6.976 High Speed Communication Circuits and Systems Lecture 8 Noise Figure, Impact of Amplifier Nonlinearities

Size: px
Start display at page:

Download "6.976 High Speed Communication Circuits and Systems Lecture 8 Noise Figure, Impact of Amplifier Nonlinearities"

Transcription

1 6.976 High Speed Communication Circuits and Systems Lecture 8 Noise Figure, Impact of Amplifier Nonlinearities Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott

2 Noise Factor and Noise Figure (From Lec 7) R s e nrs Equivalent output referred current noise (assumed to be independent of Z out and Z L ) Definitions v in Linear,Time Invariant Circuit (Noiseless) Z out i nout Z in v x Z L i out Calculation of SNR in and SNR out

3 Alternative Noise Factor Expression R s e nrs Equivalent output referred current noise (assumed to be independent of Z out and Z L ) v in Linear,Time Invariant Circuit (Noiseless) Z out i nout Z in v x Z L i out From previous slide Calculation of Noise Factor

4 Input Referred Noise Model R s e nrs Equivalent output referred current noise (assumed to be independent of Z out and Z L ) v in Linear,Time Invariant v x Circuit i nout Z in (Noiseless) Z out Z L i out e n i in i s Y s i n Z in v x Linear,Time Invariant Circuit (Noiseless) i out e n Can remove the signal source since Noise Factor can be expressed as the ratio of total output noise to input noise i s Y s i n i in,sc = i out β

5 Input-Referred Noise Figure Expression e n i s Y s i n i in,sc = i out β We know that Let s express the above in terms of input short circuit current

6 Calculation of Noise Factor e n i s Y s i n i in,sc = i out β By inspection of above figure In general, e n and i n will be correlated - Y c is called the correlation admittance

7 Noise Factor Expressed in Terms of Admittances e n i s Y s Y c i u i in,sc = i out β We can replace voltage and current noise currents with impedances and admittances

8 Optimal Source Admittance for Minimum Noise Factor Express admittances as the sum of conductance, G, and susceptance, B Take the derivative with respect to source admittance and set to zero (to find minimum F), which yields Plug these values into expression above to obtain

9 Optimal Source Admittance for Minimum Noise Factor After much algebra (see Appendix L of Gonzalez book for derivation), we can derive - Contours of constant noise factor are circles centered about (G opt,b opt ) in the admittance plane - They are also circles on a Smith Chart (see pp of Gonzalez for derivation and examples) How does (G opt,b opt ) compare to admittance achieving maximum power transfer?

10 Optimizing For Noise Figure versus Power Transfer Signal Source conductance Source susceptance e n i in i s G s B s i n Z in v x Linear,Time Invariant Circuit (Noiseless) i out Source noise produced by source conductance B s Example source admittance for maximum power transfer B opt B max Circles of constant Noise Factor (F min at the center) G max G opt G s One cannot generally achieve minimum noise figure if maximum power transfer is desired

11 Optimal Noise Factor for MOS Transistor Amp Consider the common source MOS amp (no degeneration) considered in Lecture 7 - In Tom Lee s book (pp ), the noise impedances are derived as - The optimal source admittance values to minimize noise factor are therefore

12 Optimal Noise Factor for MOS Transistor Amp (Cont.) Optimal admittance consists of a resistor and inductor (wrong frequency behavior broadband match fundamentally difficult) - If there is zero correlation, inductor value should be set to resonate with C gs at frequency of operation Minimum noise figure - Exact if one defines w t = g m /C gs

13 Recall Noise Factor Comparison Plot From Lecture 7 Noise Factor Scaling Coefficient Versus Q for 0.18 µ NMOS Device 8 Noise Factor Scaling Coefficient c = -j0 c = -j0.55 c = -j1 Note: curves meet if we approximate Q 2 +1 Q 2 Achievable values as a function of Q under the constraint that 1 = w o L g C gs Minimum across all values of Q and 1 L g C gs c = -j0 c = -j0.55 c = -j Q

14 Example: Noise Factor Calculation for Resistor Load Source R s Source R s e nrs e nrl v in R L v out v nout R L Total output noise Total output noise due to source Noise Factor

15 Comparison of Noise Figure and Power Match Source R s Source R s e nrs e nrl v in R L v out v nout R L To achieve minimum Noise Factor To achieve maximum power transfer

16 Example: Noise Factor Calculation for Capacitor Load Source R s Source R s e nrs v in C L v out C L v nout Total output noise Total output noise due to source Noise Factor

17 Example: Noise Factor with Zero Source Resistance Source R L R L e nrl v in C L v out C L v nout Total output noise Total output noise due to source Noise Factor

18 Example: Noise Factor Calculation for RC Load Source R s Source R s e nrs e nrl v in C L R L v out C L v nout R L Total output noise Total output noise due to source Noise Factor

19 Example: Resistive Load with Source Transformer R S Source V s V x V out =NV x 1 R in = RL 2 R out =N 2 R s N R L 1:N Source R S e nrs V x 1:N e nrl 1 R in = RL 2 R out =N 2 V nout =NV x R s N For maximum power transfer (as derived in Lecture 3) R L

20 Noise Factor with Transformer Set for Max Power Transfer Source R S e nrs V x e nrl R in =R s R out =R L V nout = V x R L R L R s Total output noise 1:N= R L R s Total output noise due to source Noise Factor

