ARRAY CONFIGURATION AND TOTAL POWER CALIBRATION FOR LEDA

Size: px
Start display at page:

Download "ARRAY CONFIGURATION AND TOTAL POWER CALIBRATION FOR LEDA"

Transcription

1 ARRAY CONFIGURATION AND TOTAL POWER CALIBRATION FOR LEDA Frank Schinzel & Joe Craig (UNM) on behalf of the LEDA Collaboration USNC-URSI National Radio Science Meeting Boulder,

2 What is LEDA? Experiment focusing on the detection of the dark ages signal from the Lyα coupling era (z~20) Challenges: Greater diffuse structure in sky brightness A weak line against bright continuum Calibration and sky mapping Approach: Use individual outrigger cross-dipoles to measure sky total power Construct large-n FPGA/GPU correlator for sky-mapping PI: Lincoln Greenhill (CfA) Dan Werthimer (Berkeley) Greg Taylor (UNM) Steve Ellingson (VT) LEDA (Schinzel) Boulder,

3 First Station of the Long Wavelength Array LWA1 Technical Specifications: 5-88 MHz usable Galactic noise-dominated (>4:1) MHz 4 independent beams x 2 pol. x 2 tunings each 19.6 MHz bandwidth SEFD 3 kjy (zenith); Smin 5 Jy (5, 1 s, 16 MHz zenith) All sky (all dipoles) modes: TBN (70 khz-bw; continuous) TBW (78 MHz-bw, 61 ms burst) See also presentations by Steve Ellingson Friday afternoon: SEARCHING FOR SHORT DISPERSED PULSES WITH LWA1 (J3-11) ELECTROMAGNETIC CHARACTERIZATION OF THE LWA1 ANTENNA ARRAY (BJ1-3) LEDA (Schinzel) Boulder,

4 Array Configuration Science Array - measure total power - 5 outrigger (cross-dipoles) Calibration Array LWA1 dipoles - Sky mapping (w/ science array) LEDA Concept Correlator & Post-processing FPGA/GPU based large-n correlator (512 inputs) w/ pulsar gating Full correlation backend Warped snapshot calibration/imaging LEDA (Schinzel) Boulder,

5 LEDA Correlator First 32 input prototype operational at LWA1 (first light wide-field map around Cyg A). Kocz, Bernardi et al. (CfA) LEDA 64 expected to deploy over the next few months at LWA1. LEDA (Schinzel) Boulder,

6 Constraints for LWA1 National Elevation Dataset Placement of additional outrigger around LWA1 is constrained: Required to stay within NRAO owned land Minimize mutual coupling effects (nearby structures) Interference from overhead powerlines and VLA operations Co-planarity with LWA1 (<1-5 m) LEDA (Schinzel) Boulder,

7 Array Configuration Study For sparse arrays, following the legs of a Reuleaux triangle is a good choice (Keto 1997) Tested configurations with 2-5 outriggers: Triangle Diameter 450 m Two elements per leg One leg across LWA1 Max. Baseline ~510m LEDA (Schinzel) Boulder,

8 Construction of 4 LWA1 built configuration #3 Cabling: 2x LMR400 1x DC power 1x 6 strand single-mode fiber #2 #4 #5 #1 LEDA (Schinzel) Boulder,

9 LEDA OVRO LWA type station under construction at Caltech Owens Valley Radio Observatory. Station footprint increased by a factor of 2 & 5 outrigger in half circle config. Antenna locations and elevation contours (u,v) snapshot coverage LEDA (Schinzel) Boulder,

10 LEDA Antenna Front Ends New FEEs w/ three state switching to calibrate T sky : Antenna (P A ) Load (P L ) Noise (P C ) J. Craig et al. (UNM) LEDA requires absolute power measurements from multiple outriggers. The ability to calibrate these outriggers are implemented through newly designed front end electronics (FEEs). Requires a priori knowledge of T C and T L which will be determined in the Lab. All remaining parameters are determined in the field during data acquisition. LEDA (Schinzel) Boulder,

11 Comparitor circuit Front End Circuit 4:1 Balun Switch 25 db Amp Filter 12 db Amp Temp. stab. attenuator & noise diode Specifications: LEDA FEE Gain 37 db NF 29 db IP 3-2 dbm State Selection w/ Bias DC: BiasDC Position 15 V Antenna 16 V Load 17 V Noise & Load LEDA (Schinzel) Boulder,

12 Lab Setup 8192 channels/100 ms LEDA (Schinzel) Boulder,

13 Switching States Total Power vs Time Pre level detection Power Spectral Densities Post level detection Sample clock/pps not locked: level detection, clock drift correction applied 25 MHz bandwidth (23.9 khz/channel), Integration time: 200 s each state weak interference below 55 MHz LEDA (Schinzel) Boulder,

14 Calibrated Antenna Temperatures Calibrated T sys after bandpass removal Calibrated dynamic spectrum Noise level ~1 K LEDA (Schinzel) Boulder,

15 Summary Completed deployment of four additional LWA1 providing additional baselines ranging from m Developed new front end electronics to be outrigger Demonstrated three state switching total power calibration scheme with achieved T sys stability of ~1 K Deep integrations & field testing in 1 st quarter of 2013 together w/ deployment of LEDA 64 channel LWA1 LEDA developments are important for ongoing and future experiments targeting EoR and dark ages science stay tuned! LEDA (Schinzel) Boulder,

Results from LWA1 Commissioning: Sensitivity, Beam Characteristics, & Calibration

