3GPP RAN2 5GNR 技術發展狀況. Feng-Ming Yang Institute for Information Industry

Size: px
Start display at page:

Download "3GPP RAN2 5GNR 技術發展狀況. Feng-Ming Yang Institute for Information Industry"

Transcription

1 3GPP RAN2 5GNR 技術發展狀況 Feng-Ming Yang Institute for Information Industry

2 5G Vision and Requirements 5G supports efficiently three different types of traffic profiles embb ->high throughput for e.g. video services mmtc -> low energy for e.g. long living sensors URLLC -> low latency for e.g. mission critical services Source : 5G-PPP 2

3 Architecture options in the light of 5G Two radio technologies have to be considered in the 5G discussions LTE (in its Rel-15 version) Next generation Radio (NR) Plus radio level aggregation of both radio technologies Two Core Network concepts have to be considered in the 5G discussions EPC (with potential evolutions) Next Generation Core (NGCN) This results in 8 options Source : SP (T-Mobile) 3

4 5G scenarios in 3GPP NR & NextGenCore (1/4) Source : SP (T-Mobile) 4

5 5G scenarios in 3GPP NR & NextGenCore (2/4) Source : SP (T-Mobile) 5

6 5G scenarios in 3GPP NR & NextGenCore (3/4) Source : SP (T-Mobile) 6

7 5G scenarios in 3GPP NR & NextGenCore (4/4) Source : SP (T-Mobile) 7

8 TSG Plenary Status for 5G 3GPP Study/Work Item New Services and Markets Technology Enablers Study on New Services and Markets Technology Enablers Study on Enhancement of 3GPP support for V2X service FS_SMARTER - Massive Internet of Things FS_SMARTER - Critical Communications FS_SMARTER - Enhanced Mobile Broadband FS_SMARTER -Network Operation Study on Architecture for Next Generation System Study on Channel model for frequency spectrum above 6 GHz Meetin g SA#72 SA#67 SA#72 SA#70 SA#70 SA#70 SA#70 SA#70 RAN#6 9 Relea se Rel- 15 Rel- 14 Rel- 15 Rel- 14 Rel- 14 Rel- 14 Rel- 14 Rel- 14 Rel- 14 Date MAR 2016 ~ MAR 2017 MAR 2015 ~ MAR 2016 MAR 2016 ~ MAR 2017 DEC 2015 ~ JUN 2016 DEC 2015 ~ JUN 2016 DEC 2015 ~ JUN 2016 DEC 2015 ~ JUN 2016 DEC 2015 ~ DEC 2016 SEP 2015 ~ JUN 2016 Study on Scenarios and Requirements for Next Generation RAN#7 Rel- DEC 2015 ~ SEP 8

9 Timelin e for NR and NexGen 2. TSG-SA#74, Dec/2016: NexGen TR completion Approval of SA2 WID 1. TSG-RAN#73, September 2016: 5G NR Requirements TR completion 4. TSG-SA#77 or TSG-SA#78: NexGen stage-2 freeze. 7. TSG#80, June 2018: Release 15 stage 3 freeze for NR and NexGen, including Standalone. 6. RAN#78/RAN#79: Stage-3 freeze for Non-Standalone higher layers (including components common with standalone). Completion target TBD. (between Dec 2017 and March 2018) CHECKPOINT: TSG#75: March 2017: - Completion of NR SI with corresponding performance evaluation and concepts; - Approval of RAN WID(s); - Report from RAN1/RAN2/RAN3/RAN4/SA2 on fwd compatibility of NSA and SA NR; - Report from SA2 on migration; - SA and CT timeline coordination; - Reconfirmation of NR & NexGen timeplan, including completion target for NSA higher layer components (box 6) 5. TSG-RAN#78, December 2017: - Stage 3 freeze of L1/L2 for common aspects of NSA (focused on licensed bands) and SA NR; - Principles agreed for SA-specific L1/L2 components. Note: SA: Standalone NSA: Non-Standalone 9

10 Discussion on prioritization for NR study and work phases In order to allow 3GPP RAN to meet the agreed timeline for phase I of 5G specification in Rel-15, it is proposed that guidance be given to working groups to put on hold until March 2017 the study of the following use cases and advanced features, except for considerations on forward compatibility: Interworking with non-3gpp systems Operation in unlicensed bands Wireless relay, sidelink, backhaul Multimedia Broadcast/Multicast Service Location/positioning, public safety, emergency communication, public warning/emergency alert Support of shared spectrum SON All architecture options except for options 3, 7 and 2 Realization of RAN network functions No te The second phase of the study, which is expected to start in March 2017, will 10 revisit the priority for these use cases and advanced features. Reference : RP

11 RP Way forward on NR features The following studies are not included in the target content for Rel-15 without changing the scope of SID and postponed until March 2017 Waveforms above 40GHz mmtc features Flexible duplex specific optimization for paired spectrum from RAN1/2/3 perspective Note: a common RAN1/2/3 solution to support flexible duplex for both unpaired and paired spectrum is within the target content for Rel-15. Reliability aspect for URLLC Interworking with non-3gpp systems Wireless relay, sidelink, backhaul, ev2v (except for forward compatibility) Multimedia Broadcast/Multicast Service No te Location/positioning, public safety, emergency communication, public 11 warning/emergency alert

12 RP Outcome from prioritization discussion for New Radio Access List of items: Waveforms above 40GHz mmtc [Flexible duplex of paired spectrum] Interworking with non- 3GPP systems Wireless relay Satellite communication Air-to-ground and light air craft communications Extreme long distance coverage Technology SI Sidelink V2V and V2X proposal is approve d Multimedia Broadcast/Multicast Service Shared spectrum and unlicensed spectrum [Location/positioning functionality] Public warning/emergency alert New SON functionality 12

13 3GPP TSG-RAN WG2 SI: Study on New Radio Access Technology 13

14 3GPP TSG-RAN WG2 User plane issue 14

15 Receiver ACK ACK Transmitter Retransmission PDCP SDU Agreement - The ARQ will be supported in RLC. - RLC adds an RLC SN PDCP Header RLC PDU_1 RLC PDU_2 RLC PDU_3 Naturally, to retransmit all segments (including PDU_1 and PDU_3) would need to be re-sent instead of just the missing segments. RLC PDU_1 RLC PDU_2 RLC PDU_3 waste radio resources introduce additional delay since several Retransmission of individual RLC PDUs Reference : R