21 Observations Source R S e nrs V x e nrl R in =R s R out =R L V nout = V x R L R L R s 1:N= R L R s If you need to power match to a resistive load, you must pay a 3 db penalty in Noise Figure - A transformer does not alleviate this issue What value does a transformer provide? - Almost-true answer: maximizes voltage gain given the power match constraint, thereby reducing effect of noise of following amplifiers - Accurate answer: we need to wait until we talk about cascaded noise factor calculations

22 Nonlinearities in Amplifiers We can generally break up an amplifier into the cascade of a memoryless nonlinearity and an input and/or output transfer function V dd R L V out Memoryless Nonlinearity Lowpass Filter V in I d -RL V out V in M 1 I d C L 1+sR L C L Impact of nonlinearities with sine wave input - Causes harmonic distortion (i.e., creation of harmonics) Impact of nonlinearities with several sine wave inputs - Causes harmonic distortion for each input AND intermodulation products

23 Analysis of Amplifier Nonlinearities Focus on memoryless nonlinearity block - The impact of filtering can be added later Memoryless Nonlinearity x y Model nonlinearity as a Taylor series expansion up to its third order term (assumes small signal variation) - For harmonic distortion, consider - For intermodulation, consider

24 Harmonic Distortion Substitute x(t) into polynomial expression Fundamental Harmonics Notice that each harmonic term, cos(nwt), has an amplitude that grows in proportion to A n - Very small for small A, very large for large A

25 Frequency Domain View of Harmonic Distortion A Memoryless Nonlinearity A fund = c 1 A + 3c 3 A 3 4 x 0 w 0 w 2w 3w y Harmonics cause noise - Their impact depends highly on application LNA typically not of consequence Power amp can degrade spectral mask Audio amp depends on your listening preference! Gain for fundamental component depends on input amplitude!

26 1 db Compression Point A Memoryless Nonlinearity A fund = c 1 A + 3c 3 A 3 4 x 0 w 0 w 2w 3w y 20log(A fund ) Definition: input signal level 1 db such that the small-signal gain drops by 1 db - Input signal level is high! 20log(A) A 1-dB Typically calculated from simulation or measurement rather than analytically - Analytical model must include many more terms in Taylor series to be accurate in this context

27 Harmonic Products with An Input of Two Sine Waves DC and fundamental components Second and third harmonic terms Similar result as having an input with one sine wave - But, we haven t yet considered cross terms!

28 Intermodulation Products Second-order intermodulation (IM2) products Third-order intermodulation (IM3) products - These are the troublesome ones for narrowband systems

29 Corruption of Narrowband Signals by Interferers Memoryless Nonlinearity X(w) Interferers Desired Narrowband Signal x y W 0 w 1 w 2 Y(w) Corruption of desired signal 0 w 2 -w 1 w 1 w 2 2w 1 2w 2 3w 1 3w 2 2w 1 -w 2 2w 2 -w 1 w 1 +w 2 2w 1 +w 2 2w 2 +w 1 W Wireless receivers must select a desired signal that is accompanied by interferers that are often much larger - LNA nonlinearity causes the creation of harmonic and intermodulation products - Must remove interference and its products to retrieve desired signal

30 Use Filtering to Remove Undesired Interference Memoryless Nonlinearity X(w) Interferers Desired Narrowband Signal W 0 w 1 w 2 x y Bandpass Filter z Y(w) Corruption of desired signal 0 w 2 -w 1 w 1 w 2 2w 1 2w 2 3w 1 3w 2 2w 1 -w 2 2w 2 -w 1 w 1 +w 2 2w 1 +w 2 2w 2 +w 1 W Z(w) Corruption of desired signal 0 w 2 -w 1 w 1 w 2 2w 1 2w 2 3w 1 3w 2 2w 1 -w 2 2w 2 -w 1 w 1 +w 2 2w 1 +w 2 2w 2 +w 1 Ineffective for IM3 term that falls in the desired signal frequency band W

31 Characterization of Intermodulation Magnitude of third order products is set by c 3 and input signal amplitude (for small A) Magnitude of first order term is set by c 1 and A (for small A) Relative impact of intermodulation products can be calculated once we know A and the ratio of c 3 to c 1 - Problem: it s often hard to extract the polynomial coefficients through direct DC measurements Need an indirect way to measure the ratio of c 3 to c 1

32 Two Tone Test Input the sum of two equal amplitude sine waves into the amplifier (assume Z in of amplifier = R s of source) v in (w) Equal Amplitude Sine Waves 2A Note: v x (w) = v in(w) 2 R s V x Amplifier V out w 1 0 w 2 W V out (w) first-order output third-order IM term v in V bias Z in =R s 2 3 V out =c o +c 1 V x +c 2 V x +c 3 V x 0 w 2 -w 1 w 1 w 2 2w 1 2w 2 3w 1 3w 2 2w 1 -w 2 2w 2 -w 1 w 1 +w 2 2w 1 +w 2 2w 2 +w 1 On a spectrum analyzer, measure first order and third order terms as A is varied (A must remain small) - First order term will increase linearly - Third order IM term will increase as the cube of A W

33 Input-Referred Third Order Intercept Point (IIP3) Plot the results of the two-tone test over a range of A (where A remains small) on a log scale (i.e., db) - Extrapolate the results to find the intersection of the first and third order terms 20log(A fund ) First-order 1 db output = c 1 A Third-order 3 c IM term = 3 A log(A) A 1-dB A iip3 - IIP3 defined as the input power at which the extrapolated lines intersect (higher value is better) Note that IIP3 is a small signal parameter based on extrapolation, in contrast to the 1-dB compression point