Results from LWA1 Commissioning: Sensitivity, Beam Characteristics, & Calibration Results from LWA1 Commissioning: Sensitivity, Beam Characteristics, & Calibration Steve Ellingson (Virginia Tech) LWA1 Radio Observatory URSI NRSM Jan 4, 2012 LWA1 Title 10-88 MHz usable, Galactic noise-dominated

More information

LWA1 Technical and Observational Information

LWA1 Technical and Observational Information LWA1 Technical and Observational Information Contents April 10, 2012 Edited by Y. Pihlström, UNM 1 Overview 2 1.1 Summary of Specifications.................................... 2 2 Signal Path 3 2.1 Station

More information

LWA Station Design. S. Ellingson, Virginia Tech N. Kassim, U.S. Naval Research Laboratory. URSI General Assembly Chicago Aug 11, 2008 JPL

LWA Station Design. S. Ellingson, Virginia Tech N. Kassim, U.S. Naval Research Laboratory. URSI General Assembly Chicago Aug 11, 2008 JPL LWA Station Design S. Ellingson, Virginia Tech N. Kassim, U.S. Naval Research Laboratory URSI General Assembly Chicago Aug 11, 2008 JPL Long Wavelength Array (LWA) An LWA Station State of New Mexico, USA

More information

On-the-Air Demonstration of a Prototype LWA Analog Signal Path

On-the-Air Demonstration of a Prototype LWA Analog Signal Path On-the-Air Demonstration of a Prototype LWA Analog Signal Path Joe Craig, Mahmud Harun, Steve Ellingson April 12, 2008 Contents 1 Summary 2 2 System Description 2 3 Field Demonstration 3 University of

More information

Very Long Baseline Interferometry

Very Long Baseline Interferometry Very Long Baseline Interferometry Cormac Reynolds, JIVE European Radio Interferometry School, Bonn 12 Sept. 2007 VLBI Arrays EVN (Europe, China, South Africa, Arecibo) VLBA (USA) EVN + VLBA coordinate

More information

The First Station of the Long Wavelength Array

The First Station of the Long Wavelength Array University of New Mexico E-mail: henning@cosmos.phys.unm.edu Steven W. Ellingson Virginia Polytechnic Institute and State University E-mail: ellingson@vt.edu Gregory B. Taylor, Joseph Craig, Ylva Pihlström,

More information

arxiv: v1 [astro-ph.im] 3 Sep 2010

arxiv: v1 [astro-ph.im] 3 Sep 2010 arxiv:1009.0666v1 [astro-ph.im] 3 Sep 2010 University of New Mexico E-mail: henning@cosmos.phys.unm.edu Steven W. Ellingson Virginia Polytechnic Institute and State University E-mail: ellingson@vt.edu

More information

Array Configuration for the Long Wavelength Intermediate Array (LWIA): Choosing the First Four Station Sites

Array Configuration for the Long Wavelength Intermediate Array (LWIA): Choosing the First Four Station Sites Array Configuration for the Long Wavelength Intermediate Array (LWIA): Choosing the First Four Station Sites Aaron Cohen (NRL) and Greg Taylor (UNM) December 4, 2007 ABSTRACT The Long Wavelength Intermediate

More information

Testing a Prototype Blade Antenna at the LWDA Site

Testing a Prototype Blade Antenna at the LWDA Site 1 Testing a Prototype Blade Antenna at the LWDA Site Nagini Paravastu, William Erickson, Ylva Pihlstrom, Namir Kassim, Brian Hicks August 30, 2005 September 1, 2005 I. INTRODUCTION This report summarizes

More information

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy Antennas Greg Taylor University of New Mexico Spring 2011 Astronomy 423 at UNM Radio Astronomy Radio Window 2 spans a wide range of λ and ν from λ ~ 0.33 mm to ~ 20 m! (ν = 1300 GHz to 15 MHz ) Outline

More information

Cross Correlators. Jayce Dowell/Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy

Cross Correlators. Jayce Dowell/Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy Cross Correlators Jayce Dowell/Greg Taylor University of New Mexico Spring 2017 Astronomy 423 at UNM Radio Astronomy Outline 2 Re-cap of interferometry What is a correlator? The correlation function Simple

More information

Wide-Band Imaging. Outline : CASS Radio Astronomy School Sept 2012 Narrabri, NSW, Australia. - What is wideband imaging?

Wide-Band Imaging. Outline : CASS Radio Astronomy School Sept 2012 Narrabri, NSW, Australia. - What is wideband imaging? Wide-Band Imaging 24-28 Sept 2012 Narrabri, NSW, Australia Outline : - What is wideband imaging? - Two Algorithms Urvashi Rau - Many Examples National Radio Astronomy Observatory Socorro, NM, USA 1/32

More information

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy Antennas Greg Taylor University of New Mexico Spring 2017 Astronomy 423 at UNM Radio Astronomy Outline 2 Fourier Transforms Interferometer block diagram Antenna fundamentals Types of antennas Antenna performance

More information

EVLA Scientific Commissioning and Antenna Performance Test Check List

EVLA Scientific Commissioning and Antenna Performance Test Check List EVLA Scientific Commissioning and Antenna Performance Test Check List C. J. Chandler, C. L. Carilli, R. Perley, October 17, 2005 The following requirements come from Chapter 2 of the EVLA Project Book.