16 Sender PDCP Sender RLC Receiver PDCP/RLC Reordering - Most companies see the benefit of removing RLC reordering to support URLLC. BUT - that there is additional latency with single reordering if there is non-ideal backhaul between the entity hosting PDCP and the entity hosting RLC: Data Agreement 1: NR specification should not prohibit out-of-order deciphering of PDCP PDUs. Sender PDCP Data Sender RLC Receiver PDCP/RLC Lost RLC status report Reordering in RLC Lost PDCP status report Reordering in PDCP RLC retransmission Delay of non-ideal link PDCP retransmission (a) RLC retransmission Reference : R (b) PDCP retransmission 16

17 Concatenation Show of hands: No Concatenation in RLC 18 Concatenation in RLC 12 Potential working assumption: RLC concatenation can be removed for NR UP protocol stack. Reference : R

18 Segmentation SO-based segmentation For instance, retransmission with lower MCS due to CQI degradation requires SO-based segmentation even for the same or larger available physical resource block. RLC SDU Segmentation (SO-based) SN=0 SO=0 LSF=0 RLC SDU SN=0 SO=400 LSF=1 RLC SDU Agreements 1: In NR, the segmentation function is only placed in the RLC layer as in LTE. Resegmentation (SO-based) SN=0 SO=0 LSF=0 RLC SDU SN=0 SO=300 LSF=0 RLC SDU SN=0 SO=600 LSF=1 RLC SDU SO-based segmentation and resegmentation Reference : R Agreement => SO-based segmentation can be considered for both segmentation and resegmentation as a baseline in NR user plane to support high data rate. (Does not imply anything about location of concatenation). At least overhead for the low data rate case should be 18 analysed further.

19 QoS UL DL UE UL Filter configuration 5 DRB DL DRB UL 4 RAN Split 3 2 DRB configuration 1 QoS policy CN 1. RAN receives QoS policy over the C-plane associated to a flow. The QoS policy may be signalled to the RAN as a part the PDU session establishment process or after the flow detection function in the CN has detected a new flow. 2. The RAN detects the new flow by utilizing QoS marking attached in the encapsulation header of the DL PDU. The RAN determines the forwarding treatment over the radio basing on the QoS policy. 3. The RAN selects the DL DRB (allocation function) that is able to full fill the QoS requirements of the flow 4. If such DRB does not exist a new one is UL TFT configuration with reflective QoS Reference : R established. 5. UE determines the UL mapping rule from 19

20 3GPP TSG-RAN WG2 Control plane issue 20

21 New state (1/3) New Grant Free State Star t No Data IDLE Monitor Paging Mobility Management Data RACH Proc CONNECT Security, Resume_ID Timing Adv Data Sched Send Proc Grant Free Monitor Paging Mobility Management Small Data GF Send Proc Reference : R

22 New state (2/3) Observation 1: There is value to defining now a low latency and low Reference : R overhead small data UL transmission method within the new state Small Data Transmission in the New State The possibility of combining the contents of messages 1 and 3 and messages 2 and 4 was also suggested, for transmision on a contention-based channel in small cells or when the TA may be known. In the GF state, if a large amount of data (e.g. > 100 bytes) is required to be sent, the UE executes a normal RACH process (as if the UE was in the Idle state). This case is denoted as Large Data in the condition for state transition. In the GF state, if a small amount of data (e.g. < 100 bytes) is required to be sent (denoted by Small Data in the condition for state 22 transition), the UE executes an efficient new

23 New state (3/3) The MCS cannot be mapped to the resume ID as it depends on the amount of data and the channel conditions. A new state where the TA is assumed correct, can allow access using far less resources and less time. Reference : R

24 System Information (1/3) Reference : R

25 System Information (2/3) On-demand System Information Acquisition Signaling overhead for different broadcast period and SI size Reference : R

26 System Information (3/3) In LTE approach, the needed resource to transmit minimum SIB within one T change is R T change / T period. With on-demand delivery, the calculation is R +γrλt change. The overall resource efficiency for on-demand delivery is: RTchange / T efficiency R R T period change T period T change (1 T change ) T period 1 1 ( T change ) Reference : R

27 LTE-NR tight interworking specific aspects UP PDCP RLC Coordination function RRC NR - RRC NR RRC Configuration CP Split bearer NR L2 UP UP PDCP RLC RRC CP Split bearer NR - RRC NR L2 UP MAC MAC PHY NR-PHY PHY NR-PHY LTE RAN NR RAN TX over LTE Air Interface TX over NR air Interface TX over LTE Air Interface TX over NR air Interface UE Reference : R

28 3GPP TSG-RAN WG2 Mobility issue 28

29 Cell definition UE should be able to distinguish between the beams from its serving cell and beams from nonserving cells for RRM measurements in active mobility. UE should be able to determine if a beam is from its serving cell. gnb and NR cells A NR cell is handled by a single gnb. A gnb may handle one or more cells. Reference : R NR cell, TRPs and antennas. There is a single RRC entity for the UE with one NR serving cell. 29

30 RRM/DL Measurements (1/2) ray-tracing simulation tool Reference : R Location : Wolpyeong-dong, Daejeon, Korea 2. Tx Beamforming parameters A. Gain dbi, Azimuth Degree :18⁰ Elevation Degree :10⁰ B. Tx Power : 35 dbm 3. UE Rx Beamforming : Omi 4. Metric : L1/L3 filtered RSRP (dbm) 5. The number of N-best beams = 4 Ping- Pong rate LOS NLoS Singlebeabeabeabeam Multi- Single- Multi- 9.89% 4.18% 16.39% 12.19% To determine cell level signal quality, UE should be able to group beams of the same cell for RRM measurement, which leads stable mobility performance. 30

31 RRM/DL Measurements (2/2) LoS NLoS Agreement 1 For connected mode, cell level signal quality for RRM measurement can be derived from multiple beams, if multiple beams can be detected (this does not preclude RRM measurement made on a single beam) FFS how to combine beam measurements to a cell level single quality 31

