Differential interrogation of FBG sensors using conventional optical time domain reflectometry

Size: px
Start display at page:

Download "Differential interrogation of FBG sensors using conventional optical time domain reflectometry"

Transcription

1 Differential interrogation of FBG sensors using conventional optical time domain reflectometry Yuri N. Kulchin, Anatoly M. Shalagin, Oleg B. Vitrik, Sergey A. Babin, Anton V. Dyshlyuk, Alexander A. Vlasov Institute for Automation and Control Processes (IACP) Far-Eastern Branch of Russian Academy of Sciences (FEB RAS) 5, Radio str., Vladivostok, 69, Russia Institute of Automation and Electrometry (IAE) Siberian Branch of Russian Academy of Sciences (SB RAS), Academician Koptyug Avenue, Novosibirsk, 69, Russia Tel.: + 7 [] -6 Fax: +7 [] -5 anton_dys@iacp.dvo.ru Abstract A reflectometric approach is proposed for interrogation of multiple fiber Bragg grating (FBG) sensors recorded in a single fiber optic line, based on the differential registration FBGs response to a short probing laser pulse. A special optical layout has been developed based on a -pass optical fiber circulator and two reference fiber Bragg gratings spaced spectrally by ~ nm and spatially by ~ m, with the initial resonance wavelength of the interrogated FBG being right in between that of the reference gratings. Such a scheme allows transformation of the laser pulse reflected from the interrogated FBG into two time-divided optical signals, one of them being directly proportional to the measured physical value (e.g. FBG temperature or strain), the other being inversely proportional to that. The difference in signals intensity is registered in logarithmic units by a conventional optical time-domain reflectometer. Implementing differential measurement principle allowed us to increase the measurement range as compared to the previously proposed OTDR-based FBG interrogation approaches as well as to eliminate the susceptibility of the system to light power fluctuations induced, for instance, by bending loss in the fiber. Due to its simplicity, efficiency and usage of conventional OTDR equipment the proposed reflectometric technique of FBG interrogation can have a wide range of applications, in particular in the field of structural health monitoring. Keywords: Fiber Bragg grating interrogation, optical time domain reflectometry, OTDR. Introduction Nowadays fiber-optic sensors (FOSs) represent one of the topical trends in the methodology [-5]. This is due to several advantages of FOSs in comparison with conventional measurement devices: total immunity to electromagnetic interference, sensitivity to a variety of physical quantities, chemical stability, long lifetime, natural capability of coupling with high-speed and noiseimmune fiber-optic communication channels, possibility of multiplexing and integration of a large number of sensors in distributed informationmeasurement networks [, ]. As is known the measurement transducers based on fiber Bragg gratings (FBGs) are the leaders among FOSs [, -5]. Such sensors are most widely used for the measurement of temperature and mechanical deformations in the field of structural health monitoring of engineering objects (bridges, tunnels, buildings, towers, dams, oil platforms, ships, airplanes, space vehicles, etc. []). However, a major problem in the practical application of FBG sensors is the complexity and, hence, expensiveness of the spectral systems used to detect the shift of the FBG resonance wavelength upon the measurements of external physical effects on the Bragg grating [, ]. Note that the majority of the existing spectral systems often provide an excessive accuracy for the measurement of FBG -9

2 temperature and mechanical strain in structural health monitoring applications. Therefore, it is expedient to develop intensity-based approaches to the detection of FBG signals, which will substantially simplify the measurement system used to detect the signals of Bragg gratings at the cost of a possible decrease in the measurement accuracy. Recently, we have proposed reflectometric methods for FBG interrogation based on time and combined time-wavelength separation of the signals [6]. However the susceptibility of the measuring system to the light power fluctuations resulted from pulsed laser source instability or bend loss in the fiber proved to be the major drawback of the methods proposed. The present work is aimed at the development of a reflectometric method of FBG interrogation based on the differential registration of FBG signals which fully eliminates the shortcoming mentioned above and enhances the measurement range of the interrogation system.. Method description A schematic illustrating the method proposed is presented in Fig.. d a d T C, ΔL c P R d l d b P R l Fig.. Differential registration of FBG signals based on optical time-domain reflectometer (OTDR): OTDR, fiber optic circulator, interrogated FBGs, tunable reference FBGs. In the insets: а schematic representation of interrogation pulse spectrum; b reflection of the interrogation pulse from the FBG being interrogated: interrogation pulse spectrum, FBG reflection spectrum; с formation of a differential optical signal:, reference FBGs reflection spectra, interrogation pulse spectrum after reflection from the FBG being interrogated; d schematic representation of OTDR traces obtained upon tuning the wavelengths of reference FBGs so as to interrogate the group of FBGs with resonance wavelength (upper graph) and (bottom graph). Probe pulses generated by a conventional OTDR (Fig., a) pass through fiber optic circulator into the fiber line with the interrogated FBGs recorded with spatial intervals of about m so as to make up groups with the same resonance wavelength within a group. When a probe pulse reaches the first of the FBGs being interrogated, an optical signal is reflected in the spectral band corresponding to the FBG reflection spectrum, which then passes trough circulator onto the reference Bragg gratings. The reference FBGs are previously tuned so that the initial resonance wavelength of the first group of the interrogated FBGs is right in between those of the reference gratings ( and ): - = - (Fig., c). The spectral gap between the reference FBGs is chosen to correspond to the range of possible variations of the interrogated FBGs resonance wavelength associated with strain and/or temperature measurement. The reference FBGs are recorded with a spatial interval of about m so they produce two time-divided optical pulses with the power defined by the -9

