A Design-to-Test Methodology for SDR and Cognitive Radio

Size: px
Start display at page:

Download "A Design-to-Test Methodology for SDR and Cognitive Radio"

Transcription

1 A Design-to-Test Methodology for SDR and Cognitive Radio Authors: Greg Jue & Bob Cutler, Agilent Technologies

2 Agenda SDR Waveform Challenges SDR Waveform Design SDR Hardware Testing Cognitive Radio Algorithm Development Challenges Cognitive Radio Testbed 2

3 Software Defined Radios Flexibility Radio can support multiple waveforms: Different formats, different revisions of a format, backwards compatibility, future-proofing Combination of DSP/FPGA/GPP C++/HDL Flexibility increases demands on RF HW performance HW may be flexible or reconfigurable to more efficiently support waveforms with significantly different characteristics (e.g. OFDM vs MSK) Portability Across single vendors platforms (usually proprietary) Across multiple vendors platforms (based on standards such as SCA) Portability of waveform components (e.g. Viterbi decoder) 3

4 Portability and Flexibility Challenges and opportunities RF performance determined by both hardware and software. Performance could change with bug fix. Hardware platforms may come from different vendors and have different capabilities. Not quite write-once, run anywhere. Probe points in the signal path are now digital, as well as analog. Need a consistent way to measure. Component implementations in C++, HDL, possibly also from different vendors. Need to design and test hardware to support waveforms that have yet to be invented. Can use test waveforms for development, diagnostics and manufacturing test. 4

5 Impacts of SDR Technology on Test RF performance is a combination of baseband processing, radio configuration, and RF hardware performance Hard to isolate root causes of performance problems. Finger pointing between hardware and software teams and/or suppliers Need consistent way to quantify RF Performance in the both the hardware and in the soft-bits. Abstraction layers help with portability, but can introduce performance and optimization issues (e.g. timing, or optimal hardware configuration for a waveform) as well as organizational issues (hardware and software from different vendors) Baseband Processing RF 5 5

6 Example: High TX ACP Several Potential Sources of Error FPGA/DSP D/A PA Insufficient stop band rejection on baseband DSP filter Poor design Truncated filter coefficients Insufficient numeric resolution (adds digital noise) Insufficient numeric range (non-linear over/under flow) Improper timing (PA enable, frequency settling, glitches, etc) Improperly programmed hardware (excess gain, misconfigured parts) Distortion in D/A Poor analog baseband/if filtering IF Distortion due to improper levels Spurious signals Excessive phase noise PA Distortion A 2 db problem is usually a combination of several sub-1db problems. Need to accurately characterize performance in both the digital and analog signal paths 6 6

7 A Consistent Way To Measure Simulation Design Signal analysis Spectrum analysis Bit-accurate Algorithm Code generation Code Generation FPGA/DSP D/A Digital (logic analyzer) Signal analysis Spectrum analysis Hardware config Timing Packet inspection RTOS scheduling Baseband/IF/RF (scope) Signal analysis Spectrum analysis Hardware config Timing RF/IF (VSA) Signal analysis Spectrum analysis Phase noise Levels Distortion 7 7

8 Impacts of SDR Technology on Test Future Proofing Need a different test strategy when goal is to support future waveforms Can t just test supported waveforms, need to test radio configurations that might be used with future waveforms When deployed, will Waveform C have adequate RF performance? (ACP, BER, EVM, spurious, noise figure, etc) Waveform A 2009 Waveform B 2009 Waveform C 2013 Baseband Processing FPGA/DSP/GPP Configure Converters and Flexible RF How do we ensure that Waveform C will have adequate performance when installed in radios deployed in 2009? 8 8

9 SDR Technology Usually Implies Flexible Hardware Signal bandwidth dynamic range Signal BW Signal power stats (Distortion req s) Tunable or broadband antenna for frequency coverage Low phase noise (NB, OFDM) Fast tuning (FHSS, duplex) Phase coherent (MIMO) High efficiency (FM) High linearity(ofdm) Pulsed, continuous TEST APPROACHES 1. Test with real waveforms and their configurations 2. Test broad selection of representative waveforms 3. Test with custom waveforms to exercise different hardware configurations 9 9

10 Use Simulation to Design Test Waveforms, Introduce Defects, and Verify Test Coverage Noise only DC offset Quadrature error Delay mismatch Distortion 10 10

11 Agenda SDR Waveform Challenges SDR Waveform Design SDR Hardware Testing Cognitive Radio Algorithm Development Challenges Cognitive Radio Testbed 11

12 Design SDR RF Using Various Types of Waveform Formats Use waveform sources to design SDR RF Waveform Sources HDL code FPGA hardware Simulation models Algorithm code Waveform signal source Simulated RF transmitter design 12

13 Example 1: Use HDL-Based WiMAX Waveform to Design SDR RF Transmitter Simulated SDR transmitter output Waveform sources HDL code FPGA hardware Simulation models Algorithm code EVM = 8.4% Mobile WiMAXt m is a registered trademark of the WiMAX Forum. Simulated RF transmitter design VSA measurement 13

14 Example 2a: Use FPGA-Based Legacy Waveform to Design SDR RF Transmitter Simulated SDR transmitter output Waveform sources HDL code FPGA hardware Simulation models Algorithm code EVM = 9.1% Simulated RF transmitter design VSA measurement 14

15 Example 2b: Re-Configure FPGA-Based Waveform to Evaluate SDR RF Transmitter Design Interoperability Waveform sources HDL code FPGA hardware Simulation models Algorithm code Reconfigure legacy FPGA waveform for a new waveform (LTE) Simulated SDR transmitter output EVM=10.5% Simulated RF transmitter design VSA measurement 15

16 Example 2c: Probing an FPGA Waveform with Dynamic Probe Waveform sources HDL code FPGA hardware Simulation models Algorithm code Simulated RF transmitter design Preliminary work-in-progress 16

17 Example 3a: Use Simulation-Based WiMAX Waveform to Design SDR RF Receiver Waveform sources HDL code FPGA hardware Simulation models Algorithm code Waveform simulation source Waveform simulation receiver Simulated RF receiver design Pre-configured algorithm models (customizable) Select ADC model 17