34 Relationship between IIP3, c 1 and c 3 Intersection point 20log(A fund ) Solve for A (gives A iip3 ) First-order 1 db output = c 1 A Third-order 3 c IM term = 3 A log(A) A 1-dB A iip3 Note that A corresponds to the peak value of the two cosine waves coming into the amplifier input node (V x ) - Would like to instead like to express IIP3 in terms of power

35 IIP3 Expressed in Terms of Power at Source IIP3 referenced to V x (peak voltage) v in (w) Equal Amplitude Sine Waves 2A Note: v x (w) = v in(w) 2 Amplifier W 0 w 1 w 2 R s V x V out IIP3 referenced to V x (rms voltage) v in V bias Z in =R s 2 3 V out =c o +c 1 V x +c 2 V x +c 3 V x Power across Z in = R s Note: Power from v in

36 IIP3 as a Benchmark Specification Since IIP3 is a convenient parameter to describe the level of third order nonlinearity in an amplifier, it is often quoted as a benchmark spec Measurement of IIP3 on a discrete amplifier would be done using the two-tone method described earlier - This is rarely done on integrated amplifiers due to poor access to the key nodes - Instead, for a radio receiver for instance, one would simply put in interferers and see how the receiver does Note: performance in the presence of interferers is not just a function of the amplifier nonlinearity Calculation of IIP3 is most easily done using a simulator such as Hspice or Spectre - Two-tone method is not necessary simply curve fit to a third order polynomial - Note: two-tone can be done in CppSim

37 Impact of Differential Amplifiers on Nonlinearity v id I 1 I 2 2 M 1 M 2 v x -v id 2 Memoryless Nonlinearity v id I diff = I 2 -I 1 2I bias Assume v x is approximately incremental ground Second order term removed and IIP3 increased!

6.976 High Speed Communication Circuits and Systems Lecture 20 Performance Measures of Wireless Communication

6.976 High Speed Communication Circuits and Systems Lecture 20 Performance Measures of Wireless Communication 6.976 High Speed Communication Circuits and Systems Lecture 20 Performance Measures of Wireless Communication Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott

More information

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45 INF440 Noise and Distortion Jørgen Andreas Michaelsen Spring 013 1 / 45 Outline Noise basics Component and system noise Distortion Spring 013 Noise and distortion / 45 Introduction We have already considered

More information

High Speed Communication Circuits and Systems Lecture 10 Mixers

High Speed Communication Circuits and Systems Lecture 10 Mixers High Speed Communication Circuits and Systems Lecture Mixers Michael H. Perrott March 5, 24 Copyright 24 by Michael H. Perrott All rights reserved. Mixer Design or Wireless Systems From Antenna and Bandpass

More information

Michael F. Toner, et. al.. "Distortion Measurement." Copyright 2000 CRC Press LLC. <

Michael F. Toner, et. al.. Distortion Measurement. Copyright 2000 CRC Press LLC. < Michael F. Toner, et. al.. "Distortion Measurement." Copyright CRC Press LLC. . Distortion Measurement Michael F. Toner Nortel Networks Gordon W. Roberts McGill University 53.1

More information

Noise and Distortion in Microwave System

Noise and Distortion in Microwave System Noise and Distortion in Microwave System Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 1 Introduction Noise is a random process from many sources: thermal,

More information

EECS 242: Analysis of Memoryless Weakly Non-Lineary Systems

EECS 242: Analysis of Memoryless Weakly Non-Lineary Systems EECS 242: Analysis of Memoryless Weakly Non-Lineary Systems Review of Linear Systems Linear: Linear Complete description of a general time-varying linear system. Note output cannot have a DC offset! Time-invariant

More information

6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators

6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators 6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators Massachusetts Institute of Technology March 29, 2005 Copyright 2005 by Michael H. Perrott VCO Design for Narrowband

More information

6.976 High Speed Communication Circuits and Systems Lecture 11 Voltage Controlled Oscillators

6.976 High Speed Communication Circuits and Systems Lecture 11 Voltage Controlled Oscillators 6.976 High Speed Communication Circuits and Systems Lecture 11 Voltage Controlled Oscillators Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott VCO Design for Wireless

More information

RF, Microwave & Wireless. All rights reserved

RF, Microwave & Wireless. All rights reserved RF, Microwave & Wireless All rights reserved 1 Non-Linearity Phenomenon All rights reserved 2 Physical causes of nonlinearity Operation under finite power-supply voltages Essential non-linear characteristics

More information

Low noise amplifier, principles

Low noise amplifier, principles 1 Low noise amplifier, principles l l Low noise amplifier (LNA) design Introduction -port noise theory, review LNA gain/noise desense Bias network and its effect on LNA IP3 LNA stability References Why

More information

Introduction to Surface Acoustic Wave (SAW) Devices

Introduction to Surface Acoustic Wave (SAW) Devices May 31, 2018 Introduction to Surface Acoustic Wave (SAW) Devices Part 7: Basics of RF Circuits Ken-ya Hashimoto Chiba University k.hashimoto@ieee.org http://www.te.chiba-u.jp/~ken Contents Noise Figure

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 15 Active Filter Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 15.1 First-Order

More information

Designing a 960 MHz CMOS LNA and Mixer using ADS. EE 5390 RFIC Design Michelle Montoya Alfredo Perez. April 15, 2004

Designing a 960 MHz CMOS LNA and Mixer using ADS. EE 5390 RFIC Design Michelle Montoya Alfredo Perez. April 15, 2004 Designing a 960 MHz CMOS LNA and Mixer using ADS EE 5390 RFIC Design Michelle Montoya Alfredo Perez April 15, 2004 The University of Texas at El Paso Dr Tim S. Yao ABSTRACT Two circuits satisfying the