3 overlap integral between the reference FBGs reflection spectra R (), R () and the spectrum of the probe pulse reflected from the interrogated FBG S(,Δ): R d P R S, () R d P R S, () where Δ=n eff Λ mod (α ε + α ΔТ) - FBG resonance wavelength shift as a function of temperature variation (ΔТ) and strain (ε), α, α coefficients defined by the properties of the optical fiber material, n eff optical fiber effective refractive index, Λ mod refractive index modulation depth in the FBG. The two optical pulses then proceed via circulator onto the OTDR where they are represented on the OTDR trace as two reflection peaks with the amplitude proportional to P R and P R and varying with Δ. If the FBG being interrogated is not subjected to strain or temperature change then Δ= and P R =P R ; if Δ < then P R increases, P R decreases and vice versa (Fig., d). After a short delay defined by the spatial interval between the interrogated FBGs the next pulse passes through the circulator onto the reference FBGs, reflected from the second interrogated grating, and two more reflectance peaks appear on the OTDR trace and so on and so forth. In sum there will be N peaks, where N the number of FBGs in the group. In order to interrogate the next group of FBGs the reference gratings are tuned so that - = and the resultant OTDR trace gives the peaks corresponding to the FBGs of the second group, etc (Fig., d). As it was mentioned in [6, 7] the following requirements must be satisfied in order to realize OTDR-based FBG interrogation schemes: - So as to cancel out oscillations of the registered signals resulted from the multimode spectral structure of the probe pulse the FWHM of FBG reflection spectrum (Λ) should exceed the gap between two adjacent longitudinal modes in the probe pulse spectrum ( ). - So as to avoid saturation of the highly sensitive photoreceiver of the OTDR the reflectance at the resonance wavelength of the FBGs being interrogated should be within -%. Fig.. The results of P R /P R calculation: а reflection spectra of the reference FBGs and the spectrum of the probe pulse reflected from the interrogated FBG; b - P R (Δ)/P R (Δ) and P R (Δ)/P R (Δ) in logarithmic units. -95

4 . Experiment For the purpose of experimental investigation of the proposed technique we used the following setup (Fig. ). Fig.. Experimental setup: OTDR, fiber optic circulator, interrogated FBGs, reference FGBs. Two FBGs with =55,8 nm, =556,7 nm and % reflectance at the resonance wavelength have been employed as the ones being interrogated. Reference Bragg gratings with % reflectance were tuned to = 55, nm, = 55, nm for interrogating the first FBG and to = 555, nm, = 558, nm for interrogating the second one. In the course of the experiment to interrogated FBGs were subjected to calibrated deformation with, - steps. We measured the difference of the corresponding reflection peaks magnitudes in the OTDR trace obtained be ANDO AQ75 OTDR. The experimental results are presented in Fig.. As seen from the figure the dependences are of linear character which proves the above conclusions. The threshold sensitivity in the strain measurement mode amounted to ~ P R / P R, дб 5 Δl/l, * P R / P R, дб Δl/l, * Fig.. The dependence of the registered signal on the relative elongation of а the first interrogated FBG, b the second interrogated FBG. Taking into account the possibility of realizing up to spectral channels nm each (which corresponds to the measurement range of ~ С of temperature and ~ - of strain) within the spectrum of the probe pulse (~5 nm around the center of 55 nm), as well as the very low reflectivity of the interrogated FBGs the maximum number of the Bragg gratings -96

5 that can be multiplexed by the proposed technique is estimated at several hundreds and more which by far surpasses the requirements of most practical applications.. Conclusion Thus a differential reflectometric method for the interrogation and multiplexing of the FBG-based measuring transducers with combined time wavelength multiplexing of the measurement channels is developed and studied. The threshold sensitivity of the method in the strain measurement mode is.5 -, and the maximum number of interrogated Bragg gratings is estimated at several hundreds. Due to the implementation of differential measurement principle the interrogation systems are totally immune to the light power fluctuations resulted from the pulsed laser source instability, bend loss in the optical fiber, etc. Thanks to its inherent simplicity and utilization of conventional OTDR equipment the technique proposed can be widely used for the monitoring of deformation and thermal processes using FBG-based control and measurement systems. 5. Acknowledgement The work was supported by the grant of the President of Russian Federation (МК-9.8.), Russian Foundation for Basic Research (grants , , 8--9) as well as by the Far-Eastern and Siberian Branches of Russian Academy of Sciences. References. B. Lee. Review of the present status of optical fiber sensors. Optical Fiber Technology., 9, pp Y.J. Rao. Recent progress in applications of in-fibre Bragg grating sensors. Optics and Lasers in Engineering. 999, v., pp Alan D. Kersey et al. Fiber Grating Sensors. Journal of Lightwave Technology. 997, vol. 5, No. 8, pp Jinping Ou. Some recent advances of intelligent health monitoring systems for civil infrastructures in HIT. Proc. SPIE., vol. 585, p S.A. Vasiljev, O.I. Medvedkov, I.G. Korolev, A.S. Bozhkov, A.S. Kurkov, E.M. Dianov. Quantum Electronics. 5, 5,, pp Yu.N. Kulchin, O.B. Vitrik, A.V. Dyshlyuk, A.M. Shalagin, S.A. Babin, A.A. Vlasov. Laser Physics. 7, vol. 7, No., pp Yu.N. Kulchin, O.B. Vitrik, A.V. Dyshlyuk, A.M. Shalagin, S.A. Babin, I.S. Shelemba, A.A. Vlasov. Laser Physics. 8, vol. 8, No., pp

Wavelength Division Multiplexing of a Fibre Bragg Grating Sensor using Transmit-Reflect Detection System

Wavelength Division Multiplexing of a Fibre Bragg Grating Sensor using Transmit-Reflect Detection System Edith Cowan University Research Online ECU Publications 2012 2012 Wavelength Division Multiplexing of a Fibre Bragg Grating Sensor using Transmit-Reflect Detection System Gary Allwood Edith Cowan University

More information

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING Siti Aisyah bt. Ibrahim and Chong Wu Yi Photonics Research Center Department of Physics,

More information

A suite of optical fibre sensors for structural condition monitoring

A suite of optical fibre sensors for structural condition monitoring A suite of optical fibre sensors for structural condition monitoring T Sun, K T V Gattan and J Carlton School of Mathematics, Computer Science and Engineering, City University London, UK ABSTRACT This

More information

Bragg and fiber gratings. Mikko Saarinen

Bragg and fiber gratings. Mikko Saarinen Bragg and fiber gratings Mikko Saarinen 27.10.2009 Bragg grating - Bragg gratings are periodic perturbations in the propagating medium, usually periodic variation of the refractive index - like diffraction

