Multi Resonant Stacked Micro Strip Patch Antenna Designs for IMT, WLAN & WiMAX Applications

Size: px
Start display at page:

Download "Multi Resonant Stacked Micro Strip Patch Antenna Designs for IMT, WLAN & WiMAX Applications"

Transcription

1 Multi Resonant Stacked Micro Strip Patch Antenna Designs for IMT, WLAN & WiMAX Applications Tejinder Kaur Gill, Ekambir Sidhu Abstract: In this paper, stacked multi resonant slotted micro strip patch antennas (MPA) have been proposed which are suitable to be used for GSM, WLAN standard and WiMAX applications. The antennas have been designed using substrate of FR4 material. In the designed antennas, substrates having different thickness have been used. The performance of designed antenna has been observed by comparing without air gap between the stacks with same antenna having air gap of 0.8 mm between two stacks. It has been observed that air gap in stacking results in increase of antenna impedance bandwidth. The bottom stack of designed antenna has a radiating patch of circular shape and the patch on the upper stack is of rectangular shape. The antenna has a feed line which is connected to circular patch. The designed antennas have a defected ground structure in order to improve the antenna performance. The antenna performance has been measured in terms of antenna parameters such as impedance bandwidth, Return loss, antenna impedance, VSWR and Directivity. The designed antenna results have been simulated in CST Microwave Studio The practically designed antennas have been tested successfully by using Network analyzer E5071C. It has been observed that the practical results closely match with theoretical results. Index Terms Defected ground structure, Directivity, Micro strip patch antenna, Multi resonant air gap stacked antenna, Return loss (S11), VSWR. I. INTRODUCTION Microstrip antenna, also known as printed circuit antenna or patch antenna is suitable for conformal and low profile applications. The Microstrip Patch Antenna has advantage of low cost and weight, design flexibility and ease of installation [4]. The radiating elements together with feed line are photo etched on a thin dielectric sheet on a ground plane. The patch can be square, rectangular or circular in shape. However, MPA suffers from disadvantage that they have narrow bandwidth. Extensive research has been carried out to overcome the band width problem in recent years and many techniques have been suggested and implemented to achieve the desired wide band characteristics [2]-[3]. One of these techniques is stacked antennas, realizing dual frequency operation with two resonant frequencies separated by certain range [8]-[9]. Stacked patch antenna is a kind of microstrip antenna which consists of two printed antennas. The lower patch is called driven patch and another patch is parasitically coupled to driven patch. To produce broadband responses, the selection of the substrate of the first layer is very important.. Section II (Antenna Geometry) explains the geometry of antenna. The top view, bottom view and dimensions of substrate, patch, slots on the patch and ground plane are listed in section II. Section III (Results and Discussions) describes the simulated results obtained by using CST MWS (2010) which includes Return loss (S 11 ), Directivity, Gain at corresponding resonant frequencies, VSWR and Smith chart plots. Tejinder Kaur Gill, Department of Electronics & Communication Engineering, Punjabi University Patiala., India, Ekambir Sidhu, Department of Electronics and Communication Engineering, Punjabi University, Patiala, India, Section IV (Experimental verification) indicates the top and bottom view of practically designed antenna and describes practical results obtained by testing the practically designed antenna using E5071C ENA series Network Analyzer. 3577

2 Section V (conclusion) explains both simulated theoretical results and practical results in terms of return loss at corresponding resonant frequencies and bandwidth, along with list of applications in which designed antenna can be used. II. ANTENNA GEOMETRY Fig.1shows the top view of the bottom stack of the antenna. The Fig1 shows circular slotted patch, excited by feedline of suitable width. Fig. 2 represents the top view of upper stack. Fig. 3 represents the bottom view of stacked antenna. The ground has been designed at the bottom of the lower stack which has been partially reduced. The antenna has been fabricated using FR4 as an substrate with dielectric constant of 4.4.The height of lower substrate is 1.57mm and that of upper substrate is 0.8mm.The feedline is designed in such a way that antenna will have 50 ohm resistance matched with the port impedance for maximum power transfer from port to patch. Fig. 4 shows the stacked air gap antenna with all the dimensions same except the air gap is present. The dimensions of substrate, patch, feed, slots cut on patch and ground are listed in Table. 1 NOTE: The dotted lines in Fig. 3 represent the projection of patch and feedline on ground. NOTE: The air gap of 0.8mm has been maintained by inserting a 0.8 mm FR4 sheet between the two stacks at their edges. This can be cleared from the Fig. 9 (c) Antenna Parameter Specification Length of substrate (Ls) 60mm Width of substrate (Ws) 60 mm Radius of lower patch (R1) 18.8mm Radius of circular slot (R2) 10.8mm Length of feed (Lp) 112mm Width of feed (Wp) 5.6mm Length (L1) 22mm Length (L2) 21mm Length (L3) 20mm Width (W1) 13.2mm Width (W2) 5.6mm Width (W3) 4mm Width (W4) 2mm Width (W5) 2mm Width (W6) 2mm Length of upper substrate (LUs) 60mm Width of upper substrate (WUs) 60mm Length of upper patch (LU1) 25mm Width of upper patch (WU1) 11.6mm Length of ground (Lg1) 12mm Width of ground (Wg4) 60mm Length of slot on ground (Lg5) 3mm Width of slot on ground (Wg5) 6.4mm Length (LU2) 30mm Width (WU1) 24.2mm Thickness of upper stack ( T1) 0.8mm Thickness of lower stack ( T2) 1.57mm Air gap (Ag) 0.8mm Fig. 2Top view of stacked antenna Fig. 1Top View of bottom stack of antenna TABLE 1. ANTENNA PARAMETERS 3578

3 It has been observed that the return loss is db at GHz, db at GHz, db at GHz, -20dB at GHz and db at 5.310GHz. The simulated bandwidth of the proposed antennas is GHz. Fig. 3Bottom View of stacked antenna Fig. 5Return loss of stacked MPA without air gap Fig. 6 Return loss of stacked MPA with air Gap Fig. 4 View of stacked antenna with air gap III. RESULTS AND DISCUSSIONS The designed stacked antenna have been simulated using CST Microwave Studio 2010 and the performance of the antenna has been analyzed in terms of return loss, VSWR, radiation pattern, directivity, impedance and gain. The experimental results have been also obtained using E5071C ENA series Network Analyzer and it has been concluded that the practical results closely matches with the simulated theoretical results. Fig. 5 represents the simulated results of return loss (S11) for designed stacked antenna without any air gap. It has been observed that the return loss is db at GHz, db at GHz, db at GHz and db at 5.047GHz. The simulated bandwidth of the proposed antennas is GHz. Fig. 6 represents the simulated results of return loss (S11) for designed stacked antenna without any air gap. The directivity of stacked antenna without air gap at resonant frequencies have been obtained and analyzed. Fig. 5(a), Fig. 5(b), Fig. 5(c) and Fig. 5(d) shows the 3D plot of directivity of slotted MPA at resonant frequencies of 1.7 GHz, 2.7 GHz, 3.4 GHz and 5.0 GHz, respectively. The directivity is dbi at 1.7 GHz, dbi at 2.7 GHz, d Bi a t 3. 4 G H z and dbi at 5.0 GHz. It has been observed that directivity is better for higher resonant frequencies than lower frequencies. Fig. 5(e), Fig. 5(f), Fig. 5(g), Fig. 5(h) illustrates the 3D plot of gain for slotted MPA at resonant frequencies of 1.7 GHz, 2.7 GHz, 3.4 GHz and 5.50 G H z respectively. The 3D plot shows that the gain is db at 1.7 GHz, db at 2.7 GHz, 4.290dB at 3.4 GHz and db at 4.307GHz. 3579