More information

November SKA Low Frequency Aperture Array. Andrew Faulkner

November SKA Low Frequency Aperture Array. Andrew Faulkner SKA Phase 1 Implementation Southern Africa Australia SKA 1 -mid 250 15m dia. Dishes 0.4-3GHz SKA 1 -low 256,000 antennas Aperture Array Stations 50 350/650MHz SKA 1 -survey 90 15m dia. Dishes 0.7-1.7GHz

More information

A High-Resolution Survey of RFI at MHz as Seen By Argus

A High-Resolution Survey of RFI at MHz as Seen By Argus A High-Resolution Survey of RFI at 1200-1470 MHz as Seen By Argus Steven W. Ellingson October 29, 2002 1 Summary This document reports on a survey of radio frequency interference (RFI) in the band 1200-1470

More information

Designing a Sky-Noise-Limited Receiver for LWA

Designing a Sky-Noise-Limited Receiver for LWA The Next Generation of Receivers for Low Frequency Radio Astronomy: Designing a Sky-Noise-Limited Receiver for LWA Steve Ellingson Contributions from D. Wilson, T. Kramer Virginia Tech ellingson@vt.edu

More information

Cormac Reynolds. ATNF Synthesis Imaging School, Narrabri 10 Sept. 2008

Cormac Reynolds. ATNF Synthesis Imaging School, Narrabri 10 Sept. 2008 Very Long Baseline Interferometry Cormac Reynolds ATNF 10 Sept. 2008 Outline Very brief history Data acquisition Calibration Applications Acknowledgements: C. Walker, S. Tingay What Is VLBI? VLBI: Very

More information

Active Impedance Matched Dual-Polarization Phased Array Feed for the GBT

Active Impedance Matched Dual-Polarization Phased Array Feed for the GBT Active Impedance Matched Dual-Polarization Phased Array Feed for the GBT Karl F. Warnick, David Carter, Taylor Webb, Brian D. Jeffs Department of Electrical and Computer Engineering Brigham Young University,

More information

Detrimental Interference Levels at Individual LWA Sites LWA Engineering Memo RFS0012

Detrimental Interference Levels at Individual LWA Sites LWA Engineering Memo RFS0012 Detrimental Interference Levels at Individual LWA Sites LWA Engineering Memo RFS0012 Y. Pihlström, University of New Mexico August 4, 2008 1 Introduction The Long Wavelength Array (LWA) will optimally

More information

LOFAR DATA SCHOOL 2016

LOFAR DATA SCHOOL 2016 LOFAR DATA SCHOOL 2016 Tied Array Imaging (II), with contributions from: RRL group Scintillation (R. Fallows) Pulsar Working Group Radio Observatory Outline Tools Calibration (Cyg A imaging) Beams Scientific

More information

Updates from EDGES. Judd D. Bowman (Arizona State University), Raul Monsalve, Alan Rogers, Tom Mozdzen, and Nivedita Mahesh

Updates from EDGES. Judd D. Bowman (Arizona State University), Raul Monsalve, Alan Rogers, Tom Mozdzen, and Nivedita Mahesh Updates from EDGES Judd D. Bowman (Arizona State University), Raul Monsalve, Alan Rogers, Tom Mozdzen, and Nivedita Mahesh in collaboration with CSIRO February 8, 2018 EDGES (since 2012) Goal - Detect/constrain

More information

Report on Installation Activities at the LWDA Site

Report on Installation Activities at the LWDA Site Report on Installation Activities at the LWDA Site John Copeland, Aaron Kerkhoff, Charlie Slack, Johnathan York Introduction This brief report offers a summary of the Long Wavelength Demonstrator Array

More information

2 7.5 cm 36.3 cm cm 140 cm 51.3 cm 22.9 cm Rev 3: As simulated in EZNEC Fig. 1. Simplified schematic of a GASE dipole and mast. Only one polariz

2 7.5 cm 36.3 cm cm 140 cm 51.3 cm 22.9 cm Rev 3: As simulated in EZNEC Fig. 1. Simplified schematic of a GASE dipole and mast. Only one polariz June 14, 2006 Specifications of the GASE Antennas Paul S. Ray 1, Kenneth P. Stewart, Brian C. Hicks, Emil J. Polisensky (NRL) 1. Introduction In this document we describe the antennas deployed as part

More information

Green Bank Instrumentation circa 2030

Green Bank Instrumentation circa 2030 Green Bank Instrumentation circa 2030 Dan Werthimer and 800 CASPER Collaborators http://casper.berkeley.edu Upcoming Nobel Prizes with Radio Instrumentation Gravitational Wave Detection (pulsar timing)

More information

EDGES. Judd D. Bowman, Arizona State University Alan E. E. Rogers, Haystack Observatory

EDGES. Judd D. Bowman, Arizona State University Alan E. E. Rogers, Haystack Observatory EDGES Judd D. Bowman, Arizona State University Alan E. E. Rogers, Haystack Observatory Kristina Davis, ASU Sarah Easterbrook, ASU Hamdi Mani, ASU Raul Monsalve, ASU Thomas Mozdzen, ASU Outline Instrument

More information

The LWA1 Radio Telescope

The LWA1 Radio Telescope SUBMITTED TO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. c 22 IEEE. The LWA Radio Telescope S.W. Ellingson, Senior Member, IEEE, G.B. Taylor, J. Craig, Member, IEEE, J. Hartman, J. Dowell, C.N. Wolfe,

