SYNCHRONIZATION SYSTEMS FOR ERLS

Size: px
Start display at page:

Download "SYNCHRONIZATION SYSTEMS FOR ERLS"

Transcription

1 SYNCHRONIZATION SYSTEMS FOR ERLS Stefan Simrock, Frank Ludwig, Holger Schlarb DESY Notkestr. 85, Hamburg News, Germany Corresponding author: Stefan Simrock DESY Notkestr Hamburg, Germany Phone: FAX: e mail: stefan.simrock@desy.de ABSTRACT The next generation light sources requires synchronization of (soft and hard) x rays to beamline and end station lasers. The relative timing jitter required will be of the order of the photon pulse length down to a few fs between sources separated by ~100 to 500m. Also the synchronization of electron beam production at the photo injector, the beam acceleration and compression in the linac, the electron arrival time at the insertion devices and some of the beam diagnostics in the linac must be synchronized with a precision of the same order of magnitude. The concept of synchronization is described and limiting factors for synchronization in Energy Recovery Linacs are discussed.

2 PACS: Hp, w, Cr, Vc, Wd, y Keywords: Synchronization, Timing, Recirculating Linacs 1. INTRODUCTION The use of ultrashort light pulses to study coherent interactions in atomic and molecular systems has advanced rapidly in recent years. The development has driven the development of x ray sources based on accelerator technology such as Free Electron Linacs (FELs) and Energy Recovery Linacs (ERLs). The production of short photon pulses implies the generation of short electron bunches with a precisely defined arrival time in the case of pump probe experiments. In order to produce the electron bunch with the required properties a precise synchronization of various timing critical subsystems is required. To clarify the meaning of synchronization serveral definitions found in a thesaurus can be used: 1. Coordinating by causing the same time. 2. An adjustment of that causes something to occur or recur in unison. 3. The relation that exists when things occur at the same time. If there are many systems to be synchronized it becomes important to determine a common reference to which the systems are synchronized. In the case of accelerators an ultrastable rf master oscillator which is common reference to many subsystems should be used to avoid the difficulty in defining the synchronization with respect to a moving target as it may be respresented by the electron beam which is subject to arrival time jitter in various part of the accelerator. 2. REQUIREMENTS FOR SYNCHRONIZATION 2

3 The requirements for synchronization of subsystems of X FELs are reasonably well understood and technical performance and operational experience have been documented at various facilities [1,2]. They show significant commonality with the synchronization requirements for ERLs and are therefore discussed first. A generic layout of an FEL with the timing critical subsystems is shown in Figure 1. The subsystems to be synchronized are Photocathode laser RF Gun RF acceleration system before the bunch compressor (rf amplitude and phase stability). Harmonic cavity used in bunch compression scheme (rf amplitude and phase stability). Linac rf system (rf amplitude and phase stability). RF master oscillator with several frequency outputs. Frequency distribution system with multiple reference locations and multiple frequencies. Laser and rf references for diagnostics systems. Laser for pump probe experiments. The requirements are derived from the beam parameters which are: Energy stability and energy spread Emittance Bunch length Bunch arrival time The subsystem requirements are specifications for timing stability specified in terms of residual time jitter of the individual subsystems usually with respect to a common master oscillator. In some cases specifications of stability between certain subsystems are needed in addition. One must also distinguish between correlated and uncorrelated errors since low frequency correlated 3

4 errors between subsystem are not critical. For the rf systems amplitude and phase stability must be specified due to conversion of beam energy changes in arrival time changes as a result of longitudinal dispersion in the beam lines. In the example of the FEL in Figure 1, typical requirements for the electron bunch length at the undulator are 100 fs, a arrival time jitter of the order of the bunch length (also 100 fs), and an intra bunch and bunch to bunch energy spread of the order of As one can imagine, the timing requiremements for most other subsystems are also of the order of 100 fs (corresponding to a rf phase stability 0.05 deg. (@ 1.3 GHz). The requirements for the photocathode laser are somewhat relaxed since timing jitter will be compressed in the bunch compressor since the energy chirp is introduced by the accelerator section. The requirements for the rf acceleration system before the bunch compressor are quite stringent due to the large R56 in the bunch compressor which converts momentum errors induced by rf amplitude and phase errors into bunch length and arrival time errors. 3. CHALLENGES FOR TIMING AND RF CONTROL IN ERLs A typical layout of an energy recovery linac is shown in Figure 2. The injector is similar to that of a linac based FEL but the average beam current and duty cycle are much higher. The concept of energy recovery requires that the beam accelerated in the main linac returns to the linac with a phase shift of 180 degrees [3]. With close to 100% beam transmission the rf power required for the linac can be quite small. Only power reserve for the control of microphonics, residual beam losses, photon production, power losses due to wakefields and pathlength errors for the returning beam has to be provided. Additional challenges in the ERL based scheme are: Possibility of beam break up with thresholds in the ma range. 4

5 Timing jitter at the undulator from magnet power supply ripple in the first linac arc due to bunch compression in the arc. Beam disruption in the insertion devices and subsequent beam scraping in the second arc. The resulting beam current fluctuation result in heavy beam loading fluctuation in the linac cavities and may require significant rf power for control. Time jitter of returning beam resulting in phase errors and subsequent beam loading variations. This also will lead to beam loading fluctuations which must be controlled by the low level rf system. The threshold for beam breakup can be increased with bunch to bunch beam feedback or by proper settings of the beam optics. Amplitude and phase fluctuations of the recovered beam must be held small to ensure that sufficient rf power and feedback gain in the low level rf system are available to control the cavity fields. 4. SOURCES FOR TIMING JITTER The typical sources for timing error, bunch length variations and energy spread are: Laser timing jitter (reduced in bunch compressor). RF stability (rf gun, harmonic cavity, injector rf, linac rf). Stability of magnets (bunch compression, phase for energy recovery). The main sources of timing jitter are the phase noise of the master oscillator and the frequency distribution system, phase drifts (usually of thermal nature) between outputs of the frequency distribution system at various locations in the accelerator, noise induced by electromagnetic emissions of high power equipment in sensitive electronics (EMI) and the noise of low level electronics in the associated subsystems. The requirements for the phase noise of the master 5