32 Uplink Measurement (inactive state) Ptx Prx Power Up PSS/ SSS UL beacon If indicated by NW response, perform DL measurement or beacon reconfiguration NW resp. (Meas./ Reconf.) Power Down PSS/ SSS Waiting for potential NW UL response beacon Light sleep Deep sleep ON duration ON duration Time Deep sleep ON Deep sleep ON Deep sleep DRX cycle DRX cycle Reference : R

33 Uplink Measurement (active state) Good UL quality => participate in tx/rx Mediocre UL, poor candidate for cell Too weak link Reference : R UE Target gnb 2 /cell 2 Source gnb 1 /Cell 1 Decision to configure measurements What UE? RRC reconfiguration (SRS resources) Measurement Request Send SRS Use of UL reference signals for TRP selection Next =>Benefits of UL based mobility, compared to DL based mobility, should be studied with performance analysis. RRC reconfiguration (HO command) Data transmission Detect SRS Measurement Report Handover preparation Decision to perform handover Handover procedure based on UL signa 33

34 34

35 System Information 35

36 RRC Signaling for Light Connection (R14) The lightly connected state is between RRC_IDLE and RRC_CONNECTED: Connected-mode-like functions S1 connection is kept and active in the anchor enb The UE AS context is kept in both UE and anchor enb side. The ECM state is ECM-CONNECTED, from network perspective. Idle-mode-like functions Support of RAN initiated paging, where the paging process is controlled by anchor enb, and RAN based paging area can be configurable as UE specific. Performing cell reselection based mobility, the same cell reselection mechanism in RRC IDLE. 36

37 Key Migration Paths Option 1 Option 7 Option 2 / Option 4 This is the likely migration path for operators who are interested in upgrading their current LTE RAN infrastructure to connect to NextGen Core. With elte not being a legacy technology, and due to potential significant coverage differences dependent upon spectrum availability, it is possible that this intermediate step may exist over a long period of time. Option 1 Option 3 Option 2 / Option 4 This is the likely migration path for operators who want to reuse their existing LTE RAN and core. Moving from Option 3 to Option 2 maybe as significant a step as moving from LTE/EPC directly to Option 2. Option 1 Option 3 Option 7 Option 2 / Option 4 For those operators wanting to start with Option 3, it is not clear how long Option 3 s intermediate step can last and if it will require migrating to Option 7 or can go straight to Option 2/ Option 4. Some further analysis of migrating from Option 3 to Option 7 should be done as part of this Source work : S to determine its 37 viability. (AT&T)

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies //08 K E Y N O T E S P E E C H Jeffrey Chen Jeffrey-cy_chen@keysight.com 08.0. Deputy General Manager / Keysight Technologies M O R E S P E E D, L E S S P O W E R, P E R F E C T A C C U R A C Y NETWORKS/CLOUD

More information

OAI UE 5G NR FEATURE PLAN AND ROADMAP

OAI UE 5G NR FEATURE PLAN AND ROADMAP OAI UE 5G NR FEATURE PLAN AND ROADMAP Fabrice Nabet BUPT OpenAir Workshop, April 28 2017, Beijing TCL Communication Technology Holdings Ltd. 5G Spirit From OAI LTE to 5G NR LTE UE basic functionalities

More information

RAN and Key technologies in 5G NR

RAN and Key technologies in 5G NR RAN and Key technologies in 5G NR Zhixi Wang Huawei Technology September,2018 Agenda NR Overall Architecture and Network Interfaces Physical Layer Layer 2 and RRC Deployment Architecture and Scenarios

More information

C O M PAN Y R E S T R I C T E D

C O M PAN Y R E S T R I C T E D What is 5G? It s a paradigm shift 1G~1985 2G1992 3G2001 4G2010 5G2020 Transition from analog to digital www Define use case Analyze requirements Define technology embb www Define technology framework Find

More information

From D2D to V2X. Hung-Yu Wei. National Taiwan University. Acknowledgement to Mei-Ju Shih

From D2D to V2X. Hung-Yu Wei. National Taiwan University. Acknowledgement to Mei-Ju Shih From D2D to V2X Hung-Yu Wei National Taiwan University Acknowledgement to Mei-Ju Shih OUTLINE Preview RAN2#91 Rel-13 ed2d General UE-to-Network Relays ProSe discovery in partial- and outside network coverage

More information

<Technical Report> Number of pages: 20. XGP Forum Document TWG TR

<Technical Report> Number of pages: 20. XGP Forum Document TWG TR XGP Forum Document TWG-009-01-TR Title: Conformance test for XGP Global Mode Version: 01 Date: September 2, 2013 XGP Forum Classification: Unrestricted List of contents: Chapter 1 Introduction

More information

LTE systems: overview

LTE systems: overview LTE systems: overview Luca Reggiani LTE overview 1 Outline 1. Standard status 2. Signal structure 3. Signal generation 4. Physical layer procedures 5. System architecture 6. References LTE overview 2 Standard

More information

3rd Generation Partnership Project; Technical Specification Group Radio Access Network; 3GPP TR

3rd Generation Partnership Project; Technical Specification Group Radio Access Network; 3GPP TR 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; V14.0.0 (201703) Study on New Radio Access Technology;Technical Report Radio Interface Protocol Aspects () TR 38.804

More information

3GPP: Evolution of Air Interface and IP Network for IMT-Advanced. Francois COURAU TSG RAN Chairman Alcatel-Lucent

3GPP: Evolution of Air Interface and IP Network for IMT-Advanced. Francois COURAU TSG RAN Chairman Alcatel-Lucent 3GPP: Evolution of Air Interface and IP Network for IMT-Advanced Francois COURAU TSG RAN Chairman Alcatel-Lucent 1 Introduction Reminder of LTE SAE Requirement Key architecture of SAE and its impact Key

More information

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better 5G New Radio Design Expanding the human possibilities of technology to make our lives better Fall VTC-2017, Panel September 25 th, 2017 Dr. Amitabha Ghosh Head of Small Cell Research, Nokia Fellow, IEEE

More information

5G NR Update and UE Validation

5G NR Update and UE Validation 5G NR Update and UE Validation Sr. Project Manager/ Keysight JianHua Wu 3GPP Status Update 2 5G Scenarios and Use Cases B R O A D R A N G E O F N E W S E R V I C E S A N D PA R A D I G M S Amazingly fast

More information

5G NR network deployment is now let s test!