More information

Recent imaging results with wide-band EVLA data, and lessons learnt so far

Recent imaging results with wide-band EVLA data, and lessons learnt so far Recent imaging results with wide-band EVLA data, and lessons learnt so far Urvashi Rau National Radio Astronomy Observatory (USA) 26 Jul 2011 (1) Introduction : Imaging wideband data (2) Wideband Imaging

More information

The Phased Array Feed Receiver System : Linearity, Cross coupling and Image Rejection

The Phased Array Feed Receiver System : Linearity, Cross coupling and Image Rejection The Phased Array Feed Receiver System : Linearity, Cross coupling and Image Rejection D. Anish Roshi 1,2, Robert Simon 1, Steve White 1, William Shillue 2, Richard J. Fisher 2 1 National Radio Astronomy

More information

LOFAR: Special Issues

LOFAR: Special Issues Netherlands Institute for Radio Astronomy LOFAR: Special Issues John McKean (ASTRON) ASTRON is part of the Netherlands Organisation for Scientific Research (NWO) 1 Preamble http://www.astron.nl/~mckean/eris-2011-2.pdf

More information

Figure 1 Photo of an Upgraded Low Band Receiver

Figure 1 Photo of an Upgraded Low Band Receiver NATIONAL RADIO ASTRONOMY OBSERVATORY SOCORRO, NEW MEXICO EVLA TECHNICAL REPORT #175 LOW BAND RECEIVER PERFORMANCE SEPTMBER 27, 2013 S.DURAND, P.HARDEN Upgraded low band receivers, figure 1, were installed

More information

August 22, 2012 Revision in response to review. This document has been submitted to the IEEE for consideration for publication.

August 22, 2012 Revision in response to review. This document has been submitted to the IEEE for consideration for publication. The LWA Radio Telescope S.W. Ellingson, G.B. Taylor, J. Craig, J. Hartman, J. Dowell, C.N. Wolfe, T.E. Clarke, B.C. Hicks, N.E. Kassim, P.S. Ray, L. J Rickard, F.K. Schinzel and K.W. Weiler August 22,

More information

Planning (VLA) observations

Planning (VLA) observations Planning () observations 14 th Synthesis Imaging Workshop (May 2014) Loránt Sjouwerman National Radio Astronomy Observatory (Socorro, NM) Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very

More information

Low Frequency Radio Astronomy from the Lunar Surface

Low Frequency Radio Astronomy from the Lunar Surface Low Frequency Radio Astronomy from the Lunar Surface R. J. MacDowall (1), T. J. Lazio (2), J. Burns (3) (1) NASA/GSFC, Greenbelt, MD, USA (2) JPL/Caltech, Pasadena, CA, USA (3) U. Colorado, Boulder, CO,

More information

SKA1 low Baseline Design: Lowest Frequency Aspects & EoR Science

SKA1 low Baseline Design: Lowest Frequency Aspects & EoR Science SKA1 low Baseline Design: Lowest Frequency Aspects & EoR Science 1 st science Assessment WS, Jodrell Bank P. Dewdney Mar 27, 2013 Intent of the Baseline Design Basic architecture: 3-telescope, 2-system

More information

More Radio Astronomy

More Radio Astronomy More Radio Astronomy Radio Telescopes - Basic Design A radio telescope is composed of: - a radio reflector (the dish) - an antenna referred to as the feed on to which the radiation is focused - a radio

More information

Proposal for a Rapid Test Array (RTA) Namir Kassim, Bill Erickson, & Paul Ray 6/26/2007

Proposal for a Rapid Test Array (RTA) Namir Kassim, Bill Erickson, & Paul Ray 6/26/2007 1. Motivation Proposal for a Rapid Test Array (RTA) Namir Kassim, Bill Erickson, & Paul Ray 6/26/2007 Current LWA scientific requirements (Memo 49 & 70) call for ~52 stations comprised of N a = 256 stands

More information

The Long Wavelength Array System Technical Requirements. Version: Draft # February-24

The Long Wavelength Array System Technical Requirements. Version: Draft # February-24 The Long Wavelength Array System Technical Requirements Version: Draft #10 2009-February-24 Compiled by Clint Janes, Joseph Craig, and Lee Rickard Approval: G. Taylor, Co-PI: L. J Rickard, Exec. Project

More information

PdBI data calibration. Vincent Pie tu IRAM Grenoble

PdBI data calibration. Vincent Pie tu IRAM Grenoble PdBI data calibration Vincent Pie tu IRAM Grenoble IRAM mm-interferometry School 2008 1 Data processing strategy 2 Data processing strategy Begins with proposal/setup preparation. Depends on the scientific

More information

EVLA Memo 172 The Modified J-Pole Antenna

EVLA Memo 172 The Modified J-Pole Antenna EVLA Memo 172 The Modified J-Pole Antenna Steve Ellingson, Sterling Coffey, Dan Mertley September 20, 2013 This memo describes the modified J-pole (MJP), a broadband end-fed dipole-like antenna that was

More information

VLBI Post-Correlation Analysis and Fringe-Fitting

VLBI Post-Correlation Analysis and Fringe-Fitting VLBI Post-Correlation Analysis and Fringe-Fitting Michael Bietenholz With (many) Slides from George Moellenbroek and Craig Walker NRAO Calibration is important! What Is Delivered by a Synthesis Array?

