22. Lecture, 16 November 1999

Size: px
Start display at page:

Download "22. Lecture, 16 November 1999"

Transcription

1 Astronomy 3/43, all 999 Lecture, 6 Novemer 999 Coherent detection Another way to detect light using photodetectors is to use the same method your radio uses: coherent, or linear, detection n this method the wave properties of light are used explicitly, and the measurements amount to the determination of the amplitude and phase of the electric and magnetic fields in the radiation emitted y the distant source Coherent detection itself comes in two forms that turn out to have the same sensitivity in ideal systems: coherent preamplification, in which incident light is passed through a medium that can impart gain, amplifying the wave amplitudes directly The output of such a preamplifier is usually detected y a heterodyne receiver (see elow), though an incoherent detector could e used instead; the idea is for the gain to e so large that any detector could e used susequently without affecting the signal-tonoise ratio The paradigm for astronomical coherent preamplifiers is the maser, and the asic principles involved are those that apply to the (y now) more familiar oscillator forms of masers and lasers We will discuss these devices superficially elow n the past decade the highest frequencies at which transistors can e used as coherent preamplifiers have crept up to tens of Gz (wavelengths down to cm or so) with the development of EMTs (see 88); these components are currently used in most radio-astronomical coherent preamplifiers heterodyne detection, in which the signal one wishes to measure is mixed with coherent light (constant frequency, phase and amplitude) efore shining on the detector The additional coherent light, which comprises requency and phase reference, is called the local oscillator () The detector used here has to have a response time short enough that currents can exist in it at the frequency difference etween the signal and : that is, at the frequency of eats etween the signal and waves Amplitudes and frequencies of the eats can e measured y the normal techniques of low-frequency electronics n what follows we will use ν as the symol for signal and frequencies (light), and f for the lower, eat, frequencies (currents) eterodyne detection is used commonly practically universally y astronomers at wavelengths longer than aout mm, so we will discuss this technique in detail ensitivity of heterodyne detection Consider a photodetector used in heterodyne mode in a telescope system similar to that used in (see igure ) uppose that the eam of light is matched to the signal eam (that is, has the same eam waist size and wavefront curvature) and is injected into the signal path y use of a diplexer that attenuates the signal and ackground power negligily n most applications the power availale from the local oscillator is many orders of magnitude larger than the signal and ackground power, so the diplexer can consist simply of a thin dielectric eamsplitter that transmits virtually all of the incident light ut still reflects enough ; we will assume that this is the case in the following Note, however, that there are many instruments in which more complicated schemes such as Michelson interferometers or folded ary-erot interferometers are used to comine the eams At the surface of the photodetector (z ), the field from the is E E e i ω t, () 999 University of Rochester All rights reserved

2 Astronomy 3/43, all 999 Diplexer ( ε) + B ( ε) + B τ( ε) + + τb + τ ignal Warm optics, transmission - ε Local oscillator Cold optics, transmission τ hotodetector, quantum efficiency η ignal (ν) (ν ) Detector + R DC C AC amplifier Beats (f ν ν ) R power detector igure : signal chain for calculation of sensitivity of a heterodyne receiver where ω πν The signal and ackground are not generally monochromatic or characterized y constant phase; however, we can consider for now one frequency component and phase of the signal, E i ωt+ φ Ee g, () at the detector s surface We will consider the field amplitudes to e real (or simplicity we can leave the ackground power out for now; it will return in a little while) The photocurrent induced y these two radiation fields is simply η Gq ω, (3) where + τ ε + τ is given in terms of the fields at the detector s surface y z c E + E da, (4) A and where A is the detector s area in the focal plane, and cgs units are used uppose furthermore that the detector is uniformly illuminated y oth signal and ; then ca E + E ca E E e i t i e i L t + NM ω ω φ ω ω φ E E g E E g ca E + E + E E c ω ω t φh cos O Q (5) Assume that the same polarization if used for signal and, and define 999 University of Rochester All rights reserved

3 Astronomy 3/43, all 999 ca ca E E ; (6) then we can write + + cos ω ω t φ c h (7) The first two terms in Equation 7 give rise to DC photocurrents, and the third term is the eat etween signal and (see igure ), which oscillates at the intermediate frequency (), f ν ν Usually the detector is followed y an amplifier that works only on the component of this current, g c h ηgq i ω, t cos ω ω t φ, ω (8) or an associated voltage iω, tg R, as shown in igure The power detected at the output of the amplifier is proportional to the electrical power dissipated in the resistor R, or 4η G q R ir cos ω ω t φ ω c h (9) ince it oscillates periodically, the average of this power over a large numer of eat oscillation periods is the same as the average over a single period, π/ ω ω g: [ E( ω t) ] Re, ( ωt φ) i + Re E e [ E( ω t) ] ω ( E e ) Re, Re i t ( ω, ) ( ω, ) ( ω, ) ( ω, ) E t E t + E t E t Time igure : eats 999 University of Rochester 3 All rights reserved