6 oscillators are usually specified in the frequency range from 1 Hz to several MHz. Phase noise close to the carrier increase rapidly due to the 1/f characteristics. Typical single sideband (SSB) phase noise of a low noise oscillator at 1.3 GHz is of the order of 130 dbc at 10 khz from carrier improving to 150 dbc for frequencies > 100 khz from carrier. This results in an integrated timing jitter of less than 10 fs for a frequencies offset > 10 khz. For frequencies closer to the carrier (1 Hz 10 khz) the timing jitter becomes larger and can reach several 100 fs. Fortunately this jitter will be the same for all subsystems which must be phase locked to the master oscillator such that the relative jitter between subsystem remain to be very small. Differences in loop bandwidth of the phase locked loop may however result in timing jitter between systems. Nowadays crystal oscillator, dielectric resonators and optical fiber laser oscillators with very low phase noise are available to support timing stability of accelerator subsystem to better than 100 fs and even approaching 10 fs. Also frequency distribution systems which in the past have been realized with thermally compensated and thermally stabilized coaxial cables and are supplemented or replaced by fiber optic distribution systems which can achieve a similar or better long term stability of the order of 100 fs over distances of several kilometers. 5. DETECTION OF TIMING JITTER Timing jitter of the various subsystems in the accelerator is usually measured with respect to the master oscillator but can be measured also between subsystems. The types of subsystems are Optical systems such as lasers for photocathode rf guns, diagnostics, seed laser and pump probe lasers, as well as fiber optics laser for frequency reference. RF systems such as master oscillators, frequency reference outputs of frequency distribution systems, rf gun, harmonic cavity and superconducting cavities in injector or linac. 6

7 Beam pick up from button, strip line or cavity position or current monitors providing timing signals from the beam. X ray photon beam produced by insertion devices. Various methods exist to measure timing jitter between rf signals, optical signals, and between optical and rf signals. 5.1 RF BASED TIMING JITTER MEASUREMENTS Timing jitter measurements between rf systems are usually performed as phase measurements using double balanced mixers or active multiplier circuits. Different frequencies can be compared if they are converted to the same frequency first. If they are harmonically related this can be achieved by use of frequency dividers or multipliers. If they are not harmonically related on must synthesize appropriate reference frequencies for up or down conversion. In general it is favorable to perform the phase measurement at high frequencies since this will improve the signal to noise ratio of the measurement. With typical mixer sensitivities of 10 mv/deg. of rf phase one can achieve a sensitivity of around 3 uv/ fs at 1 GHz. With a thermal noise floor of 174 dbm/hz and assuming a measurement bandwidth of 1 MHz this has be compared to a noise level of 114 dbm which is equivalent to 0.5 uvrms which would allow a resolution of better than 1 fs. Usually the phase noise of the reference will be dominant (typ. 140 dbc at a frequency offset > 10 khz for a reference at 1 GHz) and increase the noise floor to around 20 uv allowing for a resolution of 10 fs at a signal to noise ratio of 1. The measurement of long term drifts is usually difficult due to temperature dependent offset drifts in the double balanced mixer or active multiplier circuits. Also cables and amplifier are susceptible to temperature drifts which can reach the order of 1 ps / deg. 7

8 C. Careful selection of components, temperature stabilization of the circuits and temperature compensation are necessary to achieve a long time measurement stability of the order of fs. For the measurement of the timing jitter of optical signal with respect to a rf reference the optical signal is converted to an rf signal. In the case of short laser pulses (femto to picosecond duration) with a repetition rate of a subharmonic of the rf reference, this can be accomplished by with a photodiode. A beam splitter send a part of the optical signal to a photodiode which creates short electrical pulses (of the order of a few hundred ps for a diode bandwidth of several GHz). This pulses contain all harmonics of the laser repetition frequency and a bandpass filter is used to generate a ringing at the desired harmonic. The bandwidth of the filter should be selected according to the desired measurement bandwidth. Typical signal levels are of the order of a few mv at the desired frequency which are amplified to desired rf level of the order 10dBm to 0 dbm. The time jitter measurement is then based on a phase measurement of the rf signal. The accuracy of this method is limited by amplitude to phase conversion in the photodiode and requires highly amplitude stable optical signals of the order of 10 4 for a timing jitter resolution of 10 fs. The long term stability is also limited by the temperature dependency of the photodiode. 5.2 OPTICAL TIME JITTER MEASUREMENTS Different optical systems, for example, the optical clock, the photo injector laser, lasers for beam diagnostics or pump probe lasers must be synchronized to each other. Several solutions for an optical to optical synchronization have been investigated, for example using the balanced cross correlator technique via sum frequency generation [4]. Another approach is performed by using a Mach Zehnder interferometer scheme consisting of phase modulators, balanced diode detectors and a VCO in a phase lock loop configuration to provide an optical to rf conversion [5]. The 8

9 locked VCO output signal drives the phase modulator of a second interferometer connected to the laser to be synchronized. Furthermore direct phase noise measurements of optical signals using the interferometer can be performed by commercial rf phase noise instruments. 5.3 RF FIELD STABILITY MEASUREMENTS The cavity field detection can be accomplished with traditional amplitude and phase detectors or with IQ detectors which operated directly at the rf operation frequency or at an intermediate IF frequency which contains the amplitude and phase information. Another possibility is a scheme employing digital IQ detection where the IF (or the RF signal) is sampled directly by an ADC which usually samples alternating the real and imaginary components of the cavity. This of course requires correct timing of the data acquisition. With the rapid development of the telecommunication market industry a variety of single chip solutions for amplitude detection, phase detection, and IQ detection based on analog multipliers have been developed. Examples are: AD8343, RF2411, LT5522, LT5526 analog multiplier AD8361 linear video detector (temperature stabilized) AD8302 logarithmic video detector and phase detector HMC 439 digital phase detector AD8347, LT5516 IQ detector HMJ7 1 high level FET mixer The same circuits are also used to detect the incident wave and reflected wave vectors usually described as forward and reflected power. 6. SYNCHRONIZATION OF ACCELERATOR SUBSYSTEMS 9

10 The basic building block for a synchronization system is a phase locked loop (PLL) as shown in Figure 3. It consists of a phase detector to detect the timing error between the two systems to be synchronized, a controller filter which amplifies and filters the error signal, and an actuator for control. This can be a voltage controlled frequency source (rf or optical) in the case where a frequency source is phase locked to a reference, or a phase shifter or vector modulator in the case of rf field control. In the latter case also the amplitude of the field must be controlled. PLLs can be simulated using [6]. Concerning phase noise, respectively timing jitter, Figure 4 shows the difference, so called residual phase noise spectrum between a reference signal and the phase locked signal. Phase noise can be reduced within the loop bandwidth when using a feedback. The residual uncontrolled noise depends critically on the loop bandwidth and the noise generated in the detector for the phase measurement. Typically the master oscillator should be a source with the lowest phase noise available. Very important is the phase noise close to the carrier because all other subsystems will be locked to this reference. The lock bandwidth is typically chosen to be of the order of a few khz since the phase noise for frequencies >10kHz from the carries is negligible i.e. < 10 fs. Broadband phase locked loops would add unnecessary noise into the synchronized system. The typical frequency roll off of a phase locked loop is 20 db/decade since the voltage controlled oscillator (VCO) provides the integrator function in the loop. An additional integrator is required if temperature dependent offsets in the stages following the phase detector must be suppressed. In the case of phase control in the rf cavities one must distinguish between pulsed or cw operation of the cavities. While usually an integrator is applied in cw operation one avoids the integrator in pulsed operation to guarantee a constant error during the short pulses. 7. ARCHITECURE OF SYNCHRONIZATION OF ACCELERATOR SYSTEMS 10

