2015 1 Power Terminology db Power expressed relative to reference level (P 0 ) = 10 log 10 (P signal / P 0 ) J : Can conveniently

More information

Investigation of WI-Fi indoor signals under LOS and NLOS conditions

Investigation of WI-Fi indoor signals under LOS and NLOS conditions Investigation of WI-Fi indoor signals under LOS and NLOS conditions S. Japertas, E. Orzekauskas Department of Telecommunications, Kaunas University of Technology, Studentu str. 50, LT-51368 Kaunas, Lithuania

More information

Directional channel model for ultra-wideband indoor applications

Directional channel model for ultra-wideband indoor applications First published in: ICUWB 2009 (September 9-11, 2009) Directional channel model for ultra-wideband indoor applications Malgorzata Janson, Thomas Fügen, Thomas Zwick, and Werner Wiesbeck Institut für Hochfrequenztechnik

More information

WiMAX Summit Testing Requirements for Successful WiMAX Deployments. Fanny Mlinarsky. 28-Feb-07

WiMAX Summit Testing Requirements for Successful WiMAX Deployments. Fanny Mlinarsky. 28-Feb-07 WiMAX Summit 2007 Testing Requirements for Successful WiMAX Deployments Fanny Mlinarsky 28-Feb-07 Municipal Multipath Environment www.octoscope.com 2 WiMAX IP-Based Architecture * * Commercial off-the-shelf

More information

Unit 3 - Wireless Propagation and Cellular Concepts

Unit 3 - Wireless Propagation and Cellular Concepts X Courses» Introduction to Wireless and Cellular Communications Unit 3 - Wireless Propagation and Cellular Concepts Course outline How to access the portal Assignment 2. Overview of Cellular Evolution

More information

EC 551 Telecommunication System Engineering. Mohamed Khedr

EC 551 Telecommunication System Engineering. Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr 1 Mohamed Khedr., 2008 Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week

More information

Indoor MIMO Channel Sounding at 3.5 GHz

Indoor MIMO Channel Sounding at 3.5 GHz Indoor MIMO Channel Sounding at 3.5 GHz Hanna Farhat, Yves Lostanlen, Thierry Tenoux, Guy Grunfelder, Ghaïs El Zein To cite this version: Hanna Farhat, Yves Lostanlen, Thierry Tenoux, Guy Grunfelder, Ghaïs

More information

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Vehicle Networks Wireless communication basics Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Outline Wireless Signal Propagation Electro-magnetic waves Signal impairments Attenuation Distortion

More information

Chapter 4 DOA Estimation Using Adaptive Array Antenna in the 2-GHz Band

Chapter 4 DOA Estimation Using Adaptive Array Antenna in the 2-GHz Band Chapter 4 DOA Estimation Using Adaptive Array Antenna in the 2-GHz Band 4.1. Introduction The demands for wireless mobile communication are increasing rapidly, and they have become an indispensable part

More information

Application Note. StarMIMO. RX Diversity and MIMO OTA Test Range

Application Note. StarMIMO. RX Diversity and MIMO OTA Test Range Application Note StarMIMO RX Diversity and MIMO OTA Test Range Contents Introduction P. 03 StarMIMO setup P. 04 1/ Multi-probe technology P. 05 Cluster vs Multiple Cluster setups Volume vs Number of probes

More information

Section 1 Wireless Transmission

Section 1 Wireless Transmission Part : Wireless Communication! section : Wireless Transmission! Section : Digital modulation! Section : Multiplexing/Medium Access Control (MAC) Section Wireless Transmission Intro. to Wireless Transmission

More information

802.11ax Design Challenges. Mani Krishnan Venkatachari

802.11ax Design Challenges. Mani Krishnan Venkatachari 802.11ax Design Challenges Mani Krishnan Venkatachari Wi-Fi: An integral part of the wireless landscape At the center of connected home Opening new frontiers for wireless connectivity Wireless Display

More information

MIMO - A Key to Broadband Wireless. Volker Jungnickel. Fraunhofer. Institut. Nachrichtentechnik Heinrich-Hertz-Institut

MIMO - A Key to Broadband Wireless. Volker Jungnickel. Fraunhofer. Institut. Nachrichtentechnik Heinrich-Hertz-Institut MIMO - A Key to Broadband Wireless Volker Jungnickel Outline Introduction Channel properties Algorithms Real-time implementation Conclusions 2 Introduction People really want wireless internet access anywhere,

More information

RADWIN SOLUTIONS. ENTRPRISE Broadband Wireless Access. Video Surveillance. Remote area BB Connectivity. Small Cell Backhaul

RADWIN SOLUTIONS. ENTRPRISE Broadband Wireless Access. Video Surveillance. Remote area BB Connectivity. Small Cell Backhaul RADWIN SOLUTIONS ENTRPRISE Broadband Wireless Access Video Surveillance Remote area BB Connectivity Small Cell Backhaul Multipath/LOS/nLOS/NLOS 7/22/2015 2 Confidential Information Small Cell Deployment

More information

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates?