5G NR network deployment is now let s test! 5G NR network deployment is now let s test! Jibran Siddiqui Technology and Application Engineer Mobile Network Testing Shakil Ahmed Regional Director Mobile Network Testing Contents Market drivers and

More information

LTE Air Interface. Course Description. CPD Learning Credits. Level: 3 (Advanced) days. Very informative, instructor was engaging and knowledgeable!

LTE Air Interface. Course Description. CPD Learning Credits. Level: 3 (Advanced) days. Very informative, instructor was engaging and knowledgeable! Innovating Telecoms Training Very informative, instructor was engaging and knowledgeable! Watch our course intro video. LTE Air Interface Course Description With the introduction of LTE came the development

More information

5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc.

5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc. 5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc. Yinan Qi Samsung Electronics R&D Institute UK, Staines, Middlesex TW18 4QE,

More information

LTE Review. EPS Architecture Protocol Architecture Air Interface DL Scheduling EMM, ECM, RRC States QoS, QCIs & EPS Bearers

LTE Review. EPS Architecture Protocol Architecture Air Interface DL Scheduling EMM, ECM, RRC States QoS, QCIs & EPS Bearers LTE Review EPS Architecture Protocol Architecture Air Interface DL Scheduling EMM, ECM, RRC States QoS, s & EPS Bearers Evolved Packet System (EPS) Architecture S6a HSS MME PCRF S1-MME S10 S11 Gxc Gx E-UTRAN

More information

3G Evolution HSPA and LTE for Mobile Broadband Part II

3G Evolution HSPA and LTE for Mobile Broadband Part II 3G Evolution HSPA and LTE for Mobile Broadband Part II Dr Stefan Parkvall Principal Researcher Ericsson Research stefan.parkvall@ericsson.com Outline Series of three seminars I. Basic principles Channel

More information

High Performance LTE Technology: The Future of Mobile Broadband Technology

High Performance LTE Technology: The Future of Mobile Broadband Technology High Performance LTE Technology: The Future of Mobile Broadband Technology 1 Ekansh Beniwal, 2 Devesh Pant, 3 Aman Jain, 4 Ravi Ahuja 1,2,3,4 Electronics and Communication Engineering Dronacharya College

More information

GTI Sub- 6GHz 5G RAN White Paper

GTI Sub- 6GHz 5G RAN White Paper GTI Sub-6GHz 5G RAN White Paper http://www.gtigroup.org Page 0 White Paper of 5G RAN V 1.0 Version V1.0 Deliverable Type Confidential Level Program Name Working Group Project Name Source members Procedural

More information

LTE enb - 5G gnb dual connectivity (EN-DC)

LTE enb - 5G gnb dual connectivity (EN-DC) LTE enb - 5G gnb dual connectivity (EN-DC) E-UTRAN New Radio - Dual Connectivity (EN-DC) is a technology that enables introduction of 5G services and data rates in a predominantly 4G network. UEs supporting

More information

LTE enb - 5G gnb dual connectivity (EN-DC)

LTE enb - 5G gnb dual connectivity (EN-DC) LTE enb - 5G gnb dual connectivity (EN-DC) E-UTRAN New Radio - Dual Connectivity (EN-DC) is a technology that enables introduction of 5G services and data rates in a predominantly 4G network. UEs supporting

More information

5G New Radio. Ian Wong, Ph.D. Senior Manager, Advanced Wireless Research. ni.com NI CONFIDENTIAL

5G New Radio. Ian Wong, Ph.D. Senior Manager, Advanced Wireless Research. ni.com NI CONFIDENTIAL 5G New Radio Ian Wong, Ph.D. Senior Manager, Advanced Wireless Research ni.com ITU Vision for IMT-2020 and Beyond > 10 Gbps Peak rates > 1M / km 2 Connections < 1 ms Latency New ITU Report on IMT-2020

More information

3GPP Activities on ITS

3GPP Activities on ITS 3GPP Activities on ITS March, 2016 SungDuck CHUN LG Electronics 1. History Overall Timeline 3GPP started feasibility study of 3GPP support of V2X communication from 1Q 2015 Discussion started from 3GPP

More information

All rights reserved. Mobile Developments. Presented by Philippe Reininger, Chairman of 3GPP RAN WG3

All rights reserved.  Mobile Developments. Presented by Philippe Reininger, Chairman of 3GPP RAN WG3 http://eustandards.in/ Mobile Developments Presented by Philippe Reininger, Chairman of 3GPP RAN WG3 Introduction 3GPP RAN has started a new innovation cycle which will be shaping next generation cellular

More information

NR Physical Layer Design: NR MIMO

NR Physical Layer Design: NR MIMO NR Physical Layer Design: NR MIMO Younsun Kim 3GPP TSG RAN WG1 Vice-Chairman (Samsung) 3GPP 2018 1 Considerations for NR-MIMO Specification Design NR-MIMO Specification Features 3GPP 2018 2 Key Features

More information

M A R C H 2 6, Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies. 5G New Radio Challenges and Redefining Test

M A R C H 2 6, Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies. 5G New Radio Challenges and Redefining Test M A R C H 2 6, 2 0 1 8 Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies 1 5G Market Trends 5G New Radio Specification and Implications New Measurement Challenges and Redefining Test Summary

More information

Background: Cellular network technology

Background: Cellular network technology Background: Cellular network technology Overview 1G: Analog voice (no global standard ) 2G: Digital voice (again GSM vs. CDMA) 3G: Digital voice and data Again... UMTS (WCDMA) vs. CDMA2000 (both CDMA-based)

More information

3GPP TR V ( )

3GPP TR V ( ) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on CU-DU lower layer split for NR; (Release 15) Technical Report The present document has been developed within

More information

Minimum requirements related to technical performance for IMT-2020 radio interface(s)

Minimum requirements related to technical performance for IMT-2020 radio interface(s) Report ITU-R M.2410-0 (11/2017) Minimum requirements related to technical performance for IMT-2020 radio interface(s) M Series Mobile, radiodetermination, amateur and related satellite services ii Rep.

More information

Evolution of cellular wireless systems from 2G to 5G. 5G overview th October Enrico Buracchini TIM INNOVATION DEPT.