11 The basic components for accelerator synchronization systems are: RF oscillator (crystal, surface acoustic wave, dielectric resonator) Mode locked laser oscillator (fiber, Ti Sa etc.) Optical to rf and rf to optical converts Coaxial frequency distribution Fiber optic distribution (optical pulses or rf modulated optical cw laser) Beam pick ups (beam phase, beam position) and beam diagnostics (bunch length etc.) Low level rf control systems The concept of a precision synchronization system for large scale accelerators will employ most of the above elements in a combination which will give the utmost stability of the subsystems which have to be synchronized. A general scheme of this concept is shown in Figure 5. The master oscillator makes use of a fiber optic laser which provides low phase noise and its optical distribution system which is stabilized by interferometric methods. Particularly for the master laser oscillator, when using passively mode locked Er/Yb glass lasers with sub 20 fs timing jitter have been demonstrated recently [7]. The long term stability of the fiber laser is guaranteed by a crystal oscillator and atomic reference which both provide the long term stability. The optical references are distributed to strategic locations where they are converted to rf signals to serve as reference for the low level rf control systems. Optical systems such as the lasers for the photocathode, diagnostics or pump probe experiment should be synchronized directly with optical methods. Finally the beam information will be used to guarantee the long term stability. 8. STATE OF THE ART PERFORMANCE 11

12 Present state of the art in performance of synchronization of optical system has surpassed the 1 fs level in a laboratory environment [4,8]. However in a noisy accelerator environment this performance needs to be demonstrated. For rf measurements the best results that have been obtained are of the order of 10 fs at a frequency of 1.3 GHz. For rf control the best results are of the order of 10 4 for amplitude and 0.01 deg. for the phase of superconducting cavities operating at 1.5 GHz [8]. 9. DISCUSSION AND CONCLUSIONS In summary, a scalable timing distribution and synchronization scheme for future accelerators, free electron laser facilities and ERLs is introduced. The overall residual beam jitter between high energy photon beam produced by an electron bunch and e.g. pump probe laser depends on various uncorrelated jitter contributions. Especially from the stability of the master clock, timing distribution system, optical converters, stability of laser systems itself, rf systems and the locking performance of each subsystems to each other. A crucial role concerning long term phase stability and jitter contribution plays the performance of phase detectors and feedback systems for noise reduction. State of the art, commercial available low noise phase and amplitude detectors contribute on the fs scale to the jitter. A careful selection of components, low noise electronic design, temperature stabilizations and self calibrating methods are necessary to achieve the long term stability. A variety of detectors specialized for low noise, high linearity and long term stable operation are necessary for feedback systems. Each subsystem has to be noise optimized. The synchronization of optical systems and the signal distribution on the fs scale has to be approved in a noisy accelerator environment. Concerning the residual jitter 12

13 between the beam and the pump probe laser an overall noise budget for each accelerator including all subsystems is required. The overall jitter is mainly determined by the differences of loop bandwidths from the subsystems and their uncorrelated noise contributions. This requires either a matching of loop bandwidths with moderate phase contribution from master clock or a negligible phase noise contribution from master clock while having a much better variation of loop bandwidths. To reduce the overall jitter minimization of the number of distributed frequencies within the accelerator and its subsystems is desired. However, with timing stabilized fiber links, ultra low jitter mode locked laser, low noise oscillators and detectors a large scale timing distribution and synchronization technique is available in the near future for the next generation of FELs and ERLs. 13

14 FIGURE CAPTIONS Figure 1. Schematic of FEL with subsystems. Figure 2. Schematic of ERL with timing relevant subsystems. Figure 3. Basic configuration of a phase locked loop. Figure 4. Phase noise budget for synchronized systems. Figure 5. Architecture for synchronization of accelerator subsystems. Figure 6. Example for beam energy and timing stability for the VUV FEL.. 14

15 REFERENCES [1] L. Merminga and J. J. Bisognano, Energy Stability in a High Average Power FEL, Proceedings of PAC 95 [2] L. Merminga, P. Alexeev, S. Benson, A. Bolshakov, L. Doolittle and G. Neil, Analysis of the FEL RF Interaction in Recirculating, Energy Recovering Linacs with an FEL, NIM A 429 (1999) [3] G.R. Neil et. al., Sustained Kilowatt Lasing in a Free Electron Laser with Same Cell Energy Recovery, Phys. Rev. Lett. Vol. 84, No 4, pp (2000) [4] L. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, J. Ye, Sub 10 femtosecond active synchronization of two passively mode locked Ti:sapphire oscillators, Phys. Rev. A 64, (R) (2001) [5] J.Kim, F. O. Ilday, F.X. Kärnter, O. D. Mücke, M. H. Perrott, W. S. Graves, D. E. Moncton, T. Zwart, Large Scale Timing Distribution and RF Synchronization for FEL Facilities, Proceedings of the 2004 FEL Conference, (2004) [6] M. H. Perrott, PLL Design using the PLL Design Assistant Programm, MIT High Speed Circuits and Systems Group, Cambridge MA,

16 [7] J. B. Schlager, B. E. Callicoatt, R. P. Mirin, N. A. Sanford, D. J. Jones, J. Ye, Passively Mode Locked Glass Waveguide Laser with 14 fs Timing Jitter, Opt. Lett. 28, 2411 (2003). [8] R. K. Shelton, S. M. Foreman, L. Ma, J. L. Hall, H. C. Kapteyn, M. M. Murnane, M. Notcutt, J. Ye, Subfemtosecond timing jitter between two independent, actively synchronized, mode locked lasers, Opt. Lett. 27, 312 (2002) [9] M.Liepe, Overview of LLRF Systems, Proceedings of PAC 05 16

17 Figure 1 17

18 Figure 2 18

19 Figure 3 19

20 Figure 4 20

21 Figure 5 21

22 Figure 6 22

Synchronization Overview

Synchronization Overview Synchronization Overview S. Simrock, DESY ERL Workshop 2005 Stefan Simrock DESY What is Synchronization Outline Synchronization Requirements for RF, Laser and Beam Timing stability RF amplitude and phase

More information

RF-based Synchronization of the Seed and Pump-Probe Lasers to the Optical Synchronization System at FLASH

RF-based Synchronization of the Seed and Pump-Probe Lasers to the Optical Synchronization System at FLASH RF-based Synchronization of the Seed and Pump-Probe Lasers to the Optical Synchronization System at FLASH Introduction to the otical synchronization system and concept of RF generation for locking of Ti:Sapphire

More information

Low-Level RF. S. Simrock, DESY. MAC mtg, May 05 Stefan Simrock DESY

Low-Level RF. S. Simrock, DESY. MAC mtg, May 05 Stefan Simrock DESY Low-Level RF S. Simrock, DESY Outline Scope of LLRF System Work Breakdown for XFEL LLRF Design for the VUV-FEL Cost, Personpower and Schedule RF Systems for XFEL RF Gun Injector 3rd harmonic cavity Main