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates? Page 1 Outline 18-452/18-750 Wireless Networks and Applications Lecture 7: Physical Layer OFDM Peter Steenkiste Carnegie Mellon University RF introduction Modulation and multiplexing Channel capacity Antennas

More information

Network Design Considerations and Deployment Concerns for a Ground Aircraft Communication System

Network Design Considerations and Deployment Concerns for a Ground Aircraft Communication System Network Design Considerations and Deployment Concerns for a Ground Aircraft Communication System CelPlan Technologies Leonhard Korowajczuk CEO/CTO Leonhard @celplan.com 703-259-4022 www.celplan.com 9/10/2013

More information

Three Dimensional End-to-End Modeling and Directivity Analysis for Graphene-based Antennas in the Terahertz Band

Three Dimensional End-to-End Modeling and Directivity Analysis for Graphene-based Antennas in the Terahertz Band Three Dimensional End-to-End Modeling and Directivity Analysis for Graphene-based Antennas in the Terahertz Band Chuanji Zhang, Chong Han and Ian F. Akyildiz Broadband Wireless Networking Laboratory School

More information

Spectrum Analyzing & Interference Locating

Spectrum Analyzing & Interference Locating Spectrum Analyzing & Interference Locating SpecMini Handheld Spectrum Analyzer Frequency Range: 9kHz to 6.0GHz DANL: -168dBm@1GHz Android Operating System: touch screen operation, multitouch, easy-to-use

More information

Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes

Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes Tobias Rommel, German Aerospace Centre (DLR), tobias.rommel@dlr.de, Germany Gerhard Krieger, German Aerospace Centre (DLR),

More information

Antennas and Propagation. Chapter 1: Introduction

Antennas and Propagation. Chapter 1: Introduction Antennas and Propagation : Introduction History of Antennas and Propagation Timeline 1870 Maxwell s Equations 80 Heinrich Hertz s Loop Experiment (1886) 90 1900 Guglielmo Marconi (1901) Transatlantic Transmission

More information

Case Study: and Test Wireless Receivers

Case Study: and Test Wireless Receivers Case Study: Using New Technologies to Design and Test Wireless Receivers Agenda Architecture of a receiver Basic GPS Receiver Measurements Case Study 1: GPS Simulation How Testing Works Simulation vs.

More information

An Ultra Wideband Local Positioning System for Highly Complex Indoor Environments

An Ultra Wideband Local Positioning System for Highly Complex Indoor Environments An Ultra Wideband Local Positioning System for Highly Complex Indoor Environments Benjamin Waldmann, Robert Weigel Institute for Electronics Engineering University of Erlangen Nuremberg Randolf Ebelt,

More information

January doc.: thz_THz_Wireless_Communications_Challenges_and_Opportunities

January doc.: thz_THz_Wireless_Communications_Challenges_and_Opportunities January 2017 doc.: 15-17-0007-00-0thz_THz_Wireless_Communications_Challenges_and_Opportunities Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: THz Wireless

More information

UWB Small Scale Channel Modeling and System Performance

UWB Small Scale Channel Modeling and System Performance UWB Small Scale Channel Modeling and System Performance David R. McKinstry and R. Michael Buehrer Mobile and Portable Radio Research Group Virginia Tech Blacksburg, VA, USA {dmckinst, buehrer}@vt.edu Abstract

More information

Radio Propagation Fundamentals

Radio Propagation Fundamentals Radio Propagation Fundamentals Concept of Electromagnetic Wave Propagation Mechanisms Modes of Propagation Propagation Models Path Profiles Link Budget Fading Channels Electromagnetic (EM) Waves EM Wave

More information

Motorola Wireless Broadband Technical Brief OFDM & NLOS

Motorola Wireless Broadband Technical Brief OFDM & NLOS technical BRIEF TECHNICAL BRIEF Motorola Wireless Broadband Technical Brief OFDM & NLOS Splitting the Data Stream Exploring the Benefits of the Canopy 400 Series & OFDM Technology in Reaching Difficult

More information

Low-power shared access to spectrum for mobile broadband Modelling parameters and assumptions Real Wireless Real Wireless Ltd.