More information

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers 6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Broadband Communication

More information

A 3 5 GHz CMOS High Linearity Ultra Wideband Low Noise Amplifier in 0.18µ CMOS

A 3 5 GHz CMOS High Linearity Ultra Wideband Low Noise Amplifier in 0.18µ CMOS Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November -, 6 5 A 5 GHz CMOS High Linearity Ultra Wideband Low Noise Amplifier in.8µ

More information

CHAPTER 3 CMOS LOW NOISE AMPLIFIERS

CHAPTER 3 CMOS LOW NOISE AMPLIFIERS 46 CHAPTER 3 CMOS LOW NOISE AMPLIFIERS 3.1 INTRODUCTION The Low Noise Amplifier (LNA) plays an important role in the receiver design. LNA serves as the first block in the RF receiver. It is a critical

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.976 High Speed Communication Circuits and Systems Spring 2003 Homework #4: Narrowband LNA s and Mixers

More information

RF Fundamental Concepts and Performance Parameters

RF Fundamental Concepts and Performance Parameters RF Fundamental Concepts and erformance arameters CCE 50 RF and Microwave System Design Dr. Owen Casha B. Eng. (Hons.) h.d. 09/0/0 Overview Introduction Nonlinearity and Time Variance System Noise Thermal

More information

Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM)

Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM) Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM) April 11, 2008 Today s Topics 1. Frequency-division multiplexing 2. Frequency modulation

More information

Receiver Architecture

Receiver Architecture Receiver Architecture Receiver basics Channel selection why not at RF? BPF first or LNA first? Direct digitization of RF signal Receiver architectures Sub-sampling receiver noise problem Heterodyne receiver

More information

+ 2. Basic concepts of RFIC design

+ 2. Basic concepts of RFIC design + 2. Basic concepts of RFIC design 1 A. Thanachayanont RF Microelectronics + General considerations: 2 Units in RF design n Voltage gain and power gain n Ap and Av are equal if vin and vout appear across

More information

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation Ted Johansson, EKS, ISY RX Nonlinearity Issues: 2.2, 2.4 Demodulation: not in the book 2 RX nonlinearities System Nonlinearity

More information

TLCE - A3 08/09/ /09/ TLCE - A DDC. IF channel Zc. - Low noise, wide dynamic Ie Vo 08/09/ TLCE - A DDC

TLCE - A3 08/09/ /09/ TLCE - A DDC. IF channel Zc. - Low noise, wide dynamic Ie Vo 08/09/ TLCE - A DDC Politecnico di Torino ICT School Telecommunication Electronics A3 Amplifiers nonlinearity» Reference circuit» Nonlinear models» Effects of nonlinearity» Applications of nonlinearity Large signal amplifiers

More information

Understanding Mixers Terms Defined, and Measuring Performance

Understanding Mixers Terms Defined, and Measuring Performance Understanding Mixers Terms Defined, and Measuring Performance Mixer Terms Defined Statistical Processing Applied to Mixers Today's stringent demands for precise electronic systems place a heavy burden

More information

1. Distortion in Nonlinear Systems

1. Distortion in Nonlinear Systems ECE145A/ECE18A Performance Limitations of Amplifiers 1. Distortion in Nonlinear Systems The upper limit of useful operation is limited by distortion. All analog systems and components of systems (amplifiers

More information

Introduction to CMOS RF Integrated Circuits Design

Introduction to CMOS RF Integrated Circuits Design II. RFIC System Overview Fall 0, Prof. JianJun Zhou II- Outline Introduction RF Transceiver rchitectures RF System Considerations Sensitivity and Selectivity Noise Figure Dynamic Range -db CP and IP Fall

More information

RF/IF Terminology and Specs

RF/IF Terminology and Specs RF/IF Terminology and Specs Contributors: Brad Brannon John Greichen Leo McHugh Eamon Nash Eberhard Brunner 1 Terminology LNA - Low-Noise Amplifier. A specialized amplifier to boost the very small received

More information

print close Chris Bean, AWR Group, NI

print close Chris Bean, AWR Group, NI 1 of 12 3/28/2016 2:42 PM print close Microwaves and RF Chris Bean, AWR Group, NI Mon, 2016-03-28 10:44 The latest version of an EDA software tool works directly with device load-pull data to develop the

More information

Tuesday, March 22nd, 9:15 11:00

Tuesday, March 22nd, 9:15 11:00 Nonlinearity it and mismatch Tuesday, March 22nd, 9:15 11:00 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo Last time and today, Tuesday 22nd of March:

More information

T he noise figure of a

T he noise figure of a LNA esign Uses Series Feedback to Achieve Simultaneous Low Input VSWR and Low Noise By ale. Henkes Sony PMCA T he noise figure of a single stage transistor amplifier is a function of the impedance applied

More information

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation Ted Johansson, EKS, ISY 2 RX Nonlinearity Issues, Demodulation RX nonlinearities (parts of 2.2) System Nonlinearity Sensitivity

More information

System analysis and signal processing

System analysis and signal processing System analysis and signal processing with emphasis on the use of MATLAB PHILIP DENBIGH University of Sussex ADDISON-WESLEY Harlow, England Reading, Massachusetts Menlow Park, California New York Don Mills,

More information

Analysis and Design of Analog Integrated Circuits Lecture 18. Key Opamp Specifications