Evolution of cellular wireless systems from 2G to 5G. 5G overview th October Enrico Buracchini TIM INNOVATION DEPT. Evolution of cellular wireless systems from 2G to 5G 5G overview 6-13 th October 2017 Enrico Buracchini TIM INNOVATION DEPT. Up to now.we are here. Source : Qualcomm presentation @ 5G Tokyo Bay Summit

More information

5G - The multi antenna advantage. Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology

5G - The multi antenna advantage. Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology 5G - The multi antenna advantage Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology Content What is 5G? Background (theory) Standardization roadmap 5G trials & testbeds 5G product releases

More information

3GPP ProSe/D2D and its proposed extensions to other topics such as V2X, Wearable devices RAN Aspects. ICL 蔡華龍 (Hua-Lung Tsai) 105 年 09 月 12 日

3GPP ProSe/D2D and its proposed extensions to other topics such as V2X, Wearable devices RAN Aspects. ICL 蔡華龍 (Hua-Lung Tsai) 105 年 09 月 12 日 3GPP ProSe/D2D and its proposed extensions to other topics such as V2X, Wearable devices RAN Aspects ICL 蔡華龍 (Hua-Lung Tsai) 105 年 09 月 12 日 Outline Introduce LTE-A ProSe (D2D) in Rel. 12/13 Further Enhancements

More information

CHAPTER 14 4 TH GENERATION SYSTEMS AND LONG TERM EVOLUTION

CHAPTER 14 4 TH GENERATION SYSTEMS AND LONG TERM EVOLUTION CHAPTER 14 4 TH GENERATION SYSTEMS AND LONG TERM EVOLUTION These slides are made available to faculty in PowerPoint form. Slides can be freely added, modified, and deleted to suit student needs. They represent

More information

3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li

3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li 3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li Mar. 4, 2016 1 Agenda Status Overview of RAN1 Working/Study Items Narrowband Internet of Things (NB-IoT) (Rel-13)

More information

Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G

Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G ICTC 2015 Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G Juho Lee Samsung Electronics Presentation Outline LTE/LTE-Advanced evolution: an overview LTE-Advanced in Rel-13 Expectation for LTE-Advanced

More information

ETSI TS V ( )

ETSI TS V ( ) TS 138 509 V15.0.0 (2018-07) TECHNICAL SPECIFICATION 5G; 5GS; Special conformance testing functions for User Equipment (UE) (3GPP TS 38.509 version 15.0.0 Release 15) 1 TS 138 509 V15.0.0 (2018-07) Reference

More information

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM LTE and NB-IoT Luca Feltrin RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna Telecom Italia Mobile S.p.a. - TIM Index Ø 3GPP and LTE Specifications Ø LTE o Architecture o PHY Layer o Procedures

More information

Interference management Within 3GPP LTE advanced

Interference management Within 3GPP LTE advanced Interference management Within 3GPP LTE advanced Konstantinos Dimou, PhD Senior Research Engineer, Wireless Access Networks, Ericsson research konstantinos.dimou@ericsson.com 2013-02-20 Outline Introduction

More information

DOWNLINK AIR-INTERFACE...

DOWNLINK AIR-INTERFACE... 1 ABBREVIATIONS... 10 2 FUNDAMENTALS... 14 2.1 INTRODUCTION... 15 2.2 ARCHITECTURE... 16 2.3 INTERFACES... 18 2.4 CHANNEL BANDWIDTHS... 21 2.5 FREQUENCY AND TIME DIVISION DUPLEXING... 22 2.6 OPERATING

More information

3GPP TR V0.4.0 ( )

3GPP TR V0.4.0 ( ) TR 38.913 V0.4.0 (2016-06) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Scenarios and Requirements for Next Generation Access Technologies;

More information

LTE Aida Botonjić. Aida Botonjić Tieto 1

LTE Aida Botonjić. Aida Botonjić Tieto 1 LTE Aida Botonjić Aida Botonjić Tieto 1 Why LTE? Applications: Interactive gaming DVD quality video Data download/upload Targets: High data rates at high speed Low latency Packet optimized radio access

More information

Radio Interface and Radio Access Techniques for LTE-Advanced

Radio Interface and Radio Access Techniques for LTE-Advanced TTA IMT-Advanced Workshop Radio Interface and Radio Access Techniques for LTE-Advanced Motohiro Tanno Radio Access Network Development Department NTT DoCoMo, Inc. June 11, 2008 Targets for for IMT-Advanced

More information

DEVELOPMENT TRENDS OF D2D COMMUNICATIONS IN THE LTE 魏存毅國 立台北 大學通訊系

DEVELOPMENT TRENDS OF D2D COMMUNICATIONS IN THE LTE 魏存毅國 立台北 大學通訊系 DEVELOPMENT TRENDS OF D2D COMMUNICATIONS IN THE LTE 魏存毅國 立台北 大學通訊系 The evolution A set of radio access technologies is required to satisfy future requirements Required Performance TRx Spectrum efficiency

More information

GTI Proof of Concept of 5G System White Paper

GTI Proof of Concept of 5G System White Paper GTI Proof of Concept of 5G System White Paper http://www.gtigroup.org Page 0 White Paper of Proof of Concept of 5G System V 1.0 Version V1.0 Deliverable Type Confidential Level Program Name Working Group

More information

IEEE Project m as an IMT-Advanced Technology

IEEE Project m as an IMT-Advanced Technology 2008-09-25 IEEE L802.16-08/057r2 IEEE Project 802.16m as an IMT-Advanced Technology IEEE 802.16 Working Group on Broadband Wireless Access 1 IEEE 802.16 A Working Group: The IEEE 802.16 Working Group on

More information

NR Radio Access Network 2019 Training Programs. Catalog of Course Descriptions

NR Radio Access Network 2019 Training Programs. Catalog of Course Descriptions NR Radio Access Network 2019 Training Programs Catalog of Course Descriptions Catalog of Course Descriptions INTRODUCTION...3 5G RAN CONCEPTS - WBL...3 5G RAN NR AIR INTERFACE...3 5G RAN NR N18 FUNCTIONALITY...3

More information

LTE-Advanced and Release 10

LTE-Advanced and Release 10 LTE-Advanced and Release 10 1. Carrier Aggregation 2. Enhanced Downlink MIMO 3. Enhanced Uplink MIMO 4. Relays 5. Release 11 and Beyond Release 10 enhances the capabilities of LTE, to make the technology

More information

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Lectio praecursoria Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Author: Junquan Deng Supervisor: Prof. Olav Tirkkonen Department of Communications and Networking Opponent:

More information

3GPP 5G 無線インターフェース検討状況

3GPP 5G 無線インターフェース検討状況 3GPP 5G 無線インターフェース検討状況 エリクソン ジャパン ( 株 ) ノキアソリューションズ & ネットワークス ( 株 ) 2017 年 12 月 22 日 1 Disclaimers This presentation is based on the draft 3GPP specifications to be approved in RAN#78 meeting in Dec/2017.