More information

EDGES Group Alan E.E. Rogers and Judd D. Bowman Deployment of EDGES at Mileura Station, Western Australia

EDGES Group Alan E.E. Rogers and Judd D. Bowman Deployment of EDGES at Mileura Station, Western Australia EDGES MEMO #025 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 December 13, 2006 Telephone: 781-981-5407 Fax: 781-981-0590 To: From: Subject: EDGES Group Alan

More information

LWA Analog Signal Path Planning

LWA Analog Signal Path Planning LWA Analog Signal Path Planning Steve Ellingson January 23, 2008 Contents 1 Summary 2 2 Noise and RFI Environment 4 3 Analog Signal Path Requirements 6 3.1 Configuration 1: Maximum Bandwidth, Flat Response................

More information

Antennas and Receivers in Radio Astronomy

Antennas and Receivers in Radio Astronomy Antennas and Receivers in Radio Astronomy Mark McKinnon Eleventh Synthesis Imaging Workshop Socorro, June 10-17, 2008 Outline 2 Context Types of antennas Antenna fundamentals Reflector antennas Mounts

More information

Technical Considerations: Nuts and Bolts Project Planning and Technical Justification

Technical Considerations: Nuts and Bolts Project Planning and Technical Justification Technical Considerations: Nuts and Bolts Project Planning and Technical Justification Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long

More information

Focal Plane Array Beamformer for the Expanded GMRT: Initial

Focal Plane Array Beamformer for the Expanded GMRT: Initial Focal Plane Array Beamformer for the Expanded GMRT: Initial Implementation on ROACH Kaushal D. Buch Digital Backend Group, Giant Metrewave Radio Telescope, NCRA-TIFR, Pune, India kdbuch@gmrt.ncra.tifr.res.in

More information

Introduction to Radio Astronomy. Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn

Introduction to Radio Astronomy. Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn Introduction to Radio Astronomy Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn 1 Contents Radio Waves Radio Emission Processes Radio Noise Radio source names and catalogues Radio telescopes

More information

Solar Imaging and Space Weather. using MWA and RAPID. Colin Lonsdale. MIT Haystack Observatory

Solar Imaging and Space Weather. using MWA and RAPID. Colin Lonsdale. MIT Haystack Observatory Solar Imaging and Space Weather using MWA and RAPID Colin Lonsdale MIT Haystack Observatory Gerfeest, 5 November 2013 MWA - The Finished Array 3 Dynamic Spectrum (One MWA baseline) MWA data reduction by

More information

GBT Spectral Baseline Investigation Rick Fisher, Roger Norrod, Dana Balser (G. Watts, M. Stennes)

GBT Spectral Baseline Investigation Rick Fisher, Roger Norrod, Dana Balser (G. Watts, M. Stennes) GBT Spectral Baseline Investigation Rick Fisher, Roger Norrod, Dana Balser (G. Watts, M. Stennes) Points to Note: Wider bandwidths than were used on 140 Foot Cleaner antenna so other effects show up Larger

More information

EVLA Memo 173 Strut-Straddling Arrays for the VLA 4-meter Observing System

EVLA Memo 173 Strut-Straddling Arrays for the VLA 4-meter Observing System EVLA Memo 173 Strut-Straddling Arrays for the VLA 4-meter Observing System Steve Ellingson, Dan Mertley, Sterling Coffey, Ravi Subrahmanyan September 22, 2013 This memo describes several prototype strut

More information

System Parameters Affecting LWA Calibration (Memo 52 Redux)

System Parameters Affecting LWA Calibration (Memo 52 Redux) System Parameters Affecting LWA Calibration (Memo 52 Redux) Steve Ellingson September 20, 2007 Contents 1 Introduction 2 2 LWA Technical Characteristics 2 2.1 Image Sensitivity...........................................

More information

Methodology for Analysis of LMR Antenna Systems

Methodology for Analysis of LMR Antenna Systems Methodology for Analysis of LMR Antenna Systems Steve Ellingson June 30, 2010 Contents 1 Introduction 2 2 System Model 2 2.1 Receive System Model................................... 2 2.2 Calculation of

More information

Wide Bandwidth Imaging

Wide Bandwidth Imaging Wide Bandwidth Imaging 14th NRAO Synthesis Imaging Workshop 13 20 May, 2014, Socorro, NM Urvashi Rau National Radio Astronomy Observatory 1 Why do we need wide bandwidths? Broad-band receivers => Increased

More information

Allen Telescope Array & Radio Frequency Interference. Geoffrey C. Bower UC Berkeley

Allen Telescope Array & Radio Frequency Interference. Geoffrey C. Bower UC Berkeley Allen Telescope Array & Radio Frequency Interference Geoffrey C. Bower UC Berkeley Allen Telescope Array Large N design 350 x 6.1m antennas Sensitivity of the VLA Unprecedented imaging capabilities Continuous

More information

To: Deuterium Array Group From: Alan E.E. Rogers, K.A. Dudevoir and B.J. Fanous Subject: Low Cost Array for the 327 MHz Deuterium Line

To: Deuterium Array Group From: Alan E.E. Rogers, K.A. Dudevoir and B.J. Fanous Subject: Low Cost Array for the 327 MHz Deuterium Line DEUTERIUM ARRAY MEMO #068 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 August 2, 2007 Telephone: 978-692-4764 Fax: 781-981-0590 To: Deuterium Array Group From:

More information

Presented by James Aguirre University of Pennsylvania 26 March 2013 SKA1 Low Workshop

Presented by James Aguirre University of Pennsylvania 26 March 2013 SKA1 Low Workshop Presented by James Aguirre University of Pennsylvania 26 March 2013 SKA1 Low Workshop UVa / NRAO Bradley Carilli Klima Gugliucci Parashare The PAPER Team UC Berkeley Parsons Pober Ali De Boer MacMahon