4 Astronomy 3/43, all 999 π/ ω ω 4η G q R ir ω ω cos ω π η G q R z g c ω ω t φ dt h () n terms of power at the system input rather than at the detector surface, this is (see igure ): () ετ ηg q R ir This time, we consider our electrical signal to e a power, rather than a current g g, requency f in the photocurrent corresponds to Note that ecause cos ω ω t cos ω ω t the detection of two signal frequencies, ν ν ± f, that therefore cannot e told apart simply from the signal requencies of detected light greater than that of the are called the upper sideand, and lower frequencies are called the lower sideand eparation of the two sideands generally requires additional, interferometric optics to transmit one or the other, and this is desirale if, for instance, a spectral line is oserved in one sideand, and one would like to avoid the additional noise from detection of the other sideand n the following we will restrict our attention to heterodyne systems that detect oth sideands, and are called doule-sideand receivers Now we shall deal with the noise We assume again that the amplifier is designed to render Johnson noise negligile compared to shot noise, so the noise power, at the input of the amplifier, is, from Equation 7, ir NR β GqR, () K sn where is the average total current in the detector, and the lael sn just stands for shot noise ere follows the sutle trick of heterodyne detection: suppose that the power on the detector is y far the largest component of the total power: Gq τη hν τηgq so ir βgq R K sn hν, (3) (4) Let us assume that the signal and frequencies are very similar ω ω << ωg Then the (doule sideand) signal-to-noise ratio is G N K J K, ir ir ετ ηg q R hν βτηg q R sn ετη β hν (5) 999 University of Rochester 4 All rights reserved

5 Astronomy 3/43, all 999 independent of the power (!) Turn the power up high enough, increasing the photocurrent shot noise all the way, and eventually the signal-to-noise ratio doesn t depend upon power or this noise The form of Equation 4 is a good illustration of the workings of heterodyne detection, and turns out to e correct at the shortest wavelengths at which the technique is used y astronomers t is, however, incomplete; it turns out that in using simply the shot noise we have omitted a noise process that is important at longer wavelengths, where heterodyne detection is used most often 3 Background radiation and its fluctuations in heterodyne detection We have only dealt so far with signal and power, since we had the << limit in mind all along t is not much troule to account also for detection of ackground power, ecause its eats with the would have exactly the same form as those of the signal one would therefore expect to repeat the derivation of Equation, changing for B and ecause the eats etween signal and ackground would e negligily small compared to the eats etween either with the much more powerful Thus Equation ecomes (see igure ) τ η G q R ir ε + B (6) Just as is the case for direct detection, the form of this expression shows that we have to make two measurements, in practice, to determine for a celestial oject: one with the telescope pointing at the oject, which leads to power at the input to the amplifier given y τ η G q R ir ε + K B, (7) and one with the telescope pointing at lank sky: G q R ir K τ η B, (8) so that the difference etween the two measured powers is proportional to the quantity we re actually trying to measure, : (9) G q R ir ir K ετ η K Thus the ackground can e separated from the signal owever, it is essentially always the case that B >> (as well as >> B ), since interesting astronomical ojects are faint This results in a contriution to the noise y ackground radiation, and this cannot e sutracted off That the power in lackody radiation must fluctuate was really shown aove ( 3), when we discussed the limiting cases of the photon proaility distriution; we need merely flesh out this claim here uppose a single-mode eam is used, and a single polarization (the s) is selected; then 999 University of Rochester 5 All rights reserved

6 Astronomy 3/43, all h B B εbνatf νaω ε ν N νλ εhν νn, () c where as usual N e h ν/ e kt j The average value of B is, analogously, and the variance of the ackground power is, () B εhν ν N d i d i, () B εhν ν N εhν ν N N + Bεhν ν N + where we have used Equation 34 in the last step At sumillimeter wavelengths and longer λ 35µ mg, and common amient temperatures (T ~ 3 K), N is consideraly greater than unity, so, (3) B εhν ν N B or B B g rms ; (4) that is, the ackground power at these wavelengths follows Gaussian statistics, and the rms fluctuations, far from eing small, are as large as the average ackground power itself 4 The quantum limit to heterodyne detection f our heterodyne detector can detect the ackground, then it can detect the ackground power fluctuations characterized y Equation 4 as well The detected fluctuations are another form of noise, and need to e added to the shot noise power (Equation 3) in order to otain a correct form for the signal-to-noise ratio This time, however, the noise is not simply due to the finite charge on the electron; as we ll se elow ( 3), it is due to the uncertainty principle rom Equation 6 we see that the ackground power fluctuations detected y our heterodyne receiver give rise to electrical power, referred to the input of the amplifier, of g (5) τ η G q R τ η G q R ir B K rms B f We should add this term to Equation 3 to get the total noise power, referred to the amplifier imput: K K + K i R i R i R sn f βτηg q R τ η G q R + B hν (6) Note that since the frequency of the is fixed, the signal andwidth ν is equal to the andwidth for a single sideand, or for doule-sideand response We will continue to assume that a doule-sideand receiver is used, for which Equations and therefore give 999 University of Rochester 6 All rights reserved