More information

D.B. Singh and G.K. Suryanarayana

D.B. Singh and G.K. Suryanarayana Journal of the Indian Institute of Science A Multidisciplinary Reviews Journal ISSN: 0970-4140 Coden-JIISAD Indian Institute of Science Application of Fiber Bragg Grating Sensors for Dynamic Tests in Wind

More information

Development of a Low Cost 3x3 Coupler. Mach-Zehnder Interferometric Optical Fibre Vibration. Sensor

Development of a Low Cost 3x3 Coupler. Mach-Zehnder Interferometric Optical Fibre Vibration. Sensor Development of a Low Cost 3x3 Coupler Mach-Zehnder Interferometric Optical Fibre Vibration Sensor Kai Tai Wan Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, UB8 3PH,

More information

AN EXPERIMENT RESEARCH ON EXTEND THE RANGE OF FIBER BRAGG GRATING SENSOR FOR STRAIN MEASUREMENT BASED ON CWDM

AN EXPERIMENT RESEARCH ON EXTEND THE RANGE OF FIBER BRAGG GRATING SENSOR FOR STRAIN MEASUREMENT BASED ON CWDM Progress In Electromagnetics Research Letters, Vol. 6, 115 121, 2009 AN EXPERIMENT RESEARCH ON EXTEND THE RANGE OF FIBER BRAGG GRATING SENSOR FOR STRAIN MEASUREMENT BASED ON CWDM M. He, J. Jiang, J. Han,

More information

Pump noise as the source of self-modulation and self-pulsing in Erbium fiber laser

Pump noise as the source of self-modulation and self-pulsing in Erbium fiber laser Pump noise as the source of self-modulation and self-pulsing in Erbium fiber laser Yuri O. Barmenkov and Alexander V. Kir yanov Centro de Investigaciones en Optica, Loma del Bosque 5, Col. Lomas del Campestre,

More information

Laboratory investigation of an intensiometric dual FBG-based hybrid voltage sensor

Laboratory investigation of an intensiometric dual FBG-based hybrid voltage sensor Fusiek, Grzegorz and Niewczas, Pawel (215) Laboratory investigation of an intensiometric dual FBG-based hybrid voltage sensor. In: Proceedings of SPIE - The International Society for Optical Engineering.

More information

Stabilized Interrogation and Multiplexing. Techniques for Fiber Bragg Grating Vibration Sensors

Stabilized Interrogation and Multiplexing. Techniques for Fiber Bragg Grating Vibration Sensors Stabilized Interrogation and Multiplexing Techniques for Fiber Bragg Grating Vibration Sensors Hyung-Joon Bang, Chang-Sun Hong and Chun-Gon Kim Division of Aerospace Engineering Korea Advanced Institute

More information

Installation Guide. English. FS62 Weldable Strain Sensor

Installation Guide. English. FS62 Weldable Strain Sensor Installation Guide English FS62 Weldable Strain Sensor Hottinger Baldwin Messtechnik GmbH Im Tiefen See 45 D-64239 Darmstadt Tel. +49 6151 803-0 Fax +49 6151 803-9100 info@hbm.com www.hbm.com HBM FiberSensing,

More information

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Optical fiber-fault surveillance for passive optical networks in S-band operation window Optical fiber-fault surveillance for passive optical networks in S-band operation window Chien-Hung Yeh 1 and Sien Chi 2,3 1 Transmission System Department, Computer and Communications Research Laboratories,

More information

Intensity-modulated and temperature-insensitive fiber Bragg grating vibration sensor

Intensity-modulated and temperature-insensitive fiber Bragg grating vibration sensor Intensity-modulated and temperature-insensitive fiber Bragg grating vibration sensor Lan Li, Xinyong Dong, Yangqing Qiu, Chunliu Zhao and Yiling Sun Institute of Optoelectronic Technology, China Jiliang

More information

Installation Guide. English. FS62 Surface Mountable Strain Sensor

Installation Guide. English. FS62 Surface Mountable Strain Sensor Installation Guide English FS62 Surface Mountable Strain Sensor Hottinger Baldwin Messtechnik GmbH Im Tiefen See 45 D-64239 Darmstadt Tel. +49 6151 803-0 Fax +49 6151 803-9100 info@hbm.com www.hbm.com

More information

Modifying Bragg Grating Interrogation System and Studying Corresponding Problems

Modifying Bragg Grating Interrogation System and Studying Corresponding Problems Modifying Bragg Grating Interrogation System and Studying Corresponding Problems 1998 Abstract An improved fiber Bragg grating (FBG) interrogation system is described. The system utilises time domain multiplexing

More information

Installation Guide. English. FS62 Composite Strain Sensor

Installation Guide. English. FS62 Composite Strain Sensor Installation Guide English FS62 Composite Strain Sensor Hottinger Baldwin Messtechnik GmbH Im Tiefen See 45 D-64239 Darmstadt Tel. +49 6151 803-0 Fax +49 6151 803-9100 info@hbm.com www.hbm.com HBM FiberSensing,

More information

Optical signal processing for fiber Bragg grating based wear sensors

Optical signal processing for fiber Bragg grating based wear sensors University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2005 Optical signal processing for fiber Bragg grating based wear sensors

More information

SIMULTANEOUS INTERROGATION OF MULTIPLE FIBER BRAGG GRATING SENSORS FOR DYNAMIC STRAIN MEASUREMENTS

SIMULTANEOUS INTERROGATION OF MULTIPLE FIBER BRAGG GRATING SENSORS FOR DYNAMIC STRAIN MEASUREMENTS Journal of Optoelectronics and Advanced Materials Vol. 4, No. 4, December 2002, p. 937-941 SIMULTANEOUS INTERROGATION OF MULTIPLE FIBER BRAGG GRATING SENSORS FOR DYNAMIC STRAIN MEASUREMENTS C. Z. Shi a,b,