4 Fig. 5(a) 3D plot of Directivity of stacked MPA without air gap at 1.7 GHz Fig. 5(e) 3D plot of Gain of stacked MPA without air gap at 1.7 GHz Fig. 5(b) 3D plot of Directivity of stacked MPA without air gap at 2.7 GHz Fig. 5(f) 3D plot of Gain of stacked MPA without air gap at 2.7 GHz Fig. 5(c) 3D plot of Directivity of stacked MPA without air gap at 3.4 GHz Fig. 5(g) 3D plot of Gain of stacked MPA without air gap at 3.4 GHz Fig. 5(d) 3D plot of Directivity of stacked MPA without air gap at 5.04 GHz. Fig. 5(h) 3D plot of Gain of stacked MPA without air gap at 5.0 GHz Similarly, the antenna with air gap has been designed and the directivity at resonant frequencies has been 3580

5 obtained and analyzed. Fig. 6 (a), Fig. 6(b), Fig. 6(c), Fig. 6(d), and Fig. 6(e) shows the 3D plot of directivity of slotted MPA at resonant frequencies of 1.8 GHz, 2.9 GHz, 3.2 GHz, 4.7 GHz and 5.3GHz respectively. The directivity is dbi at 1.8 GHz, dbi at 2.9 GHz, d Bi a t 3. 2 G H z, dbi at 4.7 GHz and dbi at 5.3 GHz. Fig. 6(f), Fig. 6(g), Fig. 6(h), Fig. 6(i) and Fig 6(j) illustrates the 3D plot of gain for slotted MPA w i t h a i r g a p at resonant frequencies 1.8 GHz, 2.9 GHz, 3.2 GHz, 4.7 GHz and 5.3 GHz respectively. The 3D plot shows that the gain is db at 1.8 GHz, db at 2.9 GHz, db at 3.2 GHz, db at 4.7 GHz and db at 5.3 GHz Fig. 6(c) 3D plot of Directivity of stacked MPA with air gap at 3.2 GHz Fig. 6(a) 3D plot of Directivity of stacked MPA with air gap at 1.8 GHz Fig. 6(d) 3D plot of Directivity of stacked MPA with air gap at 4.7 GHz Fig. 6(b) 3D plot of Directivity of stacked MPA with air gap at 2.9 GHz Fig. 6(e) 3D plot of Directivity of stacked MPA with air gap at 5.3 GHz 3581

6 Fig. 6(f) 3D plot of Gain of stacked MPA with air gap at 1.8 GHz Fig. 6(j) 3D plot of Gain of stacked MPA with air gap at 5.3 GHz Fig. 6(g) 3D plot of Gain of stacked MPA with air gap at 2.9 GHz Fig. 7(a) and Fig. 7(b) depicts the simulated VSWR plot for stacked MPA without air gap and with air gap respectively. The required value of VSWR should be less than 2. Fig. 7(a) shows that value of VSWR for stacked MPA without air gap is less than 2 in the operating frequency range of 1.57 GHz to 1.83 GHz, 2.5 GHz to 3.1 GHz, 4.2 GHz to 5.67 GHz. Fig. 7(b) shows that value of VSWR for stacked MPA with air gap is less than 2 in the operating frequency range of 1.64 GHz to GHz, 2.75 GHz to 3.46 GHz, 4.35 GHz to 6.03 GHz. Fig. 6(h) 3D plot of Gain of stacked MPA with air gap at 3.2 GHz Fig. 7(a) VSWR plot of stacked MPA without air gap Fig. 6(i) 3D plot of Gain of stacked MPA with air gap at 4.7GHz Fig. 7(b) VSWR plot of stacked MPA with air gap 3582

7 Fig. 8(a) and Fig. 8(b) indicates Smith chart plot for slotted MPA without air gap and Smith chart plot for slotted MPA with air gap. The Smith Chart plot indicates the variation in impedance of antenna with frequency. The value of impedance should lie near 50 ohms in order to perfectly match the port with the antenna. The antenna impedance for both designed slotted MPA antenna without air gap and with air gap is 50 Ω. db at 1.81 GHz, at 2.9 GHz, at 3.25 GHz, dB and db at GHz and GHz, respectively. The bandwidth obtained from practical results of designed MPA is 3.042GHz. Fig. 9(a) Top view of designed stacked MPA Fig. 8(a) Smith chart plot of stacked MPA without air gap Fig. 9(b) Bottom view of designed stacked MPA Fig. 8(b) Smith chart plot of stacked MPA with air gap IV.EXPERIMENTAL VERIFICATION The proposed antenna has been physically designed and the top and bottom view of practically designed antenna are shown in Fig. 9(a) and Fig. 9(b), respectively. The Fig. 9(c) represents the air gap between two stacks. The designs are tested using E5071C ENA series Network Analyzer. The practically analyzed results of slotted MPA are shown in Fig. 10(a) and Fig. 10(b). It has been observed from Fig. 10(a) that the practical results of designed MPA without any air gap have return loss of db at 1.79 GHz, db and db at 2.78 GHz and 5.10 GHz respectively. The bandwidth obtained from practical results of designed MPA is 2.57 GHz. Similarly it has been observed from Fig. 10(b) that the practical results of designed MPA with air gap have return loss of Fig. 9(c) View of air gap of stacked microstrip antenna with air gap 3583

8 from 1.51 GHz to 5.63 GHz and the designed stacked antenna with air gap has practical results with bandwidth from 1.62 GHz to 6.18 GHz. The designed antenna w i t h o u t a i r g a p is suitable to be used for IMT only (2.69 GHz to 3.57 GHz, GHz to 5.63 GHz) and the antenna with air gap is suitable for GSM (1.62 GHz to 1.98 GHz), WLAN standard (4.37 GHz to 6.18 GHz) and WiMAX (3.4 GHz to 3.69 GHz, 5.25 GHz to 5.85 GHz) applications [1]. CONCLUSION TABLE: Fig. 10(a) Experimental result of MPA without air gap PARAMETERS WITHOUT AIR GAP WITH AIR GAP Bandwidth Between 1.5 Between 1.63 Range GHz to 5.7 GHz to (Theoretically) GHz GHz Bandwidth Range (Practically) Between 1.51 GHz to 5.63 GHz Between 1.62 GHz to 6.18 GHz VSWR Less than 2 Less than 2 Impedance (ohm) APPLICATION IMT only GSM, WLAN,WiMax REFERENCES Fig. 10(b) Experimental result of MPA with air gap V. CONCLUSION From the above discussion, it can be concluded that the stacked microstrip patch antenna without air gap has bandwidth of GHz with operating frequency range between 1.5GHz to 5.7 GHz.The VSWR for stacked microstrip patch antenna without air gap is less than 2 in the operating frequency range of 1.5 GHz to 5.7 GHz. For the stacked microstrip antenna with air gap of 0.8mm, it can be concluded that bandwidth is GHz with operating frequency range between 1.63 to GHz. The VSWR for stacked microstrip patch antenna is less than 2 in an operating frequency range between 1.63GHz to GHz. The simulated results of the designed stacked antenna closely match with practical results. It has been observed that the practical results obtained from designed stacked MPA without air gap has bandwidth of 2.57 GHz having frequency range [1] olume5/ijece-v5n1p104.pdf. [2] J. R James., Hall P.S. and Wood C. Microstrip antenna theory and design IEE Electromagnetic wave, Series 12 London, Peter Peregrinus1989. [3] K.C Gupta. Recent advance in microstrip antenna. Micro wave Journal, vol-27, pp.50-67, [4] J. l BahI & Bharta P., Microstrip Antennas, Massachusetts (USA) Artech House, [5] Neha Ahuja, Study and investigations on various micro strip patch antennas for wireless applications /1783/1/thesis.pdf. [6] =http%3a%2f%2fieeexplore.ieee.org%2fstamp %2Fstamp.jsp%3Ftp%3D%26arnumber%3D %26userType%3Dinst&denyReason=134& arnumber= &productsmatched=null&use rtype=inst [7]

