HMC540SLP3E v db LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, GHz

Size: px
Start display at page:

Download "HMC540SLP3E v db LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, GHz"

Transcription

1 HMC54SLP3E v.95 LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR,. - 8 GHz Typical Applications Features The HMC54SLP3E is ideal for both RF and IF applications: Cellular Infrastructure Wireless Infrastructure Microwave Radio & VSAT Test Equipment and Sensors Functional Diagram LSB Steps to 5 ±.2 Typical Step Error Low Insertion Loss: =< High IP3: +56 m Single Control Line Per Bit TTL/CMOS Compatible Control Single +3.3/+5V Supply 3x3 mm SMT Package ESD rating: Class 2 (2kV HBM) Drop-in Replacement for HMC54LP3E General Description The HMC54SLP3E is a broadband 4-bit Silicon IC digital attenuator in a low cost leadless surface mount package. This single positive control line per bit digital attenuator utilizes off chip AC ground capacitors for near DC operation, making it suitable for a wide variety of RF and IF applications. Covering. to 8 GHz, the insertion loss is less than typical. The attenuator bit values are (LSB), 2, 4 and 8 for a total attenuation of 5. Attenuation accuracy is excellent at ±.2 typical step error. The attenuator also features a IIP3 of +56m. Four TTL/CMOS control inputs are used to select each attenuation state. It can operate with a single Vdd ranging from +3.3V to 5V. Electrical Specifications, T A = +25 C, With Vdd = +5V & Vctl = /+5V (Unless Otherwise Noted) Insertion Loss Parameter Frequency (GHz) Min. Typ. Max. Units GHz GHz GHz GHz GHz Attenuation Range. - 8 GHz 5 Return Loss (RF & RF2, All Atten. States) Attenuation Accuracy: (Referenced to Insertion Loss) All States GHz GHz GHz. -. GHz GHz GHz GHz 5.5 GHz - 8 GHz ± (.2 + 2% of Atten. Setting) Max. ± (.2 + 3% of Atten. Setting) Max. ± (.3 + 5% of Atten. Setting) Max. ± (.4 + 8% of Atten. Setting) Max. ± (.5 + 9% of Atten. Setting) Max. rights of of third parties that may result from its use. Specifications subject to change without notice. No license is is granted by by implication or or otherwise under any patent or patent rights of of Analog Devices. Trademarks Trademarks and and registered registered trademarks trademarks are are the the property property of of their their respective respective owners. owners. For price, delivery, and to place orders: Analog One Technology Way, P.O. Box 96, Norwood, MA Phone: Order online at

2 HMC54SLP3E v.95 LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR,. - 8 GHz Frequency Response Plots up to 6 GHz Insertion Loss Parameter Frequency (GHz) Min. Typ. Max. Units Input Power for. Compression. - 8 GHz 3 m Input Third Order Intercept Point (Two-Tone Input Power= 2 m Each Tone) Switching Characteristics trise, tfall (/9% RF) ton, toff (5% CTL to /9% RF) REF - 4 States 5-5 States. - 8 GHz DC -8 GHz Return Loss RF, RF m ns ns INSERTION LOSS () RETURN LOSS () C +85 C -4 C IL Normalized Attenuation Bit Error vs. Attenuation State 2 NORMALIZED ATTENUATION () BIT ERROR () ATTENUATION STATE () MHz 5 MHz GHz 2 GHz 3 GHz 4 GHz 5 GHz 5.5 GHz For price, delivery, and to place orders: Analog One Technology For price, Way, delivery, P.O. and Box to 96, place Norwood, orders: Analog MA Phone: Order online One at Technology Way, P.O. Box 96, Norwood, MA Phone: Order online at 2

3 HMC54SLP3E v.95 LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR,. - 8 GHz Bit Error vs. Frequency.5 Relative Phase vs. Frequency 4 Step Error vs Frequency (Major States) STEP ERROR () BIT ERROR () RELATIVE PHASE (deg) For price, delivery, and to place orders: Analog One Technology For price, Way, delivery, P.O. and Box to 96, place Norwood, orders: Analog MA Phone: Order online One at Technology Way, P.O. Box 96, Norwood, MA Phone: Order online at

4 HMC54SLP3E v.95 LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR,. - 8 GHz Frequency Response Plots up to GHz Insertion Loss Return Loss RF, RF2 INSERTION LOSS () C +85 C -4 C Normalized Attenuation RETURN LOSS () IL 2 4 Bit Error vs. Attenuation State NORMALIZED ATTENUATION () BIT ERROR () ATTENUATION STATE () GHz 4 GHz 5 GHz 6 GHz 7 GHz 8 GHz Bit Error vs. Frequency BIT ERROR () Relative Phase vs. Frequency RELATIVE PHASE (deg) For price, delivery, and to place orders: Analog One Technology For price, Way, delivery, P.O. and Box to 96, place Norwood, orders: Analog MA Phone: Order online One at Technology Way, P.O. Box 96, Norwood, MA Phone: Order online at 4

5 HMC54SLP3E v.95 LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR,. - 8 GHz Step Error vs Frequency (Major States).5 STEP ERROR () For price, delivery, and to place orders: Analog One Technology For price, Way, delivery, P.O. and Box to 96, place Norwood, orders: Analog MA Phone: Order online One at Technology Way, P.O. Box 96, Norwood, MA Phone: Order online at

