Update and Repair Efficient Codes for Distributed Storage

Size: px
Start display at page:

Download "Update and Repair Efficient Codes for Distributed Storage"

Transcription

1 Update and Repair Efficient Codes for Distributed Storage Ankit Singh Rawat Wireless Networking and Communications Group (WNCG) The University of Texas at Austin December 18, 2013 A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

2 Distributed Storage System (DSS) Data Source A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

3 Data reconstruction A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

4 Node failure A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

5 Node failure Need to introduce redundancy into the system. A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

6 Replication vs. coding a a a b b b a b a + b 2a + b 3-replication (4, 2) Erasure coding A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

7 Replication vs. coding a a a b b b a b a + b 2a + b 3-replication (4, 2) Erasure coding Traditional MDS codes are optimal for storage vs. reliability trade-off. A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

8 Replication vs. coding a a a b b b a b a + b 2a + b 3-replication (4, 2) Erasure coding Traditional MDS codes are optimal for storage vs. reliability trade-off. Reliability is not the only metric of interest: I Overhead of updating data. I Node repair overhead. I Availability. I... A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

9 Replication vs. coding a a a b b b a b a + b 2a + b 3-replication (4, 2) Erasure coding Traditional MDS codes are optimal for storage vs. reliability trade-off. Reliability is not the only metric of interest: I Overhead of updating data. I Node repair overhead. I Availability. I... May need to move away from MDS codes. A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

10 Overhead of updating data (Update Complexity) Information to be stored is almost never static. A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

11 Overhead of updating data (Update Complexity) Information to be stored is almost never static. Update complexity: maximum number of encoded symbols that must be updated when any single information symbol is changed. A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

12 Example: (7, 4) Hamming code x 1 x 1, x 2, x 3, x 4 Source Node x 2 x 3 x 4 x 2 + x 3 + x 4 x 1 + x 3 + x 4 2 y = x 1 x 2 x 3 x x 1 + x 2 + x 4 A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

13 Example: (7, 4) Hamming code x 1 x 1, x 2, x 3, x 4 Source Node x 2 x 3 x 4 x 2 + x 3 + x 4 x 1 + x 3 + x 4 2 y = x 1 x 2 x 3 x x 1 + x 2 + x 4 A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

14 Example: (7, 4) Hamming code x 1 x 1, x 2, x 3, x 4 Source Node x 2 x 3 x 4 x 2 + x 3 + x 4 x 1 + x 3 + x 4 x 1 + x 2 + x 4 2 y = x 1 x 2 x 3 x Update complexity minimum distance. A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

15 Update Complexity Information to be stored is almost never static. Update complexity: maximum number of encoded symbols that must be updated when any single information symbol is changed. Updating data consumes bandwidth and energy. Design codes with small update complexity. A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

16 Update Efficiency Constant update complexity. A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

17 Update Efficiency Constant update complexity. Linear update complexity. A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

18 Update Efficiency Constant update complexity. Linear update complexity. I Low update complexity MDS codes for storage: F e.g. X-code [XuBruck], EVENODD code [BlaumBradyBruckMenon]. A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

19 Update Efficiency Constant update complexity. Linear update complexity. I Low update complexity MDS codes for storage: F e.g. X-code [XuBruck], EVENODD code [BlaumBradyBruckMenon]. Coding schemes with sub-linear update complexity. A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

20 Kolchin generator (KG) codes Random ensemble of codes with logarithmic update complexity. P. Anthapadmanabhan, E. Soljanin and S. Vishwanath, in Allerton A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

21 Kolchin generator (KG) codes Random ensemble of codes with logarithmic update complexity. Generator matrix: 2 G = log n P(G i,j = 1) =O n n k n P. Anthapadmanabhan, E. Soljanin and S. Vishwanath, in Allerton A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

22 Kolchin generator (KG) codes Random ensemble of codes with logarithmic update complexity. Generator matrix: 2 G = log n P(G i,j = 1) =O n n k n With high probability, every column has O(log n) non-zero entries. P. Anthapadmanabhan, E. Soljanin and S. Vishwanath, in Allerton A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

23 Failure tolerance of KG codes Minimum distance of KG codes is at most O(log n). A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

24 Failure tolerance of KG codes Minimum distance of KG codes is at most O(log n). Random erasure model: each node answer with probability p. A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

25 Failure tolerance of KG codes Minimum distance of KG codes is at most O(log n). Random erasure model: each node answer with probability p. W.h.p., arandom set of k n (1 + ) encoded symbols is sufficient to reconstruct data. I Can tolerate erasure probability p < n kn n. A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

26 Node repair Replacement node A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

27 Efficient node repair Important to perform efficient node repairs. Multiple metrics to measure repair efficiency. Repair bandwidth: amount of data downloaded during a node repair. Locality: number of remaining nodes contacted during a node repair. A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

28 Efficient node repair Important to perform efficient node repairs. Multiple metrics to measure repair efficiency. Repair bandwidth: amount of data downloaded during a node repair. I A. S. Rawat, A. Bhowmick, S. Vishwanath and E. Soljanin, in ISIT Locality: number of remaining nodes contacted during a node repair. I M. Asteris and A. Dimakis, in ISIT I Modification of KG codes appraoch. I A. Mazumdar, V. Chandar and G. Wornell, in ITA A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

29 Repairable fountain codes M. Asteris and A. Dimakis, in ISIT A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

30 Repairable fountain codes x 1 x 2 x 3 x kn M. Asteris and A. Dimakis, in ISIT A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

31 Repairable fountain codes x 1 x 2 x 1 x 3 x 4 x 3 x kn x kn M. Asteris and A. Dimakis, in ISIT A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