7 Astronomy 3/43, all 999 G q R G q R i R 4 h N K βτη h + τ η ε ν ν h G K J G βν K J + τη G τ η G q R KJ τη N (7) The signal power is given y Equation 9, and the doule -sideand signal-to-noise ratio is τ η G q R ε i R h i R G q R h f N G h KJ ν τ η G βν K J τη + ν τη G εg τη β hν ν τη + N G N K J g KJ (8) The only difference etween this expression and the incomplete Equation 5 is the last factor Note that since N >>, as it is at long wavelengths and common amient temperatures, this factor can reduce the signal-to-noise ratio significantly if τη / β and ε are large enough Rememer that the factor of two accompanying the εn factor is from the assumption that ackground fluctuations were detected in oth sideands, and that ν ; this factor goes away, and ν, for single sieand receivers Normally in radio astronomy the andwidth is on the order of ν / Mz, corresponding to integration time on the order of t / 5 5µ s As you might imagine, one normally averages for much longer than a small fraction of a second As we have seen repeatedly, fluctuations integrate down ecome smaller in proportion with the square root of the exposure time Thus if the signal and noise are averaged over an exposure time t >> t, the signal-to-noise ratio increases y the factor t t, which gives N t t G N K J t g (9) + ε τη β hν τη N This is the complete expression for the signal-to-noise ratio of an ideal, quantum-noise limited doulesideand heterodyne receiver As we did for incoherent detection, we can define a noise equivalent power for the ideal heterodyne receiver This would e the value of / f that corresponds to /N, with / t: or g NE ε τη β hν τη + N NE hν g ε τη β G τη + N KJ ν, (3) (3) The same factor-of-two differences etween doule-sideand (used here) and single-sideand response that we noted in connection with Equation 8 also apply here 999 University of Rochester 7 All rights reserved

Coherent Receivers Principles Downconversion

Coherent Receivers Principles Downconversion Coherent Receivers Principles Downconversion Heterodyne receivers mix signals of different frequency; if two such signals are added together, they beat against each other. The resulting signal contains

More information

Photomixer as a self-oscillating mixer

Photomixer as a self-oscillating mixer Photomixer as a self-oscillating mixer Shuji Matsuura The Institute of Space and Astronautical Sciences, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 9-8510, Japan. e-mail:matsuura@ir.isas.ac.jp Abstract Photomixing

More information

An optical vernier technique for in situ measurement of the length of long Fabry Pérot cavities

An optical vernier technique for in situ measurement of the length of long Fabry Pérot cavities Meas. Sci. Technol. (999) 9 94. Printed in the UK PII: S957-233(99)94369-2 An optical vernier technique for in situ measurement of the length of long Fary Pérot cavities M Rakhmanov, M Evans and H Yamamoto

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

You, too, can make useful and beautiful astronomical images at Mees: Lesson 1

You, too, can make useful and beautiful astronomical images at Mees: Lesson 1 You, too, can make useful and beautiful astronomical images at Mees: Lesson 1 Useful references: The Mees telescope startup/shutdown guide: http://www.pas.rochester.edu/~dmw/ast142/projects/chklist.pdf

More information

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name: EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline Lecture 3: Geometrical Optics 1 Outline 1 Spherical Waves 2 From Waves to Rays 3 Lenses 4 Chromatic Aberrations 5 Mirrors Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical

More information

Fundamentals of Communication Systems SECOND EDITION

Fundamentals of Communication Systems SECOND EDITION GLOBAL EDITIO Fundamentals of Communication Systems SECOD EDITIO John G. Proakis Masoud Salehi 78 Effect of oise on Analog Communication Systems Chapter 6 The noise power is P n = ow we can find the output

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

Receiver Performance and Comparison of Incoherent (bolometer) and Coherent (receiver) detection

Receiver Performance and Comparison of Incoherent (bolometer) and Coherent (receiver) detection At ev gap /h the photons have sufficient energy to break the Cooper pairs and the SIS performance degrades. Receiver Performance and Comparison of Incoherent (bolometer) and Coherent (receiver) detection

More information

EXAMINATION FOR THE DEGREE OF B.E. and M.E. Semester

EXAMINATION FOR THE DEGREE OF B.E. and M.E. Semester EXAMINATION FOR THE DEGREE OF B.E. and M.E. Semester 2 2009 101908 OPTICAL COMMUNICATION ENGINEERING (Elec Eng 4041) 105302 SPECIAL STUDIES IN MARINE ENGINEERING (Elec Eng 7072) Official Reading Time:

More information

visibility values: 1) V1=0.5 2) V2=0.9 3) V3=0.99 b) In the three cases considered, what are the values of FSR (Free Spectral Range) and

visibility values: 1) V1=0.5 2) V2=0.9 3) V3=0.99 b) In the three cases considered, what are the values of FSR (Free Spectral Range) and EXERCISES OF OPTICAL MEASUREMENTS BY ENRICO RANDONE AND CESARE SVELTO EXERCISE 1 A CW laser radiation (λ=2.1 µm) is delivered to a Fabry-Pérot interferometer made of 2 identical plane and parallel mirrors

More information

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Association of Scientific Innovation and esearch (IASI) (An Association Unifying the Sciences, Engineering, and Applied esearch) International Journal of Engineering, Business and Enterprise

More information

Astronomy 341 Fall 2012 Observational Astronomy Haverford College. CCD Terminology

Astronomy 341 Fall 2012 Observational Astronomy Haverford College. CCD Terminology CCD Terminology Read noise An unavoidable pixel-to-pixel fluctuation in the number of electrons per pixel that occurs during chip readout. Typical values for read noise are ~ 10 or fewer electrons per

More information

Submillimeter (continued)

Submillimeter (continued) Submillimeter (continued) Dual Polarization, Sideband Separating Receiver Dual Mixer Unit The 12-m Receiver Here is where the receiver lives, at the telescope focus Receiver Performance T N (noise temperature)

More information

The Cosmic Microwave Background Radiation B. Winstein, U of Chicago

The Cosmic Microwave Background Radiation B. Winstein, U of Chicago The Cosmic Microwave Background Radiation B. Winstein, U of Chicago Lecture #1 Lecture #2 What is it? How its anisotropies are generated? What Physics does it reveal? How it is measured. Lecture #3 Main