Analysis and Design of Analog Integrated Circuits Lecture 18. Key Opamp Specifications Analysis and Design of Analog Integrated Circuits Lecture 8 Key Opamp Specifications Michael H. Perrott April 8, 0 Copyright 0 by Michael H. Perrott All rights reserved. Recall: Key Specifications of Opamps

More information

Ansys Designer RF Training Lecture 3: Nexxim Circuit Analysis for RF

Ansys Designer RF Training Lecture 3: Nexxim Circuit Analysis for RF Ansys Designer RF Solutions for RF/Microwave Component and System Design 7. 0 Release Ansys Designer RF Training Lecture 3: Nexxim Circuit Analysis for RF Designer Overview Ansoft Designer Advanced Design

More information

Class E/F Amplifiers

Class E/F Amplifiers Class E/F Amplifiers Normalized Output Power It s easy to show that for Class A/B/C amplifiers, the efficiency and output power are given by: It s useful to normalize the output power versus the product

More information

6.976 High Speed Communication Circuits and Systems Lecture 16 Noise in Integer-N Frequency Synthesizers

6.976 High Speed Communication Circuits and Systems Lecture 16 Noise in Integer-N Frequency Synthesizers 6.976 High Speed Communication Circuits and Systems Lecture 16 in Integer-N Frequency Synthesizers Michael Perrott Massachusetts Institute o Technology Copyright 23 by Michael H. Perrott Frequency Synthesizer

More information

A Survey of Load Pull Simulation Capabilities How do they Help You Design Power Amplifiers?

A Survey of Load Pull Simulation Capabilities How do they Help You Design Power Amplifiers? A Survey of Load Pull Simulation Capabilities How do they Help You Design Power Amplifiers? Agilent EEsof EDA IMS 2010 MicroApps Andy Howard Agilent Technologies 1 Outline Power amplifier design questions

More information

2005 IEEE. Reprinted with permission.

2005 IEEE. Reprinted with permission. P. Sivonen, A. Vilander, and A. Pärssinen, Cancellation of second-order intermodulation distortion and enhancement of IIP2 in common-source and commonemitter RF transconductors, IEEE Transactions on Circuits

More information

More notes on intercept points: 11/06 Read these notes with the other related notes ( intermod_notes)

More notes on intercept points: 11/06 Read these notes with the other related notes ( intermod_notes) More notes on intercept points: 11/06 Read these notes with the other related notes ( intermod_notes) 1.0 Gain compression: If a signal: x(t) = ACosωt is input to a nonlinear system, we get a nonlinear

More information

Application Note 106 IP2 Measurements of Wideband Amplifiers v1.0

Application Note 106 IP2 Measurements of Wideband Amplifiers v1.0 Application Note 06 v.0 Description Application Note 06 describes the theory and method used by to characterize the second order intercept point (IP 2 ) of its wideband amplifiers. offers a large selection

More information

CHAPTER 4 LARGE SIGNAL S-PARAMETERS

CHAPTER 4 LARGE SIGNAL S-PARAMETERS CHAPTER 4 LARGE SIGNAL S-PARAMETERS 4.0 Introduction Small-signal S-parameter characterization of transistor is well established. As mentioned in chapter 3, the quasi-large-signal approach is the most

More information

High Dynamic Range Receiver Parameters

High Dynamic Range Receiver Parameters High Dynamic Range Receiver Parameters The concept of a high-dynamic-range receiver implies more than an ability to detect, with low distortion, desired signals differing, in amplitude by as much as 90

More information

CHAPTER 14. Introduction to Frequency Selective Circuits

CHAPTER 14. Introduction to Frequency Selective Circuits CHAPTER 14 Introduction to Frequency Selective Circuits Frequency-selective circuits Varying source frequency on circuit voltages and currents. The result of this analysis is the frequency response of

More information

Today s menu. Last lecture. Series mode interference. Noise and interferences R/2 V SM Z L. E Th R/2. Voltage transmission system

Today s menu. Last lecture. Series mode interference. Noise and interferences R/2 V SM Z L. E Th R/2. Voltage transmission system Last lecture Introduction to statistics s? Random? Deterministic? Probability density functions and probabilities? Properties of random signals. Today s menu Effects of noise and interferences in measurement

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

DISCRETE DIFFERENTIAL AMPLIFIER

DISCRETE DIFFERENTIAL AMPLIFIER DISCRETE DIFFERENTIAL AMPLIFIER This differential amplifier was specially designed for use in my VK-1 audio oscillator and VK-2 distortion meter where the requirements of ultra-low distortion and ultra-low

More information

Introduction to CMOS RF Integrated Circuits Design

Introduction to CMOS RF Integrated Circuits Design VII. ower Amplifiers VII-1 Outline Functionality Figures of Merit A Design Classical Design (Class A, B, C) High-Efficiency Design (Class E, F) Matching Network Linearity T/R Switches VII-2 As and TRs

More information

3D Distortion Measurement (DIS)

3D Distortion Measurement (DIS) 3D Distortion Measurement (DIS) Module of the R&D SYSTEM S4 FEATURES Voltage and frequency sweep Steady-state measurement Single-tone or two-tone excitation signal DC-component, magnitude and phase of

More information

Berkeley. Mixers: An Overview. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2014 by Ali M. Niknejad

Berkeley. Mixers: An Overview. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2014 by Ali M. Niknejad Berkeley Mixers: An Overview Prof. Ali M. U.C. Berkeley Copyright c 2014 by Ali M. Mixers Information PSD Mixer f c The Mixer is a critical component in communication circuits. It translates information