32 Repairable fountain codes x 1 x 2 x 1 x 3 x 4 x 3 x kn x kn n k n parity symbols Each parity node is obtained by randomly throwing (log n) edges. M. Asteris and A. Dimakis, in ISIT A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

33 Repairable fountain codes. x 1 x 2 x 1 x 3 x 4 x 3 x kn x kn n k n parity symbols Each node has locality (log n). W.h.p., update complexity: O(log n). I Maximum load of throwing O(kn log k n ) balls into k n bins. Failure tolerance: I Any random set of kn (1 + ) encoded symbols are sufficient for data reconstruction. M. Asteris and A. Dimakis, in ISIT A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

34 Modification of KG codes approach A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

35 Modification of KG codes approach x 1 x 2 x 3 x kn A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

36 Modification of KG codes approach x 1 x 1 x 2 x 3 x 4 x 3 x kn x kn A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

37 Modification of KG codes approach x 1 x 1 x 2 x 3 x 4 x 3 x kn x kn n k n parity symbols For parity nodes, each edge is present w. p. ( log n n ). A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

38 Modification KG codes approach. x 1 x 1 x 2 x 3 x 4 x 3 x kn x kn n k n parity symbols W.h.p., each node has locality (log n). W.h.p, update complexity: O(log n). Failure tolerance: I Any random set of kn (1 + ) encoded symbols are sufficient for data reconstruction. A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

39 Discussion and open questions Explicit constructions for update efficient codes. A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

40 Discussion and open questions Explicit constructions for update efficient codes. Study of update efficient codes under general failure model. I B. Kanukurthi, N. Chandran and R. Ostrovsky, in TCC 2014 I Construction of update efficient locally decodable codes for prefix hamming metrics. A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

41 Locality and availability A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

42 Locality and availability c 1 A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

43 Locality and availability c 1 A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

44 Locality and availability c 1 c 1 A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

45 Locality and availability c 1 c 1 A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

46 Locality and availability c 1 c 1 A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

47 Locality and availability c 1 c 1 c 1 c 1 3 disjoint repair groups ) 3-availability. A. Rawat, D. Papailiopoulos, A. Dimakis, and S. Vishwanath, in Allerton A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

48 Locality and availability c 1 c 1 c 1 c 1 3 disjoint repair groups ) 3-availability. In general, t availability with r locality. A. Rawat, D. Papailiopoulos, A. Dimakis, and S. Vishwanath, in Allerton A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

49 Locality and availability c 1 c 1 c 1 c 1 3 disjoint repair groups ) 3-availability. In general, t availability with r locality. Open question: how to address general t request patterns. I t requests for c1. I t/2 requests for c1, and t/2 requests for c 2. I t/3 requests for each of c1, c 2 and c 3. A. Rawat, D. Papailiopoulos, A. Dimakis, and S. Vishwanath, in Allerton A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

50 Thank you! A. S. Rawat (UT Austin) Update Efficiency December 18, / 24

Basics of Error Correcting Codes

Basics of Error Correcting Codes Basics of Error Correcting Codes Drawing from the book Information Theory, Inference, and Learning Algorithms Downloadable or purchasable: http://www.inference.phy.cam.ac.uk/mackay/itila/book.html CSE

More information

Punctured vs Rateless Codes for Hybrid ARQ

Punctured vs Rateless Codes for Hybrid ARQ Punctured vs Rateless Codes for Hybrid ARQ Emina Soljanin Mathematical and Algorithmic Sciences Research, Bell Labs Collaborations with R. Liu, P. Spasojevic, N. Varnica and P. Whiting Tsinghua University

More information

Volume 2, Issue 9, September 2014 International Journal of Advance Research in Computer Science and Management Studies

Volume 2, Issue 9, September 2014 International Journal of Advance Research in Computer Science and Management Studies Volume 2, Issue 9, September 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: www.ijarcsms.com

More information

Digital Transmission using SECC Spring 2010 Lecture #7. (n,k,d) Systematic Block Codes. How many parity bits to use?

Digital Transmission using SECC Spring 2010 Lecture #7. (n,k,d) Systematic Block Codes. How many parity bits to use? Digital Transmission using SECC 6.02 Spring 2010 Lecture #7 How many parity bits? Dealing with burst errors Reed-Solomon codes message Compute Checksum # message chk Partition Apply SECC Transmit errors

More information

Single Error Correcting Codes (SECC) 6.02 Spring 2011 Lecture #9. Checking the parity. Using the Syndrome to Correct Errors

Single Error Correcting Codes (SECC) 6.02 Spring 2011 Lecture #9. Checking the parity. Using the Syndrome to Correct Errors Single Error Correcting Codes (SECC) Basic idea: Use multiple parity bits, each covering a subset of the data bits. No two message bits belong to exactly the same subsets, so a single error will generate

More information

Clay Codes: Moulding MDS Codes to Yield an MSR Code

Clay Codes: Moulding MDS Codes to Yield an MSR Code Clay Codes: Moulding MDS Codes to Yield an MSR Code Myna Vajha, Vinayak Ramkumar, Bhagyashree Puranik, Ganesh Kini, Elita Lobo, Birenjith Sasidharan Indian Institute of Science (IISc) P. Vijay Kumar (IISc

More information

Digital Television Lecture 5

Digital Television Lecture 5 Digital Television Lecture 5 Forward Error Correction (FEC) Åbo Akademi University Domkyrkotorget 5 Åbo 8.4. Error Correction in Transmissions Need for error correction in transmissions Loss of data during

More information

Error Detection and Correction: Parity Check Code; Bounds Based on Hamming Distance