More information

Module 10 : Receiver Noise and Bit Error Ratio

Module 10 : Receiver Noise and Bit Error Ratio Module 10 : Receiver Noise and Bit Error Ratio Lecture : Receiver Noise and Bit Error Ratio Objectives In this lecture you will learn the following Receiver Noise and Bit Error Ratio Shot Noise Thermal

More information

Sources classification

Sources classification Sources classification Radiometry relates to the measurement of the energy radiated by one or more sources in any region of the electromagnetic spectrum. As an antenna, a source, whose largest dimension

More information

Observational Astronomy

Observational Astronomy Observational Astronomy Instruments The telescope- instruments combination forms a tightly coupled system: Telescope = collecting photons and forming an image Instruments = registering and analyzing the

More information

Lecture 19 Optical Characterization 1

Lecture 19 Optical Characterization 1 Lecture 19 Optical Characterization 1 1/60 Announcements Homework 5/6: Is online now. Due Wednesday May 30th at 10:00am. I will return it the following Wednesday (6 th June). Homework 6/6: Will be online

More information

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature:

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature: Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: PID: Signature: CLOSED BOOK. TWO 8 1/2 X 11 SHEET OF NOTES (double sided is allowed), AND SCIENTIFIC POCKET CALCULATOR

More information

Coherent Lightwave Systems

Coherent Lightwave Systems Fiber-Optic Communications Systems, Third Edition. Govind P. Agrawal Copyright 2002 John Wiley & Sons, Inc. ISBNs: 0-471-21571-6 (Hardback); 0-471-22114-7 (Electronic) Chapter 10 Coherent Lightwave Systems

More information

Part 2: Second order systems: cantilever response

Part 2: Second order systems: cantilever response - cantilever response slide 1 Part 2: Second order systems: cantilever response Goals: Understand the behavior and how to characterize second order measurement systems Learn how to operate: function generator,

More information

Introduction to interferometry with bolometers: Bob Watson and Lucio Piccirillo

Introduction to interferometry with bolometers: Bob Watson and Lucio Piccirillo Introduction to interferometry with bolometers: Bob Watson and Lucio Piccirillo Paris, 19 June 2008 Interferometry (heterodyne) In general we have i=1,...,n single dishes (with a single or dual receiver)

More information

Detection Beyond 100µm Photon detectors no longer work ("shallow", i.e. low excitation energy, impurities only go out to equivalent of

Detection Beyond 100µm Photon detectors no longer work (shallow, i.e. low excitation energy, impurities only go out to equivalent of Detection Beyond 100µm Photon detectors no longer work ("shallow", i.e. low excitation energy, impurities only go out to equivalent of 100µm) A few tricks let them stretch a little further (like stressing)

More information

VLSI Design Considerations of UWB Microwave Receiver and Design of a 20.1 GHz Low Noise Amplifier for on-chip Transceiver

VLSI Design Considerations of UWB Microwave Receiver and Design of a 20.1 GHz Low Noise Amplifier for on-chip Transceiver Daffodil International University Institutional Repository Proceedings of NCCI Feruary 009 009-0-4 VLI Design Considerations of UWB Microwave Receiver and Design of a 0. GHz Low Noise Amplifier for on-chip

More information

Chapter 6: Introduction to Digital Communication

Chapter 6: Introduction to Digital Communication 93 Chapter 6: Introduction to Digital Communication 6.1 Introduction In the context o this course, digital communications include systems where relatively high-requency analog carriers are modulated y

More information

Detectors. RIT Course Number Lecture Noise

Detectors. RIT Course Number Lecture Noise Detectors RIT Course Number 1051-465 Lecture Noise 1 Aims for this lecture learn to calculate signal-to-noise ratio describe processes that add noise to a detector signal give examples of how to combat

More information

6.014 Lecture 14: Microwave Communications and Radar

6.014 Lecture 14: Microwave Communications and Radar 6.014 Lecture 14: Microwave Communications and Radar A. Overview Microwave communications and radar systems have similar architectures. They typically process the signals before and after they are transmitted

More information

American International Journal of Research in Science, Technology, Engineering & Mathematics

American International Journal of Research in Science, Technology, Engineering & Mathematics American International Journal of Research in Science, Technology, Engineering & Mathematics Availale online at http://www.iasir.net ISSN (Print): 38-3491, ISSN (Online): 38-358, ISSN (CD-ROM): 38-369

More information

Notes on Optical Amplifiers

Notes on Optical Amplifiers Notes on Optical Amplifiers Optical amplifiers typically use energy transitions such as those in atomic media or electron/hole recombination in semiconductors. In optical amplifiers that use semiconductor

More information

9. Microwaves. 9.1 Introduction. Safety consideration

9. Microwaves. 9.1 Introduction. Safety consideration MW 9. Microwaves 9.1 Introduction Electromagnetic waves with wavelengths of the order of 1 mm to 1 m, or equivalently, with frequencies from 0.3 GHz to 0.3 THz, are commonly known as microwaves, sometimes

More information

When we talk about bit errors, we need to distinguish between two types of signals.

When we talk about bit errors, we need to distinguish between two types of signals. All Aout Modulation Part II Intuitive Guide to Principles of Communications All Aout Modulation - Part II The main Figure of Merit for measuring the quality of digital signals is called the Bit Error Rate

More information

Lab 12 Microwave Optics.