9 [8] S.A Long & Walton M.D, A Dual-frequency circular-disc antenna, IEEE Trans. Antenna & Propag (USA), AP-27, and pp , [9] T.M Au and K M Luk, Effect of parasitic element on the characteristics of microstrip antenna, IEEE Trans Antenna & Propagation (USA) 39,pp , [10] AB2-4.pdf. [11] ds. 3585

Novel Microstrip Patch Antenna (MPA) Design for Bluetooth, IMT, WLAN and WiMAX Applications

Novel Microstrip Patch Antenna (MPA) Design for Bluetooth, IMT, WLAN and WiMAX Applications American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-03, Issue-08, pp-162-170 www.ajer.org Research Paper Open Access Novel Microstrip Patch Antenna (MPA) Design

More information

Horse-Shoe ShapedStacked Microstrip Patch Antenna for WLAN, WiMAX and IMT Applications

Horse-Shoe ShapedStacked Microstrip Patch Antenna for WLAN, WiMAX and IMT Applications Horse-Shoe ShapedStacked Microstrip Patch Antenna for WLAN, WiMAX and IMT Applications Ekambir Sidhu 1,a, Akshay Kumar 1,b and Amarveer Singh 2 1Professor, Department of Electronics and Communication Engineering,

More information

Multiresonantslotted microstrip patch antenna (MPA) design forimt, WLAN &WiMAX applications

Multiresonantslotted microstrip patch antenna (MPA) design forimt, WLAN &WiMAX applications Multiresonantslotted microstrip patch antenna (MPA) design forimt, WLAN &WiMAX applications Amarveer Singh 1, Ekambir Sidhu 2 1 Department of Electronics and Communication, Punjabi University, Patiala,

More information

CHAPTER 4 DESIGN OF BROADBAND MICROSTRIP ANTENNA USING PARASITIC STRIPS WITH BAND-NOTCH CHARACTERISTIC

CHAPTER 4 DESIGN OF BROADBAND MICROSTRIP ANTENNA USING PARASITIC STRIPS WITH BAND-NOTCH CHARACTERISTIC CHAPTER 4 DESIGN OF BROADBAND MICROSTRIP ANTENNA USING PARASITIC STRIPS WITH BAND-NOTCH CHARACTERISTIC 4.1 INTRODUCTION Wireless communication technology has been developed very fast in the last few years.

More information

Design and Analysis of Dual Band Microstrip Patch Antenna with Microstrip feed line and slot for Multiband Application in Wireless Communication

Design and Analysis of Dual Band Microstrip Patch Antenna with Microstrip feed line and slot for Multiband Application in Wireless Communication Design and Analysis of Dual Band Microstrip Patch Antenna with Microstrip feed line and slot for Multiband Application in Wireless Communication VIBHA RAJ NAG PG Student, ECE Department Beant College of

More information

Series Micro Strip Patch Antenna Array For Wireless Communication

Series Micro Strip Patch Antenna Array For Wireless Communication Series Micro Strip Patch Antenna Array For Wireless Communication Ashish Kumar 1, Ridhi Gupta 2 1,2 Electronics & Communication Engg, Abstract- The concept of Microstrip Antenna Array with high efficiency

More information

Design of Narrow Slotted Rectangular Microstrip Antenna

Design of Narrow Slotted Rectangular Microstrip Antenna Original Article Design of Narrow Slotted Rectangular Microstrip Antenna Ashok Kajla and Sunita Gawria* Electronics & Communication Department ARYA Institute of Engineering and Technology, Jaipur, Rajasthan,

More information

DESIGN AND SIMULATION OF CIRCULAR DISK ANTENNA WITH DEFECTED GROUND STRUCTURE

DESIGN AND SIMULATION OF CIRCULAR DISK ANTENNA WITH DEFECTED GROUND STRUCTURE DESIGN AND SIMULATION OF CIRCULAR DISK ANTENNA WITH DEFECTED GROUND STRUCTURE Ms. Dhanashri S. Salgare 1, Mrs. Shamala R. Mahadik 2 1 Electronics and Telecommunication Engineering, Sanjay Bhokare Group

More information

Rectangular Patch Antenna to Operate in Flame Retardant 4 Using Coaxial Feeding Technique

Rectangular Patch Antenna to Operate in Flame Retardant 4 Using Coaxial Feeding Technique International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 3 (2017) pp. 399-407 Research India Publications http://www.ripublication.com Rectangular Patch Antenna to Operate

More information

Proximity fed Gap Coupled Array Antenna with DGS Backed with Periodic Metallic Strips

Proximity fed Gap Coupled Array Antenna with DGS Backed with Periodic Metallic Strips Proximity fed Gap Coupled Array Antenna with DGS Backed with Periodic Metallic Strips Jacob Abraham 1 and Thomaskutty Mathew Department of Electronics, School of Technology and Applied Sciences, Mahatma

More information

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System Wireless Engineering and Technology, 2013, 4, 59-63 http://dx.doi.org/10.4236/wet.2013.41009 Published Online January 2013 (http://www.scirp.org/journal/wet) 59 Design and Development of a 2 1 Array of

More information

Design of Z-Shape Microstrip Antenna with I- Slot for Wi-Max/Satellite Application

Design of Z-Shape Microstrip Antenna with I- Slot for Wi-Max/Satellite Application Journal of Communication and Computer 13 (2016) 261-265 doi:10.17265/1548-7709/2016.05.006 D DAVID PUBLISHING Design of Z-Shape Microstrip Antenna with I- Slot for Wi-Max/Satellite Application Swarnaprava

More information

H And U-Slotted Rectangular Microstrip Patch Antenna

H And U-Slotted Rectangular Microstrip Patch Antenna H And U-Slotted Rectangular Microstrip Patch Antenna Bharat Rochani 1, Sanjay Gurjar 2 1 Department of Electronics and Communication Engineering, Engineering College Ajmer 2 Department of Electronics and

More information

An Annular-Ring Microstrip Patch Antenna for Multiband Applications

An Annular-Ring Microstrip Patch Antenna for Multiband Applications An Annular-Ring Microstrip Patch for Multiband Applications Neha Gupta M.Tech. Student, Dept. of ECE Ludhiana College of Engineering and Technology, PTU Ludhiana, Punjab, India Ramanjeet Singh Asstt. Prof.,