Error Detection and Correction: Parity Check Code; Bounds Based on Hamming Distance Error Detection and Correction: Parity Check Code; Bounds Based on Hamming Distance Greg Plaxton Theory in Programming Practice, Spring 2005 Department of Computer Science University of Texas at Austin

More information

From Fountain to BATS: Realization of Network Coding

From Fountain to BATS: Realization of Network Coding From Fountain to BATS: Realization of Network Coding Shenghao Yang Jan 26, 2015 Shenzhen Shenghao Yang Jan 26, 2015 1 / 35 Outline 1 Outline 2 Single-Hop: Fountain Codes LT Codes Raptor codes: achieving

More information

Error Protection: Detection and Correction

Error Protection: Detection and Correction Error Protection: Detection and Correction Communication channels are subject to noise. Noise distorts analog signals. Noise can cause digital signals to be received as different values. Bits can be flipped

More information

Secure Network Coding for Wiretap Networks of Type II

Secure Network Coding for Wiretap Networks of Type II 1 Secure Network Coding for Wiretap Networks of Type II Salim El Rouayheb, Emina Soljanin, Alex Sprintson arxiv:0907.3493v1 [cs.it] 20 Jul 2009 Abstract We consider the problem of securing a multicast

More information

Low Complexity Cross Parity Codes for Multiple and Random Bit Error Correction

Low Complexity Cross Parity Codes for Multiple and Random Bit Error Correction 3/18/2012 Low Complexity Cross Parity Codes for Multiple and Random Bit Error Correction M. Poolakkaparambil 1, J. Mathew 2, A. Jabir 1, & S. P. Mohanty 3 Oxford Brookes University 1, University of Bristol

More information

Hamming Codes as Error-Reducing Codes

Hamming Codes as Error-Reducing Codes Hamming Codes as Error-Reducing Codes William Rurik Arya Mazumdar Abstract Hamming codes are the first nontrivial family of error-correcting codes that can correct one error in a block of binary symbols.

More information

Routing versus Network Coding in Erasure Networks with Broadcast and Interference Constraints

Routing versus Network Coding in Erasure Networks with Broadcast and Interference Constraints Routing versus Network Coding in Erasure Networks with Broadcast and Interference Constraints Brian Smith Department of ECE University of Texas at Austin Austin, TX 7872 bsmith@ece.utexas.edu Piyush Gupta

More information

WITH the rapid progress of cost-effective and powerful

WITH the rapid progress of cost-effective and powerful IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 5, SEPTEMBER 2006 1633 Adaptive Low-Complexity Erasure-Correcting Code-Based Protocols for QoS-Driven Mobile Multicast Services Over Wireless Networs

More information

Compressive Data Persistence in Large-Scale Wireless Sensor Networks

Compressive Data Persistence in Large-Scale Wireless Sensor Networks Compressive Data Persistence in Large-Scale Wireless Sensor Networks Mu Lin, Chong Luo, Feng Liu and Feng Wu School of Electronic and Information Engineering, Beihang University, Beijing, PRChina Institute

More information

Error-Correcting Codes

Error-Correcting Codes Error-Correcting Codes Information is stored and exchanged in the form of streams of characters from some alphabet. An alphabet is a finite set of symbols, such as the lower-case Roman alphabet {a,b,c,,z}.

More information

COMPARISON OF SOURCE DIVERSITY AND CHANNEL DIVERSITY METHODS ON SYMMETRIC AND FADING CHANNELS. Li Li. Thesis Prepared for the Degree of

COMPARISON OF SOURCE DIVERSITY AND CHANNEL DIVERSITY METHODS ON SYMMETRIC AND FADING CHANNELS. Li Li. Thesis Prepared for the Degree of COMPARISON OF SOURCE DIVERSITY AND CHANNEL DIVERSITY METHODS ON SYMMETRIC AND FADING CHANNELS Li Li Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS August 2009 APPROVED: Kamesh

More information

Outline. Communications Engineering 1

Outline. Communications Engineering 1 Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

Code Design for Incremental Redundancy Hybrid ARQ

Code Design for Incremental Redundancy Hybrid ARQ Code Design for Incremental Redundancy Hybrid ARQ by Hamid Saber A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor

More information

Lecture 4: Wireless Physical Layer: Channel Coding. Mythili Vutukuru CS 653 Spring 2014 Jan 16, Thursday

Lecture 4: Wireless Physical Layer: Channel Coding. Mythili Vutukuru CS 653 Spring 2014 Jan 16, Thursday Lecture 4: Wireless Physical Layer: Channel Coding Mythili Vutukuru CS 653 Spring 2014 Jan 16, Thursday Channel Coding Modulated waveforms disrupted by signal propagation through wireless channel leads

More information

Computationally Efficient Covert Communication. Eric

Computationally Efficient Covert Communication. Eric Computationally Efficient Covert Communication Qiaosheng Zhang Mayank Bakshi Sidharth Jaggi Eric 1 Model Covert communication over BSCs p < q Main Result Computationally efficient Capacity-achieving [Che

More information

Multi-path Key Establishment for Wireless Sensor Networks Using Just Enough Redundancy Transmission

Multi-path Key Establishment for Wireless Sensor Networks Using Just Enough Redundancy Transmission Multi-path Key Establishment for Wireless Sensor Networks Using Just Enough Redundancy Transmission Jing Deng, Member, IEEE and Yunghsiang S. Han, Member, IEEE Abstract In random key pre-distribution techniques