More information

A New Topology of Load Network for Class F RF Power Amplifiers

A New Topology of Load Network for Class F RF Power Amplifiers A New Topology of Load Network for Class F RF Firas Mohammed Ali Al-Raie Electrical Engineering Department, University of Technology/Baghdad. Email: 30204@uotechnology.edu.iq Received on:12/1/2016 & Accepted

More information

SAMPLE FINAL EXAMINATION FALL TERM

SAMPLE FINAL EXAMINATION FALL TERM ENGINEERING SCIENCES 154 ELECTRONIC DEVICES AND CIRCUITS SAMPLE FINAL EXAMINATION FALL TERM 2001-2002 NAME Some Possible Solutions a. Please answer all of the questions in the spaces provided. If you need

More information

Texas A&M University Electrical Engineering Department ECEN 665. Laboratory #3: Analysis and Simulation of a CMOS LNA

Texas A&M University Electrical Engineering Department ECEN 665. Laboratory #3: Analysis and Simulation of a CMOS LNA Texas A&M University Electrical Engineering Department ECEN 665 Laboratory #3: Analysis and Simulation of a CMOS LNA Objectives: To learn the use of s-parameter and periodic steady state (pss) simulation

More information

Electrochemical Impedance Spectroscopy and Harmonic Distortion Analysis

Electrochemical Impedance Spectroscopy and Harmonic Distortion Analysis Electrochemical Impedance Spectroscopy and Harmonic Distortion Analysis Bernd Eichberger, Institute of Electronic Sensor Systems, University of Technology, Graz, Austria bernd.eichberger@tugraz.at 1 Electrochemical

More information

Fourier Analysis. Chapter Introduction Distortion Harmonic Distortion

Fourier Analysis. Chapter Introduction Distortion Harmonic Distortion Chapter 5 Fourier Analysis 5.1 Introduction The theory, practice, and application of Fourier analysis are presented in the three major sections of this chapter. The theory includes a discussion of Fourier

More information

Lecture 17 - Microwave Mixers

Lecture 17 - Microwave Mixers Lecture 17 - Microwave Mixers Microwave Active Circuit Analysis and Design Clive Poole and Izzat Darwazeh Academic Press Inc. Poole-Darwazeh 2015 Lecture 17 - Microwave Mixers Slide1 of 42 Intended Learning

More information

6.776 High Speed Communication Circuits Lecture 7 High Freqeuncy, Broadband Amplifiers

6.776 High Speed Communication Circuits Lecture 7 High Freqeuncy, Broadband Amplifiers 6.776 High Speed Communication Circuits Lecture 7 High Freqeuncy, Broadband Amplifiers Massachusetts Institute of Technology February 24, 2005 Copyright 2005 by Hae-Seung Lee and Michael H. Perrott High

More information

2005 Modelithics Inc.

2005 Modelithics Inc. Precision Measurements and Models You Trust Modelithics, Inc. Solutions for RF Board and Module Designers Introduction Modelithics delivers products and services to serve one goal accelerating RF/microwave

More information

C. Mixers. frequencies? limit? specifications? Perhaps the most important component of any receiver is the mixer a non-linear microwave device.

C. Mixers. frequencies? limit? specifications? Perhaps the most important component of any receiver is the mixer a non-linear microwave device. 9/13/2007 Mixers notes 1/1 C. Mixers Perhaps the most important component of any receiver is the mixer a non-linear microwave device. HO: Mixers Q: How efficient is a typical mixer at creating signals

More information

Radio Receiver Architectures and Analysis

Radio Receiver Architectures and Analysis Radio Receiver Architectures and Analysis Robert Wilson December 6, 01 Abstract This article discusses some common receiver architectures and analyzes some of the impairments that apply to each. 1 Contents

More information

Efficiently simulating a direct-conversion I-Q modulator

Efficiently simulating a direct-conversion I-Q modulator Efficiently simulating a direct-conversion I-Q modulator Andy Howard Applications Engineer Agilent Eesof EDA Overview An I-Q or vector modulator is a commonly used integrated circuit in communication systems.

More information

Lecture 6. Angle Modulation and Demodulation

Lecture 6. Angle Modulation and Demodulation Lecture 6 and Demodulation Agenda Introduction to and Demodulation Frequency and Phase Modulation Angle Demodulation FM Applications Introduction The other two parameters (frequency and phase) of the carrier

More information

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design.

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. ECEN 622(ESS) Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. By Edgar Sanchez-Sinencio Thanks to Heng Zhang for part of the material OP AMP MACROMODELS Systems containing a significant

More information

EE133 - Prelab 3 The Low-Noise Amplifier

EE133 - Prelab 3 The Low-Noise Amplifier Prelab 3 - EE33 - Prof. Dutton - Winter 2004 EE33 - Prelab 3 The Low-Noise Amplifier Transmitter Receiver Audio Amp XO BNC to ANT BNC to ANT XO CO (LM566) Mixer (SA602) Power Amp LNA Mixer (SA602) IF Amp

More information

Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation

Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation Mahdi Parvizi a), and Abdolreza Nabavi b) Microelectronics Laboratory, Tarbiat Modares University, Tehran

More information

TUNED AMPLIFIERS 5.1 Introduction: Coil Losses:

TUNED AMPLIFIERS 5.1 Introduction: Coil Losses: TUNED AMPLIFIERS 5.1 Introduction: To amplify the selective range of frequencies, the resistive load R C is replaced by a tuned circuit. The tuned circuit is capable of amplifying a signal over a narrow

More information

LINEARITY IMPROVEMENT OF CASCODE CMOS LNA USING A DIODE CONNECTED NMOS TRANSISTOR WITH A PARALLEL RC CIRCUIT

LINEARITY IMPROVEMENT OF CASCODE CMOS LNA USING A DIODE CONNECTED NMOS TRANSISTOR WITH A PARALLEL RC CIRCUIT Progress In Electromagnetics Research C, Vol. 17, 29 38, 2010 LINEARITY IMPROVEMENT OF CASCODE CMOS LNA USING A DIODE CONNECTED NMOS TRANSISTOR WITH A PARALLEL RC CIRCUIT C.-P. Chang, W.-C. Chien, C.-C.