More information

DESIGN CHALLENGES OF A TUNABLE LASER INTERROGATOR FOR GEO-STATIONARY COMMUNICATION SATELLITES

DESIGN CHALLENGES OF A TUNABLE LASER INTERROGATOR FOR GEO-STATIONARY COMMUNICATION SATELLITES DESIGN CHALLENGES OF A TUNABLE LASER INTERROGATOR FOR GEO-STATIONARY COMMUNICATION SATELLITES Selwan K. Ibrahim 1, Arthur Honniball 1, Raymond McCue 1, Michael Todd 1, John A. O Dowd 1, David Sheils 1,

More information

Theoretical and Experimental Investigation of Fiber Bragg Gratings With Different Lengths for Ultrasonic Detection

Theoretical and Experimental Investigation of Fiber Bragg Gratings With Different Lengths for Ultrasonic Detection PHOTONIC SENSORS / Vol. 6, No. 2, 2016: 187 192 Theoretical and Experimental Investigation of Fiber Bragg Gratings With Different Lengths for Ultrasonic Detection Zhouzhou YU, Qi JIANG *, Hao ZHANG, and

More information

Installation Guide. English. FS62 Embedded Strain Sensor

Installation Guide. English. FS62 Embedded Strain Sensor Installation Guide English FS62 Embedded Strain Sensor Hottinger Baldwin Messtechnik GmbH Im Tiefen See 45 D-64239 Darmstadt Tel. +49 6151 803-0 Fax +49 6151 803-9100 info@hbm.com www.hbm.com HBM FiberSensing,

More information

Installation Guide. English. FS62 Miniature Polyimide Strain Sensor

Installation Guide. English. FS62 Miniature Polyimide Strain Sensor Installation Guide English FS62 Miniature Polyimide Strain Sensor Hottinger Baldwin Messtechnik GmbH Im Tiefen See 45 D-64239 Darmstadt Tel. +49 6151 803-0 Fax +49 6151 803-9100 info@hbm.com www.hbm.com

More information

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION Beam Combination of Multiple Vertical External Cavity Surface Emitting Lasers via Volume Bragg Gratings Chunte A. Lu* a, William P. Roach a, Genesh Balakrishnan b, Alexander R. Albrecht b, Jerome V. Moloney

More information

A thin foil optical strain gage based on silicon-on-insulator microresonators

A thin foil optical strain gage based on silicon-on-insulator microresonators A thin foil optical strain gage based on silicon-on-insulator microresonators D. Taillaert* a, W. Van Paepegem b, J. Vlekken c, R. Baets a a Photonics research group, Ghent University - INTEC, St-Pietersnieuwstraat

More information

Opto-VLSI-based reconfigurable photonic RF filter

Opto-VLSI-based reconfigurable photonic RF filter Research Online ECU Publications 29 Opto-VLSI-based reconfigurable photonic RF filter Feng Xiao Mingya Shen Budi Juswardy Kamal Alameh This article was originally published as: Xiao, F., Shen, M., Juswardy,

More information

Optical Phase Lock Loop (OPLL) with Tunable Frequency Offset for Distributed Optical Sensing Applications

Optical Phase Lock Loop (OPLL) with Tunable Frequency Offset for Distributed Optical Sensing Applications Optical Phase Lock Loop (OPLL) with Tunable Frequency Offset for Distributed Optical Sensing Applications Vladimir Kupershmidt, Frank Adams Redfern Integrated Optics, Inc, 3350 Scott Blvd, Bldg 62, Santa

More information

Research Article Remote-Time Division Multiplexing of Bending Sensors Using a Broadband Light Source

Research Article Remote-Time Division Multiplexing of Bending Sensors Using a Broadband Light Source Sensors Volume 22, Article ID 54586, 6 pages doi:.55/22/54586 Research Article Remote-Time Division Multiplexing of Bending Sensors Using a Broadband Light Source Mikel Bravo and Manuel López-Amo Departamento

More information

Realization of 16-channel digital PGC demodulator for fiber laser sensor array

Realization of 16-channel digital PGC demodulator for fiber laser sensor array Journal of Physics: Conference Series Realization of 16-channel digital PGC demodulator for fiber laser sensor array To cite this article: Lin Wang et al 2011 J. Phys.: Conf. Ser. 276 012134 View the article

More information

ni.com Sensor Measurement Fundamentals Series

ni.com Sensor Measurement Fundamentals Series Sensor Measurement Fundamentals Series Strain Gage Measurements Doug Farrell Product Manager National Instruments Key Takeaways Strain gage fundamentals Bridge-based measurement fundamentals Measurement

More information

FIBER OPTIC SMART MONITORING OF KOREA EXPRESS RAILWAY TUNNEL STRUCTURES

FIBER OPTIC SMART MONITORING OF KOREA EXPRESS RAILWAY TUNNEL STRUCTURES 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS 1 Introduction FIBER OPTIC SMART MONITORING OF KOREA EXPRESS K. S. Kim 1 * 1 Department of Materials Science and Engineering, Hongik University, Chungnam,

More information

3D optoelectronic inspection of fuel assembly components

3D optoelectronic inspection of fuel assembly components 3D optoelectronic inspection of fuel assembly components Alexey V. Beloborodov 1, Alexander V. Chinov 2, Yuri V. Chugui 1, Leonid V. Finogenov 1, Anna A. Gushchina 1, Yuri K. Karlov 2, Peter I. Lavrenyuk

More information

Impact Monitoring in Smart Composites Using Stabilization Controlled FBG Sensor System

Impact Monitoring in Smart Composites Using Stabilization Controlled FBG Sensor System Impact Monitoring in Smart Composites Using Stabilization Controlled FBG Sensor System H. J. Bang* a, S. W. Park a, D. H. Kim a, C. S. Hong a, C. G. Kim a a Div. of Aerospace Engineering, Korea Advanced

More information

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature Donghui Zhao.a, Xuewen Shu b, Wei Zhang b, Yicheng Lai a, Lin Zhang a, Ian Bennion a a Photonics Research Group,