18 Example 3a Results: WiMAX BER vs. ADC Jitter QPSK BER vs. ADC Jitter vs. EbNo 16 QAM BER vs. ADC Jitter vs. EbNo 64 QAM BER vs. ADC Jitter vs. EbNo Red: 4% ADC Jitter Blue: 6% ADC Jitter Green: 8% ADC Jitter 18

19 Example 3b: Replace Waveform to Evaluate SDR Receiver Design Interoperability New BER results New waveform simulation source Replace WiMAX waveform source & receiver with LTE New waveform simulation receiver Simulated RF receiver design 19

20 Example 4: Use Algorithm Code Waveforms Waveform sources HDL code FPGA hardware Simulation models Algorithm code Customize OFDMA algorithms 20

21 *Please note: this next section of the presentation contains Preliminary product information that is part of new product development (next 3 slides) 21

22 SCA Waveform Rapid Prototyping Concept Physical-layer environment for waveform development/verification Waveform Components/ Blocks RF Tx RF Channel/ RF Interferers/Jammers RF Rx Waveform Components/ Blocks Component Model Export Import OE in the loop Functional Component wrapper Deployable component SCA compliant environment For component design, implementation, and deployment Preliminary 22

23 PHY Link Example 5: SCA Waveform Design Export C++ and XML Preliminary 23

24 Example 5: Verify End-to-End System with OE In the Simulation Loop PA Output Receiver Digital Output RF Transmitter RF Receiver ADI ADC RF Channel BER Sink QPSK Transmitter (OE-in-the-loop) Preliminary QPSK Receiver (OE-in-the-loop) 24

25 Agenda SDR Waveform Challenges SDR Waveform Design SDR Hardware Testing Cognitive Radio Algorithm Development Challenges Cognitive Radio Testbed 25

26 SDR Hardware Testing SDR testing challenges: Custom/proprietary waveforms not supported by COTS test equipment Flexible SDR test platforms are needed for today s and tomorrow s waveforms Different tools used between design and test- makes it difficult to debug issues Solution- Combine the flexibility of simulation with test equipment for flexible SDR testing 26

27 Adding Flexibility to SDR Testing with Simulation Test waveform coding/decoding SW-defined Customizable algorithms Customizable test waveforms 14 Bit A/D board DUT 16822A Logic Analyzer with Agilent SystemVue* * Note: SystemVue does not ship with logic analyzer 27

28 OFDMA BER Hardware Test Results 28

29 Simulate an SDR Receiver with a Hardware Front End (N6841 RF sensor) Wideband RF sensor Simulated RF receiver design Simulated SDR receiver output VSA measurement HW DUT test signal 29

30 Agenda SDR Waveform Challenges SDR Waveform Design SDR Hardware Testing Cognitive Radio Algorithm Development Challenges Cognitive Radio Testbed 30

31 Cognitive Radio Many definitions of CR. A radio that is aware of its environment and adjusts its behavior accordingly. Key application for CR is Dynamic Spectrum Access (DSA) Radio adjusts frequency, power, modulation based on sensed spectrum, location, policy and databases Complimentary to SDR in this application 31

32 Filling the Whitespace Goal: Increase spectrum utilization without causing interference 32

33 CR Design and Measurement Considerations Interference (actual, or potential for) Radio system performance (capacity, link establishment and reliability) Radio physical layer performance (e.g. adjacent channel power) Environment sensing performance (spectrum sensing, location sensing) Policy performance (does the policy over, or under protect) Radio environment (channel, noise, occupancy) 33

34 Challenges of Spectrum Sensing Performance of various spectrum sensing algorithms False positives, false negatives Response to real-world signal environment (dynamic, many signals) Radio design Spurious Amplitude accuracy Intermod distortion Sensitivity Selectivity Frequency accuracy Speed/complexity/cost tradeoffs 34

35 CR Development Needs Need to characterize, capture, and replicate real-world spectral environments. Needs to be done over time, frequency and location. Need to use captured environments to evaluate CR algorithms and radio link performance. Need to evaluate performance using non-ideal radios. Need a flexible and comprehensive CR R&D Testbed! 35

36 Agenda SDR Waveform Challenges SDR Waveform Design SDR Hardware Testing Cognitive Radio Algorithm Development Challenges Cognitive Radio Testbed 36

37 Cognitive Radio R&D Testbed 37

38 CR Algorithm Development and Testing Environment 38

39 Mobile WiMAX Case Study 39

40 Step 1: Capture Signal and Bring into SystemVue Captured CR environment 40

41 Step 2: Whitespace Math Algorithms Determine Valid Whitespace Frequency Rules Policy Valid whitespace determined within the policy Rising/falling edges detected to determine whitespace 41

42 Debugging Whitespace Algorithms Single-step through code Add/remove breakpoint Code variable values are displayed as code is single-stepped 42

43 Step 3: Whitespace Math Algorithms Determine Valid Whitespace WiMAX spectrum (scaled and centered in the valid whitespace) 43

44 Analyze Detect-and-Avoid Interferer Scenarios Narrowband interferer Sweep narrowband interferer vs. frequency to evaluate impact on OFDMA BER 44

45 Step 4: Identify Detected Signals in Simulation or with Test Equipment Sensed spectrum 45

46 Video Demo with SystemVue + N6841A N6841A is Remotely Located Across Washington State Remotely located N6841A RF sensor 46

47 New Whitepaper Available: 47

48 Summary Use waveforms sources in various formats (HDL, FPGA hardware, simulation models, math algorithms) to design SDR transmitters and receiver and evaluate interoperability Use improved SCA waveform flow for SDR waveform design and test Seamless integration between design and test capability creates flexible SDR testing platform enables R&D engineers to develop and test algorithms and hardware with real field signals Evaluate Cognitive Radio link performance, perform what-if detect-andavoid interference scenarios Explore a Cognitive Radio simulation example in the SystemVue example set request a free evaluation at: Or, contact your local Agilent representative 48