More information

6. FUNDAMENTALS OF CHANNEL CODER

6. FUNDAMENTALS OF CHANNEL CODER 82 6. FUNDAMENTALS OF CHANNEL CODER 6.1 INTRODUCTION The digital information can be transmitted over the channel using different signaling schemes. The type of the signal scheme chosen mainly depends on

More information

Reliable Wireless Video Streaming with Digital Fountain Codes

Reliable Wireless Video Streaming with Digital Fountain Codes 1 Reliable Wireless Video Streaming with Digital Fountain Codes Raouf Hamzaoui, Shakeel Ahmad, Marwan Al-Akaidi Faculty of Computing Sciences and Engineering, De Montfort University - UK Department of

More information

ENERGY EFFICIENT RELAY SELECTION SCHEMES FOR COOPERATIVE UNIFORMLY DISTRIBUTED WIRELESS SENSOR NETWORKS

ENERGY EFFICIENT RELAY SELECTION SCHEMES FOR COOPERATIVE UNIFORMLY DISTRIBUTED WIRELESS SENSOR NETWORKS ENERGY EFFICIENT RELAY SELECTION SCHEMES FOR COOPERATIVE UNIFORMLY DISTRIBUTED WIRELESS SENSOR NETWORKS WAFIC W. ALAMEDDINE A THESIS IN THE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING PRESENTED IN

More information

Chapter 7. Conclusion and Future Scope

Chapter 7. Conclusion and Future Scope Chapter 7 Conclusion and Future Scope CHAPTER 7 CONCLUSION AND FUTURE SCOPE This chapter starts presenting the prominent results and conclusion obtained from this research. The digital communication system

More information

Designing Secure and Reliable Wireless Sensor Networks

Designing Secure and Reliable Wireless Sensor Networks Designing Secure and Reliable Wireless Sensor Networks Osman Yağan" Assistant Research Professor, ECE" Joint work with J. Zhao, V. Gligor, and F. Yavuz Wireless Sensor Networks Ø Distributed collection

More information

Visual Cryptography. Frederik Vercauteren. University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB.

Visual Cryptography. Frederik Vercauteren. University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB. Visual Cryptography Frederik Vercauteren University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB frederik@cs.bris.ac.uk Frederik Vercauteren 1 University of Bristol 21 November

More information

UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS. Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik

UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS. Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik Department of Electrical and Computer Engineering, The University of Texas at Austin,

More information

XJ-BP: Express Journey Belief Propagation Decoding for Polar Codes

XJ-BP: Express Journey Belief Propagation Decoding for Polar Codes XJ-BP: Express Journey Belief Propagation Decoding for Polar Codes Jingwei Xu, Tiben Che, Gwan Choi Department of Electrical and Computer Engineering Texas A&M University College Station, Texas 77840 Email:

More information

Optimized Codes for the Binary Coded Side-Information Problem

Optimized Codes for the Binary Coded Side-Information Problem Optimized Codes for the Binary Coded Side-Information Problem Anne Savard, Claudio Weidmann ETIS / ENSEA - Université de Cergy-Pontoise - CNRS UMR 8051 F-95000 Cergy-Pontoise Cedex, France Outline 1 Introduction

More information

M.Sc. Thesis. Optimization of the Belief Propagation algorithm for Luby Transform decoding over the Binary Erasure Channel. Marta Alvarez Guede

M.Sc. Thesis. Optimization of the Belief Propagation algorithm for Luby Transform decoding over the Binary Erasure Channel. Marta Alvarez Guede Circuits and Systems Mekelweg 4, 2628 CD Delft The Netherlands http://ens.ewi.tudelft.nl/ CAS-2011-07 M.Sc. Thesis Optimization of the Belief Propagation algorithm for Luby Transform decoding over the

More information

ISSN: Page 320

ISSN: Page 320 To Reduce Bit Error Rate in Turbo Coded OFDM with using different Modulation Techniques Shivangi #1, Manoj Sindhwani *2 #1 Department of Electronics & Communication, Research Scholar, Lovely Professional

More information

Adaptive rateless coding under partial information

Adaptive rateless coding under partial information Adaptive rateless coding under partial information Sachin Agarwal Deutsche Teleom A.G., Laboratories Ernst-Reuter-Platz 7 1587 Berlin, Germany Email: sachin.agarwal@teleom.de Andrew Hagedorn Ari Trachtenberg

More information

Communications Theory and Engineering

Communications Theory and Engineering Communications Theory and Engineering Master's Degree in Electronic Engineering Sapienza University of Rome A.A. 2018-2019 Channel Coding The channel encoder Source bits Channel encoder Coded bits Pulse

More information

Lec 19 Error and Loss Control I: FEC

Lec 19 Error and Loss Control I: FEC Multimedia Communication Lec 19 Error and Loss Control I: FEC Zhu Li Course Web: http://l.web.umkc.edu/lizhu/teaching/ Z. Li, Multimedia Communciation, Spring 2017 p.1 Outline ReCap Lecture 18 TCP Congestion

More information

Study of Second-Order Memory Based LT Encoders

Study of Second-Order Memory Based LT Encoders Study of Second-Order Memory Based LT Encoders Luyao Shang Department of Electrical Engineering & Computer Science University of Kansas Lawrence, KS 66045 lshang@ku.edu Faculty Advisor: Erik Perrins ABSTRACT

More information

Power and Bandwidth Allocation in Cooperative Dirty Paper Coding

Power and Bandwidth Allocation in Cooperative Dirty Paper Coding Power and Bandwidth Allocation in Cooperative Dirty Paper Coding Chris T. K. Ng 1, Nihar Jindal 2 Andrea J. Goldsmith 3, Urbashi Mitra 4 1 Stanford University/MIT, 2 Univeristy of Minnesota 3 Stanford