More information

A WIDEBAND RECTANGULAR MICROSTRIP ANTENNA WITH CAPACITIVE FEEDING

A WIDEBAND RECTANGULAR MICROSTRIP ANTENNA WITH CAPACITIVE FEEDING A WIDEBAND RECTANGULAR MICROSTRIP ANTENNA WITH CAPACITIVE FEEDING Hind S. Hussain Department of Physics, College of Science, Al-Nahrain University, Baghdad, Iraq E-Mail: hindalrawi@yahoo.com ABSTRACT A

More information

DESIGN AND ENHANCEMENT BANDWIDTH RECTANGULAR PATCH ANTENNA USING SINGLE TRAPEZOIDAL SLOT TECHNIQUE

DESIGN AND ENHANCEMENT BANDWIDTH RECTANGULAR PATCH ANTENNA USING SINGLE TRAPEZOIDAL SLOT TECHNIQUE DESIGN AND ENHANCEMENT BANDWIDTH RECTANGULAR PATCH ANTENNA USING SINGLE TRAPEZOIDAL SLOT TECHNIQUE Karim A. Hamad Department of Electronics and Communications, College of Engineering, Al- Nahrain University,

More information

AN APPROACH TO DESIGN AND OPTIMIZATION OF WLAN PATCH ANTENNAS FOR WI-FI APPLICATIONS

AN APPROACH TO DESIGN AND OPTIMIZATION OF WLAN PATCH ANTENNAS FOR WI-FI APPLICATIONS IJWC ISSN: 31-3559 & E-ISSN: 31-3567, Volume 1, Issue, 011, pp-09-14 Available online at http://www.bioinfo.in/contents.php?id109 AN APPROACH TO DESIGN AND OPTIMIZATION OF WLAN PATCH ANTENNAS FOR WI-FI

More information

CHAPTER 5 ANALYSIS OF MICROSTRIP PATCH ANTENNA USING STACKED CONFIGURATION

CHAPTER 5 ANALYSIS OF MICROSTRIP PATCH ANTENNA USING STACKED CONFIGURATION 1 CHAPTER 5 ANALYSIS OF MICROSTRIP PATCH ANTENNA USING STACKED CONFIGURATION 5.1 INTRODUCTION Rectangular microstrip patch with U shaped slotted patch is stacked, Hexagonal shaped patch with meander patch

More information

L-slotted Microstrip Patch Antenna for WiMAX and WLAN Applications

L-slotted Microstrip Patch Antenna for WiMAX and WLAN Applications L-slotted Microstrip Patch Antenna for WiMAX and WLAN Applications Danish Hayat Bhagwant University, Ajmer, India Abstract: This paper is based on design and simulation of rectangular Microstrip Patch

More information

Designing of Rectangular Microstrip Patch Antenna for C-Band Application

Designing of Rectangular Microstrip Patch Antenna for C-Band Application International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Designing of Rectangular Microstrip Patch Antenna for C-Band Application Vinay Jhariya 1, Prof. Prashant Jain 2 1,2 Department of

More information

An overview of Broadband and Miniaturization Techniques of Microstrip Patch Antenna

An overview of Broadband and Miniaturization Techniques of Microstrip Patch Antenna An overview of Broadband and Miniaturization Techniques of Microstrip Patch Antenna Tej Raj Assistant Professor DBIT Dehradun, Himanshu Saini Assistant Professor DBIT Dehradun, Arjun Singh Assistant Professor

More information

Roopan Department of Electronics and Communication Engineering, Punjabi University, Patiala, India

Roopan Department of Electronics and Communication Engineering, Punjabi University, Patiala, India International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 8, Issue 3, May - June 2017, pp. 50 55, Article ID: IJARET_08_03_007 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=8&itype=3

More information

Akshit Tyagi, Rashmi Giri, Rhythm Kaushik, Shivam Saxena, Faisal Student of ECE department, MEERUT INSTITUTE OF TECHNOLOGY, Meerut.

Akshit Tyagi, Rashmi Giri, Rhythm Kaushik, Shivam Saxena, Faisal Student of ECE department, MEERUT INSTITUTE OF TECHNOLOGY, Meerut. International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 399 A Novel Design of Microstrip Patch Antenna for WLAN Application Akshit Tyagi, Rashmi Giri, Rhythm Kaushik,

More information

IMPROVING BANDWIDTH RECTANGULAR PATCH ANTENNA USING DIFFERENT THICKNESS OF DIELECTRIC SUBSTRATE

IMPROVING BANDWIDTH RECTANGULAR PATCH ANTENNA USING DIFFERENT THICKNESS OF DIELECTRIC SUBSTRATE VOL. 6, NO. 4, APRIL 11 ISSN 1819-668 6-11 Asian Research Publishing Network (ARPN). All rights reserved. IMPROVING BANDWIDTH RECTANGULAR PATCH ANTENNA USING DIFFERENT THICKNESS OF DIELECTRIC SUBSTRATE

More information

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS Progress In Electromagnetics Research C, Vol. 23, 265 275, 2011 DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS J. Chen *, S. T. Fan, W. Hu, and C. H. Liang Key Laboratory of

More information

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications International Journal of Electronics Engineering, 2(1), 2010, pp. 69-73 New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications A.C.Shagar 1 & R.S.D.Wahidabanu 2 1 Department of

More information

Compact Dual Band Microstrip Patch Antenna with Defected Ground Structure for GSM and ISM Band Application

Compact Dual Band Microstrip Patch Antenna with Defected Ground Structure for GSM and ISM Band Application Compact Dual Band Microstrip Patch Antenna with Defected Ground Structure for GSM and ISM Band Application Ankita dubey 1, Laxmi Shrivastava 2 Department of Electronics, Madhav Institute of Technology

More information

Broadband aperture-coupled equilateral triangular microstrip array antenna

Broadband aperture-coupled equilateral triangular microstrip array antenna Indian Journal of Radio & Space Physics Vol. 38, June 2009, pp. 174-179 Broadband aperture-coupled equilateral triangular microstrip array antenna S N Mulgi $,*, G M Pushpanjali, R B Konda, S K Satnoor

More information

A Novel Quad-band Printed Antenna Design using a Multi-Slotted Patch for Cellular Communication

A Novel Quad-band Printed Antenna Design using a Multi-Slotted Patch for Cellular Communication A Novel Quad-band Printed Antenna Design using a Multi-Slotted Patch for Cellular Communication P. Misra Eastern Academy of Sc & Tech BBSR INDIA A. Tripathy Eastern Academy of Sc & Tech BBSR INDIA ABSTRACT

More information

DEFECTIVE GROUND STRUCTURE MICROSTRIP FED MONOPOLE ANTENNA FOR WIRELESS APPLICATIONS

DEFECTIVE GROUND STRUCTURE MICROSTRIP FED MONOPOLE ANTENNA FOR WIRELESS APPLICATIONS DEFECTIVE GROUND STRUCTURE MICROSTRIP FED MONOPOLE ANTENNA FOR WIRELESS APPLICATIONS N.K.L. Pravallika 1, P. Shivaji 2, R. Rambabu 3, R. Vijaya Durga 4 1,2,3,4 Department of Electronics and Communication