More information

Design considerations for the RF phase reference distribution system for X-ray FEL and TESLA

Design considerations for the RF phase reference distribution system for X-ray FEL and TESLA Design considerations for the RF phase reference distribution system for X-ray FEL and TESLA Krzysztof Czuba *a, Henning C. Weddig #b a Institute of Electronic Systems, Warsaw University of Technology,

More information

Femtosecond Synchronization of Laser Systems for the LCLS

Femtosecond Synchronization of Laser Systems for the LCLS Femtosecond Synchronization of Laser Systems for the LCLS, Lawrence Doolittle, Gang Huang, John W. Staples, Russell Wilcox (LBNL) John Arthur, Josef Frisch, William White (SLAC) 26 Aug 2010 FEL2010 1 Berkeley

More information

EUROFEL-Report-2006-DS EUROPEAN FEL Design Study

EUROFEL-Report-2006-DS EUROPEAN FEL Design Study EUROFEL-Report-2006-DS3-034 EUROPEAN FEL Design Study Deliverable N : D 3.8 Deliverable Title: RF Amplitude and Phase Detector Task: Author: DS-3 F.Ludwig, M.Hoffmann, M.Felber, Contract N : 011935 P.Strzalkowski,

More information

RF-Based Detector for Measuring Fiber Length Changes with Sub-5 Femtosecond Long-Term Stability.

RF-Based Detector for Measuring Fiber Length Changes with Sub-5 Femtosecond Long-Term Stability. RF-Based Detector for Measuring Fiber Length Changes with Sub-5 Femtosecond Long-Term Stability. J. Zemella 1, V. Arsov 1, M. K. Bock 1, M. Felber 1, P. Gessler 1, K. Gürel 3, K. Hacker 1, F. Löhl 1, F.

More information

Femtosecond-stability delivery of synchronized RFsignals to the klystron gallery over 1-km optical fibers

Femtosecond-stability delivery of synchronized RFsignals to the klystron gallery over 1-km optical fibers FEL 2014 August 28, 2014 THB03 Femtosecond-stability delivery of synchronized RFsignals to the klystron gallery over 1-km optical fibers Kwangyun Jung 1, Jiseok Lim 1, Junho Shin 1, Heewon Yang 1, Heung-Sik

More information

HIGH-PRECISION LASER MASTER OSCILLATORS FOR OPTICAL TIMING DISTRIBUTION SYSTEMS IN FUTURE LIGHT SOURCES

HIGH-PRECISION LASER MASTER OSCILLATORS FOR OPTICAL TIMING DISTRIBUTION SYSTEMS IN FUTURE LIGHT SOURCES HIGH-PRECISION LASER MASTER OSCILLATORS FOR OPTICAL TIMING DISTRIBUTION SYSTEMS IN FUTURE LIGHT SOURCES Axel Winter, Peter Schmüser, Universität Hamburg, Hamburg, Germany, Frank Ludwig, Holger Schlarb,

More information

FLASH at DESY. FLASH. Free-Electron Laser in Hamburg. The first soft X-ray FEL operating two undulator beamlines simultaneously

FLASH at DESY. FLASH. Free-Electron Laser in Hamburg. The first soft X-ray FEL operating two undulator beamlines simultaneously FLASH at DESY The first soft X-ray FEL operating two undulator beamlines simultaneously Katja Honkavaara, DESY for the FLASH team FEL Conference 2014, Basel 25-29 August, 2014 First Lasing FLASH2 > First

More information

Status on Pulsed Timing Distribution Systems and Implementations at DESY, FERMI and XFEL

Status on Pulsed Timing Distribution Systems and Implementations at DESY, FERMI and XFEL FLS Meeting March 7, 2012 Status on Pulsed Timing Distribution Systems and Implementations at DESY, FERMI and XFEL Franz X. Kärtner Center for Free-Electron Laser Science, DESY and Department of Physics,

More information

Ultrahigh precision synchronization of optical and microwave frequency sources

Ultrahigh precision synchronization of optical and microwave frequency sources Journal of Physics: Conference Series PAPER OPEN ACCESS Ultrahigh precision synchronization of optical and microwave frequency sources To cite this article: A Kalaydzhyan et al 2016 J. Phys.: Conf. Ser.

More information

Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs. Josef Frisch Pohang, March 14, 2011

Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs. Josef Frisch Pohang, March 14, 2011 Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs Josef Frisch Pohang, March 14, 2011 Room Temperature / Superconducting Very different pulse structures RT: single bunch or short bursts

More information

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers Optical phase-coherent link between an optical atomic clock and 1550 nm mode-locked lasers Kevin W. Holman, David J. Jones, Steven T. Cundiff, and Jun Ye* JILA, National Institute of Standards and Technology

More information

Cavity Field Control - RF Field Controller. LLRF Lecture Part3.3 S. Simrock, Z. Geng DESY, Hamburg, Germany

Cavity Field Control - RF Field Controller. LLRF Lecture Part3.3 S. Simrock, Z. Geng DESY, Hamburg, Germany Cavity Field Control - RF Field Controller LLRF Lecture Part3.3 S. Simrock, Z. Geng DESY, Hamburg, Germany Content Introduction to the controller Control scheme selection In-phase and Quadrature (I/Q)

More information

Wisconsin FEL Initiative

Wisconsin FEL Initiative Wisconsin FEL Initiative Joseph Bisognano, Mark Bissen, Robert Bosch, Michael Green, Ken Jacobs, Hartmut Hoechst, Kevin J Kleman, Robert Legg, Ruben Reininger, Ralf Wehlitz, UW-Madison/SRC William Graves,

More information

Timing Noise Measurement of High-Repetition-Rate Optical Pulses

Timing Noise Measurement of High-Repetition-Rate Optical Pulses 564 Timing Noise Measurement of High-Repetition-Rate Optical Pulses Hidemi Tsuchida National Institute of Advanced Industrial Science and Technology 1-1-1 Umezono, Tsukuba, 305-8568 JAPAN Tel: 81-29-861-5342;

More information

A new picosecond Laser pulse generation method.