49 Additional Resources Product Web sites: SystemVue RF sensors Whitepapers and application notes: Videos: Cognitive Radio Algorithm Development and Testing: Software Defined Radio Measurement Solutions: Solutions for Addressing SDR Design and Measurement Challenges Web video of CR Testbed discussed in this paper: 49

50 Thank You! 50

51 For more information about Agilent EEsof EDA, visit: For more information on Agilent Technologies products, applications or services, please contact your local Agilent office. The complete list is available at: Contact Agilent at: Americas Canada (877) Brazil (11) Mexico United States (800) Asia Pacific Australia China Hong Kong India Japan 0120 (421) 345 Korea Malaysia Singapore Taiwan Thailand Europe & Middle East Austria Belgium 32 (0) Denmark Finland 358 (0) France * *0.125 /minute Germany Ireland Israel /544 Italy Netherlands 31 (0) Spain 34 (91) Sweden Switzerland United Kingdom 44 (0) Other European Countries: Product specifications and descriptions in this document subject to change without notice. Agilent Technologies, Inc Printed in USA, October 29, EN

Addressing the Design-to-Test Challenges for SDR and Cognitive Radio

Addressing the Design-to-Test Challenges for SDR and Cognitive Radio Addressing the Design-to-Test Challenges Bob Cutler and Greg Jue, Agilent Technologies Software Defined Radios Flexibility Radio can support multiple waveforms: Different formats, Different revisions of

More information

Accelerated Deployment of SCA-compliant SDR Waveforms 20 JANUARY 2010

Accelerated Deployment of SCA-compliant SDR Waveforms 20 JANUARY 2010 Accelerated Deployment of SCA-compliant SDR Waveforms 20 JANUARY 2010 1 Today s panelists Steve Jennis PrismTech, SVP, Corporate Development José Luis Pino Agilent Technologies, Principal Engineer Tim

More information

Radar System Design and Interference Analysis Using Agilent SystemVue

Radar System Design and Interference Analysis Using Agilent SystemVue Radar System Design and Interference Analysis Using Agilent SystemVue Introduction Application Note By David Leiss, Sr. Consultant EEsof EDA Anurag Bhargava, Application Engineer EEsof EDA Agilent Technologies

More information

ADS-SystemVue Linkages

ADS-SystemVue Linkages ADS-SystemVue Linkages Uniting System, Baseband, and RF design flows for leading-edge designs Superior RF models and simulators Convenient, polymorphic algorithmic modeling, debug, and test May 2010 Page

More information

Keysight Technologies Understanding the SystemVue To ADS Simulation Bridge. Application Note

Keysight Technologies Understanding the SystemVue To ADS Simulation Bridge. Application Note Keysight Technologies Understanding the To Simulation Bridge Application Note Introduction The Keysight Technologies, Inc. is a new system-level design environment that enables a top-down, model-based

More information

Practical Digital Pre-Distortion Techniques for PA Linearization in 3GPP LTE

Practical Digital Pre-Distortion Techniques for PA Linearization in 3GPP LTE Practical Digital Pre-Distortion Techniques for PA Linearization in 3GPP LTE Jinbiao Xu Agilent Technologies Master System Engineer 1 Agenda Digital PreDistortion----Principle Crest Factor Reduction Digital

More information

Agilent N8480 Series Thermocouple Power Sensors. Technical Overview

Agilent N8480 Series Thermocouple Power Sensors. Technical Overview Agilent N8480 Series Thermocouple Power Sensors Technical Overview Introduction The new N8480 Series power sensors replace and surpass the legacy 8480 Series power sensors (excluding the D-model power

More information

EM Insights Series. Episode #1: QFN Package. Agilent EEsof EDA September 2008

EM Insights Series. Episode #1: QFN Package. Agilent EEsof EDA September 2008 EM Insights Series Episode #1: QFN Package Agilent EEsof EDA September 2008 Application Overview Typical situation IC design is not finished until it is packaged. It is now very important for IC designers

More information

Two-Way Radio Testing with Agilent U8903A Audio Analyzer

Two-Way Radio Testing with Agilent U8903A Audio Analyzer Two-Way Radio Testing with Agilent U8903A Audio Analyzer Application Note Introduction As the two-way radio band gets deregulated, there is a noticeable increase in product offerings in this area. What

More information

Productivity and flexibility for A/D applications

Productivity and flexibility for A/D applications Keysight Technologies W1902 Digital Modem Library Simulation Reference Library for Satellite and Military Communication Architects, Baseband Algorithm Researchers, and Component Verifiers in R&D Data Sheet

More information

Keysight Technologies A Flexible Testbed to Evaluate Potential Co-Existence Issues Between Radar and Wireless

Keysight Technologies A Flexible Testbed to Evaluate Potential Co-Existence Issues Between Radar and Wireless Keysight Technologies A Flexible Testbed to Evaluate Potential Co-Existence Issues Between Radar and Wireless Application Note Photo courtesy US Department of Defense Problem: Radar and wireless may interfere

More information

Process Control Calibration Made Easy with Agilent U1401A

Process Control Calibration Made Easy with Agilent U1401A Process Control Calibration Made Easy with Agilent U1401A Application Note This application note explains how the Agilent U1401A with simultaneous source and measure functions eases technicians calibration

More information

A Time-Saving Method for Analyzing Signal Integrity in DDR Memory Buses

A Time-Saving Method for Analyzing Signal Integrity in DDR Memory Buses A Time-Saving Method for Analyzing Signal Integrity in DDR Memory Buses Application Note 1591 This application note covers new tools and measurement techniques for characterizing and validating signal

More information

Keysight Technologies VSA Software for Simulation Environments BE/89601 BNE

Keysight Technologies VSA Software for Simulation Environments BE/89601 BNE Keysight Technologies 89600 VSA Software for Simulation Environments 89601 BE/89601 BNE 89601BE and 89601BNE are no longer orderable after December 2017 because the bundled capability of simulation link

More information

Using a design-to-test capability for LTE MIMO (Part 1 of 2)

Using a design-to-test capability for LTE MIMO (Part 1 of 2) Using a design-to-test capability for LTE MIMO (Part 1 of 2) System-level simulation helps engineers gain valuable insight into the design sensitivities of Long Term Evolution (LTE) Multiple-Input Multiple-Output