More information

LDPC Decoding: VLSI Architectures and Implementations

LDPC Decoding: VLSI Architectures and Implementations LDPC Decoding: VLSI Architectures and Implementations Module : LDPC Decoding Ned Varnica varnica@gmail.com Marvell Semiconductor Inc Overview Error Correction Codes (ECC) Intro to Low-density parity-check

More information

ERROR CONTROL CODING From Theory to Practice

ERROR CONTROL CODING From Theory to Practice ERROR CONTROL CODING From Theory to Practice Peter Sweeney University of Surrey, Guildford, UK JOHN WILEY & SONS, LTD Contents 1 The Principles of Coding in Digital Communications 1.1 Error Control Schemes

More information

IEEE C /02R1. IEEE Mobile Broadband Wireless Access <http://grouper.ieee.org/groups/802/mbwa>

IEEE C /02R1. IEEE Mobile Broadband Wireless Access <http://grouper.ieee.org/groups/802/mbwa> 23--29 IEEE C82.2-3/2R Project Title Date Submitted IEEE 82.2 Mobile Broadband Wireless Access Soft Iterative Decoding for Mobile Wireless Communications 23--29

More information

Bangalore, December Raptor Codes. Amin Shokrollahi

Bangalore, December Raptor Codes. Amin Shokrollahi Raptor Codes Amin Shokrollahi Synopsis 1. Some data Transmission Problems and their (conventional) solutions 2. Fountain Codes 2.1. Definition 2.2. Some type of fountain codes 2.3. LT-Codes 2.4. Raptor

More information

Efficient FEC Codes for Data Loss Recovery

Efficient FEC Codes for Data Loss Recovery Efficient FEC Codes for Data Loss Recovery Cheng Huang Lihao Xu Dept. of Computer Science and Engineering, Washington University in St. Louis, MO, 633 {cheng, lihao}@cse.wustl.edu Abstract Real-time applications

More information

Physical Layer Security for Wireless Networks

Physical Layer Security for Wireless Networks Physical Layer Security for Wireless Networks Şennur Ulukuş Department of ECE University of Maryland ulukus@umd.edu Joint work with Shabnam Shafiee, Nan Liu, Ersen Ekrem, Jianwei Xie and Pritam Mukherjee.

More information

Single User or Multiple User?

Single User or Multiple User? Single User or Multiple User? Speaker: Xiao Ma maxiao@mail.sysu.edu.cn Dept. Electronics and Comm. Eng. Sun Yat-sen University March 19, 2013 Xiao Ma (SYSU) Coding Group Guangzhou, February 2013 1 / 80

More information

Physical Layer: Modulation, FEC. Wireless Networks: Guevara Noubir. S2001, COM3525 Wireless Networks Lecture 3, 1

Physical Layer: Modulation, FEC. Wireless Networks: Guevara Noubir. S2001, COM3525 Wireless Networks Lecture 3, 1 Wireless Networks: Physical Layer: Modulation, FEC Guevara Noubir Noubir@ccsneuedu S, COM355 Wireless Networks Lecture 3, Lecture focus Modulation techniques Bit Error Rate Reducing the BER Forward Error

More information

Datacommunication I. Layers of the OSI-model. Lecture 3. signal encoding, error detection/correction

Datacommunication I. Layers of the OSI-model. Lecture 3. signal encoding, error detection/correction Datacommunication I Lecture 3 signal encoding, error detection/correction Layers of the OSI-model repetition 1 The OSI-model and its networking devices repetition The OSI-model and its networking devices

More information

Performance comparison of convolutional and block turbo codes

Performance comparison of convolutional and block turbo codes Performance comparison of convolutional and block turbo codes K. Ramasamy 1a), Mohammad Umar Siddiqi 2, Mohamad Yusoff Alias 1, and A. Arunagiri 1 1 Faculty of Engineering, Multimedia University, 63100,

More information

Introduction to Error Control Coding

Introduction to Error Control Coding Introduction to Error Control Coding 1 Content 1. What Error Control Coding Is For 2. How Coding Can Be Achieved 3. Types of Coding 4. Types of Errors & Channels 5. Types of Codes 6. Types of Error Control

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 12, June 2014

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 12, June 2014 Spectral Efficiency and Bit Error Rate Measure of Wireless OFDM System Using Raptor Codes with SUI-3 channel models 1 Kuldeep Singh, 2 Jitender Khurana 1 M-Tech Scholar, Shri Baba Mastnath Engineering

More information

Hamming Codes and Decoding Methods

Hamming Codes and Decoding Methods Hamming Codes and Decoding Methods Animesh Ramesh 1, Raghunath Tewari 2 1 Fourth year Student of Computer Science Indian institute of Technology Kanpur 2 Faculty of Computer Science Advisor to the UGP

More information

Coding for the Slepian-Wolf Problem With Turbo Codes

Coding for the Slepian-Wolf Problem With Turbo Codes Coding for the Slepian-Wolf Problem With Turbo Codes Jan Bajcsy and Patrick Mitran Department of Electrical and Computer Engineering, McGill University Montréal, Québec, HA A7, Email: {jbajcsy, pmitran}@tsp.ece.mcgill.ca

More information

Problem Sheet 1 Probability, random processes, and noise

Problem Sheet 1 Probability, random processes, and noise Problem Sheet 1 Probability, random processes, and noise 1. If F X (x) is the distribution function of a random variable X and x 1 x 2, show that F X (x 1 ) F X (x 2 ). 2. Use the definition of the cumulative