Lab 12 Microwave Optics. b Lab 12 Microwave Optics. CAUTION: The output power of the microwave transmitter is well below standard safety levels. Nevertheless, do not look directly into the microwave horn at close range when the

More information

Modern Physics Laboratory MP4 Photoelectric Effect

Modern Physics Laboratory MP4 Photoelectric Effect Purpose MP4 Photoelectric Effect In this experiment, you will investigate the photoelectric effect and determine Planck s constant and the work function. Equipment and components Photoelectric Effect Apparatus

More information

Where detectors are used in science & technology

Where detectors are used in science & technology Lecture 9 Outline Role of detectors Photomultiplier tubes (photoemission) Modulation transfer function Photoconductive detector physics Detector architecture Where detectors are used in science & technology

More information

Application of Multilayer Planar Waveguide Structures to Sensing

Application of Multilayer Planar Waveguide Structures to Sensing Vol. 118 (2010 ACTA PHYSICA POLONICA A No. 6 Optical and Acoustical Methods in Science and Technology Application of Multilayer Planar Waveguide Structures to Sensing E. Auguściuk and D. Dziąg Faculty

More information

Multiply Resonant EOM for the LIGO 40-meter Interferometer

Multiply Resonant EOM for the LIGO 40-meter Interferometer LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY LIGO-XXXXXXX-XX-X Date: 2009/09/25 Multiply Resonant EOM for the LIGO

More information

Table 10.2 Sensitivity of asynchronous receivers. Modulation Format Bit-Error Rate N p. 1 2 FSK heterodyne. ASK heterodyne. exp( ηn p /2) 40 40

Table 10.2 Sensitivity of asynchronous receivers. Modulation Format Bit-Error Rate N p. 1 2 FSK heterodyne. ASK heterodyne. exp( ηn p /2) 40 40 10.5. SENSITIVITY DEGRADATION 497 Table 10.2 Sensitivity of asynchronous receivers Modulation Format Bit-Error Rate N p N p ASK heterodyne 1 2 exp( ηn p /4) 80 40 FSK heterodyne 1 2 exp( ηn p /2) 40 40

More information

UTA EE5380 PhD Diagnosis Exam (Fall 2011) Principles of Photonics and Optical Engineering

UTA EE5380 PhD Diagnosis Exam (Fall 2011) Principles of Photonics and Optical Engineering EE 5380 Fall 2011 PhD Diagnosis Exam ID: UTA EE5380 PhD Diagnosis Exam (Fall 2011) Principles of Photonics and Optical Engineering Instructions: Verify that your exam contains 7 pages (including the cover

More information

Lecture 2: Interference

Lecture 2: Interference Lecture 2: Interference λ S 1 d S 2 Lecture 2, p.1 Today Interference of sound waves Two-slit interference Lecture 2, p.2 Review: Wave Summary ( ) ( ) The formula y x,t = Acoskx ωt describes a harmonic

More information

Detectors for Optical Communications

Detectors for Optical Communications Optical Communications: Circuits, Systems and Devices Chapter 3: Optical Devices for Optical Communications lecturer: Dr. Ali Fotowat Ahmady Sep 2012 Sharif University of Technology 1 Photo All detectors

More information

Exercise 1. QAM Modulation EXERCISE OBJECTIVE DISCUSSION OUTLINE. The QAM waveform DISCUSSION

Exercise 1. QAM Modulation EXERCISE OBJECTIVE DISCUSSION OUTLINE. The QAM waveform DISCUSSION Exercise 1 QAM Modulation EXERCISE OBJECTIVE When you have completed this exercise, you will e familiar with QAM modulation, with the characteristics of QAM signals and with the QAM signal constellation.

More information

Fringe Parameter Estimation and Fringe Tracking. Mark Colavita 7/8/2003

Fringe Parameter Estimation and Fringe Tracking. Mark Colavita 7/8/2003 Fringe Parameter Estimation and Fringe Tracking Mark Colavita 7/8/2003 Outline Visibility Fringe parameter estimation via fringe scanning Phase estimation & SNR Visibility estimation & SNR Incoherent and

More information

A Crash Course in Radio Astronomy and Interferometry: 1. Basic Radio/mm Astronomy

A Crash Course in Radio Astronomy and Interferometry: 1. Basic Radio/mm Astronomy A Crash Course in Radio Astronomy and Interferometry: 1. Basic Radio/mm Astronomy James Di Francesco National Research Council of Canada North American ALMA Regional Center Victoria (thanks to S. Dougherty,

More information

DETECTORS Important characteristics: 1) Wavelength response 2) Quantum response how light is detected 3) Sensitivity 4) Frequency of response

DETECTORS Important characteristics: 1) Wavelength response 2) Quantum response how light is detected 3) Sensitivity 4) Frequency of response DETECTORS Important characteristics: 1) Wavelength response 2) Quantum response how light is detected 3) Sensitivity 4) Frequency of response (response time) 5) Stability 6) Cost 7) convenience Photoelectric

More information

Introduction to Radio Astronomy. Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn

Introduction to Radio Astronomy. Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn Introduction to Radio Astronomy Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn 1 Contents Radio Waves Radio Emission Processes Radio Noise Radio source names and catalogues Radio telescopes

More information

J/K). Nikolova

J/K). Nikolova Lecture 7: ntenna Noise Temperature and System Signal-to-Noise Ratio (Noise temperature. ntenna noise temperature. System noise temperature. Minimum detectable temperature. System signal-to-noise ratio.)