More information

Agilent N9310A RF Signal Generator. All the capability and reliability of an Agilent instrument you need at a price you ve always wanted

Agilent N9310A RF Signal Generator. All the capability and reliability of an Agilent instrument you need at a price you ve always wanted Agilent N9310A RF Signal Generator All the capability and reliability of an Agilent instrument you need at a price you ve always wanted Reliable Performance. Essential Test Capability The N9310A RF signal

More information

Agilent Maximizing Measurement Speed Using P-Series Power Meters

Agilent Maximizing Measurement Speed Using P-Series Power Meters Agilent Maximizing Measurement Speed Using P-Series Power Meters Application Note A winning solution in the combination of bandwidth and performance 30 MHz video bandwidth Single-shot real time and repetitive

More information

Agilent MXG Signal Generators

Agilent MXG Signal Generators Agilent MXG Signal Generators N5161A MXG ATE Analog N5162A MXG ATE Vector N5181A MXG Analog N5182A MXG Vector Configuration Guide This guide is to assist in the ordering process for the MXG analog and

More information

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment FAST SHIPPING AND DELIVERY TENS OF THOUSANDS OF IN-STOCK ITEMS EQUIPMENT DEMOS HUNDREDS OF MANUFACTURERS SUPPORTED

More information

Techniques to Achieve Oscilloscope Bandwidths of Greater Than 16 GHz

Techniques to Achieve Oscilloscope Bandwidths of Greater Than 16 GHz Techniques to Achieve Oscilloscope Bandwidths of Greater Than 16 GHz Application Note Infiniium s 32 GHz of bandwidth versus techniques other vendors use to achieve greater than 16 GHz Banner specifications

More information

Evaluating Oscilloscopes for Low-Power Measurements

Evaluating Oscilloscopes for Low-Power Measurements Evaluating Oscilloscopes for Low-Power Measurements Application Note Increasing market demand for products that are portable, mobile, green, and that can stay powered for long periods of time is driving

More information

7 Hints That Every Engineer Should Know When Making Power Measurements with Oscilloscopes.

7 Hints That Every Engineer Should Know When Making Power Measurements with Oscilloscopes. 7 Hints That Every Engineer Should Know When Making Power Measurements with Oscilloscopes. Achieving maximized measurement dynamic range 1) Use averaging to increase measurement resolution 2) Use high-resolution

More information

Evaluating Oscilloscope Bandwidths for your Application

Evaluating Oscilloscope Bandwidths for your Application Evaluating Oscilloscope Bandwidths for your Application Application Note 1588 Table of Contents Introduction....................... 1 Defining Oscilloscope Bandwidth..... 2 Required Bandwidth for Digital

More information

Making a S11 and S21 Measurement Using the Agilent N9340A

Making a S11 and S21 Measurement Using the Agilent N9340A Making a S11 and S21 Measurement Using the Agilent N9340A Application Note Introduction Spectrum characteristics are important in wireless communication system maintenance. Network and spectrum analyzers

More information

Agilent Digital Modulation Lab Station

Agilent Digital Modulation Lab Station Agilent Digital Modulation Lab Station Agilent Digital (I/Q) Modulation Lab Station The Agilent Digital Modulation Lab Station is an integrated solution that can be used for easy generation, accurate measurement

More information

Agilent Spectrum Visualizer (ASV) Software. Data Sheet

Agilent Spectrum Visualizer (ASV) Software. Data Sheet Agilent Spectrum Visualizer (ASV) Software Data Sheet Technical Overview The Agilent spectrum visualizer (ASV) software provides advanced FFT frequency domain analysis for the InfiniiVision and Infiniium

More information

Multipurpose Lab Station by Agilent Technologies

Multipurpose Lab Station by Agilent Technologies Multipurpose Lab Station by Agilent Technologies The Agilent Multipurpose Lab Station is an integrated system comprised of a: 1 2 3 4 5 6 7 8 Mixed signal oscilloscope (MSO) or digital signal oscilloscope

More information

From Antenna to Bits:

From Antenna to Bits: From Antenna to Bits: Wireless System Design with MATLAB and Simulink Cynthia Cudicini Application Engineering Manager MathWorks cynthia.cudicini@mathworks.fr 1 Innovations in the World of Wireless Everything

More information

Agilent N4000A, N4001A, N4002A SNS Series Noise Sources 10 MHz to 26.5 GHz

Agilent N4000A, N4001A, N4002A SNS Series Noise Sources 10 MHz to 26.5 GHz Agilent N4000A, N4001A, N4002A SNS Series Noise Sources 10 MHz to 26.5 GHz Technical Overview Advances in Noise Figure Accuracy N4000A Used for low noise figure devices or devices sensitive to mismatch

More information

Agilent InfiniiMax III probing system

Agilent InfiniiMax III probing system Agilent InfiniiMax III probing system Data Sheet World s highest speed and highest performing probe system Full 30 GHz bandwidth to the probe tip Industry s lowest probe and scope system noise Industry

More information

Agilent MXG Signal Generators

Agilent MXG Signal Generators Agilent MXG Signal Generators N5161A MXG ATE Analog N5162A MXG ATE Vector N5181A MXG Analog N5182A MXG Vector Configuration Guide This guide is to assist in the ordering process for the MXG analog and

More information

Solutions for Solar Cell and Module Testing

Solutions for Solar Cell and Module Testing Solutions for Solar Cell and Module Testing Agilent 663XB Power Supplies Connected in Anti-Series to Achieve Four-Quadrant Operation for Solar Cell and Module Testing Application Note Overview To fully

More information

Agilent MIMO Manufacturing Solution. Application Note

Agilent MIMO Manufacturing Solution. Application Note Agilent MIMO Manufacturing Solution Application Note Introduction This application note provides detailed information on the capabilities of the Agilent 802.11n multiple in, multiple out (MIMO) test solution

More information

MEMS On-wafer Evaluation in Mass Production Testing At the Earliest Stage is the Key to Lowering Costs