More information

Interaction Between an Antenna and a Shelter

Interaction Between an Antenna and a Shelter Interaction Between an Antenna and a Shelter Steve Ellingson September 25, 2008 Contents 1 Summary 2 2 Methodology 2 3 Results 2 Bradley Dept. of Electrical & Computer Engineering, 302 Whittemore Hall,

More information

Comparing MMA and VLA Capabilities in the GHz Band. Socorro, NM Abstract

Comparing MMA and VLA Capabilities in the GHz Band. Socorro, NM Abstract Comparing MMA and VLA Capabilities in the 36-50 GHz Band M.A. Holdaway National Radio Astronomy Observatory Socorro, NM 87801 September 29, 1995 Abstract I explore the capabilities of the MMA and the VLA,

More information

APPENDIX A TEST PLOTS. (Model: 15Z970)

APPENDIX A TEST PLOTS. (Model: 15Z970) APPENDIX A APPENDIX A TEST PLOTS (Model: 15Z970) APPENDIX A-Page 1 of 36 TABLE OF CONTENTS A.1 6dB BANDWIDTH MEASUREMENT... 2 A.1.1 6dB Bandwidth Result... 2 A.1.2 Measurement Plots... 3 A.2 MAXIMUM PEAK

More information

Components of Imaging at Low Frequencies: Status & Challenges

Components of Imaging at Low Frequencies: Status & Challenges Components of Imaging at Low Frequencies: Status & Challenges Dec. 12th 2013 S. Bhatnagar NRAO Collaborators: T.J. Cornwell, R. Nityananda, K. Golap, U. Rau J. Uson, R. Perley, F. Owen Telescope sensitivity

More information

When, why and how to self-cal Nathan Brunetti, Crystal Brogan, Amanda Kepley

When, why and how to self-cal Nathan Brunetti, Crystal Brogan, Amanda Kepley When, why and how to self-cal Nathan Brunetti, Crystal Brogan, Amanda Kepley Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline

More information

EVLA System Commissioning Results

EVLA System Commissioning Results EVLA System Commissioning Results EVLA Advisory Committee Meeting, March 19-20, 2009 Rick Perley EVLA Project Scientist t 1 Project Requirements EVLA Project Book, Chapter 2, contains the EVLA Project

More information

Wide-field, wide-band and multi-scale imaging - II

Wide-field, wide-band and multi-scale imaging - II Wide-field, wide-band and multi-scale imaging - II Radio Astronomy School 2017 National Centre for Radio Astrophysics / TIFR Pune, India 28 Aug 8 Sept, 2017 Urvashi Rau National Radio Astronomy Observatory,

More information

Detection & Localization of L-Band Satellites using an Antenna Array

Detection & Localization of L-Band Satellites using an Antenna Array Detection & Localization of L-Band Satellites using an Antenna Array S.W. Ellingson Virginia Tech ellingson@vt.edu G.A. Hampson Ohio State / ESL June 2004 Introduction Traditional radio astronomy uses

More information

EVLA Memo # 194 EVLA Ka-band Receiver Down Converter Module Harmonics: The Mega-Birdie at MHz

EVLA Memo # 194 EVLA Ka-band Receiver Down Converter Module Harmonics: The Mega-Birdie at MHz EVLA Memo # 194 EVLA Ka-band Receiver Down Converter Module Harmonics: The Mega-Birdie at 29440 MHz R. Selina, E. Momjian, W. Grammer, J. Jackson NRAO February 5, 2016 Abstract Observations carried out

More information

A Comparison of Two Power Combining Elements for LWA Active-Baluns Hybrid versus Wideband Transformer

A Comparison of Two Power Combining Elements for LWA Active-Baluns Hybrid versus Wideband Transformer A Comparison of Two Power Combining Elements for LWA Active-Baluns - 180 Hybrid versus Wideband Transformer Brian Hicks, Nagini Paravastu, Paul Ray, and Bill Erickson May 9, 2007 We present a detailed

More information

Pulsar Timing Array Requirements for the ngvla Next Generation VLA Memo 42

Pulsar Timing Array Requirements for the ngvla Next Generation VLA Memo 42 Pulsar Timing Array Requirements for the ngvla Next Generation VLA Memo 42 NANOGrav Collaboration (Dated: April 5, 2018; Version 1.0) 1. SCIENCE WITH PULSAR TIMING ARRAYS The recent detections of binary

More information

Dense Aperture Array for SKA

Dense Aperture Array for SKA Dense Aperture Array for SKA Steve Torchinsky EMBRACE Why a Square Kilometre? Detection of HI in emission at cosmological distances R. Ekers, SKA Memo #4, 2001 P. Wilkinson, 1991 J. Heidmann, 1966! SKA

More information

EVLA Memo #119 Wide-Band Sensitivity and Frequency Coverage of the EVLA and VLA L-Band Receivers

EVLA Memo #119 Wide-Band Sensitivity and Frequency Coverage of the EVLA and VLA L-Band Receivers EVLA Memo #119 Wide-Band Sensitivity and Frequency Coverage of the EVLA and VLA L-Band Receivers Rick Perley and Bob Hayward January 17, 8 Abstract We determine the sensitivities of the EVLA and VLA antennas

More information

LWA Equipment RF Emissions: Spectrum Analyzers and Laptops

LWA Equipment RF Emissions: Spectrum Analyzers and Laptops LWA Equipment RF Emissions: Spectrum Analyzers and Laptops Ylva Pihlström, UNM 8/27/06 Summary I report on measurements in the VLA shielded chamber of the radio frequency emission levels of spectrum analyzers

More information

Removal of Radio-frequency Interference (RFI) from Terrestrial Broadcast Stations in the Murchison Widefield Array. A/Prof.