More information

Lecture 18: Photodetectors

Lecture 18: Photodetectors Lecture 18: Photodetectors Contents 1 Introduction 1 2 Photodetector principle 2 3 Photoconductor 4 4 Photodiodes 6 4.1 Heterojunction photodiode.................... 8 4.2 Metal-semiconductor photodiode................

More information

The 34th International Physics Olympiad

The 34th International Physics Olympiad The 34th International Physics Olympiad Taipei, Taiwan Experimental Competition Wednesday, August 6, 2003 Time Available : 5 hours Please Read This First: 1. Use only the pen provided. 2. Use only the

More information

Review of Waves. You are expected to recall facts about waves from Physics 1135.

Review of Waves. You are expected to recall facts about waves from Physics 1135. Toda s agenda: eview of Waves. You are expected to recall facts about waves from Phsics 1135. Young s Double Slit Experiment. You must understand how the double slit experiment produces an interference

More information

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 20 at the start of class PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

More information

Compressive Through-focus Imaging

Compressive Through-focus Imaging PIERS ONLINE, VOL. 6, NO. 8, 788 Compressive Through-focus Imaging Oren Mangoubi and Edwin A. Marengo Yale University, USA Northeastern University, USA Abstract Optical sensing and imaging applications

More information

Lecture 7 Fiber Optical Communication Lecture 7, Slide 1

Lecture 7 Fiber Optical Communication Lecture 7, Slide 1 Dispersion management Lecture 7 Dispersion compensating fibers (DCF) Fiber Bragg gratings (FBG) Dispersion-equalizing filters Optical phase conjugation (OPC) Electronic dispersion compensation (EDC) Fiber

More information

THEORY OF MEASUREMENTS

THEORY OF MEASUREMENTS THEORY OF MEASUREMENTS Brian Mason Fifth NAIC-NRAO School on Single-Dish Radio Astronomy Arecibo, PR July 2009 OUTLINE Antenna-Sky Coupling Noise the Radiometer Equation Minimum Tsys Performance measures

More information

Infrared Detectors an overview

Infrared Detectors an overview Infrared Detectors an overview Mariangela Cestelli Guidi Sinbad IR beamline @ DaFne EDIT 2015, October 22 Frederick William Herschel (1738 1822) was born in Hanover, Germany but emigrated to Britain at

More information

What does reciprocity mean

What does reciprocity mean Antennas Definition of antenna: A device for converting electromagnetic radiation in space into electrical currents in conductors or vice-versa. Radio telescopes are antennas Reciprocity says we can treat

More information

6.014 Lecture 6: Multipath, Arrays, and Frequency Reuse

6.014 Lecture 6: Multipath, Arrays, and Frequency Reuse 6.014 Lecture 6: Multipath, Arrays, and Frequency Reuse A. Superposition of phasors This lecture focuses on the superposition of duplicate waves at receivers, where the multiplicity of waves may have originated

More information

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1 TSBB09 Image Sensors 2018-HT2 Image Formation Part 1 Basic physics Electromagnetic radiation consists of electromagnetic waves With energy That propagate through space The waves consist of transversal

More information

suppose we observed a 10 Jy calibrator with CARMA for 1 year, 24 hrs/day how much energy would we collect? S ηa Δν t

suppose we observed a 10 Jy calibrator with CARMA for 1 year, 24 hrs/day how much energy would we collect? S ηa Δν t 3 hardware lectures 1. receivers - SIS mixers, amplifiers, cryogenics, dewars, calibration; followed by antenna tour; later, take apart a 6-m dewar 2. correlator (James Lamb) 3. local oscillator system

More information

Homework Set 3.5 Sensitive optoelectronic detectors: seeing single photons

Homework Set 3.5 Sensitive optoelectronic detectors: seeing single photons Homework Set 3.5 Sensitive optoelectronic detectors: seeing single photons Due by 12:00 noon (in class) on Tuesday, Nov. 7, 2006. This is another hybrid lab/homework; please see Section 3.4 for what you

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 22.

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 22. FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 22 Optical Receivers Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical Engineering,

More information

Antenna Parameters. Ranga Rodrigo. University of Moratuwa. December 15, 2008

Antenna Parameters. Ranga Rodrigo. University of Moratuwa. December 15, 2008 Antenna Parameters Ranga Rodrigo University of Moratuwa December 15, 2008 Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, 2008 1 / 47 Summary of Last Week s Lecture 90 o Radiation

More information

Big League Cryogenics and Vacuum The LHC at CERN

Big League Cryogenics and Vacuum The LHC at CERN Big League Cryogenics and Vacuum The LHC at CERN A typical astronomical instrument must maintain about one cubic meter at a pressure of

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mechanical Engineering Department. 2.71/2.710 Final Exam. May 21, Duration: 3 hours (9 am-12 noon)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mechanical Engineering Department. 2.71/2.710 Final Exam. May 21, Duration: 3 hours (9 am-12 noon) MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mechanical Engineering Department 2.71/2.710 Final Exam May 21, 2013 Duration: 3 hours (9 am-12 noon) CLOSED BOOK Total pages: 5 Name: PLEASE RETURN THIS BOOKLET WITH

More information

Absorption: in an OF, the loss of Optical power, resulting from conversion of that power into heat.