More information

ELLIPSE SHAPED MICRO-STRIP PATCH ANTENNA FOR Ku, K AND Ka BAND APPLICATIONS

ELLIPSE SHAPED MICRO-STRIP PATCH ANTENNA FOR Ku, K AND Ka BAND APPLICATIONS ELLIPSE SHAPED MICRO-STRIP PATCH ANTENNA FOR Ku, K AND Ka BAND APPLICATIONS Pushpendra Singh 1, Swati Singh 2 1(EC Department/ Amity University Rajasthan, India ) 2(EC Department/ CSJM University Kanpur,

More information

Compact Narrow Band Non-Degenerate Dual-Mode Microstrip Filter with Etched Square Lattices

Compact Narrow Band Non-Degenerate Dual-Mode Microstrip Filter with Etched Square Lattices J. Electromagnetic Analysis & Applications, 2010, 2: 98-103 doi:10.4236/jemaa.2010.22014 Published Online February 2010 (www.scirp.org/journal/jemaa) Compact Narrow Band Non-Degenerate Dual-Mode Microstrip

More information

DUAL BAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

DUAL BAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS Rev. Roum. Sci. Techn. Électrotechn. et Énerg. Vol. 63, 3, pp. 283 288, Bucarest, 2018 Électronique et transmission de l information DUAL BAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS BIPLAB BAG 1,

More information

Broadband Circular Polarized Antenna Loaded with AMC Structure

Broadband Circular Polarized Antenna Loaded with AMC Structure Progress In Electromagnetics Research Letters, Vol. 76, 113 119, 2018 Broadband Circular Polarized Antenna Loaded with AMC Structure Yi Ren, Xiaofei Guo *,andchaoyili Abstract In this paper, a novel broadband

More information

Comparison of Return Loss for the Microstrip U-Slot Antennas for Frequency Band 5-6 Ghz

Comparison of Return Loss for the Microstrip U-Slot Antennas for Frequency Band 5-6 Ghz Comparison of Return Loss for the Microstrip U-Slot Antennas for Frequency Band 5-6 Ghz Sukhbir Kumar 1, Dinesh Arora 2, Hitender Gutpa 3 1 Department of ECE, Swami Devi Dyal Institute of Engineering and

More information

Radiation Performance of an Elliptical Patch Antenna with Three Orthogonal Sector Slots

Radiation Performance of an Elliptical Patch Antenna with Three Orthogonal Sector Slots ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 14, Number 2, 2011, 123 130 Radiation Performance of an Elliptical Patch Antenna with Three Orthogonal Sector Slots Vijay SHARMA 1, V. K. SAXENA

More information

Design a U-sloted Microstrip Antenna for Indoor and Outdoor Wireless LAN

Design a U-sloted Microstrip Antenna for Indoor and Outdoor Wireless LAN ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Design a U-sloted Microstrip Antenna for Indoor and Outdoor Wireless LAN 1 T.V. Padmavathy, 2 T.V. Arunprakash,

More information

Gain Enhancement of Rectangular Microstrip Patch Antenna Using T-Probe Fed for Mobile and Radio Wireless Communication Applications

Gain Enhancement of Rectangular Microstrip Patch Antenna Using T-Probe Fed for Mobile and Radio Wireless Communication Applications 2013, TextRoad Publication ISSN 2090-4304 Journal of Basic and Applied Scientific Research www.textroad.com Gain Enhancement of Rectangular Microstrip Patch Antenna Using T-Probe Fed for Mobile and Radio

More information

Dual band Microstrip Antenna for GPS/ WLAN/WiMax Applications 1Rajeev Shankar Pathak, 2Vinod Kumar Singh, 3Shahanaz Ayub ABSTRACT : Keywords

Dual band Microstrip Antenna for GPS/ WLAN/WiMax Applications 1Rajeev Shankar Pathak, 2Vinod Kumar Singh, 3Shahanaz Ayub ABSTRACT : Keywords Dual band Microstrip Antenna for GPS/ WLAN/WiMax Applications 1 Rajeev Shankar Pathak, 2 Vinod Kumar Singh, 3 Shahanaz Ayub 1 S.R.G.I. Ambabai, Jhansi, India 2 S.R.G.I. Ambabai, Jhansi, India 3 B. I.E.T.,

More information

Design of L Slot Loaded Rectangular Microstrip Patch Antenna for DCS/PCS Applications

Design of L Slot Loaded Rectangular Microstrip Patch Antenna for DCS/PCS Applications Design of L Slot Loaded Rectangular Microstrip Patch Antenna for DCS/PCS Applications Veerendra Kumar 1, Manish Kumar Singh 2, Kapil Gupta 3 1&2 M.Tech. Scholar, BBDNIIT, Lucknow, virendra_ec91@rediffmail.com

More information

E-SHAPED STACKED BROADBAND PATCH ANTENNA

E-SHAPED STACKED BROADBAND PATCH ANTENNA International Journal of Electronics and Computer Science Engineering 278 Available Online at www.ijecse.org ISSN- 2277-1956 E-SHAPED STACKED BROADBAND PATCH ANTENNA Bharat Rochani 1, Rajesh Kumar Raj

More information

BROADBAND DESIGN AND SIMULATION OF TRAPEZOIDAL SLOT OF MICROSTRIP ANTENNA

BROADBAND DESIGN AND SIMULATION OF TRAPEZOIDAL SLOT OF MICROSTRIP ANTENNA BROADBAND DESIGN AND SIMULATION OF AL SLOT OF MICROSTRIP ANTENNA Ali Abdulrahman Dheyab Al-Sajee Department of Electronic and Communication, College of Engineering, Al-Nahrain University, Iraq E-Mail:

More information

HIGH GAIN AND LOW COST ELECTROMAGNETICALLY COUPLED RECTAGULAR PATCH ANTENNA

HIGH GAIN AND LOW COST ELECTROMAGNETICALLY COUPLED RECTAGULAR PATCH ANTENNA HIGH GAIN AND LOW COST ELECTROMAGNETICALLY COUPLED RECTAGULAR PATCH ANTENNA Raja Namdeo, Sunil Kumar Singh Abstract: This paper present high gain and wideband electromagnetically coupled patch antenna.