MEMS On-wafer Evaluation in Mass Production Testing At the Earliest Stage is the Key to Lowering Costs MEMS On-wafer Evaluation in Mass Production Testing At the Earliest Stage is the Key to Lowering Costs Application Note Recently, various devices using MEMS technology such as pressure sensors, accelerometers,

More information

Data Sheet. Agilent M9185A PXI Isolated D/A Converter. DISCOVER the Alternatives... Agilent MODULAR Products. 8/16-Channel 16-bit, ±16 V

Data Sheet. Agilent M9185A PXI Isolated D/A Converter. DISCOVER the Alternatives... Agilent MODULAR Products. 8/16-Channel 16-bit, ±16 V Agilent M9185A PXI Isolated D/A Converter Data Sheet 8/16-Channel 16-bit, ±16 V DISCOVER the Alternatives...... Agilent MODULAR Products Overview Introduction The Agilent M9185A is a digital/analog converter

More information

Educator s Oscilloscope Training Kit for the InfiniiVision 2000 & 3000 X-Series

Educator s Oscilloscope Training Kit for the InfiniiVision 2000 & 3000 X-Series Educator s Oscilloscope Training Kit for the InfiniiVision 2000 & 3000 X-Series Data Sheet Oscilloscope training tools created specifically for electrical engineering and physics undergraduate students

More information

Keysight Technologies Differences in Application Between Power Dividers and Power Splitters. Application Note

Keysight Technologies Differences in Application Between Power Dividers and Power Splitters. Application Note Keysight Technologies Differences in Application Between Dividers and Splitters Application Note 02 Keysight Differences in Application Between Dividers and Splitters Application Note Introduction dividers

More information

Agilent U9397A/C FET Solid State Switches (SPDT)

Agilent U9397A/C FET Solid State Switches (SPDT) Agilent U9397A/C FET Solid State Switches (SPDT) U9397A 300 khz to 8 GHz U9397C 300 khz to 18 GHz Technical Overview Key Features Prevent damage to sensitive components with low video leakage < 10 mvpp

More information

Automated Frequency Response Measurement with AFG31000, MDO3000 and TekBench Instrument Control Software APPLICATION NOTE

Automated Frequency Response Measurement with AFG31000, MDO3000 and TekBench Instrument Control Software APPLICATION NOTE Automated Frequency Response Measurement with AFG31000, MDO3000 and TekBench Instrument Control Software Introduction For undergraduate students in colleges and universities, frequency response testing

More information

Keysight Technologies N9310A RF Signal Generator

Keysight Technologies N9310A RF Signal Generator Keysight Technologies N9310A RF Signal Generator 02 Keysight N9310A RF Signal Generator Brochure All the capability and reliability of a Keysight instrument you need at a price you ve always wanted Reliable

More information

Agilent First-generation MXG Signal Generators

Agilent First-generation MXG Signal Generators Agilent First-generation MXG Signal Generators N5181A MXG Analog N5182A MXG Vector Configuration Guide You Can Upgrade! Options can be added after initial purchase. This guide is to assist in the ordering

More information

Agilent NFA Noise Figure Analyzer

Agilent NFA Noise Figure Analyzer Agilent NFA Noise Figure Analyzer Configuration Guide Dedicated Noise Figure Analyzer Hard specifications to 26.5 GHz Works with N4000A SNS or 346 Series noise sources Noise figure measurements to 110

More information

Keysight Technologies NB-IoT System Modeling: Simple Doesn t Mean Easy

Keysight Technologies NB-IoT System Modeling: Simple Doesn t Mean Easy Keysight Technologies NB-IoT System Modeling: Simple Doesn t Mean Easy Device things Must be simulated Before Cloud White Paper Abstract This paper presents a method for modeling and evaluating a new NB-IoT

More information

Keysight Technologies N4985A System Amplifiers

Keysight Technologies N4985A System Amplifiers Keysight Technologies N4985A System Amplifiers Data Sheet N4985A-P15 10 MHz to 50 GHz N4985A-P25 2 to 50 GHz N4985A-S30 100 khz to 30 GHz N4985A-S50 100 khz to 50 GHz Exceptional gain and power performance

More information

Don t Let EMI/EMC Compliance Certification Slow You Down TUTORIAL

Don t Let EMI/EMC Compliance Certification Slow You Down TUTORIAL Don t Let EMI/EMC Compliance Certification Slow You Down TUTORIAL TUTORIAL Uncover Problems Early with Pre-compliance Testing EMI regulations are in place throughout the world to provide improved reliability

More information

Agilent EEsof EDA.

Agilent EEsof EDA. Agilent EEsof EDA This document is owned by Agilent Technologies, but is no longer kept current and may contain obsolete or inaccurate references. We regret any inconvenience this may cause. For the latest

More information

UWB Antenna Measurements with the 20 GHz E5071C ENA Network Analyzer

UWB Antenna Measurements with the 20 GHz E5071C ENA Network Analyzer UWB Antenna Measurements with the 20 GHz E5071C ENA Network Analyzer Application Note Minimize cost of test with the 20 GHz ENA s high performance and fast measurement speed Quickly leverage your current

More information

Keysight Technologies Z9070B Wideband Signal Analysis Solution. Technical Overview

Keysight Technologies Z9070B Wideband Signal Analysis Solution. Technical Overview Keysight Technologies Z9070B Wideband Signal Analysis Solution Technical Overview 02 Keysight Z9070B Wideband Signal Analysis Solution - Technical Overview Introduction Wideband commercial, satellite or

More information

Agilent NFA Noise Figure Analyzer

Agilent NFA Noise Figure Analyzer Agilent NFA Noise Figure Analyzer Configuration Guide Dedicated Noise Figure Analyzer Hard specifications to 26.5 GHz Works with N4000A SNS or 346 Series noise sources Noise figure measurements to 110

More information

Keysight Technologies N4983A Multiplexer and Demultiplexer. Data Sheet

Keysight Technologies N4983A Multiplexer and Demultiplexer. Data Sheet Keysight Technologies N4983A Multiplexer and Demultiplexer Data Sheet 02 Keysight N4983A Multiplexer and Demultiplexer - Data Sheet N4983A-M40 44 Gb/s multiplexer Features Wide operating range, 2 to 44