Removal of Radio-frequency Interference (RFI) from Terrestrial Broadcast Stations in the Murchison Widefield Array. A/Prof. Removal of Radio-frequency Interference (RFI) from Terrestrial Broadcast Stations in the Murchison Widefield Array Present by Supervisors: Chairperson: Bach Nguyen Dr. Adrian Sutinjo A/Prof. Randall Wayth

More information

Why Single Dish? Why Single Dish? Darrel Emerson NRAO Tucson

Why Single Dish? Why Single Dish? Darrel Emerson NRAO Tucson Why Single Dish? Darrel Emerson NRAO Tucson Why Single Dish? What's the Alternative? Comparisons between Single-Dish, Phased Array & Interferometers Advantages and Disadvantages of Correlation Interferometer

More information

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman Antennas & Propagation CSG 250 Fall 2007 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

Amplitude Calibration - Measuring Antenna Temperature R.S. Flagg, RF Associates, March 2012 Radio-SkyPipe Units (SPU)

Amplitude Calibration - Measuring Antenna Temperature R.S. Flagg, RF Associates, March 2012 Radio-SkyPipe Units (SPU) Amplitude Calibration - Measuring Antenna Temperature R.S. Flagg, RF Associates, March 2012 The Jove radio telescope is designed to receive radio noise bursts from Jupiter and the Sun and also radio noise

More information

Guide to observation planning with GREAT

Guide to observation planning with GREAT Guide to observation planning with GREAT G. Sandell GREAT is a heterodyne receiver designed to observe spectral lines in the THz region with high spectral resolution and sensitivity. Heterodyne receivers

More information

Revisions: jee Initial A jee Webber s comments: Prediction changed to predetection and explicit text added about Warm IF amp

Revisions: jee Initial A jee Webber s comments: Prediction changed to predetection and explicit text added about Warm IF amp Memorandum To: From: File John Effland Date: 004-09-15 Revisions: - 004-09-15 jee Initial A 004-09-16 jee Webber s comments: Prediction changed to predetection and explicit text added about Warm IF amp

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS To: From: EDGES MEMO #075 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 July 27, 2011 Telephone: 781-981-5407 Fax: 781-981-0590 EDGES Group Alan E.E. Rogers and

More information

EVLA Memo #205. VLA polarization calibration: RL phase stability

EVLA Memo #205. VLA polarization calibration: RL phase stability EVLA Memo #205 VLA polarization calibration: RL phase stability Frank K. Schinzel (NRAO) May 2, 2018 Contents 1 Context........................................ 2 2 Verification of Calibration - Pointed

More information

Pointing Calibration Steps

Pointing Calibration Steps ALMA-90.03.00.00-00x-A-SPE 2007 08 02 Specification Document Jeff Mangum & Robert The Man Lucas Page 2 Change Record Revision Date Author Section/ Remarks Page affected 1 2003-10-10 Jeff Mangum All Initial

More information

Figure 1: Worst-Case Emissions *FCC Class B compliance not estimated 4 below 200 MHz due to lack of antenna calibration and chamber reflectivity

Figure 1: Worst-Case Emissions *FCC Class B compliance not estimated 4 below 200 MHz due to lack of antenna calibration and chamber reflectivity On Monday, May 02, 2016, Carla Beaudet performed RFI tests on the Prime Focus Phased Array Feed backend, housed in a RFI chassis built by NRAO, the assembly henceforth referred to as the EUT, (Equipment

More information

The WVR at Effelsberg. Thomas Krichbaum

The WVR at Effelsberg. Thomas Krichbaum The WVR at Effelsberg Alan Roy Ute Teuber Helge Rottmann Thomas Krichbaum Reinhard Keller Dave Graham Walter Alef The Scanning 18-26 GHz WVR for Effelsberg ν = 18.5 GHz to 26.0 GHz Δν = 900 MHz Channels

More information

ARRAY DESIGN AND SIMULATIONS

ARRAY DESIGN AND SIMULATIONS ARRAY DESIGN AND SIMULATIONS Craig Walker NRAO Based in part on 2008 lecture by Aaron Cohen TALK OUTLINE STEPS TO DESIGN AN ARRAY Clarify the science case Determine the technical requirements for the key

More information

Technology Drivers, SKA Pathfinders P. Dewdney

Technology Drivers, SKA Pathfinders P. Dewdney Technology Drivers, SKA Pathfinders P. Dewdney Dominion Radio Astrophysical Observatory Herzberg Institute of Astrophysics National Research Council Canada National Research Council Canada Conseil national

More information

Radio Frequency Interference Analysis of Spectra from the Big Blade Antenna at the LWDA Site

Radio Frequency Interference Analysis of Spectra from the Big Blade Antenna at the LWDA Site Radio Frequency Interference Analysis of Spectra from the Big Blade Antenna at the LWDA Site Robert Duffin (GMU/NRL) and Paul S. Ray (NRL) March 23, 2007 Introduction The LWA analog receiver will be required

More information

Why Single Dish? Darrel Emerson NRAO Tucson. NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003.