More information

A Volterra Series Approach for the Design of Low-Voltage CG-CS Active Baluns

A Volterra Series Approach for the Design of Low-Voltage CG-CS Active Baluns A Volterra Series Approach for the Design of Low-Voltage CG-CS Active Baluns Shan He and Carlos E. Saavedra Gigahertz Integrated Circuits Group Department of Electrical and Computer Engineering Queen s

More information

Design of a Magnetically Tunable Low Noise Amplifier in 0.13 um CMOS Technology

Design of a Magnetically Tunable Low Noise Amplifier in 0.13 um CMOS Technology Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2012 Design of a Magnetically Tunable Low Noise Amplifier in 0.13 um CMOS Technology Jeremy Brown Iowa State

More information

High Frequency Amplifiers

High Frequency Amplifiers EECS 142 Laboratory #3 High Frequency Amplifiers A. M. Niknejad Berkeley Wireless Research Center University of California, Berkeley 2108 Allston Way, Suite 200 Berkeley, CA 94704-1302 October 27, 2008

More information

Direct-Conversion I-Q Modulator Simulation by Andy Howard, Applications Engineer Agilent EEsof EDA

Direct-Conversion I-Q Modulator Simulation by Andy Howard, Applications Engineer Agilent EEsof EDA Direct-Conversion I-Q Modulator Simulation by Andy Howard, Applications Engineer Agilent EEsof EDA Introduction This article covers an Agilent EEsof ADS example that shows the simulation of a directconversion,

More information

APPLICATION NOTE 3942 Optimize the Buffer Amplifier/ADC Connection

APPLICATION NOTE 3942 Optimize the Buffer Amplifier/ADC Connection Maxim > Design Support > Technical Documents > Application Notes > Communications Circuits > APP 3942 Maxim > Design Support > Technical Documents > Application Notes > High-Speed Interconnect > APP 3942

More information

IC design for wireless system

IC design for wireless system IC design for wireless system Lecture 6 Dr. Ahmed H. Madian Ahmed.madian@guc.edu.eg 1 outlines Introduction to mixers Mixer metrics Mixer topologies Mixer performance analysis Mixer design issues Dr. Ahmed

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

More information

Assist Lecturer: Marwa Maki. Active Filters

Assist Lecturer: Marwa Maki. Active Filters Active Filters In past lecture we noticed that the main disadvantage of Passive Filters is that the amplitude of the output signals is less than that of the input signals, i.e., the gain is never greater

More information

Appendix. Harmonic Balance Simulator. Page 1

Appendix. Harmonic Balance Simulator. Page 1 Appendix Harmonic Balance Simulator Page 1 Harmonic Balance for Large Signal AC and S-parameter Simulation Harmonic Balance is a frequency domain analysis technique for simulating distortion in nonlinear

More information

2.1 BASIC CONCEPTS Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal.

2.1 BASIC CONCEPTS Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal. 1 2.1 BASIC CONCEPTS 2.1.1 Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal. 2 Time Scaling. Figure 2.4 Time scaling of a signal. 2.1.2 Classification of Signals

More information

Noise Specs Confusing?

Noise Specs Confusing? Noise Specs Confusing? It s really all very simple once you understand it. Then, here s the inside story on noise for those of us who haven t been designing low noise amplifiers for ten years. You hear

More information

Introduction to Receivers

Introduction to Receivers Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference Large dynamic range required Many receivers must be capable

More information

Lecture 20: Passive Mixers

Lecture 20: Passive Mixers EECS 142 Lecture 20: Passive Mixers Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture 20 p.

More information

High Gain Low Noise Amplifier Design Using Active Feedback

High Gain Low Noise Amplifier Design Using Active Feedback Chapter 6 High Gain Low Noise Amplifier Design Using Active Feedback In the previous two chapters, we have used passive feedback such as capacitor and inductor as feedback. This chapter deals with the

More information

Analysis and Design of Analog Integrated Circuits Lecture 8. Cascode Techniques

Analysis and Design of Analog Integrated Circuits Lecture 8. Cascode Techniques Analysis and Design of Analog Integrated Circuits Lecture 8 Cascode Techniques Michael H. Perrott February 15, 2012 Copyright 2012 by Michael H. Perrott All rights reserved. Review of Large Signal Analysis

More information

Transformer Waveforms

Transformer Waveforms OBJECTIVE EXPERIMENT Transformer Waveforms Steady-State Testing and Performance of Single-Phase Transformers Waveforms The voltage regulation and efficiency of a distribution system are affected by the

More information

PARAMETRIC MEASUREMENT OF CLASS-T AMPLIFIERS

PARAMETRIC MEASUREMENT OF CLASS-T AMPLIFIERS PARAMETRIC MEASUREMENT OF CLASS-T AMPLIFIERS Revised: March 000 Copyright 997-000 Tripath Technology, Inc All Rights Reserved Introduction Audio amplifiers are commonly specified by and evaluated against