More information

Quasi Self Complementary (QSC) Ultra-Wide Band (UWB) Antenna Integrated with Bluetooth

Quasi Self Complementary (QSC) Ultra-Wide Band (UWB) Antenna Integrated with Bluetooth Quasi Self Complementary (QSC) Ultra-Wide Band (UWB) Antenna Integrated with Bluetooth Sk.Jani Basha 1, U.Rama Krishna 2 1 Communication & signal processing M. Tech, 2 Assistant Professor in ECE Department,

More information

Broadband psi (Ψ) Shaped Antenna for Multiple Frequency Coverage

Broadband psi (Ψ) Shaped Antenna for Multiple Frequency Coverage IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 2, Ver. III (Mar - Apr.2015), PP 01-07 www.iosrjournals.org Broadband psi (Ψ)

More information

BROADBAND SERIES-FED DIPOLE PAIR ANTENNA WITH PARASITIC STRIP PAIR DIRECTOR

BROADBAND SERIES-FED DIPOLE PAIR ANTENNA WITH PARASITIC STRIP PAIR DIRECTOR Progress In Electromagnetics Research C, Vol. 45, 1 13, 2013 BROADBAND SERIES-FED DIPOLE PAIR ANTENNA WITH PARASITIC STRIP PAIR DIRECTOR Junho Yeo 1, Jong-Ig Lee 2, *, and Jin-Taek Park 3 1 School of Computer

More information

Effect of Height on Edge Tapered Rectangular Patch Antenna using Parasitic Stubs and Slots

Effect of Height on Edge Tapered Rectangular Patch Antenna using Parasitic Stubs and Slots Effect of Height on Edge Tapered Rectangular Patch Antenna using Parasitic Stubs and Slots Gurpreet Kaur #1, Er. Sonia Goyal #2 M. tech student, Departmentof electronics and communication engineering,

More information

Antenna Theory and Design

Antenna Theory and Design Antenna Theory and Design Antenna Theory and Design Associate Professor: WANG Junjun 王珺珺 School of Electronic and Information Engineering, Beihang University F1025, New Main Building wangjunjun@buaa.edu.cn

More information

CPW-fed Wideband Antenna with U-shaped Ground Plane

CPW-fed Wideband Antenna with U-shaped Ground Plane I.J. Wireless and Microwave Technologies, 2014, 5, 25-31 Published Online November 2014 in MECS(http://www.mecs-press.net) DOI: 10.5815/ijwmt.2014.05.03 Available online at http://www.mecs-press.net/ijwmt

More information

Design & Analysis Of An Inverted-T Shaped Antenna With DGS For Wireless Communication

Design & Analysis Of An Inverted-T Shaped Antenna With DGS For Wireless Communication Design & Analysis Of An Inverted-T Shaped Antenna With DGS For Wireless Communication Arun Singh Kirar¹ & Dr. P. K. Singhal² Department of Electronics, MITS, Gwalior, India Abstract- A new and unique methodology

More information

A Fan-Shaped Circularly Polarized Patch Antenna for UMTS Band

A Fan-Shaped Circularly Polarized Patch Antenna for UMTS Band Progress In Electromagnetics Research C, Vol. 52, 101 107, 2014 A Fan-Shaped Circularly Polarized Patch Antenna for UMTS Band Sumitha Mathew, Ramachandran Anitha, Thazhe K. Roshna, Chakkanattu M. Nijas,

More information

Antenna Design for Ultra Wideband Application Using a New Multilayer Structure

Antenna Design for Ultra Wideband Application Using a New Multilayer Structure PIERS ONLINE, VOL. 2, NO. 6, 2006 544 Antenna Design for Ultra Wideband Application Using a New Multilayer Structure Yashar Zehforoosh, Changiz Ghobadi, and Javad Nourinia Department of Electrical Engineering,

More information

A Review- Microstrip Patch Antenna Design

A Review- Microstrip Patch Antenna Design A Review- Microstrip Patch Antenna Design Gurpreet Kaur 1, Er. Sonia Goyal 2 1, 2 (Department of Electronics and Communication Engineering/ Punjabi university patiala, India) ABSTRACT : Micro strip patch

More information

Micro-strip line feed I shaped slot Antenna with finite slotted ground plane for Return Loss enhancement

Micro-strip line feed I shaped slot Antenna with finite slotted ground plane for Return Loss enhancement Micro-strip line feed I shaped slot Antenna with finite slotted ground plane for Return Loss enhancement Poonam Rajput 1, Prof. Prateek Wankhade 2 Abstract An I shaped slot antenna with finite slotted

More information

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 13, 75 81, 2010 DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS S. Gai, Y.-C. Jiao, Y.-B. Yang, C.-Y. Li, and J.-G. Gong

More information

Triple-Band CPW-Fed Monopole Antenna for WLAN/WiMAX Applications

Triple-Band CPW-Fed Monopole Antenna for WLAN/WiMAX Applications Progress In Electromagnetics Research Letters, Vol. 69, 1 7, 2017 Triple-Band CPW-Fed Monopole Antenna for WLAN/WiMAX Applications Leila Chouti 1, 2, *, Idris Messaoudene 3, Tayeb A. Denidni 1, and Abdelmadjid

More information

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION Progress In Electromagnetics Research, PIER 76, 477 484, 2007 TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION Y.-J. Wu, B.-H. Sun, J.-F. Li, and Q.-Z. Liu National Key Laboratory of Antennas

More information

Design of a Compact Dual Band Patch Antenna with Enhanced Bandwidth on Modified Ground Plane

Design of a Compact Dual Band Patch Antenna with Enhanced Bandwidth on Modified Ground Plane Design of a Compact Dual Band Patch Antenna with Enhanced Bandwidth on Modified Ground Plane Anitha P 1 Research Scholar, Department of Electronics and Communication Engineering, Jawaharlal Nehru Technological

More information

A COMACT MICROSTRIP PATCH ANTENNA FOR WIRELESS COMMUNICATION

A COMACT MICROSTRIP PATCH ANTENNA FOR WIRELESS COMMUNICATION Progress In Electromagnetics Research C, Vol. 18, 211 22, 211 A COMACT MICROSTRIP PATCH ANTENNA FOR WIRELESS COMMUNICATION U. Chakraborty Department of ECE Dr. B. C. Roy Engineering College Durgapur-71326,

More information

Design and Compare Different Feed Length for Circular Shaped Patch Antenna

Design and Compare Different Feed Length for Circular Shaped Patch Antenna Design and Compare Different Feed Length for Circular Shaped Antenna 1 Miss. Shivani Chourasia, 2 Dr. Soni Changlani 2, 3 Miss. Pooja Gupta 1 MTech - Final year, 2 Professor, 3 Assistant Professor 1,2,3

More information

Serrated Circular Fractal Coplanar Wave Guide Fed Antennas for Wideband and Ultra Wideband Applications

Serrated Circular Fractal Coplanar Wave Guide Fed Antennas for Wideband and Ultra Wideband Applications Serrated Circular Fractal Coplanar Wave Guide Fed Antennas for Wideband and Ultra Wideband Applications Serrated Circular Fractal Coplanar Wave Guide Fed Antennas for Wideband and Ultra Wideband Applications

More information

Improvement of Efficiency Parameters of Millimeter Wave RMSA using DGS

Improvement of Efficiency Parameters of Millimeter Wave RMSA using DGS IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 13, Issue 1, Ver. II (Jan.- Feb. 2018), PP 01-05 www.iosrjournals.org Improvement of Efficiency

More information

Slotted Rectangular Microstrip Patch Antenna for WiMax applications

Slotted Rectangular Microstrip Patch Antenna for WiMax applications Slotted Rectangular Microstrip Patch Antenna for WiMax applications Amandeep Singh 1, a Jagtar Singh Sivia 2, b 1M.tech Student Yadavindra College of Engineering Talwandi Sabo, Punjab, India 2Associate

More information

A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLICATIONS

A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLICATIONS A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLICATIONS Sanjeev Kumar Ray 1 and Abhay Shrivastava 2 1 Research Scholar, Department of ECE, ITM University, Gwalior, M.P. (India)