A new picosecond Laser pulse generation method. PULSE GATING : A new picosecond Laser pulse generation method. Picosecond lasers can be found in many fields of applications from research to industry. These lasers are very common in bio-photonics, non-linear

More information

Wavelength Control and Locking with Sub-MHz Precision

Wavelength Control and Locking with Sub-MHz Precision Wavelength Control and Locking with Sub-MHz Precision A PZT actuator on one of the resonator mirrors enables the Verdi output wavelength to be rapidly tuned over a range of several GHz or tightly locked

More information

HIGHER ORDER MODES FOR BEAM DIAGNOSTICS IN THIRD HARMONIC 3.9 GHZ ACCELERATING MODULES *

HIGHER ORDER MODES FOR BEAM DIAGNOSTICS IN THIRD HARMONIC 3.9 GHZ ACCELERATING MODULES * HIGHER ORDER MODES FOR BEAM DIAGNOSTICS IN THIRD HARMONIC 3.9 GHZ ACCELERATING MODULES * N. Baboi #, N. Eddy, T. Flisgen, H.-W. Glock, R. M. Jones, I. R. R. Shinton, and P. Zhang # # Deutsches Elektronen-Synchrotron

More information

PLL Synchronizer User s Manual / Version 1.0.6

PLL Synchronizer User s Manual / Version 1.0.6 PLL Synchronizer User s Manual / Version 1.0.6 AccTec B.V. Den Dolech 2 5612 AZ Eindhoven The Netherlands phone +31 (0) 40-2474321 / 4048 e-mail AccTecBV@tue.nl Contents 1 Introduction... 3 2 Technical

More information

Energy Recovering Linac Issues

Energy Recovering Linac Issues Energy Recovering Linac Issues L. Merminga Jefferson Lab EIC Accelerator Workshop Brookhaven National Laboratory February 26-27, 2002 Outline Energy Recovery RF Stability in Recirculating, Energy Recovering

More information

TECHNIQUES FOR PUMP-PROBE SYNCHRONISATION OF FSEC RADIATION PULSES

TECHNIQUES FOR PUMP-PROBE SYNCHRONISATION OF FSEC RADIATION PULSES TECHNIQUES FOR PUMP-PROBE SYNCHRONISATION OF FSEC RADIATION PULSES Abstract The production of ultra-short photon pulses for UV, VUV or X-ray Free-Electron Lasers demands new techniques to measure and control

More information

RF Locking of Femtosecond Lasers

RF Locking of Femtosecond Lasers RF Locking of Femtosecond Lasers Josef Frisch, Karl Gumerlock, Justin May, Steve Smith SLAC Work supported by DOE contract DE-AC02-76SF00515 1 Overview FEIS 2013 talk discussed general laser locking concepts

More information

taccor Optional features Overview Turn-key GHz femtosecond laser

taccor Optional features Overview Turn-key GHz femtosecond laser taccor Turn-key GHz femtosecond laser Self-locking and maintaining Stable and robust True hands off turn-key system Wavelength tunable Integrated pump laser Overview The taccor is a unique turn-key femtosecond

More information

Performance Evaluation of the Upgraded BAMs at FLASH

Performance Evaluation of the Upgraded BAMs at FLASH Performance Evaluation of the Upgraded BAMs at FLASH with a compact overview of the BAM, the interfacing systems & a short outlook for 2019. Marie K. Czwalinna On behalf of the Special Diagnostics team

More information

The Proposed MIT X-ray Laser Facility: Laser Seeding to Achieve the Transform Limit

The Proposed MIT X-ray Laser Facility: Laser Seeding to Achieve the Transform Limit MIT X-ray Laser Project The Proposed MIT X-ray Laser Facility: Laser Seeding to Achieve the Transform Limit 30 or more independent beamlines Fully coherent milli-joule pulses at khz rates Wavelength range

More information

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser P. Castro for the TTF-FEL team 100 nm 1 Å FEL radiation TESLA Test Facility at DESY

More information

Development of utca Hardware for BAM system at FLASH and XFEL

Development of utca Hardware for BAM system at FLASH and XFEL Development of utca Hardware for BAM system at FLASH and XFEL Samer Bou Habib, Dominik Sikora Insitute of Electronic Systems Warsaw University of Technology Warsaw, Poland Jaroslaw Szewinski, Stefan Korolczuk

More information

VELA PHOTOINJECTOR LASER. E.W. Snedden, Lasers and Diagnostics Group

VELA PHOTOINJECTOR LASER. E.W. Snedden, Lasers and Diagnostics Group VELA PHOTOINJECTOR LASER E.W. Snedden, Lasers and Diagnostics Group Contents Introduction PI laser step-by-step: Ti:Sapphire oscillator Regenerative amplifier Single-pass amplifier Frequency mixing Emphasis

More information

ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory

ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory ERL 09 8 th 12 th June 2009 ALICE Accelerators and Lasers In Combined Experiments Brief Description ALICE Superconducting

More information

Recent Progress in Pulsed Optical Synchronization Systems

Recent Progress in Pulsed Optical Synchronization Systems FLS 2010 Workshop March 4 th, 2010 Recent Progress in Pulsed Optical Synchronization Systems Franz X. Kärtner Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics,

More information

Beam Arrival Time Monitors. Josef Frisch, IBIC Sept. 15, 2015

Beam Arrival Time Monitors. Josef Frisch, IBIC Sept. 15, 2015 Beam Arrival Time Monitors Josef Frisch, IBIC Sept. 15, 2015 Arrival Time Monitors Timing is only meaningful relative to some reference, and in general what matters is the relative timing of two different

More information

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links Bruno Romeira* a, José M. L Figueiredo a, Kris Seunarine b, Charles N. Ironside b, a Department of Physics, CEOT,

More information

Performance of the Prototype NLC RF Phase and Timing Distribution System *

Performance of the Prototype NLC RF Phase and Timing Distribution System * SLAC PUB 8458 June 2000 Performance of the Prototype NLC RF Phase and Timing Distribution System * Josef Frisch, David G. Brown, Eugene Cisneros Stanford Linear Accelerator Center, Stanford University,

More information

TIMING DISTRIBUTION AND SYNCHRONIZATION COMPLETE SOLUTIONS FROM ONE SINGLE SOURCE

TIMING DISTRIBUTION AND SYNCHRONIZATION COMPLETE SOLUTIONS FROM ONE SINGLE SOURCE TIMING DISTRIBUTION AND SYNCHRONIZATION COMPLETE SOLUTIONS FROM ONE SINGLE SOURCE link stabilization FEMTOSECOND SYNCHRONIZATION FOR LARGE-SCALE FACILITIES TAILOR-MADE FULLY INTEGRATED SOLUTIONS The Timing

More information

Sub-ps (and sub-micrometer) developments at ELETTRA

Sub-ps (and sub-micrometer) developments at ELETTRA Sub-ps (and sub-micrometer) developments at ELETTRA Mario Ferianis SINCROTRONE TRIESTE, Italy The ELETTRA laboratory ELETTRA is a 3 rd generation synchrotron light source in Trieste (I) since 1993 up to

More information

Note on the LCLS Laser Heater Review Report

Note on the LCLS Laser Heater Review Report Note on the LCLS Laser Heater Review Report P. Emma, Z. Huang, C. Limborg, J. Schmerge, J. Wu April 15, 2004 1 Introduction This note compiles some initial thoughts and studies motivated by the LCLS laser

More information

3 General layout of the XFEL Facility

3 General layout of the XFEL Facility 3 General layout of the XFEL Facility 3.1 Introduction The present chapter provides an overview of the whole European X-Ray Free-Electron Laser (XFEL) Facility layout, enumerating its main components and