More information

RECENTLY, studies have begun that are designed to meet

RECENTLY, studies have begun that are designed to meet 838 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 43, NO. 9, SEPTEMBER 2007 Design of a Fiber Bragg Grating External Cavity Diode Laser to Realize Mode-Hop Isolation Toshiya Sato Abstract Recently, a unique

More information

Demodulation System Intensity Coded for Fiber Bragg Grating Sensors

Demodulation System Intensity Coded for Fiber Bragg Grating Sensors 87 Demodulation System Intensity Coded for Fiber Bragg Grating Sensors Rodrigo Ricetti, Marianna S. Buschle, Fabiano Kuller, Marcia Muller, José Luís Fabris Universidade Tecnológica Federal do Paraná,

More information

Monitoring damage growth in composite materials by FBG sensors

Monitoring damage growth in composite materials by FBG sensors 5th International Symposium on NDT in Aerospace, 13-15th November 2013, Singapore Monitoring damage growth in composite materials by FBG sensors Alfredo GÜEMES, Antonio FERNANDEZ-LOPEZ, Borja HERNANDEZ-CRESPO

More information

FMCW Multiplexing of Fiber Bragg Grating Sensors

FMCW Multiplexing of Fiber Bragg Grating Sensors 756 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 6, NO. 5, SEPTEMBER/OCTOBER 2000 FMCW Multiplexing of Fiber Bragg Grating Sensors Peter K. C. Chan, Wei Jin, Senior Member, IEEE, and M.

More information

Spectral Characteristics of Uniform Fiber Bragg Grating With Different Grating Length and Refractive Index Variation

Spectral Characteristics of Uniform Fiber Bragg Grating With Different Grating Length and Refractive Index Variation Spectral Characteristics of Uniform Fiber Bragg Grating With Different Grating Length and efractive Index Variation Chiranjit Ghosh 1, Quazi Md. Alfred 2, Biswajit Ghosh 3 ME (EIE) Student, University

More information

High Placement Effect of Fibre Bragg Grating Sensor

High Placement Effect of Fibre Bragg Grating Sensor High Placement Effect of Fibre Bragg Grating Sensor Suzairi Daud a,b*, Muhammad Safwan Abd Aziz a,b, Ahmad Fakhrurrazi Ahmad Noorden a and Jalil Ali a,b a Laser Center, Ibnu Sina Institute for Scientific

More information

Polarization-independent subcarrier quantum communication system and its application in ITMO University quantum network

Polarization-independent subcarrier quantum communication system and its application in ITMO University quantum network Polarization-independent subcarrier quantum communication system and its application in ITMO University quantum network Artur Gleim 1,2, Vladimir Egorov 1, Simon Smirnov 1, Vladimir Chistyakov 1, Oleg

More information

Optical Communications and Networking 朱祖勍. Sept. 25, 2017

Optical Communications and Networking 朱祖勍. Sept. 25, 2017 Optical Communications and Networking Sept. 25, 2017 Lecture 4: Signal Propagation in Fiber 1 Nonlinear Effects The assumption of linearity may not always be valid. Nonlinear effects are all related to

More information

Multi-channel FBG sensing system using a dense wavelength division demultiplexing module

Multi-channel FBG sensing system using a dense wavelength division demultiplexing module University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2005 Multi-channel FBG sensing system using a dense wavelength division

More information

HIGH PRECISION OPERATION OF FIBER BRAGG GRATING SENSOR WITH INTENSITY-MODULATED LIGHT SOURCE

HIGH PRECISION OPERATION OF FIBER BRAGG GRATING SENSOR WITH INTENSITY-MODULATED LIGHT SOURCE HIGH PRECISION OPERATION OF FIBER BRAGG GRATING SENSOR WITH INTENSITY-MODULATED LIGHT SOURCE Nobuaki Takahashi, Hiroki Yokosuka, Kiyoyuki Inamoto and Satoshi Tanaka Department of Communications Engineering,

More information

Evaluation of RF power degradation in microwave photonic systems employing uniform period fibre Bragg gratings

Evaluation of RF power degradation in microwave photonic systems employing uniform period fibre Bragg gratings Evaluation of RF power degradation in microwave photonic systems employing uniform period fibre Bragg gratings G. Yu, W. Zhang and J. A. R. Williams Photonics Research Group, Department of EECS, Aston

More information

UTILITY APPLICATIONS OF FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS

UTILITY APPLICATIONS OF FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS UTILITY APPLICATIONS OF FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER T. Landolsi, L. Zou, O. Sezerman OZ Optics Limited OZ Optics Limited, 219 Westbrook Road, Ottawa, ON, Canada,

More information

Temperature-Independent Torsion Sensor Based on Figure-of-Eight Fiber Loop Mirror

Temperature-Independent Torsion Sensor Based on Figure-of-Eight Fiber Loop Mirror (2013) Vol. 3, No. 1: 52 56 DOI: 10.1007/s13320-012-0082-3 Regular Temperature-Independent Torsion Sensor Based on Figure-of-Eight Fiber Loop Mirror Ricardo M. SILVA 1, António B. Lobo RIBEIRO 2, and Orlando

More information

SPP waveguide sensors

SPP waveguide sensors SPP waveguide sensors 1. Optical sensor - Properties - Surface plasmon resonance sensor - Long-range surface plasmon-polariton sensor 2. LR-SPP waveguide - SPP properties in a waveguide - Asymmetric double-electrode

More information

A Hybrid Φ/B-OTDR for Simultaneous Vibration and Strain Measurement

A Hybrid Φ/B-OTDR for Simultaneous Vibration and Strain Measurement PHOTONIC SENSORS / Vol. 6, No. 2, 216: 121 126 A Hybrid Φ/B-OTDR for Simultaneous Vibration and Strain Measurement Fei PENG * and Xuli CAO Key Laboratory of Optical Fiber Sensing & Communications (Ministry

More information

Chapter 10 WDM concepts and components

Chapter 10 WDM concepts and components Chapter 10 WDM concepts and components - Outline 10.1 Operational principle of WDM 10. Passive Components - The x Fiber Coupler - Scattering Matrix Representation - The x Waveguide Coupler - Mach-Zehnder

More information

Testing with 40 GHz Laser Sources

Testing with 40 GHz Laser Sources Testing with 40 GHz Laser Sources White Paper PN 200-0500-00 Revision 1.1 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s 40 GHz fiber lasers are actively mode-locked fiber lasers.