More information

LECTURE VI: LOSSLESS COMPRESSION ALGORITHMS DR. OUIEM BCHIR

LECTURE VI: LOSSLESS COMPRESSION ALGORITHMS DR. OUIEM BCHIR 1 LECTURE VI: LOSSLESS COMPRESSION ALGORITHMS DR. OUIEM BCHIR 2 STORAGE SPACE Uncompressed graphics, audio, and video data require substantial storage capacity. Storing uncompressed video is not possible

More information

PAPR Reduction in SLM Scheme using Exhaustive Search Method

PAPR Reduction in SLM Scheme using Exhaustive Search Method Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2017, 4(10): 739-743 Research Article ISSN: 2394-658X PAPR Reduction in SLM Scheme using Exhaustive Search Method

More information

Nested Linear/Lattice Codes for Structured Multiterminal Binning

Nested Linear/Lattice Codes for Structured Multiterminal Binning 1250 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 6, JUNE 2002 Nested Linear/Lattice Codes for Structured Multiterminal Binning Ram Zamir, Senior Member, IEEE, Shlomo Shamai (Shitz), Fellow, IEEE,

More information

SourceSync. Exploiting Sender Diversity

SourceSync. Exploiting Sender Diversity SourceSync Exploiting Sender Diversity Why Develop SourceSync? Wireless diversity is intrinsic to wireless networks Many distributed protocols exploit receiver diversity Sender diversity is a largely unexplored

More information

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 Lecture 18 Today: (1) da Silva Discussion, (2) Error Correction Coding, (3) Error Detection (CRC) HW 8 due Tue. HW 9 (on Lectures

More information

Lecture 17 Components Principles of Error Control Borivoje Nikolic March 16, 2004.

Lecture 17 Components Principles of Error Control Borivoje Nikolic March 16, 2004. EE29C - Spring 24 Advanced Topics in Circuit Design High-Speed Electrical Interfaces Lecture 17 Components Principles of Error Control Borivoje Nikolic March 16, 24. Announcements Project phase 1 is posted

More information

Page 1. Outline. Basic Idea. Hamming Distance. Hamming Distance Visual: HD=2

Page 1. Outline. Basic Idea. Hamming Distance. Hamming Distance Visual: HD=2 Outline Basic Concepts Physical Redundancy Error Detecting/Correcting Codes Re-Execution Techniques Backward Error Recovery Techniques Basic Idea Start with k-bit data word Add r check bits Total = n-bit

More information

arxiv: v1 [cs.it] 12 Jul 2018

arxiv: v1 [cs.it] 12 Jul 2018 Cross-Sender Bit-Mixing Coding arxiv:1807.04449v1 [cs.it] 12 Jul 2018 ABSTRACT Steffen Bondorf TU Kaiserslautern Germany bondorf@cs.uni-kl.de Binbin Chen Advanced Digital Sciences Center binbin.chen@adsccreate.edu.sg

More information

Efficient Diversity Technique for Hybrid Narrowband-Powerline/Wireless Smart Grid Communications

Efficient Diversity Technique for Hybrid Narrowband-Powerline/Wireless Smart Grid Communications Efficient Diversity Technique for Hybrid Narrowband-Powerline/Wireless Smart Grid Communications Mostafa Sayed, and Naofal Al-Dhahir University of Texas at Dallas Ghadi Sebaali, and Brian L. Evans, University

More information

Project. Title. Submitted Sources: {se.park,

Project. Title. Submitted Sources:   {se.park, Project Title Date Submitted Sources: Re: Abstract Purpose Notice Release Patent Policy IEEE 802.20 Working Group on Mobile Broadband Wireless Access LDPC Code

More information

On Efficient Decoding and Design of Sparse Random Linear Network Codes

On Efficient Decoding and Design of Sparse Random Linear Network Codes 1 On Efficient Decoding and Design of Sparse Random Linear Network Codes Ye Li, Wai-Yip Chan, Steven D. Blostein Abstract arxiv:1604.05573v1 [cs.it] 19 Apr 2016 Random linear network coding (RLNC) in theory

More information

Multicasting over Multiple-Access Networks

Multicasting over Multiple-Access Networks ing oding apacity onclusions ing Department of Electrical Engineering and omputer Sciences University of alifornia, Berkeley May 9, 2006 EE 228A Outline ing oding apacity onclusions 1 2 3 4 oding 5 apacity

More information

When Network Coding and Dirty Paper Coding meet in a Cooperative Ad Hoc Network

When Network Coding and Dirty Paper Coding meet in a Cooperative Ad Hoc Network When Network Coding and Dirty Paper Coding meet in a Cooperative Ad Hoc Network Nadia Fawaz, David Gesbert Mobile Communications Department, Eurecom Institute Sophia-Antipolis, France {fawaz, gesbert}@eurecom.fr

More information

Dual-Mode Decoding of Product Codes with Application to Tape Storage

Dual-Mode Decoding of Product Codes with Application to Tape Storage This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2005 proceedings Dual-Mode Decoding of Product Codes with

More information

Multiple-Bases Belief-Propagation for Decoding of Short Block Codes

Multiple-Bases Belief-Propagation for Decoding of Short Block Codes Multiple-Bases Belief-Propagation for Decoding of Short Block Codes Thorsten Hehn, Johannes B. Huber, Stefan Laendner, Olgica Milenkovic Institute for Information Transmission, University of Erlangen-Nuremberg,

More information

The Capability of Error Correction for Burst-noise Channels Using Error Estimating Code

The Capability of Error Correction for Burst-noise Channels Using Error Estimating Code The Capability of Error Correction for Burst-noise Channels Using Error Estimating Code Yaoyu Wang Nanjing University yaoyu.wang.nju@gmail.com June 10, 2016 Yaoyu Wang (NJU) Error correction with EEC June

More information

4. Which of the following channel matrices respresent a symmetric channel? [01M02] 5. The capacity of the channel with the channel Matrix

4. Which of the following channel matrices respresent a symmetric channel? [01M02] 5. The capacity of the channel with the channel Matrix Send SMS s : ONJntuSpeed To 9870807070 To Recieve Jntu Updates Daily On Your Mobile For Free www.strikingsoon.comjntu ONLINE EXMINTIONS [Mid 2 - dc] http://jntuk.strikingsoon.com 1. Two binary random

More information

EE 435/535: Error Correcting Codes Project 1, Fall 2009: Extended Hamming Code. 1 Introduction. 2 Extended Hamming Code: Encoding. 1.