Low-power shared access to spectrum for mobile broadband Modelling parameters and assumptions Real Wireless Real Wireless Ltd. Low-power shared access to spectrum for mobile broadband Modelling parameters and assumptions Real Wireless 2011 Real Wireless Ltd. Device parameters LTE UE Max Transmit Power dbm 23 Antenna Gain dbi 0

More information

Wireless Technology for Aerospace Applications. June 3 rd, 2012

Wireless Technology for Aerospace Applications. June 3 rd, 2012 Wireless Technology for Aerospace Applications June 3 rd, 2012 OUTLINE The case for wireless in aircraft and aerospace applications System level limits of wireless technology Security Power (self powered,

More information

Implications of mmw to Communications Systems Design & Test

Implications of mmw to Communications Systems Design & Test Implications of mmw to Communications Systems Design & Test Oct 2016 OFDM GFDM Satish Dhanasekaran Vice President and General Manager Wireless Device and Operators Throughput(%) EbNo(dB) 5G : Cellular

More information

Next Generation Mobile Communication. Michael Liao

Next Generation Mobile Communication. Michael Liao Next Generation Mobile Communication Channel State Information (CSI) Acquisition for mmwave MIMO Systems Michael Liao Advisor : Andy Wu Graduate Institute of Electronics Engineering National Taiwan University

More information

mm Wave Communications J Klutto Milleth CEWiT

mm Wave Communications J Klutto Milleth CEWiT mm Wave Communications J Klutto Milleth CEWiT Technology Options for Future Identification of new spectrum LTE extendable up to 60 GHz mm Wave Communications Handling large bandwidths Full duplexing on

More information

Millimeter Wave Mobile Communication for 5G Cellular

Millimeter Wave Mobile Communication for 5G Cellular Millimeter Wave Mobile Communication for 5G Cellular Lujain Dabouba and Ali Ganoun University of Tripoli Faculty of Engineering - Electrical and Electronic Engineering Department 1. Introduction During

More information

Chapter 4 Radio Communication Basics

Chapter 4 Radio Communication Basics Chapter 4 Radio Communication Basics Chapter 4 Radio Communication Basics RF Signal Propagation and Reception Basics and Keywords Transmitter Power and Receiver Sensitivity Power - antenna gain: G TX,

More information

Evolution of Cellular Systems. Challenges for Broadband Wireless Systems. Convergence of Wireless, Computing and Internet is on the Way

Evolution of Cellular Systems. Challenges for Broadband Wireless Systems. Convergence of Wireless, Computing and Internet is on the Way International Technology Conference, 14~15 Jan. 2003, Hong Kong Technology Drivers for Tomorrow Challenges for Broadband Systems Fumiyuki Adachi Dept. of Electrical and Communications Engineering, Tohoku

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICCE.2012.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICCE.2012. Zhu, X., Doufexi, A., & Koçak, T. (2012). A performance enhancement for 60 GHz wireless indoor applications. In ICCE 2012, Las Vegas Institute of Electrical and Electronics Engineers (IEEE). DOI: 10.1109/ICCE.2012.6161865

More information

NIST Building Penetration Measurements

NIST Building Penetration Measurements NIST Building Penetration Measurements Horizon West Apartments October, 26 Kate Remley, Bob Johnk, Chris Holloway, Galen Koepke, Dennis Camell, Chriss Grosvenor John Ladbury, David Novotny NIST Boulder,

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2005 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

802.11ax introduction and measurement solution

802.11ax introduction and measurement solution 802.11ax introduction and measurement solution Agenda IEEE 802.11ax 802.11ax overview & market 802.11ax technique / specification 802.11ax test items Keysight Product / Solution Demo M9421A VXT for 802.11ax

More information

Millimeter Wave Communication in 5G Wireless Networks. By: Niloofar Bahadori Advisors: Dr. J.C. Kelly, Dr. B Kelley

Millimeter Wave Communication in 5G Wireless Networks. By: Niloofar Bahadori Advisors: Dr. J.C. Kelly, Dr. B Kelley Millimeter Wave Communication in 5G Wireless Networks By: Niloofar Bahadori Advisors: Dr. J.C. Kelly, Dr. B Kelley Outline 5G communication Networks Why we need to move to higher frequencies? What are

More information

292 P a g e. (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 4, No.

292 P a g e.   (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 4, No. Wideband Parameters Analysis and Validation for Indoor radio Channel at 60/70/80GHz for Gigabit Wireless Communication employing Isotropic, Horn and Omni directional Antenna E. Affum 1 E.T. Tchao 2 K.

More information

Radio Propagation Measurement and Modeling in Wireless Communication Environments

Radio Propagation Measurement and Modeling in Wireless Communication Environments Radio Propagation Measurement and Modeling in Wireless Communication Environments Soo Yong LIM (Grace) Outline: Introduction Four distinct environments Indoor Stairwell Periodic Building Façade Open-trench

More information