More information

Recent Developments in Fiber Optic Spectral White-Light Interferometry

Recent Developments in Fiber Optic Spectral White-Light Interferometry Photonic Sensors (2011) Vol. 1, No. 1: 62-71 DOI: 10.1007/s13320-010-0014-z Review Photonic Sensors Recent Developments in Fiber Optic Spectral White-Light Interferometry Yi JIANG and Wenhui DING School

More information

All optical wavelength converter based on fiber cross-phase modulation and fiber Bragg grating

All optical wavelength converter based on fiber cross-phase modulation and fiber Bragg grating All optical wavelength converter based on fiber cross-phase modulation and fiber Bragg grating Pavel Honzatko a, a Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, v.v.i.,

More information

Study of multi physical parameter monitoring device based on FBG sensors demodulation system

Study of multi physical parameter monitoring device based on FBG sensors demodulation system Advances in Engineering Research (AER), volume 116 International Conference on Communication and Electronic Information Engineering (CEIE 2016) Study of multi physical parameter monitoring device based

More information

Testing with Femtosecond Pulses

Testing with Femtosecond Pulses Testing with Femtosecond Pulses White Paper PN 200-0200-00 Revision 1.3 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

Optical Digital Transmission Systems. Xavier Fernando ADROIT Lab Ryerson University

Optical Digital Transmission Systems. Xavier Fernando ADROIT Lab Ryerson University Optical Digital Transmission Systems Xavier Fernando ADROIT Lab Ryerson University Overview In this section we cover point-to-point digital transmission link design issues (Ch8): Link power budget calculations

More information

Phase-Sensitive Optical Time-Domain Reflectometry Amplified by Gated Raman Pump

Phase-Sensitive Optical Time-Domain Reflectometry Amplified by Gated Raman Pump PHOTONIC SENSORS / Vol. 5, No. 4, 2015: 345 350 Phase-Sensitive Optical Time-Domain Reflectometry Amplified by Gated Raman Pump Yi LI *, Yi ZHOU, Li ZHANG, Mengqiu FAN, and Jin LI Key Laboratory of Optical

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction 1-1 Preface Telecommunication lasers have evolved substantially since the introduction of the early AlGaAs-based semiconductor lasers in the late 1970s suitable for transmitting

More information

Vertical External Cavity Surface Emitting Laser

Vertical External Cavity Surface Emitting Laser Chapter 4 Optical-pumped Vertical External Cavity Surface Emitting Laser The booming laser techniques named VECSEL combine the flexibility of semiconductor band structure and advantages of solid-state

More information

Structured Fiber Bragg Gratings for Sensing Applications

Structured Fiber Bragg Gratings for Sensing Applications Structured Fiber Bragg Gratings for Sensing Applications Agostino Iadicicco a, Stefania Campopiano a, Michele Giordano b, Antonello Cutolo a, Andrea Cusano a a Optoelectronic Division- Engineering Department,

More information

An Optical Characteristic Testing System for the Infrared Fiber in a Transmission Bandwidth 9-11μm

An Optical Characteristic Testing System for the Infrared Fiber in a Transmission Bandwidth 9-11μm An Optical Characteristic Testing System for the Infrared Fiber in a Transmission Bandwidth 9-11μm Ma Yangwu *, Liang Di ** Center for Optical and Electromagnetic Research, State Key Lab of Modern Optical

More information

SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) Volume 2 Issue 6 June 2015

SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) Volume 2 Issue 6 June 2015 SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) Volume Issue 6 June 15 Designing of a Long Period Fiber Grating (LPFG) using Optigrating Simulation Software Mr. Puneet

More information

In situ Roughness Monitoring Method Using Fiber Optic Vibration Sensors

In situ Roughness Monitoring Method Using Fiber Optic Vibration Sensors In situ Roughness Monitoring Method Using Fiber Optic Vibration Sensors Ki-Soo Kim, In-Kyoon Yoo, Soo-Hyung Lee and Je-Won Kim Department of Materials Science and Engineering Hongik University, Jochwon,

More information

A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of ECE University of Toronto

A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of ECE University of Toronto INTERFEROMETRIC DISTRIBUTED FIBER OPTIC SENSING by Yiwei Zhang A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of ECE University of

More information

A Fiber Laser Spectrometer Demodulation of Fiber Bragg Grating Sensors for Measurement Linearity Enhancement

A Fiber Laser Spectrometer Demodulation of Fiber Bragg Grating Sensors for Measurement Linearity Enhancement Journal of the Optical Society of Korea Vol. 17, No. 4, August 2013, pp. 312-316 DOI: http://dx.doi.org/10.3807/josk.2013.17.4.312 A Fiber Laser Spectrometer Demodulation of Fiber Bragg Grating Sensors

More information

City, University of London Institutional Repository

City, University of London Institutional Repository City Research Online City, University of London Institutional Repository Citation: Chen, Y., Vidakovic, M., Fabian, M., Swift, M., Brun, L., Sun, T. & Grattan, K. T. V. (2017). A temperature compensated

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

Diffractive interferometer for visualization and measurement of optical inhomogeneities

Diffractive interferometer for visualization and measurement of optical inhomogeneities Diffractive interferometer for visualization and measurement of optical inhomogeneities Irina G. Palchikova,2, Ivan А. Yurlagin 2 Technological Design Institute of Scientific Instrument Engineering (TDI

More information

Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber

Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber Edith Cowan University Research Online ECU Publications 2011 2011 Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber David Michel Edith Cowan University Feng Xiao Edith Cowan University

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 June 11(8): pages 639-644 Open Access Journal Design And Implementation

More information

Optimization of Uniform Fiber Bragg Grating Reflection Spectra for Maximum Reflectivity and Narrow Bandwidth

Optimization of Uniform Fiber Bragg Grating Reflection Spectra for Maximum Reflectivity and Narrow Bandwidth ISSN (e): 225 35 Vol, 5 Issue,2 February 25 International Journal of Computational Engineering Research (IJCER) Optimization of Uniform Fiber Bragg Grating Reflection Spectra for Maximum Reflectivity and

More information

Far infrared generation by CO 2 lasers frequencies subtraction in a ZnGeP 2 crystal.