EE 435/535: Error Correcting Codes Project 1, Fall 2009: Extended Hamming Code. 1 Introduction. 2 Extended Hamming Code: Encoding. 1. EE 435/535: Error Correcting Codes Project 1, Fall 2009: Extended Hamming Code Project #1 is due on Tuesday, October 6, 2009, in class. You may turn the project report in early. Late projects are accepted

More information

On Coding for Cooperative Data Exchange

On Coding for Cooperative Data Exchange On Coding for Cooperative Data Exchange Salim El Rouayheb Texas A&M University Email: rouayheb@tamu.edu Alex Sprintson Texas A&M University Email: spalex@tamu.edu Parastoo Sadeghi Australian National University

More information

An Efficient Forward Error Correction Scheme for Wireless Sensor Network

An Efficient Forward Error Correction Scheme for Wireless Sensor Network Available online at www.sciencedirect.com Procedia Technology 4 (2012 ) 737 742 C3IT-2012 An Efficient Forward Error Correction Scheme for Wireless Sensor Network M.P.Singh a, Prabhat Kumar b a Computer

More information

Chapter 10 Error Detection and Correction

Chapter 10 Error Detection and Correction Chapter 10 Error Detection and Correction 10.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 10.2 Note Data can be corrupted during transmission. Some applications

More information

Tornado Codes and Luby Transform Codes

Tornado Codes and Luby Transform Codes Tornado Codes and Luby Transform Codes Ashish Khisti October 22, 2003 1 Introduction A natural solution for software companies that plan to efficiently disseminate new software over the Internet to millions

More information

Trade-offs Between Mobility and Density for Coverage in Wireless Sensor Networks. Wei Wang, Vikram Srinivasan, Kee-Chaing Chua

Trade-offs Between Mobility and Density for Coverage in Wireless Sensor Networks. Wei Wang, Vikram Srinivasan, Kee-Chaing Chua Trade-offs Between Mobility and Density for Coverage in Wireless Sensor Networks Wei Wang, Vikram Srinivasan, Kee-Chaing Chua Coverage in sensor networks Sensors are often randomly scattered in the field

More information

A New PAPR Reduction in OFDM Systems Using SLM and Orthogonal Eigenvector Matrix

A New PAPR Reduction in OFDM Systems Using SLM and Orthogonal Eigenvector Matrix A New PAPR Reduction in OFDM Systems Using SLM and Orthogonal Eigenvector Matrix Md. Mahmudul Hasan University of Information Technology & Sciences, Dhaka Abstract OFDM is an attractive modulation technique

More information

Solutions to Assignment-2 MOOC-Information Theory

Solutions to Assignment-2 MOOC-Information Theory Solutions to Assignment-2 MOOC-Information Theory 1. Which of the following is a prefix-free code? a) 01, 10, 101, 00, 11 b) 0, 11, 01 c) 01, 10, 11, 00 Solution:- The codewords of (a) are not prefix-free

More information

Performance Optimization of Hybrid Combination of LDPC and RS Codes Using Image Transmission System Over Fading Channels

Performance Optimization of Hybrid Combination of LDPC and RS Codes Using Image Transmission System Over Fading Channels European Journal of Scientific Research ISSN 1450-216X Vol.35 No.1 (2009), pp 34-42 EuroJournals Publishing, Inc. 2009 http://www.eurojournals.com/ejsr.htm Performance Optimization of Hybrid Combination

More information

Information flow over wireless networks: a deterministic approach

Information flow over wireless networks: a deterministic approach Information flow over wireless networks: a deterministic approach alman Avestimehr In collaboration with uhas iggavi (EPFL) and avid Tse (UC Berkeley) Overview Point-to-point channel Information theory

More information

Adding Integrity Verification Capabilities to the LDPC-Staircase Erasure Correction Codes

Adding Integrity Verification Capabilities to the LDPC-Staircase Erasure Correction Codes 1 Adding Integrity Verification Capabilities to the LDPC-Staircase Erasure Correction Codes Mathieu CUNCHE Vincent ROCA INRIA Rhône-Alpes, Planète research team, France, {firstname.name}@inria.fr Abstract

More information

Recovering Lost Sensor Data through Compressed Sensing

Recovering Lost Sensor Data through Compressed Sensing Recovering Lost Sensor Data through Compressed Sensing Zainul Charbiwala Collaborators: Younghun Kim, Sadaf Zahedi, Supriyo Chakraborty, Ting He (IBM), Chatschik Bisdikian (IBM), Mani Srivastava The Big

More information

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 Lecture 18 Today: (1) da Silva Discussion, (2) Error Correction Coding, (3) Error Detection (CRC) HW 8 due Tue. HW 9 (on Lectures

More information

Intuitive Guide to Principles of Communications By Charan Langton Coding Concepts and Block Coding

Intuitive Guide to Principles of Communications By Charan Langton  Coding Concepts and Block Coding Intuitive Guide to Principles of Communications By Charan Langton www.complextoreal.com Coding Concepts and Block Coding It s hard to work in a noisy room as it makes it harder to think. Work done in such

More information

On the Capacity of Multi-Hop Wireless Networks with Partial Network Knowledge

On the Capacity of Multi-Hop Wireless Networks with Partial Network Knowledge On the Capacity of Multi-Hop Wireless Networks with Partial Network Knowledge Alireza Vahid Cornell University Ithaca, NY, USA. av292@cornell.edu Vaneet Aggarwal Princeton University Princeton, NJ, USA.