Why Single Dish? Darrel Emerson NRAO Tucson. NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003. Why Single Dish? Darrel Emerson NRAO Tucson NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003. Why Single Dish? What's the Alternative? Comparisons between Single-Dish, Phased Array

More information

Single Dish Observing Techniques and Calibration

Single Dish Observing Techniques and Calibration Single Dish Observing Techniques and Calibration David Frayer (NRAO) {some slides taken from past presentations of Ron Maddalena and Karen O Neil} What does the telescope measure: Ta = antenna temperature

More information

2 2. Antenna The strawman antenna is the big blade design mounted on a pyramidal PVC structure as shown in Figure 1. Each PVC pyramid with two linearl

2 2. Antenna The strawman antenna is the big blade design mounted on a pyramidal PVC structure as shown in Figure 1. Each PVC pyramid with two linearl DRAFT Version 0.1 April 11, 2006 A Strawman Design for the Long Wavelength Array Stations Paul S. Ray1 (NRL), S. Ellingson (VA Tech), R. Fisher (NRAO), N. E. Kassim (NRL), L. J. Rickard (Independent),

More information

Introduction to Radio Astronomy

Introduction to Radio Astronomy Introduction to Radio Astronomy The Visible Sky, Sagittarius Region 2 The Radio Sky 3 4 Optical and Radio can be done from the ground! 5 Outline The Discovery of Radio Waves Maxwell, Hertz and Marconi

More information

Beam Dwell and Repointing

Beam Dwell and Repointing Beam Dwell and Repointing Steve Ellingson November 25, 2008 Contents 1 Summary 2 2 Analysis 2 3 Recommendations 3 Bradley Dept. of Electrical & Computer Engineering, 302 Whittemore Hall, Virginia Polytechnic

More information

Beamforming for IPS and Pulsar Observations

Beamforming for IPS and Pulsar Observations Beamforming for IPS and Pulsar Observations Divya Oberoi MIT Haystack Observatory Sunrise at Mileura P. Walsh Function, Inputs and Outputs Function - combine the voltage signal from each of the 512 tiles

More information

EMC Evaluation at Green Bank: Emissions and Shield Effectiveness

EMC Evaluation at Green Bank: Emissions and Shield Effectiveness EMC Evaluation at Green Bank: Emissions and Shield Effectiveness National Radio Astronomy Observatory Carla Beaudet Green Bank RFI Group Leader Emissions Evaluation: Standards ITU-R RA.769 specifies (typical)

More information

Calibration in practice. Vincent Piétu (IRAM)

Calibration in practice. Vincent Piétu (IRAM) Calibration in practice Vincent Piétu (IRAM) Outline I. The Plateau de Bure interferometer II. On-line calibrations III. CLIC IV. Off-line calibrations Foreword An automated data reduction pipeline exists

More information

LWDA Ground Screen Performance Report

LWDA Ground Screen Performance Report LWDA Ground Screen Performance Report July 23, 2007 Johnathan York, Aaron Kerkhoff, Greg Taylor, Stephanie Moats, Eduardo Gonzalez, Masaya Kuniyoshi Introduction On June 28, 2007 small ground screens were

More information

LOFAR update: long baselines and other random topics

LOFAR update: long baselines and other random topics LOFAR update: long baselines and other random topics AIfA/MPIfR lunch colloquium Olaf Wucknitz wucknitz@astro.uni-bonn.de Bonn, 6th April 20 LOFAR update: long baselines and other random topics LOFAR previous

More information

Antenna and Analog Beamformer

Antenna and Analog Beamformer Antenna and Analog Beamformer Requirements The antenna system is responsible for collecting radiation from the sky and presenting a suitably conditioned 80-300 MHz RF signal to the receiver node. Because

More information

Long Wavelength Array Station Architecture

Long Wavelength Array Station Architecture Long Wavelength Array Station Architecture Prepared By: Names(s) and Signature(s) Organization Date Steve Ellingson VT 2007-11-09 Approved By: Name and Signature Organization Date Steve Ellingson VT 2007-11-19

More information

EVLA Antenna and Array Performance. Rick Perley

EVLA Antenna and Array Performance. Rick Perley EVLA Antenna and Array Performance System Requirements EVLA Project Book, Chapter 2, contains the EVLA system requirements. For most, astronomical tests are necessary to determine if the array meets requirements.

More information

Radio Interferometry. Xuening Bai. AST 542 Observational Seminar May 4, 2011

Radio Interferometry. Xuening Bai. AST 542 Observational Seminar May 4, 2011 Radio Interferometry Xuening Bai AST 542 Observational Seminar May 4, 2011 Outline Single-dish radio telescope Two-element interferometer Interferometer arrays and aperture synthesis Very-long base line

More information

Valon Synthesizer RFI Test Report

Valon Synthesizer RFI Test Report Page: Page 1 of 10 VEGAS-003-A-REP Version: A Prepared By: Name(s) and Signature(s) Organization Date C.Beaudet NRAO-GB 2011-11-29 J.Ray NRAO-GB 2013-03-18 Page: Page 2 of 10 Change Record Version Date

More information

Sideband Smear: Sideband Separation with the ALMA 2SB and DSB Total Power Receivers

Sideband Smear: Sideband Separation with the ALMA 2SB and DSB Total Power Receivers and DSB Total Power Receivers SCI-00.00.00.00-001-A-PLA Version: A 2007-06-11 Prepared By: Organization Date Anthony J. Remijan NRAO A. Wootten T. Hunter J.M. Payne D.T. Emerson P.R. Jewell R.N. Martin

More information