More information

Docket No.: U TITLE UPLINK RESOURCE ALLOCATION IN A WIRELESS DEVICE AND WIRELESS NETWORK

Docket No.: U TITLE UPLINK RESOURCE ALLOCATION IN A WIRELESS DEVICE AND WIRELESS NETWORK TITLE UPLINK RESOURCE ALLOCATION IN A WIRELESS DEVICE AND WIRELESS NETWORK CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of U.S. Provisional Application No. 62/345,410,

More information

K E Y S I G H T I N 5 G. Mombasawala Mohmedsaaed General Manager (Applications)

K E Y S I G H T I N 5 G. Mombasawala Mohmedsaaed General Manager (Applications) K E Y S I G H T I N 5 G Mombasawala Mohmedsaaed 18.05.2018 General Manager (Applications) EPC 1 e M B B m M T C u R L C C CP+ UP UP The first NR specification (3GPP Release 15) supports increased data

More information

On Design and Analysis of Channel Aware LTE Uplink and Downlink Scheduling Algorithms

On Design and Analysis of Channel Aware LTE Uplink and Downlink Scheduling Algorithms On Design and Analysis of Channel Aware LTE Uplink and Downlink Scheduling Algorithms by Aswin Kanagasabai 7553177 A thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment

More information

Next Generation Mobile Networks NGMN Liaison Statement to 5GAA

Next Generation Mobile Networks NGMN Liaison Statement to 5GAA Simulation assumptions and simulation results of LLS and SLS 1 THE LINK LEVEL SIMULATION 1.1 Simulation assumptions The link level simulation assumptions are applied as follows: For fast fading model in

More information

MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II

MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II BASICS & CHALLENGES Dr Konstantinos Dimou Senior Research Engineer Ericsson Research konstantinos.dimou@ericsson.com Overview Introduction Definition Vision

More information

Millimeter wave: An excursion in a new radio interface for 5G

Millimeter wave: An excursion in a new radio interface for 5G Millimeter wave: An excursion in a new radio interface for 5G Alain Mourad Cambridge Wireless, London 03 February 2015 Creating the Living Network Outline 5G radio interface outlook Millimeter wave A new

More information

5G NR. A New Era for Enhanced Mobile Broadband. White paper

5G NR. A New Era for Enhanced Mobile Broadband. White paper A New Era for Enhanced Mobile Broadband White paper Introduction Since an initial 5G RAN workshop in September 2015, the 5G standardization process over the past two years is now taking the industry to

More information

Keysight Technologies Narrowband IoT (NB-IoT): Cellular Technology for the Hyperconnected IoT

Keysight Technologies Narrowband IoT (NB-IoT): Cellular Technology for the Hyperconnected IoT Ihr Spezialist für Mess- und Prüfgeräte Keysight Technologies Narrowband IoT (): Cellular Technology for the Hyperconnected IoT Application Note datatec Ferdinand-Lassalle-Str. 52 72770 Reutlingen Tel.

More information

LTE Release 14 Outlook

LTE Release 14 Outlook LTE Release 14 Outlook Christian Hoymann, David Astely, Magnus Stattin, Gustav Wikström, Jung-Fu (Thomas) Cheng, Henning Wiemann, Niklas Johansson, Mattias Frenne, Ricardo Blasco, Joerg Huschke, Andreas

More information

New Radio for 5G. The future of mobile broadband

New Radio for 5G. The future of mobile broadband New Radio for 5G The future of mobile broadband Table of Contents Abstract...3 1 5G Mobile Communications... 4 1.1 Capabilities and Requirements...5 1.2 IMT-2020 Requirements and Usage Scenarios...5 1.3

More information

ETSI TR V9.0.0 ( ) Technical Report

ETSI TR V9.0.0 ( ) Technical Report TR 136 913 V9.0.0 (2010-02) Technical Report LTE; Requirements for further advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced) (3GPP TR 36.913 version 9.0.0 Release 9) 1

More information

Docket No.: U Uplink Transmission in a Wireless Device and Wireless Network

Docket No.: U Uplink Transmission in a Wireless Device and Wireless Network Uplink Transmission in a Wireless Device and Wireless Network CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of U.S. Provisional Application No. 62/327,265, filed April

More information

When technology meets spectrum: Bring 5G vision into Reality

When technology meets spectrum: Bring 5G vision into Reality When technology meets spectrum: Bring 5G vision into Reality 5G India 2018, 2 nd international conference (May 17-18, 2018) WU Yong www.huawei.com 5G Vision: Enabling a full connected world Enhance Mobile

More information

TECHNICAL REPORT 5G; Study on New Radio (NR) access technology (3GPP TR version Release 14)

TECHNICAL REPORT 5G; Study on New Radio (NR) access technology (3GPP TR version Release 14) TR 138 912 V14.0.0 (2017-05) TECHNICAL REPORT 5G; Study on New Radio (NR) access technology (3GPP TR 38.912 version 14.0.0 Release 14) 1 TR 138 912 V14.0.0 (2017-05) Reference DTR/TSGR-0038912ve00 Keywords

More information

Evolution of 3GPP LTE-Advanced Standard toward 5G

Evolution of 3GPP LTE-Advanced Standard toward 5G Evolution of 3GPP LTE-Advanced Standard toward 5G KRNet 2013. 6. 24. LG Electronics Byoung-Hoon Kim (bh.kim@lge.com) Communication Standards Evolution Mobility We are here IMT-Advanced Standard High (~350Km/h)

More information

TECHTRAINED. Foundations Explained. Learn Technology in 10 minutes. Contact:

TECHTRAINED. Foundations Explained. Learn Technology in 10 minutes. Contact: TT 1608: LTE Air Interface Foundations Explained Contact: hello@techtrained.com 469-619-7419 918-908-0336 Course Overview: If you are trying to learn LTE and don t know where to start. You or your technical