Absorption: in an OF, the loss of Optical power, resulting from conversion of that power into heat. Absorption: in an OF, the loss of Optical power, resulting from conversion of that power into heat. Scattering: The changes in direction of light confined within an OF, occurring due to imperfection in

More information

A progressive wave of frequency 150 Hz travels along a stretched string at a speed of 30 m s 1.

A progressive wave of frequency 150 Hz travels along a stretched string at a speed of 30 m s 1. 1. progressive wave of frequency 150 Hz travels along a stretched string at a speed of 30 m s 1. What is the phase difference between two points that are 50 mm apart on the string? zero 90 180 360 2 Which

More information

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016 ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 016 Lecture 7: Transmitter Analysis Sam Palermo Analog & Mixed-Signal Center Texas A&M University Optical Modulation Techniques

More information

Ph 77 ADVANCED PHYSICS LABORATORY

Ph 77 ADVANCED PHYSICS LABORATORY Ph 77 ADVANCED PHYSICS LABORATORY Lab 2 - Small-Signal Detection Using the Lock-In Amplifier I. BACKGROUND Modern physics research often involves observing small signals buried in noise. Consider an experiment

More information

Today s menu. Last lecture. Series mode interference. Noise and interferences R/2 V SM Z L. E Th R/2. Voltage transmission system

Today s menu. Last lecture. Series mode interference. Noise and interferences R/2 V SM Z L. E Th R/2. Voltage transmission system Last lecture Introduction to statistics s? Random? Deterministic? Probability density functions and probabilities? Properties of random signals. Today s menu Effects of noise and interferences in measurement

More information

Introduction to Interferometry. Michelson Interferometer. Fourier Transforms. Optics: holes in a mask. Two ways of understanding interferometry

Introduction to Interferometry. Michelson Interferometer. Fourier Transforms. Optics: holes in a mask. Two ways of understanding interferometry Introduction to Interferometry P.J.Diamond MERLIN/VLBI National Facility Jodrell Bank Observatory University of Manchester ERIS: 5 Sept 005 Aim to lay the groundwork for following talks Discuss: General

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

08-2 EE 4770 Lecture Transparency. Formatted 16:41, 12 February 1998 from lsli Steradian. Example

08-2 EE 4770 Lecture Transparency. Formatted 16:41, 12 February 1998 from lsli Steradian. Example 08-1 08-1 Light Definition: wave or particle of electromagnetic energy. Consider photon character of electromagnetic energy. Photon energy, E = ch λ, where c =.9979458 10 9 m s, h =6.660755 10 34 Js, and

More information

Fiber Optic Sensing Applications Based on Optical Propagation Mode Time Delay Measurement

Fiber Optic Sensing Applications Based on Optical Propagation Mode Time Delay Measurement R ESEARCH ARTICLE ScienceAsia 7 (1) : 35-4 Fiber Optic Sensing Applications Based on Optical Propagation Mode Time Delay Measurement PP Yupapin a * and S Piengbangyang b a Lightwave Technology Research

More information

Satellite TVRO G/T calculations

Satellite TVRO G/T calculations Satellite TVRO G/T calculations From: http://aa.1asphost.com/tonyart/tonyt/applets/tvro/tvro.html Introduction In order to understand the G/T calculations, we must start with some basics. A good starting

More information

Performance Analysis Of Rician Fading Channels In MSK And GMSK Modulation Schemes Using Simulink Environment

Performance Analysis Of Rician Fading Channels In MSK And GMSK Modulation Schemes Using Simulink Environment Performance Analysis Of Rician Fading Channels In MSK And GMSK Modulation Schemes Using Simulin Environment P. Sunil Kumar 1, Dr. M. G. Sumithra, Ms. M. Sarumathi 3 1 P.G.Scholar, Department of ECE, Bannari

More information

UNIT - 5 OPTICAL RECEIVER

UNIT - 5 OPTICAL RECEIVER UNIT - 5 LECTURE-1 OPTICAL RECEIVER Introduction, Optical Receiver Operation, receiver sensitivity, quantum limit, eye diagrams, coherent detection, burst mode receiver operation, Analog receivers. RECOMMENDED

More information

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 Active Modelocking of a Helium-Neon Laser The generation of short optical pulses is important for a wide variety of applications, from time-resolved

More information

Class XII Chapter 7 Alternating Current Physics

Class XII Chapter 7 Alternating Current Physics Question 7.1: A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply. (a) What is the rms value of current in the circuit? (b) What is the net power consumed over a full cycle? Resistance of the resistor,

More information

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1 Lecture 4 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

Notes on Noise Reduction

Notes on Noise Reduction Notes on Noise Reduction When setting out to make a measurement one often finds that the signal, the quantity we want to see, is masked by noise, which is anything that interferes with seeing the signal.

More information

EE3723 : Digital Communications

EE3723 : Digital Communications EE3723 : Digital Communications Week 8-9: Bandpass Modulation MPSK MASK, OOK MFSK 04-May-15 Muhammad Ali Jinnah University, Islamabad - Digital Communications - EE3723 1 In-phase and Quadrature (I&Q) Representation

More information

Interference [Hecht Ch. 9]

Interference [Hecht Ch. 9] Interference [Hecht Ch. 9] Note: Read Ch. 3 & 7 E&M Waves and Superposition of Waves and Meet with TAs and/or Dr. Lai if necessary. General Consideration 1 2 Amplitude Splitting Interferometers If a lightwave

More information

Chapter 3 OPTICAL SOURCES AND DETECTORS

Chapter 3 OPTICAL SOURCES AND DETECTORS Chapter 3 OPTICAL SOURCES AND DETECTORS 3. Optical sources and Detectors 3.1 Introduction: The success of light wave communications and optical fiber sensors is due to the result of two technological breakthroughs.