More information

Keysight Technologies Enhancing Measurement Performance for the Testing of Wideband MIMO Signals

Keysight Technologies Enhancing Measurement Performance for the Testing of Wideband MIMO Signals Keysight Technologies Enhancing Measurement Performance for the Testing of Wideband MIMO Signals White Paper How to generate and apply magnitude and phase corrections for multichannel baseband IQ measurements

More information

Keysight DSOXT3FRA/DSOX4FRA/DSOX6FRA Frequency Response Analyzer (FRA) Option

Keysight DSOXT3FRA/DSOX4FRA/DSOX6FRA Frequency Response Analyzer (FRA) Option Keysight DSOXT3FRA/DSOX4FRA/DSOX6FRA Frequency Response Analyzer (FRA) Option For Keysight 3000T, 4000A, and 6000A X-Series Oscilloscopes Data Sheet Introduction Frequency Response Analysis (FRA) is often

More information

N2790A 100 MHz, N2791A 25 MHz and N2891A 70 MHz High-voltage Differential Probes

N2790A 100 MHz, N2791A 25 MHz and N2891A 70 MHz High-voltage Differential Probes N2790A 100 MHz, N2791A 25 MHz and N2891A 70 MHz High-voltage Differential Probes Data Sheet Oscilloscope users often need to make floating measurements where neither point of the measurement is at earth

More information

Verifying Power Supply Sequencing with an 8-Channel Oscilloscope APPLICATION NOTE

Verifying Power Supply Sequencing with an 8-Channel Oscilloscope APPLICATION NOTE Verifying Power Supply Sequencing with an 8-Channel Oscilloscope Introduction In systems that rely on multiple power rails, power-on sequencing and power-off sequencing can be critical. If the power supplies

More information

Agilent Technologies Solutions for MB-OFDM Ultra-wideband

Agilent Technologies Solutions for MB-OFDM Ultra-wideband Agilent Technologies Solutions for MB-OFDM Ultra-wideband Application Note Bringing proven experience in emerging technologies to UWB Introduction Agilent Technologies provides the most complete range

More information

Agilent 2-Port and 4-Port PNA-X Network Analyzer

Agilent 2-Port and 4-Port PNA-X Network Analyzer Agilent 2-Port and 4-Port PNA-X Network Analyzer N5244A - MHz to 43.5 GHz N5245A - MHz to 5. GHz with Option H29 Data Sheet and Technical Specifications Documentation Warranty THE MATERIAL CONTAINED IN

More information

Essential Capabilities of EMI Receivers. Application Note

Essential Capabilities of EMI Receivers. Application Note Essential Capabilities of EMI Receivers Application Note Contents Introduction... 3 CISPR 16-1-1 Compliance... 3 MIL-STD-461 Compliance... 4 Important features not required by CISPR 16-1-1 or MIL-STD-461...

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 What s Behind 5G Wireless Communications? 서기환과장 2015 The MathWorks, Inc. 2 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile

More information

Agilent U1881A and U1882A Power Measurement Application for Agilent InfiniiVision and Infiniium Oscilloscopes

Agilent U1881A and U1882A Power Measurement Application for Agilent InfiniiVision and Infiniium Oscilloscopes Agilent U1881A and U1882A Power Measurement Application for Agilent InfiniiVision and Infiniium Oscilloscopes Data Sheet Fast, automatic and reliable characterization of switching mode power devices Today

More information

Trouble-shooting Radio Links in Unlicensed Frequency Bands TUTORIAL

Trouble-shooting Radio Links in Unlicensed Frequency Bands TUTORIAL Trouble-shooting Radio Links in Unlicensed Frequency Bands TUTORIAL TUTORIAL With the Internet of Things comes the Interference of Things Over the past decade there has been a dramatic increase in the

More information

Discovering New Techniques of Creating, Editing, and Transferring Arbitrary Waveforms

Discovering New Techniques of Creating, Editing, and Transferring Arbitrary Waveforms Discovering New Techniques of Creating, Editing, and Transferring Arbitrary Waveforms Introduction Today, during the designing of electronic components and circuits for computers, peripherals, and consumer

More information

Keysight Technologies Network Analyzer Measurements: Filter and Amplifier Examples. Application Note

Keysight Technologies Network Analyzer Measurements: Filter and Amplifier Examples. Application Note Keysight Technologies Network Analyzer Measurements: Filter and Amplifier Examples Application Note Introduction Both the magnitude and phase behavior of a component are critical to the performance of

More information

Keysight Technologies USB Preamplifiers

Keysight Technologies USB Preamplifiers Keysight Technologies USB Preamplifiers U77/A 1 MHz to 4 GHz U77/C 1 MHz to 6. GHz U77/F to GHz Technical Overview Keysight USB Preamplifiers U77A/C/F - Technical Overview Key Features and Benefits Automatic

More information

Keysight Technologies 7 Hints That Every Engineer Should Know When Making Power Measurements with Oscilloscopes. Application Note

Keysight Technologies 7 Hints That Every Engineer Should Know When Making Power Measurements with Oscilloscopes. Application Note Keysight Technologies 7 Hints That Every Engineer Should Know When Making Power Measurements with Oscilloscopes Application Note Seven Hints for Making Power Measurements with Oscilloscopes Achieving maximized

More information

When is it Time to Transition to a Higher Bandwidth Oscilloscope?