Far infrared generation by CO 2 lasers frequencies subtraction in a ZnGeP 2 crystal. Far infrared generation by CO 2 lasers frequencies subtraction in a ZnGeP 2 crystal. Yu.A.Shakir V.V.Apollonov A.M.Prokhorov A.G.Suzdal tsev General Physics Institute of RAS, 38 Vavilov st., Moscow 117333,

More information

Optical RI sensor based on an in-fiber Bragg grating. Fabry-Perot cavity embedded with a micro-channel

Optical RI sensor based on an in-fiber Bragg grating. Fabry-Perot cavity embedded with a micro-channel Optical RI sensor based on an in-fiber Bragg grating Fabry-Perot cavity embedded with a micro-channel Zhijun Yan *, Pouneh Saffari, Kaiming Zhou, Adedotun Adebay, Lin Zhang Photonic Research Group, Aston

More information

EFFECT OF EPOXY CURING ON TILTED FIBER BRAGG GRATINGS TRANSMISSION SPECTRUM

EFFECT OF EPOXY CURING ON TILTED FIBER BRAGG GRATINGS TRANSMISSION SPECTRUM 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS 1 Abstract We present the spectral evolution of a tilted fiber Bragg grating (TFBG) during the curing of an epoxy used in the fabrication of composite

More information

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique Chien-Hung Yeh 1, *, Ming-Ching Lin 3, Ting-Tsan Huang 2, Kuei-Chu Hsu 2 Cheng-Hao Ko 2, and Sien Chi

More information

PARAMETRIC NONLINEAR LOCATOR

PARAMETRIC NONLINEAR LOCATOR MATEC Web of Conferences 155, 01010 (018) IME&T 017 https://doi.org/10.1051/matecconf/01815501010 PARAMETRIC NONLINEAR LOCATOR Vladimir Antipov 1,*,Sergey Shipilov 1 Siberian Physicotechnical Institute

More information

Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters

Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters Ha Huy Thanh and Bui Trung Dzung National Center for Technology Progress (NACENTECH) C6-Thanh Xuan Bac-Hanoi-Vietnam

More information

Optical Fibre-based Environmental Sensors Utilizing Wireless Smart Grid Platform

Optical Fibre-based Environmental Sensors Utilizing Wireless Smart Grid Platform Optical Fibre-based Environmental Sensors Utilizing Wireless Smart Grid Platform Minglong Zhang 1, Kin Kee Chow 2*, and Peter Han Joo Chong 1 1 Department of Electrical and Electronic Engineering, Auckland

More information

Fiber-optic temperature measurement solves HV challenges in e-mobility Tech Article

Fiber-optic temperature measurement solves HV challenges in e-mobility Tech Article Fiber-optic temperature measurement solves HV challenges in e-mobility Tech Article Figure 1: Consistent isolation of the HV environment using FBG technology avoids additional safety measures, qualification

More information

Pico-strain-level dynamic perturbation measurement using πfbg sensor

Pico-strain-level dynamic perturbation measurement using πfbg sensor Pico-strain-level dynamic perturbation measurement using πfbg sensor DEEPA SRIVASTAVA AND BHARGAB DAS * Advanced Materials and Sensors Division, CSIR-Central Scientific Instruments Organization, Sector

More information

SA210-Series Scanning Fabry Perot Interferometer

SA210-Series Scanning Fabry Perot Interferometer 435 Route 206 P.O. Box 366 PH. 973-579-7227 Newton, NJ 07860-0366 FAX 973-300-3600 www.thorlabs.com technicalsupport@thorlabs.com SA210-Series Scanning Fabry Perot Interferometer DESCRIPTION: The SA210

More information

Holography as a tool for advanced learning of optics and photonics

Holography as a tool for advanced learning of optics and photonics Holography as a tool for advanced learning of optics and photonics Victor V. Dyomin, Igor G. Polovtsev, Alexey S. Olshukov Tomsk State University 36 Lenin Avenue, Tomsk, 634050, Russia Tel/fax: 7 3822

More information

Quantum-Well Semiconductor Saturable Absorber Mirror

Quantum-Well Semiconductor Saturable Absorber Mirror Chapter 3 Quantum-Well Semiconductor Saturable Absorber Mirror The shallow modulation depth of quantum-dot saturable absorber is unfavorable to increasing pulse energy and peak power of Q-switched laser.

More information

High-Resolution AWG-based fiber bragg grating interrogator Pustakhod, D.; Kleijn, E.; Williams, K.A.; Leijtens, X.J.M.

High-Resolution AWG-based fiber bragg grating interrogator Pustakhod, D.; Kleijn, E.; Williams, K.A.; Leijtens, X.J.M. High-Resolution AWG-based fiber bragg grating interrogator Pustakhod, D.; Kleijn, E.; Williams, K.A.; Leijtens, X.J.M. Published in: IEEE Photonics Technology Letters DOI: 10.1109/LPT.2016.2587812 Published:

More information

Design and applications of fiber Bragg grating sensors for structural health monitoring

Design and applications of fiber Bragg grating sensors for structural health monitoring Design and applications of fiber Bragg grating sensors for structural health monitoring *H.N. Li 1), L. Ren 2), D.S. Li 3), T.H. Yi 4) 1), 2 ), 3), 4) Dalian University of Technology, Dalian, Liaoning,

More information

Dynamic Strain Measurement Using Improved Bonding Fiber Bragg Grating

Dynamic Strain Measurement Using Improved Bonding Fiber Bragg Grating 17th World Conference on Nondestructive Testing, 5-8 Oct 008, Shanghai, China Dynamic Strain Measurement Using Improved Bonding Fiber Bragg Grating Gwo-shyang HWANG, Chien-ching MA Department of Mechanical

More information

Effect of SNR of Input Signal on the Accuracy of a Ratiometric Wavelength Measurement System

Effect of SNR of Input Signal on the Accuracy of a Ratiometric Wavelength Measurement System Dublin Institute of Technology ARROW@DIT Articles School of Electrical and Electronic Engineering 2007-05-01 Effect of SNR of Input Signal on the Accuracy of a Ratiometric Wavelength Measurement System

More information

Interface Module. 2. Airworthiness Programs [3], Ageless Systems.