More information

Borut Baricevic. Libera LLRF. 17 September 2009

Borut Baricevic. Libera LLRF. 17 September 2009 Borut Baricevic Libera LLRF borut.baricevic@i-tech.si 17 September 2009 Outline Libera LLRF introduction Libera LLRF system topology Signal processing structure GUI and signal acquisition RF system diagnostics

More information

THE ORION PHOTOINJECTOR: STATUS and RESULTS

THE ORION PHOTOINJECTOR: STATUS and RESULTS THE ORION PHOTOINJECTOR: STATUS and RESULTS Dennis T. Palmer SLAC / ARDB ICFA Sardinia 4 July 2002 1. Introduction 2. Beam Dynamics Simulations 3. Photoinjector 1. RF Gun 2. Solenoidal Magnet 3. Diagnostics

More information

State of the Art in RF Control

State of the Art in RF Control State of the Art in RF Control S. Simrock, DESY LINAC 2004, Lübeck Stefan Simrock DESY Outline RF System Architecture Requirements for RF Control RF Control Design Considerations Design Efforts Worldwide

More information

FLASH: Status and upgrade

FLASH: Status and upgrade : Status and upgrade The User Facility Layout Performance and operational o a issues Upgrade Bart Faatz for the team DESY FEL 2009 Liverpool, UK August 23-28, 2009 at DESY > FEL user facility since summer

More information

BEAM ARRIVAL TIME MONITORS

BEAM ARRIVAL TIME MONITORS BEAM ARRIVAL TIME MONITORS J. Frisch SLAC National Accelerator Laboratory, Stanford CA 94305, USA Abstract We provide an overview of beam arrival time measurement techniques for FELs and other accelerators

More information

FLASH II. FLASH II: a second undulator line and future test bed for FEL development.

FLASH II. FLASH II: a second undulator line and future test bed for FEL development. FLASH II FLASH II: a second undulator line and future test bed for FEL development Bart.Faatz@desy.de Outline Proposal Background Parameters Layout Chalenges Timeline Cost estimate Personnel requirements

More information

HIGH-PRECISION OPTICAL SYNCHRONIZATION SYSTEMS FOR X-RAY FREE ELECTRON LASERS

HIGH-PRECISION OPTICAL SYNCHRONIZATION SYSTEMS FOR X-RAY FREE ELECTRON LASERS Abstract Proceedings of the 27th International Free Electron Laser Conference HIGH-PRECISION OPICAL SYNCHRONIZAION SYSEMS FOR X-RAY FREE ELECRON LASERS Axel Winter, Peter Schmüser, Universität Hamburg,

More information

ELECTRON BEAM DIAGNOSTICS AND FEEDBACK FOR THE LCLS-II*

ELECTRON BEAM DIAGNOSTICS AND FEEDBACK FOR THE LCLS-II* THB04 Proceedings of FEL2014, Basel, Switzerland ELECTRON BEAM DIAGNOSTICS AND FEEDBACK FOR THE LCLS-II* Josef Frisch, Paul Emma, Alan Fisher, Patrick Krejcik, Henrik Loos, Timothy Maxwell, Tor Raubenheimer,

More information

Directly Chirped Laser Source for Chirped Pulse Amplification

Directly Chirped Laser Source for Chirped Pulse Amplification Directly Chirped Laser Source for Chirped Pulse Amplification Input pulse (single frequency) AWG RF amp Output pulse (chirped) Phase modulator Normalized spectral intensity (db) 64 65 66 67 68 69 1052.4

More information

Review on Progress in RF Control Systems. Cornell University. Matthias Liepe. M. Liepe, Cornell U. SRF 2005, July 14

Review on Progress in RF Control Systems. Cornell University. Matthias Liepe. M. Liepe, Cornell U. SRF 2005, July 14 Review on Progress in RF Control Systems Matthias Liepe Cornell University 1 Why this Talk? As we all know, superconducting cavities have many nice features one of which is very high field stability. Why?

More information

TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES

TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES Luca Poletto CNR - Institute of Photonics and Nanotechnologies Laboratory for UV and X-Ray Optical Research Padova, Italy e-mail:

More information

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers T. Day and R. A. Marsland New Focus Inc. 340 Pioneer Way Mountain View CA 94041 (415) 961-2108 R. L. Byer

More information

Electro-optic Spectral Decoding Measurements at FLASH

Electro-optic Spectral Decoding Measurements at FLASH Electro-optic Spectral Decoding Measurements at FLASH, FLA Florian Loehl, Sebastian Schulz, Laurens Wißmann Motivation Development of a robust online bunch length monitor for FLASH and XFEL Transition

More information

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Keisuke Kasai a), Jumpei Hongo, Masato Yoshida, and Masataka Nakazawa Research Institute of

More information

Designing for Femtosecond Pulses

Designing for Femtosecond Pulses Designing for Femtosecond Pulses White Paper PN 200-1100-00 Revision 1.1 July 2013 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

INSTALLATION AND FIRST COMMISSIONING OF THE LLRF SYSTEM

INSTALLATION AND FIRST COMMISSIONING OF THE LLRF SYSTEM INSTALLATION AND FIRST COMMISSIONING OF THE LLRF SYSTEM FOR THE EUROPEAN XFEL Julien Branlard, for the LLRF team TALK OVERVIEW 2 Introduction Brief reminder about the XFEL LLRF system Commissioning goals

More information

Suppression of amplitude-to-phase noise conversion in balanced optical-microwave phase detectors

Suppression of amplitude-to-phase noise conversion in balanced optical-microwave phase detectors Suppression of amplitude-to-phase noise conversion in balanced optical-microwave phase detectors Maurice Lessing, 1,2 Helen S. Margolis, 1 C. Tom A. Brown, 2 Patrick Gill, 1 and Giuseppe Marra 1* Abstract:

More information

Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015

Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015 Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015 Chapter 9: Optical Parametric Amplifiers and Oscillators 9.8 Noncollinear optical parametric amplifier (NOPA) 9.9 Optical parametric chirped-pulse

More information

- RF Master-Reference Update (F.Ludwig, H.Weddig - DESY, K.Czuba - TU Warsaw) - Beam Stability Update (C.Gerth, F.Ludwig, G.