When is it Time to Transition to a Higher Bandwidth Oscilloscope? When is it Time to Transition to a Higher Bandwidth Oscilloscope? Application Note When purchasing an oscilloscope to test new designs, the primary performance specification that most engineers consider

More information

Keysight Technologies MATLAB Data Analysis Software Packages

Keysight Technologies MATLAB Data Analysis Software Packages Keysight Technologies MATLAB Data Analysis Software Packages For Keysight Oscilloscopes Data Sheet 02 Keysight MATLAB Data Analysis Software Packages - Data Sheet Enhance your InfiniiVision or Infiniium

More information

Keysight N8836A PAM-4 Measurement Application For Infiniium S-Series, 90000A, V-Series, X-Series, Q-Series, and Z-Series Oscilloscopes

Keysight N8836A PAM-4 Measurement Application For Infiniium S-Series, 90000A, V-Series, X-Series, Q-Series, and Z-Series Oscilloscopes Keysight N8836A PAM-4 Measurement Application For S-Series, 90000A, V-Series, 90000 X-Series, 90000 Q-Series, and Z-Series Oscilloscopes Characterize electrical pulse amplitude modulated (PAM) signals

More information

MXG X-Series Signal Generator N5183B Microwave Analog

MXG X-Series Signal Generator N5183B Microwave Analog MXG X-Series Signal Generator N5183B Microwave Analog Configuration Guide This configuration guide will help you determine which performance, software applications, accessories, and services to include

More information

Agilent Correlation between TDR oscilloscope and VNA generated time domain waveform

Agilent Correlation between TDR oscilloscope and VNA generated time domain waveform Agilent Correlation between TDR oscilloscope and VNA generated time domain waveform Application Note Introduction Time domain analysis (TDA) is a common method for evaluating transmission lines and has

More information

Agilent N9342C Handheld Spectrum Analyzer (HSA)

Agilent N9342C Handheld Spectrum Analyzer (HSA) Agilent N9342C Handheld Spectrum Analyzer (HSA) Data Sheet Field testing just got easier The Agilent N9342C handheld spectrum analyzer (HSA) is more than easy-to-use its measurement performance gives you

More information

8 Hints for Better Spectrum Analysis. Application Note

8 Hints for Better Spectrum Analysis. Application Note 8 Hints for Better Spectrum Analysis Application Note 1286-1 The Spectrum Analyzer The spectrum analyzer, like an oscilloscope, is a basic tool used for observing signals. Where the oscilloscope provides

More information

AN3218 Application note

AN3218 Application note Application note Adjacent channel rejection measurements for the STM32W108 platform 1 Introduction This application note describes a method which could be used to characterize adjacent channel rejection

More information

Agilent N8973A, N8974A, N8975A NFA Series Noise Figure Analyzers. Data Sheet

Agilent N8973A, N8974A, N8975A NFA Series Noise Figure Analyzers. Data Sheet Agilent N8973A, N8974A, N8975A NFA Series Noise Figure Analyzers Data Sheet Specifications Specifications are only valid for the stated operating frequency, and apply over 0 C to +55 C unless otherwise

More information

IEEE Standard Boundary Scan Testing on Agilent Medalist i3070 In Circuit Systems

IEEE Standard Boundary Scan Testing on Agilent Medalist i3070 In Circuit Systems IEEE 1149.6 Standard Boundary Scan Testing on Agilent Medalist i3070 In Circuit Systems White Paper By Jun Balangue, Technical Marketing Engineer, Agilent Technologies, Inc. Abtract: This paper outlines

More information

Keysight Technologies VSA Software

Keysight Technologies VSA Software Keysight Technologies 89600 VSA Software See through the complexity Gain greater insight with high-resolution FFT-based spectrum, time and modulation domain analysis Measure your signal: the 89600 VSA

More information

Keysight M940xA PXIe Optical Extenders for Instrumentation. Data Sheet

Keysight M940xA PXIe Optical Extenders for Instrumentation. Data Sheet Keysight M940xA PXIe Optical Extenders for Instrumentation Data Sheet Overview Introduction The Keysight Technologies, Inc. Optical Extenders for Instruments can transmit your RF or Microwave signal without

More information

Simplifying DC-DC Converter Characterization using a 2600B System SourceMeter SMU Instrument and MSO/DPO5000 or DPO7000 Series Scope APPLICATION NOTE

Simplifying DC-DC Converter Characterization using a 2600B System SourceMeter SMU Instrument and MSO/DPO5000 or DPO7000 Series Scope APPLICATION NOTE Simplifying DC-DC Characterization using a 2600B System SourceMeter SMU Instrument and MSO/DPO5000 or DPO7000 Series Scope Introduction DC-DC converters are widely used electronic components that convert

More information

Keysight Technologies, Inc. Overcome PCB Loss and Deliver a Clean Eye to Your DUT Using Multi-tap De-emphasis

Keysight Technologies, Inc. Overcome PCB Loss and Deliver a Clean Eye to Your DUT Using Multi-tap De-emphasis Keysight Technologies, Inc. Overcome PCB Loss and Deliver a Clean Eye to Your DUT Using Multi-tap De-emphasis Application Brief Introduction Keysight Technologies, Inc. announces a new 32 Gb/s pattern

More information

N2820A/21A High-Sensitivity, High Dynamic Range Current Probes

N2820A/21A High-Sensitivity, High Dynamic Range Current Probes N2820A/21A High-Sensitivity, High Dynamic Range Current Probes Data Sheet See the details without losing sight of the big picture Key features and specifications Measure currents as low as 50 µa Measure

More information

Agilent 8762F Coaxial Switch 75 ohm

Agilent 8762F Coaxial Switch 75 ohm Agilent 8762F Coaxial Switch 75 ohm Technical Overview DC to 4 GHz Exceptional repeatability over 1 million cycle life Excellent isolation The 8762F brings a new standard of performance to 75 ohm coaxial

More information

Keysight Technologies Achieving Accurate E-band Power Measurements with E8486A Waveguide Power Sensors. Application Note

Keysight Technologies Achieving Accurate E-band Power Measurements with E8486A Waveguide Power Sensors. Application Note Keysight Technologies Achieving Accurate E-band Power Measurements with Waveguide Power Sensors Application Note Introduction The 60 to 90 GHz spectrum, or E-band, has been gaining more millimeter wave

More information

Keysight Technologies How to Measure 5 ns Rise/Fall Time on an RF Pulsed Power Amplifier Using the 8990B Peak Power Analyzer.