More information

Wide Slot Antenna with Y Shape Tuning Element for Wireless Applications

Wide Slot Antenna with Y Shape Tuning Element for Wireless Applications Progress In Electromagnetics Research M, Vol. 59, 45 54, 2017 Wide Slot Antenna with Y Shape Tuning Element for Wireless Applications Bhupendra K. Shukla *, Nitesh Kashyap, and Rajendra K. Baghel Abstract

More information

STACKED PATCH MIMO ANTENNA ARRAY FOR C-BAND APPLICATIONS

STACKED PATCH MIMO ANTENNA ARRAY FOR C-BAND APPLICATIONS STACKED PATCH MIMO ANTENNA ARRAY FOR C-BAND APPLICATIONS Ayushi Agarwal Sheifali Gupta Amanpreet Kaur ECE Department ECE Department ECE Department Thapar University Patiala Thapar University Patiala Thapar

More information

NOVEL DESIGN BROADBAND CPW-FED MONOPOLE ANTENNA WITH TRAPEZIUM SHAPED-STUB FOR COMMUNICATION SYSTEM

NOVEL DESIGN BROADBAND CPW-FED MONOPOLE ANTENNA WITH TRAPEZIUM SHAPED-STUB FOR COMMUNICATION SYSTEM NOVEL DESIGN BROADBAND CPW-FED MONOPOLE ANTENNA WITH TRAPEZIUM SHAPED-STUB FOR COMMUNICATION SYSTEM Karim A. Hamad Department of Electronic and Communication, College of Engineering, AL-Nahrain University,

More information

Double U-Slot Microstrip Patch Antenna for WLAN and WiMAX Applications

Double U-Slot Microstrip Patch Antenna for WLAN and WiMAX Applications Double U-Slot Microstrip Patch Antenna for WLAN and WiMAX Applications Md. Mahmudur Rahman Assistant Professor Department of Electrical and Electronic Engineering Daffodil International University, Bangladesh

More information

Analysis and Design of Rectangular Microstrip Patch Antenna using Fractal Technique for Multiband Wireless Applications

Analysis and Design of Rectangular Microstrip Patch Antenna using Fractal Technique for Multiband Wireless Applications 2016 International Conference on Micro-Electronics and Telecommunication Engineering Analysis and Design of Rectangular Microstrip Patch Antenna using Fractal Technique for Multiband Wireless Applications

More information

High Permittivity Design of Rectangular and Cylindrical Dielectric Resonator Antenna for C-Band Applications

High Permittivity Design of Rectangular and Cylindrical Dielectric Resonator Antenna for C-Band Applications , pp.34-41 http://dx.doi.org/10.14257/astl.2017.147.05 High Permittivity Design of Rectangular and Cylindrical Dielectric Resonator Antenna for C-Band Applications Dr.K.Srinivasa Naik 1, Darimisetti Sai

More information

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS Progress In Electromagnetics Research Letters, Vol. 31, 159 168, 2012 A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS S-M. Zhang *, F.-S. Zhang, W.-Z. Li, T. Quan, and H.-Y. Wu National

More information

Design of 5G Multiband Antenna

Design of 5G Multiband Antenna International Journal of Scientific Research in Computer Science, Engineering and Information Technology Design of 5G Multiband Antenna 2017 IJSRCSEIT Volume 2 Issue 2 ISSN : 2456-3307 Kiruthika V, Dr.

More information

Couple-fed Circular Polarization Bow Tie Microstrip Antenna

Couple-fed Circular Polarization Bow Tie Microstrip Antenna PIERS ONLINE, VOL., NO., Couple-fed Circular Polarization Bow Tie Microstrip Antenna Huan-Cheng Lien, Yung-Cheng Lee, and Huei-Chiou Tsai Wu Feng Institute of Technology Chian-Ku Rd., Sec., Ming-Hsiung

More information

Comparative Analysis of FR4 and RT-duroid Materials Antenna for Wireless Application

Comparative Analysis of FR4 and RT-duroid Materials Antenna for Wireless Application Vol. 2, No. 2, 2016, 1-10 Comparative Analysis of FR4 and RT-duroid Materials Antenna for Wireless Application a G B Waghmare, b A J Nadaf c P M Korake and * M K Bhanarkar a,b,c, * Communications Research

More information

DUAL BAND L-SHAPED MICROSTRIP PATCH ANTENNA FOR 5/9 GHZ

DUAL BAND L-SHAPED MICROSTRIP PATCH ANTENNA FOR 5/9 GHZ http:// DUAL BAND L-SHAPED MICROSTRIP PATCH ANTENNA FOR 5/9 GHZ Meenaxi 1, Pavan Kumar Shukla 2 1 Department of Electronics and Communication Engineering, Shri Venkateshwara University, Gajrola, U.P. (India)

More information

International Journal of Engineering Trends and Technology (IJETT) Volume 11 Number 5 - May National Institute of Technology, Warangal, INDIA *

International Journal of Engineering Trends and Technology (IJETT) Volume 11 Number 5 - May National Institute of Technology, Warangal, INDIA * Hexagonal Nonradiating Edge-Coupled Patch Configuration for Bandwidth Enhancement of Patch Antenna Krishn Kant Joshi #1, NVSN Sarma * 2 # Department of Electronics and Communication Engineering National

More information

Analysis of a Co-axial Fed Printed Antenna for WLAN Applications

Analysis of a Co-axial Fed Printed Antenna for WLAN Applications Analysis of a Co-axial Fed Printed Antenna for WLAN Applications G.Aneela 1, K.Sairam Reddy 2 1,2 Dept. of Electronics & Communication Engineering ACE Engineering College, Ghatkesar, Hyderabad, India.

More information

International Journal of Microwaves Applications Available Online at

International Journal of Microwaves Applications Available Online at ISSN 2320-2599 Volume 6, No. 3, May - June 2017 Sandeep Kumar Singh et al., International Journal of Microwaves Applications, 6(3), May - June 2017, 30 34 International Journal of Microwaves Applications

More information

Broadband Designs of a Triangular Microstrip Antenna with a Capacitive Feed

Broadband Designs of a Triangular Microstrip Antenna with a Capacitive Feed 44 Broadband Designs of a Triangular Microstrip Antenna with a Capacitive Feed Mukesh R. Solanki, Usha Kiran K., and K. J. Vinoy * Microwave Laboratory, ECE Dept., Indian Institute of Science, Bangalore,

More information

Compact Triple-Band Monopole Antenna for WLAN/WiMAX-Band USB Dongle Applications

Compact Triple-Band Monopole Antenna for WLAN/WiMAX-Band USB Dongle Applications Compact Triple-Band Monopole Antenna for WLAN/WiMAX-Band USB Dongle Applications Ya Wei Shi, Ling Xiong, and Meng Gang Chen A miniaturized triple-band antenna suitable for wireless USB dongle applications

More information

Design and Simulation of a Quarter Wavelength Gap Coupled Microstrip Patch Antenna

Design and Simulation of a Quarter Wavelength Gap Coupled Microstrip Patch Antenna Design and Simulation of a Quarter Wavelength Gap Coupled Microstrip Patch Antenna Sanjay M. Palhade 1, S. P. Yawale 2 1 Department of Physics, Shri Shivaji College, Akola, India 2 Department of Physics,

More information

Single-Feed Triangular Slotted Microstrip Bowtie Antenna for Quad-bands Applications