- RF Master-Reference Update (F.Ludwig, H.Weddig - DESY, K.Czuba - TU Warsaw) - Beam Stability Update (C.Gerth, F.Ludwig, G. FLASH Meeting, 21/04/09 Beam Stability at FLASH - update F.Ludwig - DESY Content : - Motivation - RF Master-Reference Update (F.Ludwig, H.Weddig - DESY, K.Czuba - TU Warsaw) - Beam Stability Update (C.Gerth,

More information

Measurements 2: Network Analysis

Measurements 2: Network Analysis Measurements 2: Network Analysis Fritz Caspers CAS, Aarhus, June 2010 Contents Scalar network analysis Vector network analysis Early concepts Modern instrumentation Calibration methods Time domain (synthetic

More information

The low level radio frequency control system for DC-SRF. photo-injector at Peking University *

The low level radio frequency control system for DC-SRF. photo-injector at Peking University * The low level radio frequency control system for DC-SRF photo-injector at Peking University * WANG Fang( 王芳 ) 1) FENG Li-Wen( 冯立文 ) LIN Lin( 林林 ) HAO Jian-Kui( 郝建奎 ) Quan Sheng-Wen( 全胜文 ) ZHANG Bao-Cheng(

More information

The Effects of Crystal Oscillator Phase Noise on Radar Systems

The Effects of Crystal Oscillator Phase Noise on Radar Systems Thomas L. Breault Product Applications Manager FEI-Zyfer, Inc. tlb@fei-zyfer.com The Effects of Crystal Oscillator Phase Noise on Radar Systems Why Radar Systems need high performance, low phase noise

More information

Installation and Characterization of the Advanced LIGO 200 Watt PSL

Installation and Characterization of the Advanced LIGO 200 Watt PSL Installation and Characterization of the Advanced LIGO 200 Watt PSL Nicholas Langellier Mentor: Benno Willke Background and Motivation Albert Einstein's published his General Theory of Relativity in 1916,

More information

Design Considerations for Phase Reference Distribution

Design Considerations for Phase Reference Distribution Design Considerations for Reference Distribution Rihua Zeng, Anders J Johansson September 13, 2012 Abstract Coaxial cable based solution and optical fibre based solution are discussed in this note for

More information

Installation Progress of the Laser-based Synchronization System at FLASH.

Installation Progress of the Laser-based Synchronization System at FLASH. Installation Progress of the Laser-based Synchronization System at FLASH. Overview, Experiences, Performance and Outlook Sebastian Schulz 1,2 on behalf of the FLASH LbSyn Team 1 Institute of Experimental

More information

Feedback Requirements for SASE FELS. Henrik Loos, SLAC IPAC 2010, Kyoto, Japan

Feedback Requirements for SASE FELS. Henrik Loos, SLAC IPAC 2010, Kyoto, Japan Feedback Requirements for SASE FELS Henrik Loos, SLAC, Kyoto, Japan 1 1 Henrik Loos Outline Stability requirements for SASE FELs Diagnostics for beam parameters Transverse: Beam position monitors Longitudinal:

More information

Theory and Applications of Frequency Domain Laser Ultrasonics

Theory and Applications of Frequency Domain Laser Ultrasonics 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Theory and Applications of Frequency Domain Laser Ultrasonics Todd W. MURRAY 1,

More information

arxiv:physics/ v1 [physics.acc-ph] 18 Jul 2003

arxiv:physics/ v1 [physics.acc-ph] 18 Jul 2003 DESY 03 091 ISSN 0418-9833 July 2003 arxiv:physics/0307092v1 [physics.acc-ph] 18 Jul 2003 Two-color FEL amplifier for femtosecond-resolution pump-probe experiments with GW-scale X-ray and optical pulses

More information

Electro-Optical Measurements at the Swiss Light Source (SLS) Linac at the PSI. First Results

Electro-Optical Measurements at the Swiss Light Source (SLS) Linac at the PSI. First Results Electro-Optical Measurements at the Swiss Light Source (SLS) Linac at the PSI First Results Overview motivation electro-optical sampling general remarks experimental setup synchronisation between TiSa-laser

More information

Fiber Laser Chirped Pulse Amplifier

Fiber Laser Chirped Pulse Amplifier Fiber Laser Chirped Pulse Amplifier White Paper PN 200-0200-00 Revision 1.2 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Fiber lasers offer advantages in maintaining stable operation over

More information

AN X-BAND FREQUENCY AGILE SOURCE WITH EXTREMELY LOW PHASE NOISE FOR DOPPLER RADAR

AN X-BAND FREQUENCY AGILE SOURCE WITH EXTREMELY LOW PHASE NOISE FOR DOPPLER RADAR AN X-BAND FREQUENCY AGILE SOURCE WITH EXTREMELY LOW PHASE NOISE FOR DOPPLER RADAR H. McPherson Presented at IEE Conference Radar 92, Brighton, Spectral Line Systems Ltd England, UK., October 1992. Pages

More information

BEAM DIAGNOSTICS AT THE VUV-FEL FACILITY

BEAM DIAGNOSTICS AT THE VUV-FEL FACILITY BEAM DIAGNOSTICS AT THE VUV-FEL FACILITY J. Feldhaus, D. Nölle, DESY, D-22607 Hamburg, Germany Abstract The free electron laser (FEL) at the TESLA Test facility at DESY, now called VUV-FEL, will be the

More information

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION:

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION: Theoretical Approach Why do we need ultra short technology?? INTRODUCTION: Generating ultrashort laser pulses that last a few femtoseconds is a highly active area of research that is finding applications

More information

A high resolution bunch arrival time monitor system for FLASH / XFEL

A high resolution bunch arrival time monitor system for FLASH / XFEL A high resolution bunch arrival time monitor system for FLASH / XFEL K. Hacker, F. Löhl, F. Ludwig, K.H. Matthiesen, H. Schlarb, B. Schmidt, A. Winter October 24 th Principle of the arrival time detection

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Soliton-Similariton Fibre Laser Bulent Oktem 1, Coşkun Ülgüdür 2 and F. Ömer Ilday 2 SUPPLEMENTARY INFORMATION 1 Graduate Program of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara,

More information

Digital LLRF Test on the Renascence Cryomodule

Digital LLRF Test on the Renascence Cryomodule Digital LLRF Test on the Renascence Cryomodule Trent Allison, Rama Bachimanchi, Curt Hovater, John Musson and Tomasz Plawski Introduction The Renascence cryomodule was the first opportunity for testing

More information

LNS ultra low phase noise Synthesizer 8 MHz to 18 GHz

LNS ultra low phase noise Synthesizer 8 MHz to 18 GHz LNS ultra low phase noise Synthesizer 8 MHz to 18 GHz Datasheet The LNS is an easy to use 18 GHz synthesizer that exhibits outstanding phase noise and jitter performance in a 3U rack mountable chassis.

More information

National Accelerator Laboratory

National Accelerator Laboratory Fermi National Accelerator Laboratory FERMILAB-Conf-96/103 Trigger Delay Compensation for Beam Synchronous Sampling James Steimel Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510

More information

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers 1.0 Modulation depth 0.8 0.6 0.4 0.2 0.0 Laser 3 Laser 2 Laser 4 2 3 4 5 6 7 8 Absorbed pump power (W) Laser 1 W. Guan and J. R.

More information

레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 )

레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 ) 레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 ) Contents Frequency references Frequency locking methods Basic principle of loop filter Example of lock box circuits Quantifying frequency stability Applications

More information

Testing with 40 GHz Laser Sources

Testing with 40 GHz Laser Sources Testing with 40 GHz Laser Sources White Paper PN 200-0500-00 Revision 1.1 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s 40 GHz fiber lasers are actively mode-locked fiber lasers.