More information

Lecture 9b Convolutional Coding/Decoding and Trellis Code modulation

Lecture 9b Convolutional Coding/Decoding and Trellis Code modulation Lecture 9b Convolutional Coding/Decoding and Trellis Code modulation Convolutional Coder Basics Coder State Diagram Encoder Trellis Coder Tree Viterbi Decoding For Simplicity assume Binary Sym.Channel

More information

Certificate Revocation List Distribution in Vehicular Communication Systems

Certificate Revocation List Distribution in Vehicular Communication Systems Certificate Revocation List Distribution in Vehicular Communication Systems April 14, 2008 Abstract A number of projects have been developing security architectures for Vehicular Communication (VC) systems,

More information

Capacity-Achieving Rateless Polar Codes

Capacity-Achieving Rateless Polar Codes Capacity-Achieving Rateless Polar Codes arxiv:1508.03112v1 [cs.it] 13 Aug 2015 Bin Li, David Tse, Kai Chen, and Hui Shen August 14, 2015 Abstract A rateless coding scheme transmits incrementally more and

More information

Channel Coding/Decoding. Hamming Method

Channel Coding/Decoding. Hamming Method Channel Coding/Decoding Hamming Method INFORMATION TRANSFER ACROSS CHANNELS Sent Received messages symbols messages source encoder Source coding Channel coding Channel Channel Source decoder decoding decoding

More information

Fundamentals of telecommunications. Ermanno Pietrosemoli Marco Zennaro

Fundamentals of telecommunications. Ermanno Pietrosemoli Marco Zennaro Fundamentals of telecommunications Ermanno Pietrosemoli Marco Zennaro Goals To present the basics concepts of telecommunication systems with focus on digital and wireless 2 Basic Concepts Signal Analog,

More information

LDPC Codes for Rank Modulation in Flash Memories

LDPC Codes for Rank Modulation in Flash Memories LDPC Codes for Rank Modulation in Flash Memories Fan Zhang Electrical and Computer Eng. Dept. fanzhang@tamu.edu Henry D. Pfister Electrical and Computer Eng. Dept. hpfister@tamu.edu Anxiao (Andrew) Jiang

More information

Summary of Basic Concepts

Summary of Basic Concepts Transmission Summary of Basic Concepts Sender Channel Receiver Dr. Christian Rohner Encoding Modulation Demodulation Decoding Bits Symbols Noise Terminology Communications Research Group Bandwidth [Hz]

More information

Decoding Turbo Codes and LDPC Codes via Linear Programming

Decoding Turbo Codes and LDPC Codes via Linear Programming Decoding Turbo Codes and LDPC Codes via Linear Programming Jon Feldman David Karger jonfeld@theorylcsmitedu karger@theorylcsmitedu MIT LCS Martin Wainwright martinw@eecsberkeleyedu UC Berkeley MIT LCS

More information

PROJECT 5: DESIGNING A VOICE MODEM. Instructor: Amir Asif

PROJECT 5: DESIGNING A VOICE MODEM. Instructor: Amir Asif PROJECT 5: DESIGNING A VOICE MODEM Instructor: Amir Asif CSE4214: Digital Communications (Fall 2012) Computer Science and Engineering, York University 1. PURPOSE In this laboratory project, you will design

More information

RADIO SYSTEMS ETIN15. Channel Coding. Ove Edfors, Department of Electrical and Information Technology

RADIO SYSTEMS ETIN15. Channel Coding. Ove Edfors, Department of Electrical and Information Technology RADIO SYSTEMS ETIN15 Lecture no: 7 Channel Coding Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se 2016-04-18 Ove Edfors - ETIN15 1 Contents (CHANNEL CODING) Overview

More information

Computer Science 1001.py. Lecture 25 : Intro to Error Correction and Detection Codes

Computer Science 1001.py. Lecture 25 : Intro to Error Correction and Detection Codes Computer Science 1001.py Lecture 25 : Intro to Error Correction and Detection Codes Instructors: Daniel Deutch, Amiram Yehudai Teaching Assistants: Michal Kleinbort, Amir Rubinstein School of Computer

More information

Error Correction with Hamming Codes

Error Correction with Hamming Codes Hamming Codes http://www2.rad.com/networks/1994/err_con/hamming.htm Error Correction with Hamming Codes Forward Error Correction (FEC), the ability of receiving station to correct a transmission error,

More information

White Paper FEC In Optical Transmission. Giacomo Losio ProLabs Head of Technology

White Paper FEC In Optical Transmission. Giacomo Losio ProLabs Head of Technology White Paper FEC In Optical Transmission Giacomo Losio ProLabs Head of Technology 2014 FEC In Optical Transmission When we introduced the DWDM optics, we left out one important ingredient that really makes

More information

Efficient Codes using Channel Polarization!

Efficient Codes using Channel Polarization! Efficient Codes using Channel Polarization! Bakshi, Jaggi, and Effros! ACHIEVEMENT DESCRIPTION STATUS QUO - Practical capacity achieving schemes are not known for general multi-input multi-output channels!

More information