Single-Feed Triangular Slotted Microstrip Bowtie Antenna for Quad-bands Applications IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 11, Issue 5, Ver. III (Sep.-Oct.2016), PP 22-27 www.iosrjournals.org Single-Feed Triangular

More information

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 23, 147 155, 2011 A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS Z.-N. Song, Y. Ding, and K. Huang National Key Laboratory of Antennas

More information

PRINTED UWB ANTENNA FOR WIMAX /WLAN

PRINTED UWB ANTENNA FOR WIMAX /WLAN http:// PRINTED UWB ANTENNA FOR WIMAX /WLAN Shilpa Verma 1, Shalini Shah 2 and Paurush Bhulania 3 1 PG student. Amity School of Engg & Technology, Amity University, Noida, India 2,3 Department of Electronics

More information

PERFORMANCE ANALYSIS OF QWT FED 8X8 PHASED ARRAY

PERFORMANCE ANALYSIS OF QWT FED 8X8 PHASED ARRAY VOL. 12, NO. 3, FEBRUARY 217 ISSN 1819-68 26-217 Asian Research Publishing Network (ARPN). All rights reserved. PERFORMANCE ANALYSIS OF QWT FED 8X8 PHASED ARRAY U. Srinivasa Rao 1 and P. Siddaiah 2 1 Department

More information

Design and Simulation of an Improved Bandwidth V-Slotted Patch Antenna for IEEE (Wimax).

Design and Simulation of an Improved Bandwidth V-Slotted Patch Antenna for IEEE (Wimax). American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-6, Issue-4, pp-230-234 www.ajer.org Research Paper Open Access Design and Simulation of an Improved Bandwidth

More information

A COMPACT SLOTTED MICROSTRIP PATCH ANTENNA FOR MULTIBAND APPLICATIONS

A COMPACT SLOTTED MICROSTRIP PATCH ANTENNA FOR MULTIBAND APPLICATIONS 1059 A COMPACT SLOTTED MICROSTRIP PATCH ANTENNA FOR MULTIBAND APPLICATIONS Sweety Goyal 1, Balraj Singh Sidhu 2 Department of Electronics and Communication Engineering, Giani Zail Singh Punjab Technical

More information

Design and Simulation of Microstrip Rectangular Patch Antenna for Bluetooth Application

Design and Simulation of Microstrip Rectangular Patch Antenna for Bluetooth Application Design and Simulation of Microstrip Rectangular Patch Antenna for Bluetooth Application Tejal B. Tandel, Nikunj Shingala Abstract A design of small sized, low profile patch antenna is proposed for BLUETOOTH

More information

Implementation and Applications of Various Feeding Techniques Using CST Microwave Studio

Implementation and Applications of Various Feeding Techniques Using CST Microwave Studio Implementation and Applications of Various Feeding Techniques Using CST Microwave Studio Dr Sourabh Bisht Graphic Era University sourabh_bisht2002@yahoo. com Ankita Singh Graphic Era University ankitasingh877@gmail.com

More information

A Compact Wideband Slot Antenna for Universal UHF RFID Reader

A Compact Wideband Slot Antenna for Universal UHF RFID Reader Progress In Electromagnetics Research Letters, Vol. 7, 7, 8 A Compact Wideband Slot Antenna for Universal UHF RFID Reader Waleed Abdelrahim and Quanyuan Feng * Abstract A compact wideband circularly polarized

More information

Study of the Effect of Substrate Materials on the Performance of UWB Antenna

Study of the Effect of Substrate Materials on the Performance of UWB Antenna International Journal of Computational Engineering Research Vol, 03 Issue, 4 Study of the Effect of Substrate Materials on the Performance of UWB Antenna 1 D.Ujwala, 2 D.S.Ramkiran, 3 N.Brahmani, 3 D.Sandhyarani,

More information

Design and Implementation of Pentagon Patch Antennas with slit for Multiband Wireless Applications

Design and Implementation of Pentagon Patch Antennas with slit for Multiband Wireless Applications Design and Implementation of Pentagon Patch Antennas with slit for Multiband Wireless Applications B.Viraja 1, M. Lakshmu Naidu 2, Dr.B. Rama Rao 3, M. Bala Krishna 2 1M.Tech, Student, Dept of ECE, Aditya

More information

DESIGN OF DUAL BAND NOTCHED ULTRA WIDEBAND ANTENNA USING (U-W) SHAPED SLOTS

DESIGN OF DUAL BAND NOTCHED ULTRA WIDEBAND ANTENNA USING (U-W) SHAPED SLOTS DESIGN OF DUAL BAND NOTCHED ULTRA WIDEBAND ANTENNA USING (U-W) SHAPED SLOTS Mohammed Shihab Ahmed, Md Rafiqul Islam, and Sheroz Khan Department of Electrical and Computer Engineering, International Islamic

More information

5. CONCLUSION AND FUTURE WORK

5. CONCLUSION AND FUTURE WORK 128 5. CONCLUSION AND FUTURE WORK 5.1 CONCLUSION The MIMO systems are capable of increasing the channel capacity and reliability of wireless channels without increasing the system bandwidth and transmitter

More information

CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND APPLICATIONS

CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND APPLICATIONS Journal of Engineering Science and Technology Vol. 11, No. 2 (2016) 267-277 School of Engineering, Taylor s University CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND

More information

Ultra Wideband Slotted Microstrip Patch Antenna for Downlink and Uplink Satellite Application in C band

Ultra Wideband Slotted Microstrip Patch Antenna for Downlink and Uplink Satellite Application in C band International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 3 No. 3 July 2013, pp. 680-684 2013 Innovative Space of Scientific Research Journals http://www.issr-journals.org/ijias/ Ultra

More information

Design of Reconfigurable Rectangular Patch Antenna using PIN Diode

Design of Reconfigurable Rectangular Patch Antenna using PIN Diode International Journal of Electrical Sciences & Engineering (IJESE) Online ISSN: 2455 6068; Volume 1, Issue 1; January 2016 pp. 68-73 Dayananda Sagar College of Engineering, Bengaluru-78 Design of Reconfigurable

More information

Circularly Polarized Microstrip Patch Antenna with T-Shaped Slot

Circularly Polarized Microstrip Patch Antenna with T-Shaped Slot IJECT Vo l. 4, Is s u e Sp l - 4, Ap r i l - Ju n e 2013 ISSN : 2230-7109 (Online) ISSN : 2230-9543 (Print) Circularly Polarized Microstrip Patch Antenna with T-Shaped Slot 1 Sanyog Rawat, 2 K K Sharma

More information

Design of Dual Band Dielectric Resonator Antenna with Serpentine Slot for WBAN Applications

Design of Dual Band Dielectric Resonator Antenna with Serpentine Slot for WBAN Applications ISSN 2278-3083 Volume 2, No.2, March April 2013 L. Nageswara Rao et al., International Journal of Science of Science and Advanced and Applied Information Technology, Technology 2 (2), March - April 2013,

More information

Performance Enhancement of Microstrip Line Quarter Wave Transformer Circular Patch Antenna with Narrow Slit at L Band

Performance Enhancement of Microstrip Line Quarter Wave Transformer Circular Patch Antenna with Narrow Slit at L Band International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-869 (O) 2454-4698 (P), Volume-3, Issue-1, October 215 Performance Enhancement of Microstrip Line Quarter Wave Transformer

More information