More information

5G Technology Introduction, Market Status Overview and Worldwide Trials. Dr. Taro Eichler Technology Manager Wireless Communication

5G Technology Introduction, Market Status Overview and Worldwide Trials. Dr. Taro Eichler Technology Manager Wireless Communication 5G Technology Introduction, Market Status Overview and Worldwide Trials Dr. Taro Eichler Technology Manager Wireless Communication Mobile World Congress 2017 Barcelona (It not Smartphones anymore) Automation

More information

5G New Radio (NR) : Physical Layer Overview and Performance

5G New Radio (NR) : Physical Layer Overview and Performance 5G New Radio (NR) : Physical Layer Overview and Performance IEEE Communication Theory Workshop - 2018 Amitabha Ghosh Nokia Fellow and Head, Radio Interface Group Nokia Bell Labs May 15 th, 2018 1 5G New

More information

5G Program Manager Roger Nichols

5G Program Manager Roger Nichols 5G Program Manager 2018.08.20 Roger Nichols M A S S I V E MIMO E X A M P L E Question #1: What is missing from this picture? The other antennas! + =? Question #2: What is the exclusion zone for 61V/m?

More information

LTE-Advanced research in 3GPP

LTE-Advanced research in 3GPP LTE-Advanced research in 3GPP GIGA seminar 8 4.12.28 Tommi Koivisto tommi.koivisto@nokia.com Outline Background and LTE-Advanced schedule LTE-Advanced requirements set by 3GPP Technologies under investigation

More information

Next Generation Mobile Networks

Next Generation Mobile Networks Title: NGMN liaison response on invitation to update the information in the IMT2020 roadmap Source: NGMN Office To: ITU-T JCA-IMT2020 CC: Date: 24 th October 2017 Contacts: Klaus Moschner (klaus.moschner@ngmn.org)

More information

Scalable SCMA Jianglei Ma Sept. 24., 2017

Scalable SCMA Jianglei Ma Sept. 24., 2017 Scalable SCMA Jianglei Ma Sept. 24., 2017 Page 1 5G-NR Air-Interface embb SoftAI: Programmable Air-Interface Adaptive numerology Adaptive transmission duration Adaptive multiple access scheme Adaptive

More information

Special Articles on LTE-Advanced Technology Ongoing Evolution of LTE toward IMT-Advanced. CA for Bandwidth Extension in LTE-Advanced

Special Articles on LTE-Advanced Technology Ongoing Evolution of LTE toward IMT-Advanced. CA for Bandwidth Extension in LTE-Advanced CA for Bandwidth Extension in LTE-Advanced LTE-Advanced Bandwidth Extension CA Special Articles on LTE-Advanced Technology Ongoing Evolution of LTE toward IMT-Advanced CA for Bandwidth Extension in LTE-Advanced

More information

5G new radio architecture and challenges

5G new radio architecture and challenges WHITE PAPER 5G new radio architecture and challenges By Dr Paul Moakes, CTO, CommAgility www.commagility.com 5G New Radio One of the key enabling technologies for 5G will be New Radio (NR). 5G NR standardization

More information

Design of a UE-specific Uplink Scheduler for Narrowband Internet-of-Things (NB-IoT) Systems

Design of a UE-specific Uplink Scheduler for Narrowband Internet-of-Things (NB-IoT) Systems 1 Design of a UE-specific Uplink Scheduler for Narrowband Internet-of-Things (NB-IoT) Systems + Bing-Zhi Hsieh, + Yu-Hsiang Chao, + Ray-Guang Cheng, and ++ Navid Nikaein + Department of Electronic and

More information

5G Overview Mobile Technologies and the Way to 5G. Arnd Sibila, Rohde & Schwarz Technology Marketing Mobile Network Testing

5G Overview Mobile Technologies and the Way to 5G. Arnd Sibila, Rohde & Schwarz Technology Marketing Mobile Network Testing 5G Overview Mobile Technologies and the Way to 5G Arnd Sibila, Rohde & Schwarz Technology Marketing Mobile Network Testing Contents LTE and evolution (IOT and unlicensed) 5G use cases (incl. first deployments)

More information

Enhanced Uplink Dedicated Channel (EDCH) High Speed Uplink Packet Access (HSUPA)

Enhanced Uplink Dedicated Channel (EDCH) High Speed Uplink Packet Access (HSUPA) Enhanced Uplink Dedicated Channel (EDCH) High Speed Uplink Packet Access (HSUPA) EDCH Background & Basics Channels/ UTRAN Architecture Resource Management: Scheduling, Handover Performance Results Background

More information

Top 5 Challenges for 5G New Radio Device Designers

Top 5 Challenges for 5G New Radio Device Designers WHITE PAPER Top 5 Challenges for 5G New Radio Device Designers 5G New Radio (NR) Release-15, introduced in December 2017, lays the foundation for ultra-fast download speeds, reliable low latency connections,

More information

PoC #1 On-chip frequency generation

PoC #1 On-chip frequency generation 1 PoC #1 On-chip frequency generation This PoC covers the full on-chip frequency generation system including transport of signals to receiving blocks. 5G frequency bands around 30 GHz as well as 60 GHz

More information

NB IoT RAN. Srđan Knežević Solution Architect. NB-IoT Commercial in confidence Uen, Rev A Page 1

NB IoT RAN. Srđan Knežević Solution Architect. NB-IoT Commercial in confidence Uen, Rev A Page 1 NB IoT RAN Srđan Knežević Solution Architect NB-IoT Commercial in confidence 20171110-1 Uen, Rev A 2017-11-10 Page 1 Massive Iot market outlook M2M (TODAY) IOT (YEAR 2017 +) 15 Billion PREDICTED IOT CONNECTED

More information

TITLE DOWNLINK CONTROL INFORMATION IN A WIRELESS DEVICE AND WIRELESS NETWORK CROSS-REFERENCE TO RELATED APPLICATIONS

TITLE DOWNLINK CONTROL INFORMATION IN A WIRELESS DEVICE AND WIRELESS NETWORK CROSS-REFERENCE TO RELATED APPLICATIONS TITLE DOWNLINK CONTROL INFORMATION IN A WIRELESS DEVICE AND WIRELESS NETWORK CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of U.S. Provisional Application No. 62/289,949,