Interface Module. 2. Airworthiness Programs [3], Ageless Systems. Distributed Optical Fibre Smart Sensors for Structural Health Monitoring: A Smart Transducer Interface Module Graham Wild 1, Steven Hinckley 2 Optical Research Laboratory, Centre for Communications Engineering

More information

DWDM FILTERS; DESIGN AND IMPLEMENTATION

DWDM FILTERS; DESIGN AND IMPLEMENTATION DWDM FILTERS; DESIGN AND IMPLEMENTATION 1 OSI REFERENCE MODEL PHYSICAL OPTICAL FILTERS FOR DWDM SYSTEMS 2 AGENDA POINTS NEED CHARACTERISTICS CHARACTERISTICS CLASSIFICATION TYPES PRINCIPLES BRAGG GRATINGS

More information

Polarization Dependence of an Edge Filter Based on Singlemode-Multimode-Singlemode Fibre

Polarization Dependence of an Edge Filter Based on Singlemode-Multimode-Singlemode Fibre Dublin Institute of Technology ARROW@DIT Articles School of Electrical and Electronic Engineering 21-1-1 Polarization Dependence of an Edge Filter Based on Singlemode-Multimode-Singlemode Fibre Agus Hatta

More information

Development of High Temperature Acoustic Emission Sensing System Using Fiber Bragg Grating

Development of High Temperature Acoustic Emission Sensing System Using Fiber Bragg Grating PHOTONIC SENSORS / Vol., No. 1, 1: 5 Development of High Temperature Acoustic Emission Sensing System Using Fiber Bragg Grating Dandan PANG 1,*, Qingmei SUI 3, Ming WANG 1,, Dongmei GUO 1, and Yaozhang

More information

Solid-state 488-nm laser based on external-cavity frequency doubling of a multi-longitudinal mode semiconductor laser

Solid-state 488-nm laser based on external-cavity frequency doubling of a multi-longitudinal mode semiconductor laser Solid-state 488-nm laser based on external-cavity frequency doubling of a multi-longitudinal mode semiconductor laser Vincent Issier a, Boris Kharlamov *a, Thomas Kraft a, Andy Miller a, David Simons a,

More information

Distributed sensing, communications, and power in optical Fibre Smart Sensor networks for structural health monitoring

Distributed sensing, communications, and power in optical Fibre Smart Sensor networks for structural health monitoring Edith Cowan University Research Online ECU Publications Pre. 2011 2010 Distributed sensing, communications, and power in optical Fibre Smart Sensor networks for structural health monitoring Graham Wild

More information

Ratiometric Wavelength Monitor Based on Singlemode-Multimode-Singlemode Fiber Structure

Ratiometric Wavelength Monitor Based on Singlemode-Multimode-Singlemode Fiber Structure Dublin Institute of Technology ARROW@DIT Articles School of Electrical and Electronic Engineering 8-1-1 Ratiometric Wavelength Monitor Based on Singlemode-Multimode-Singlemode Fiber Structure Agus Hatta

More information

Fiber-optic resonator sensors based on comb synthesizers

Fiber-optic resonator sensors based on comb synthesizers Invited Paper Fiber-optic resonator sensors based on comb synthesizers G. Gagliardi * Consiglio Nazionale delle Ricerche-Istituto Nazionale di Ottica (INO) via Campi Flegrei 34, Complesso. A. Olivetti

More information

Numerical Examination on Transmission Properties of FBG by FDTD Method

Numerical Examination on Transmission Properties of FBG by FDTD Method Journal of Information Hiding and Multimedia Signal Processing c 2017 ISSN 2073-4212 Ubiquitous International Volume 8, Number 6, November 2017 Numerical Examination on Transmission Properties of FBG by

More information

Thermal tuning of volume Bragg gratings for high power spectral beam combining

Thermal tuning of volume Bragg gratings for high power spectral beam combining Thermal tuning of volume Bragg gratings for high power spectral beam combining Derrek R. Drachenberg, Oleksiy Andrusyak, Ion Cohanoschi, Ivan Divliansky, Oleksiy Mokhun, Alexei Podvyaznyy, Vadim Smirnov,

More information

Modeling of ring resonators as optical Filters using MEEP

Modeling of ring resonators as optical Filters using MEEP Modeling of ring resonators as optical Filters using MEEP I. M. Matere, D. W. Waswa, J Tonui and D. Kiboi Boiyo 1 Abstract Ring Resonators are key component in modern optical networks. Their size allows

More information

Motivation. Composite Rotating Structures. SHM Applications. <Composite High. <Composite Fan Blade. < Wind Turbine blade > Speed Rotor (HSCL Lab)>

Motivation. Composite Rotating Structures. SHM Applications. <Composite High. <Composite Fan Blade. < Wind Turbine blade > Speed Rotor (HSCL Lab)> Noncontact Sensing with Rotary Optical Radial Coupler (RORC) using C-lens Khazar Hayat, Prof. Sung Kyu Ha Motivation Structural Health Monitoring (SHM) of Critical Rotary Components SHM Components Rotating

More information

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS By Jason O Daniel, Ph.D. TABLE OF CONTENTS 1. Introduction...1 2. Pulse Measurements for Pulse Widths

More information

Design & Analysis the parameters of strain based FBG sensors using Optigrating

Design & Analysis the parameters of strain based FBG sensors using Optigrating Design & Analysis the parameters of strain based FBG sensors using Optigrating Azhar Shadab, Nagma Jurel, Priya Sarswat, 1Assistant Professor, Department of ECE, Anand Engineering College-Agra,282007 2

More information