Keysight Technologies How to Measure 5 ns Rise/Fall Time on an RF Pulsed Power Amplifier Using the 8990B Peak Power Analyzer. Keysight Technologies How to Measure 5 ns Rise/Fall Time on an RF Pulsed Power Amplifier Using the 8990B Peak Power Analyzer Application Note Introduction RF IN RF OUT Waveform Generator Pulse Power Amplifier

More information

Evaluating and Optimizing Radio Frequency Identification (RFID) Systems Using Real-Time Spectrum Analysis

Evaluating and Optimizing Radio Frequency Identification (RFID) Systems Using Real-Time Spectrum Analysis Evaluating and Optimizing Radio Frequency Identification (RFID) Systems Using Real-Time Spectrum Analysis Key technical issues in the deployment of RFID systems are global interoperability and radiated

More information

Using a Network and Impedance Analyzer to Evaluate 13.56 MHz RFID Tags and Readers/Writers Silicon Investigations Repair Information - Contact Us 920-955-3693 www.siliconinvestigations.com Application

More information

Agilent NFA Noise Figure Analyzer

Agilent NFA Noise Figure Analyzer Agilent NFA Noise Figure Analyzer Configuration Guide Dedicated Noise Figure Analyzer Hard specifications to 26.5 GHz Works with N4000A SNS or 346 Series noise sources Noise figure measurements to 110

More information

U1881A and U1882A Power Measurement Application for InfiniiVision and Infiniium Oscilloscopes

U1881A and U1882A Power Measurement Application for InfiniiVision and Infiniium Oscilloscopes U1881A and U1882A Power Measurement Application for InfiniiVision and Infiniium Oscilloscopes Data Sheet Fast, automatic and reliable characterization of switching mode power devices Today s power supply

More information

Agilent E6651A Mobile WiMAX Test Set

Agilent E6651A Mobile WiMAX Test Set Agilent E6651A Mobile WiMAX Test Set Preliminary Technical Overview Accelerate time-to-market for your IEEE802.16e subscriber station designs The E6651A represents a significant breakthrough in Mobile

More information

Keysight Technologies Phase Noise X-Series Measurement Application

Keysight Technologies Phase Noise X-Series Measurement Application Keysight Technologies Phase Noise X-Series Measurement Application N9068C Technical Overview Phase noise measurements with log plot and spot frequency views Spectrum and IQ waveform monitoring for quick

More information

Agilent E4438C/E8267D Option 422 Scenario Generator for GPS

Agilent E4438C/E8267D Option 422 Scenario Generator for GPS Agilent E4438C/E8267D Option 422 Scenario Generator for GPS Technical Overview Create GPS Scenarios with Ease The Option 422 scenario generator software enhances the functionality of the Global Positioning

More information

Agilent 87075C Multiport Test Set

Agilent 87075C Multiport Test Set Agilent 87075C Multiport Test Set Technical Overview A complete 75 Ω system for cable TV device manufacturers Now, focus on testing, not reconnecting! For use with the Agilent 8711 C-Series of network

More information

Agilent 8761A/B Microwave Switches

Agilent 8761A/B Microwave Switches Agilent 8761A/B Microwave Switches Technical Overview Product Description The Agilent Technologies 8761A and 8761B are single-pole, double-throw coaxial switches with excellent electrical and mechanical

More information

InfiniiMax III probing system

InfiniiMax III probing system InfiniiMax III probing system Data Sheet World s highest speed and highest performing probe system Full 30 GHz bandwidth to the probe tip Industry s lowest probe and scope system noise Industry s highest

More information

Agilent J7211A/B/C Attenuation Control Units

Agilent J7211A/B/C Attenuation Control Units Agilent J7211A/B/C Attenuation Control Units DC to 6 GHz, DC to 18 GHz, DC to 26.5 GHz 0 to 101/121 db attenuation range, 1 db step size Technical Overview Key Features 0.03 db insertion loss repeatability

More information

Keysight Technologies N9063A & W9063A Analog Demodulation

Keysight Technologies N9063A & W9063A Analog Demodulation Keysight Technologies N9063A & W9063A Analog Demodulation X-Series Measurement Application Demo Guide FM is the most widely used analog demodulation scheme today, therefore this demonstration used uses

More information

Integrated Solutions for Testing Wireless Communication Systems

Integrated Solutions for Testing Wireless Communication Systems TOPICS IN RADIO COMMUNICATIONS Integrated Solutions for Testing Wireless Communication Systems Dingqing Lu and Zhengrong Zhou, Agilent Technologies Inc. ABSTRACT Wireless communications standards have

More information

Keysight Technologies Precise Current Profile Measurements of Bluetooth Low Energy Devices using the CX3300. Application Brief

Keysight Technologies Precise Current Profile Measurements of Bluetooth Low Energy Devices using the CX3300. Application Brief Keysight Technologies Precise Current Profile Measurements of Bluetooth Low Energy Devices using the CX3300 Application Brief Introduction New information technology, the Internet of Things (IoT) is changing

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Marc Barberis 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile Broadband IoT

More information

Agilent 4294A Precision Impedance Analyzer, 40 Hz to 110 MHz. Configuration Guide

Agilent 4294A Precision Impedance Analyzer, 40 Hz to 110 MHz. Configuration Guide Agilent 4294A Precision Impedance Analyzer, 40 Hz to 110 MHz Configuration Guide Ordering Guide The following steps will guide you through configuring your 4294A. Standard Furnished Item CD-ROM Manual

More information

Agilent AN Balanced Circuit Measurement with an Impedance Analyzer/LCR Meter/Network Analyzer Application Note

Agilent AN Balanced Circuit Measurement with an Impedance Analyzer/LCR Meter/Network Analyzer Application Note Agilent AN 346-2 Balanced Circuit Measurement with an Impedance Analyzer/LCR Meter/Network Analyzer Application Note Introduction How a balanced circuit differs from an unbalanced circuit A balanced circuit

More information

Educator s Oscilloscope Training Kit for Agilent InfiniiVision X-Series Oscilloscopes

Educator s Oscilloscope Training Kit for Agilent InfiniiVision X-Series Oscilloscopes Educator s Oscilloscope Training Kit for Agilent InfiniiVision X-Series Oscilloscopes Data Sheet Oscilloscope training tools created specifically for electrical engineering and physics undergraduate students

More information