More information

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 5-6: Mixers

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 5-6: Mixers TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 5-6: Mixers Ted Johansson, EKS, ISY ted.johansson@liu.se Overview 2 Razavi: Chapter 6.1-6.3, pp. 343-398. Lee: Chapter 13. 6.1 Mixers general

More information

Lab Project EE348L. Spring 2005

Lab Project EE348L. Spring 2005 Lab Project EE348L Spring 2005 B. Madhavan Spring 2005 B. Madhavan Page 1 of 7 EE348L, Spring 2005 1 Lab Project 1.1 Introduction Based on your understanding of band pass filters and single transistor

More information

Leveraging High-Accuracy Models to Achieve First Pass Success in Power Amplifier Design

Leveraging High-Accuracy Models to Achieve First Pass Success in Power Amplifier Design Application Note Leveraging High-Accuracy Models to Achieve First Pass Success in Power Amplifier Design Overview Nonlinear transistor models enable designers to concurrently optimize gain, power, efficiency,

More information

Electronics basics for MEMS and Microsensors course

Electronics basics for MEMS and Microsensors course Electronics basics for course, a.a. 2017/2018, M.Sc. in Electronics Engineering Transfer function 2 X(s) T(s) Y(s) T S = Y s X(s) The transfer function of a linear time-invariant (LTI) system is the function

More information

6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain- Bandwidth Issue for Broadband Amplifiers

6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain- Bandwidth Issue for Broadband Amplifiers 6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain- Bandwidth Issue for Broadband Amplifiers Massachusetts Institute of Technology February 17, 2005 Copyright 2005

More information

ELEN 701 RF & Microwave Systems Engineering. Lecture 8 November 8, 2006 Dr. Michael Thorburn Santa Clara University

ELEN 701 RF & Microwave Systems Engineering. Lecture 8 November 8, 2006 Dr. Michael Thorburn Santa Clara University ELEN 701 RF & Microwave Systems Engineering Lecture 8 November 8, 2006 Dr. Michael Thorburn Santa Clara University System Noise Figure Signal S1 Noise N1 GAIN = G Signal G x S1 Noise G x (N1+No) Self Noise

More information

Normally, when linearity behavior of an

Normally, when linearity behavior of an ICROWAVE JOURAL REVIEWED EDITORIAL BOARD TECHICAL FEATURE COPACT FORULAS TO RELATE ACPR AD PR TO TWO-TOE IR AD IP A set of compact formulas are presented to estimate modern multitone distortion figures

More information

Mini Project 3 Multi-Transistor Amplifiers. ELEC 301 University of British Columbia

Mini Project 3 Multi-Transistor Amplifiers. ELEC 301 University of British Columbia Mini Project 3 Multi-Transistor Amplifiers ELEC 30 University of British Columbia 4463854 November 0, 207 Contents 0 Introduction Part : Cascode Amplifier. A - DC Operating Point.......................................

More information

High-Linearity CMOS. RF Front-End Circuits

High-Linearity CMOS. RF Front-End Circuits High-Linearity CMOS RF Front-End Circuits Yongwang Ding Ramesh Harjani iigh-linearity CMOS tf Front-End Circuits - Springer Library of Congress Cataloging-in-Publication Data A C.I.P. Catalogue record

More information

Outcomes: Core Competencies for ECE145A/218A

Outcomes: Core Competencies for ECE145A/218A Outcomes: Core Competencies for ECE145A/18A 1. Transmission Lines and Lumped Components 1. Use S parameters and the Smith Chart for design of lumped element and distributed L matching networks. Able to

More information

Noise. Interference Noise

Noise. Interference Noise Noise David Johns and Ken Martin University o Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University o Toronto 1 o 55 Intererence Noise Unwanted interaction between circuit and outside world

More information

LSJ689. Linear Systems. Application Note. By Bob Cordell. Three Decades of Quality Through Innovation

LSJ689. Linear Systems. Application Note. By Bob Cordell. Three Decades of Quality Through Innovation Three Decades of Quality Through Innovation P-Channel Dual JFETs Make High-Performance Complementary Input Stages Possible Linear Systems Lower Current Noise Lower Bias Current Required LSJ689 Application

More information

Lecture 17: BJT/FET Mixers/Mixer Noise

Lecture 17: BJT/FET Mixers/Mixer Noise EECS 142 Lecture 17: BJT/FET Mixers/Mixer Noise Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture

More information

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver Arvin R. Shahani, Derek K. Shaeffer, Thomas H. Lee Stanford University, Stanford, CA At submicron channel lengths, CMOS is

More information

Homework Assignment 03

Homework Assignment 03 Homework Assignment 03 Question 1 (Short Takes), 2 points each unless otherwise noted. 1. Two 0.68 μf capacitors are connected in series across a 10 khz sine wave signal source. The total capacitive reactance

More information

Mixer. General Considerations V RF VLO. Noise. nonlinear, R ON

Mixer. General Considerations V RF VLO. Noise. nonlinear, R ON 007/Nov/7 Mixer General Considerations LO S M F F LO L Noise ( a) nonlinearity (b) Figure 6.5 (a) Simple switch used as mixer (b) implementation of switch with an NMOS device. espect to espect to It is

More information

Narrowband CMOS RF Low-Noise Amplifiers

Narrowband CMOS RF Low-Noise Amplifiers Narrowband CMOS RF Low-Noise Amplifiers Prof. Thomas H. Lee Stanford University tomlee@ee.stanford.edu http://www-smirc.stanford.edu Outline A brief review of classic two-port noise optimization Conditions

More information