More information

1.6 Beam Wander vs. Image Jitter

1.6 Beam Wander vs. Image Jitter 8 Chapter 1 1.6 Beam Wander vs. Image Jitter It is common at this point to look at beam wander and image jitter and ask what differentiates them. Consider a cooperative optical communication system that

More information

Working in Visible NHMFL

Working in Visible NHMFL Working in Visible Optics @ NHMFL NHMFL Summer School 05-19-2016 Stephen McGill Optical Energy Range Energy of Optical Spectroscopy Range SCM3 Optics Facility Energy Range of Optical Spectroscopy SCM3

More information

Heterodyne Interferometry with a Supercontinuum Local Oscillator. Pavel Gabor Vatican Observatory, 933 N Cherry Ave., Tucson AZ 85721, USA

Heterodyne Interferometry with a Supercontinuum Local Oscillator. Pavel Gabor Vatican Observatory, 933 N Cherry Ave., Tucson AZ 85721, USA **Volume Title** ASP Conference Series, Vol. **Volume Number** **Author** c **Copyright Year** Astronomical Society of the Pacific Heterodyne Interferometry with a Supercontinuum Local Oscillator Pavel

More information

NAVAL POSTGRADUATE SCHOOL THESIS

NAVAL POSTGRADUATE SCHOOL THESIS NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS DIGITAL COMMUNICATIONS OVER NON-FADING AND FADING CHANNELS y Jose H. Hernandez Jr. Septemer 008 Thesis Advisor: Second Reader: Clark Roertson Frank

More information

Lab 4: Transmission Line

Lab 4: Transmission Line 1 Introduction Lab 4: Transmission Line In this experiment we will study the properties of a wave propagating in a periodic medium. Usually this takes the form of an array of masses and springs of the

More information

Coil in the AC circuit

Coil in the AC circuit Coil in the AC circuit LEP Related topics Inductance, Kirchhoff s laws, parallel connection, series connection, a. c. impedance, phase displacement, vector diagram Principle The impedance and phase displacement

More information

DFB laser contribution to phase noise in an optoelectronic microwave oscillator

DFB laser contribution to phase noise in an optoelectronic microwave oscillator DFB laser contribution to phase noise in an optoelectronic microwave oscillator K. Volyanskiy, Y. K. Chembo, L. Larger, E. Rubiola web page http://rubiola.org arxiv:0809.4132v2 [physics.optics] 25 Sep

More information

Introduction to Phase Noise

Introduction to Phase Noise hapter Introduction to Phase Noise brief introduction into the subject of phase noise is given here. We first describe the conversion of the phase fluctuations into the noise sideband of the carrier. We

More information

Laser Speckle Reducer LSR-3000 Series

Laser Speckle Reducer LSR-3000 Series Datasheet: LSR-3000 Series Update: 06.08.2012 Copyright 2012 Optotune Laser Speckle Reducer LSR-3000 Series Speckle noise from a laser-based system is reduced by dynamically diffusing the laser beam. A

More information

Optical design of shining light through wall experiments

Optical design of shining light through wall experiments Optical design of shining light through wall experiments Benno Willke Leibniz Universität Hannover (member of the ALPS collaboration) Vistas in Axion Physics: A Roadmap for Theoretical and Experimental

More information

Physical Optics. Diffraction.

Physical Optics. Diffraction. Physical Optics. Diffraction. Interference Young s interference experiment Thin films Coherence and incoherence Michelson interferometer Wave-like characteristics of light Huygens-Fresnel principle Interference.

More information

CHAPTER 6 Exposure Time Calculations

CHAPTER 6 Exposure Time Calculations CHAPTER 6 Exposure Time Calculations In This Chapter... Overview / 75 Calculating NICMOS Imaging Sensitivities / 78 WWW Access to Imaging Tools / 83 Examples / 84 In this chapter we provide NICMOS-specific

More information

Solar Cell Parameters and Equivalent Circuit

Solar Cell Parameters and Equivalent Circuit 9 Solar Cell Parameters and Equivalent Circuit 9.1 External solar cell parameters The main parameters that are used to characterise the performance of solar cells are the peak power P max, the short-circuit

More information

Physics 132 Quiz # 23

Physics 132 Quiz # 23 Name (please (please print) print) Physics 132 Quiz # 23 I. I. The The current in in an an ac ac circuit is is represented by by a phasor.the value of of the the current at at some time time t t is is

More information

DWDM FILTERS; DESIGN AND IMPLEMENTATION

DWDM FILTERS; DESIGN AND IMPLEMENTATION DWDM FILTERS; DESIGN AND IMPLEMENTATION 1 OSI REFERENCE MODEL PHYSICAL OPTICAL FILTERS FOR DWDM SYSTEMS 2 AGENDA POINTS NEED CHARACTERISTICS CHARACTERISTICS CLASSIFICATION TYPES PRINCIPLES BRAGG GRATINGS

More information

Optical Amplifiers (Chapter 6)

Optical Amplifiers (Chapter 6) Optical Amplifiers (Chapter 6) General optical amplifier theory Semiconductor Optical Amplifier (SOA) Raman Amplifiers Erbium-doped Fiber Amplifiers (EDFA) Read Chapter 6, pp. 226-266 Loss & dispersion

More information