More information

Quantum frequency standard Priority: Filing: Grant: Publication: Description

Quantum frequency standard Priority: Filing: Grant: Publication: Description C Quantum frequency standard Inventors: A.K.Dmitriev, M.G.Gurov, S.M.Kobtsev, A.V.Ivanenko. Priority: 2010-01-11 Filing: 2010-01-11 Grant: 2011-08-10 Publication: 2011-08-10 Description The present invention

More information

ERLP Status. Mike Dykes

ERLP Status. Mike Dykes ERLP Status Mike Dykes Content ASTeC RF & Diagnostics Group Work of the Group 4GLS ERLP Photo-injector Accelerating Modules Summary High Power RF Engineering Andy Moss SRS Support; DIAMOND; ERLP; MICE;

More information

Performance of the Reference and Timing Systems at SPring-8

Performance of the Reference and Timing Systems at SPring-8 Performance of the Reference and Timing Systems at SPring-8 Outline Yuji Ohashi SPring-8 1. Introduction 2. Tools 3. Performances 4. New synchronization scheme between 508 and 2856 MHz 5. Summary Y.Kawashima

More information

INTRA-TRAIN LONGITUDINAL FEEDBACK FOR BEAM STABILIZATION AT FLASH

INTRA-TRAIN LONGITUDINAL FEEDBACK FOR BEAM STABILIZATION AT FLASH INTRA-TRAIN LONGITUDINAL FEEDBACK FOR BEAM STABILIZATION AT FLASH W. Koprek*, C. Behrens, M. K. Bock, M. Felber, P. Gessler, K. Hacker, H. Schlarb, C. Schmidt, B. Steffen, S. Wesch, DESY, Hamburg, Germany

More information

Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation

Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation Z. Wu, H. Loos, Y. Shen, B. Sheehy, E. D. Johnson, S. Krinsky, J. B. Murphy, T. Shaftan,, X.-J. Wang, L. H. Yu,

More information

Extending the Offset Frequency Range of the D2-135 Offset Phase Lock Servo by Indirect Locking

Extending the Offset Frequency Range of the D2-135 Offset Phase Lock Servo by Indirect Locking Extending the Offset Frequency Range of the D2-135 Offset Phase Lock Servo by Indirect Locking Introduction The Vescent Photonics D2-135 Offset Phase Lock Servo is normally used to phase lock a pair of

More information

LLRF Operation and Performance of the European XFEL. An overview

LLRF Operation and Performance of the European XFEL. An overview LLRF Operation and Performance of the European XFEL. An overview Mathieu Omet LLRF, Barcelona, 16.10.2017 Contents > Introduction > LLRF commissioning > Energy Reach > LLRF performance > Summary / Outlook

More information

Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at DESY

Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at DESY Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at FLASH @ DESY N. Baboi, DESY, Hamburg for the HOM team : S. Molloy 1, N. Baboi 2, N. Eddy 3, J. Frisch 1, L. Hendrickson

More information

Direct Digital Down/Up Conversion for RF Control of Accelerating Cavities

Direct Digital Down/Up Conversion for RF Control of Accelerating Cavities Direct Digital Down/Up Conversion for RF Control of Accelerating Cavities C. Hovater, T. Allison, R. Bachimanchi, J. Musson and T. Plawski Introduction As digital receiver technology has matured, direct

More information

TIGER Femtosecond and Picosecond Ti:Sapphire Lasers. Customized systems with SESAM technology*

TIGER Femtosecond and Picosecond Ti:Sapphire Lasers. Customized systems with SESAM technology* TIGER Femtosecond and Picosecond Ti:Sapphire Lasers Customized systems with SESAM technology* www.lumentum.com Data Sheet The TIGER femtosecond and picosecond lasers combine soliton mode-locking, a balance

More information

Glossary of VCO terms

Glossary of VCO terms Glossary of VCO terms VOLTAGE CONTROLLED OSCILLATOR (VCO): This is an oscillator designed so the output frequency can be changed by applying a voltage to its control port or tuning port. FREQUENCY TUNING

More information

Bioimaging of cells and tissues using accelerator-based sources

Bioimaging of cells and tissues using accelerator-based sources Analytical and Bioanalytical Chemistry Electronic Supplementary Material Bioimaging of cells and tissues using accelerator-based sources Cyril Petibois, Mariangela Cestelli Guidi Main features of Free

More information

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis CREOL Affiliates Day 2011 The Theta Laser A Low Noise Chirped Pulse Laser Dimitrios Mandridis dmandrid@creol.ucf.edu April 29, 2011 Objective: Frequency Swept (FM) Mode-locked Laser Develop a frequency

More information

Jungwon Kim, Jonathan A. Cox, Jian J. Chen & Franz X. Kärtner. Department of Electrical Engineering and Computer Science and Research Laboratory

Jungwon Kim, Jonathan A. Cox, Jian J. Chen & Franz X. Kärtner. Department of Electrical Engineering and Computer Science and Research Laboratory 1 Supplementary Information Drift-free femtosecond timing synchronization of remote optical and microwave sources with better than 10-19 -level stability Jungwon Kim, Jonathan A. Cox, Jian J. Chen & Franz

More information

Picosecond Pulses for Test & Measurement

Picosecond Pulses for Test & Measurement Picosecond Pulses for Test & Measurement White Paper PN 200-0100-00 Revision 1.1 September 2003 Calmar Optcom, Inc www.calamropt.com Overview Calmar s picosecond laser sources are actively mode-locked

More information

Berkeley Nucleonics Corporation

Berkeley Nucleonics Corporation Berkeley Nucleonics Corporation A trusted source for quality and innovative instrumentation since 1963 Test And Measurement Nuclear Expertise RF/Microwave BNC at Our Core BNC Mission: Providing our customers

More information

3.C High-Repetition-Rate Amplification of Su bpicosecond Pulses

3.C High-Repetition-Rate Amplification of Su bpicosecond Pulses 5. P. R. Smith, D. H. Auston, A. M. Johnson, and W. M. Augustyniak, Appl. Phys. Lett. 38, 47-50 (1 981). 6. F. J. Leonburger and P. F. Moulton, Appl. Phys. Lett. 35, 712-714 (1 979). 7. A. P. Defonzo,

More information

Antenna Measurements using Modulated Signals

Antenna Measurements using Modulated Signals Antenna Measurements using Modulated Signals Roger Dygert MI Technologies, 1125 Satellite Boulevard, Suite 100 Suwanee, GA 30024-4629 Abstract Antenna test engineers are faced with testing increasingly

More information

Testing with Femtosecond Pulses

Testing with Femtosecond Pulses Testing with Femtosecond Pulses White Paper PN 200-0200-00 Revision 1.3 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

Progress of the TEO experiment at FLASH

Progress of the TEO experiment at FLASH Progress of the TEO experiment at VUV-FEL at DESY - Armin Azima S. Duesterer, J. Feldhaus, H. Schlarb, H. Redlin, B. Steffen, DESY Hamburg K. Sengstock, Uni Hamburg Adrian Cavalieri, David Fritz, David

More information