More information

White Paper Evaluation of LTE-M towards 5G IoT requirements

White Paper Evaluation of LTE-M towards 5G IoT requirements Evaluation of LTE-M towards 5G IoT requirements Contributing and Supporting Companies: V1.0 December 2017 Executive Summary LTE-M, a machine-focused variant of the 3GPP LTE standard, is designed to meet

More information

5G Control Channel Design for Ultra-Reliable Low-Latency Communications

5G Control Channel Design for Ultra-Reliable Low-Latency Communications 5G Control Channel Design for Ultra-Reliable Low-Latency Communications Hamidreza Shariatmadari, Sassan Iraji, Riku Jäntti (Aalto University) Petar Popovski (Aalborg University) Zexian Li, Mikko A. Uusitalo

More information

5G Toolbox. Model, simulate, design and test 5G systems with MATLAB

5G Toolbox. Model, simulate, design and test 5G systems with MATLAB 5G Toolbox Model, simulate, design and test 5G systems with MATLAB Houman Zarrinkoub, PhD. Product Manager 5G, Communications, LTE and WLAN Toolboxes Signal Processing & Communications houmanz@mathworks.com

More information

3GPP TR V7.2.0 ( )

3GPP TR V7.2.0 ( ) TR 25.912 V7.2.0 (2007-06) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Feasibility study for evolved Universal Terrestrial Radio Access (UTRA)

More information

3G TS V3.0.0 ( )

3G TS V3.0.0 ( ) Technical Specification 3 rd Generation Partnership Project (); Technical Specification Group (TSG) Terminals Terminal logical test interface; Special conformance testing functions () The present document

More information

THE USE OF MHZ FOR 5G EARLY ROLLOUT: OPPORTUNITIES AND CHALLENGES

THE USE OF MHZ FOR 5G EARLY ROLLOUT: OPPORTUNITIES AND CHALLENGES THE USE OF 3300-3800 MHZ FOR 5G EARLY ROLLOUT: OPPORTUNITIES AND CHALLENGES 5G Spectrum and Policy Forum 29 June 2017, GSMA MWC Shanghai Global mobile Suppliers Association Hu Wang (wanghu.wanghu@huawei.com)

More information

References. What is UMTS? UMTS Architecture

References. What is UMTS? UMTS Architecture 1 References 2 Material Related to LTE comes from 3GPP LTE: System Overview, Product Development and Test Challenges, Agilent Technologies Application Note, 2008. IEEE Communications Magazine, February

More information

ETSI TR V7.3.0 ( )

ETSI TR V7.3.0 ( ) TR 125 913 V7.3.0 (2013-04) Technical Report Universal Mobile Telecommunications System (UMTS); LTE; Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN) (3GPP TR 25.913 version 7.3.0 Release

More information

3GPP TS V8.0.1 ( )

3GPP TS V8.0.1 ( ) TS 36.523-2 V8.0.1 (2008-12) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved

More information

3GPP TR V9.0.0 ( )

3GPP TR V9.0.0 ( ) TR 25.913 V9.0.0 (2009-12) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN) (Release

More information

ETSI TS V8.7.0 ( ) Technical Specification

ETSI TS V8.7.0 ( ) Technical Specification TS 136 214 V8.7.0 (2009-10) Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer - Measurements (3GPP TS 36.214 version 8.7.0 Release 8) 1 TS 136 214 V8.7.0

More information

ETSI TS V (201

ETSI TS V (201 TS 136 300 V13.4.0 (201 16-08) TECHNICAL SPECIFICATION LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) Universal Terrestrial and Evolved Radio Access Network (E-UTRAN); Overall description; Stage

More information

High-Speed Downlink Packet Access (HSDPA)

High-Speed Downlink Packet Access (HSDPA) High-Speed Downlink Packet Access (HSDPA) HSDPA Background & Basics Principles: Adaptive Modulation, Coding, HARQ Channels/ UTRAN Architecture Resource Management: Fast Scheduling, Mobility Performance

More information

5G Communications at mmwave Frequency Bands: from System Design Aspect

5G Communications at mmwave Frequency Bands: from System Design Aspect 5G Communications at mmwave Frequency Bands: from System Design Aspect Wern-Ho Sheen Department of Communications Engineering January 2016 1 CONTENTS ITU-R/3GPP 5G Progress Taiwan s 5G Research Activities

More information

Does anybody really know what 5G is? Does anybody really care?

Does anybody really know what 5G is? Does anybody really care? Does anybody really know what 5G is? Does anybody really care? Dean Mischke P.E., V.P. Finley Engineering Company, Inc. What is 5G? Salvation for Wireless Companies *Qualcomm CEO Steve Mollenkopf s keynote

More information

LTE Direct Overview. Sajith Balraj Qualcomm Research

LTE Direct Overview. Sajith Balraj Qualcomm Research MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION This technical data may be subject to U.S. and international export, re-export, or transfer ( export ) laws. Diversion contrary to U.S.

More information

3GPP TR V9.0.0 ( )

3GPP TR V9.0.0 ( ) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Feasibility study for Further Advancements for E-UTRA (LTE-Advanced) (Release 9) The present document

More information

www.telecom-cloud.net Harish Vadada The 3rd Generation Partnership Project (3GPP) is collaboration between groups of telecommunications associations, known as the Organizational Partners. The initial scope

More information

An Update from the LTE/SAE Trial Initiative

An Update from the LTE/SAE Trial Initiative Version 1.0 23 January 2009 An Update from the LTE/SAE Trial Initiative ATIS LTE Towards Mobile Broadband 26-27 January 2009 www.lstiforum.org 1 Contents LSTI s Objectives Who s involved? LSTI Activities

More information

ETSI TR V ( )

ETSI TR V ( ) TR 136 913 V15.0.0 (2018-09) TECHNICAL REPORT LTE; Requirements for further advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced) (3GPP TR 36.913 version 15.0.0 Release 15)

More information

TITLE UPLINK SIGNAL STARTING POSITION IN A WIRELESS DEVICE AND WIRELESS NETWORK

TITLE UPLINK SIGNAL STARTING POSITION IN A WIRELESS DEVICE AND WIRELESS NETWORK TITLE UPLINK SIGNAL STARTING POSITION IN A WIRELESS DEVICE AND WIRELESS NETWORK CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of U.S. Provisional Application No. 62/332,510,

More information