6 HMC54SLP3E v.95 LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR,. - 8 GHz Power Handling up to 8 GHz Input Third Order Intercept Point over Temp., 5V ( MHz - 8 GHz) 6 Input Third Order Intercept Point over Temp., 3.3V ( MHz - 8 GHz) 6 IP3 (m) C +85C -4C. and Input Compression Point, 5V ( MHz - 8 GHz) 36 IP3 (m) C +85C -4C Input Compression Point, Over Temp., 5V ( MHz - 8 GHz) 36 INPUT COMPRESSION (m) INPUT COMPRESSION (m) C +85 C -4 C. and Input Compression Point, 3.3V ( MHz - 8 GHz) INPUT COMPRESSION (m) Input Compression Point, Over Temp., 3.3V ( MHz - 8 GHz) INPUT COMPRESSION (m) C +85 C -4 C For price, delivery, and to place orders: Analog One Technology For price, Way, delivery, P.O. and Box to 96, place Norwood, orders: Analog MA Phone: Order online One at Technology Way, P.O. Box 96, Norwood, MA Phone: Order online at 6

7 HMC54SLP3E v.95 LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR,. - 8 GHz Absolute Maximum Ratings Recommended Operation Ratings RF Input Power at 85 C RF Input Power at 5 C +27 m +25 m Bias Voltage (Vdd) -.3V to 5.4V Control Voltage Range (V to V4) Channel Temperature 4 C Thermal Resistance (at maximum power dissipation) -.3V to Vdd +.5V C/W ESD Sensitivity (HBM) Class 2 Storage Temperature -65 to +5 C RF Input Power at 85 C +24 m RF Input Power at 5 C +23 m Bias Voltage (Vdd) 3V to 5.4V Control Voltage Range (V to V4) to Vdd Operating Temperature -4 to +5 C ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS Bias Voltage & Current Vdd (V) Control Voltage Idd (Typ.) (ma) State Vdd = +3.3V Vdd = +5V Low < ua to < ua High 2 to 25 ua 2 to 35 ua Truth Table V 8 Control Voltage Input V2 4 V3 2 V4 High High High High Attenuation State RF - RF2 Reference I.L. High High High Low High High Low High 2 High Low High High 4 Low High High High 8 Low Low Low Low 5 Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected. 7 For price, delivery, and to place orders: Analog One Technology For price, Way, delivery, P.O. and Box to 96, place Norwood, orders: Analog MA Phone: Order online One at Technology Way, P.O. Box 96, Norwood, MA Phone: Order online at

8 HMC54SLP3E v.95 LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR,. - 8 GHz Outline Drawing NOTES:. LEADFRAME MATERIAL: COPPER ALLOY 2. DIMENSIONS ARE IN INCHES [MILLIMETERS] 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE 4. PAD BURR LENGTH SHALL BE.5mm MAXIMUM. PAD BURR HEIGHT SHALL BE.5mm MAXIMUM. 5. PACKAGE WARP SHALL NOT EXCEED.5mm. 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND. 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN. Package Information Part Number Package Body Material Lead Finish MSL Rating Package Marking [3] [2] H54S HMC54SLP3E RoHS-compliant Low Stress Injection Molded Plastic % matte Sn MSL3 XXXX [] Max peak reflow temperature of 235 C [2] Max peak reflow temperature of 26 C [3] 4-Digit lot number XXXX For price, delivery, and to place orders: Analog One Technology For price, Way, delivery, P.O. and Box to 96, place Norwood, orders: Analog MA Phone: Order online One at Technology Way, P.O. Box 96, Norwood, MA Phone: Order online at 8

9 HMC54SLP3E v.95 LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR,. - 8 GHz Pin Descriptions Pin Number Function Description Interface Schematic Vdd Supply Voltage. 2, RF, RF2 3, 7, 9,, 2 N/C 4-6, 8 ACG - ACG4 This pin is DC coupled and matched to 5 Ohm. Blocking capacitors are required. Select value based on lowest frequency of operation. These pins should be connected to PCB RF ground to maximize performance. External capacitor to ground is required. Select value for lowest frequency of operation. Place capacitor as close to pins as possible. 3-6 V - V4 See truth table and control voltage table. GND Package bottom has an exposed metal paddle that must be connected to RF/DC Ground. Application Circuit Recommended Component Values C - C3, pf ± % C4, C5 33 pf ± % 9 For price, delivery, and to place orders: Analog One Technology For price, Way, delivery, P.O. and Box to 96, place Norwood, orders: Analog MA Phone: Order online One at Technology Way, P.O. Box 96, Norwood, MA Phone: Order online at

10 HMC54SLP3E v.95 LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR,. - 8 GHz Evaluation PCB List of Materials for Evaluation PCB EVHMC54SLP3 [] Item Description J, J2 PCB Mount SMA Connector TP - TP6 Thru Hole Mount Test Point C, C2, C6 pf Capacitor, 42 Pkg. C8, C 33 pf Capacitor, 42 Pkg. U PCB [2] HMC54SLP3E Digital Attenuator 629- Evaluation PCB [] Reference this number when ordering complete evaluation PCB [2] Circuit Board Material: Rogers 435 The circuit board used in the application should use RF circuit design techniques. Signal lines should have 5 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Analog Devices upon request. For price, delivery, and to place orders: Analog One Technology For price, Way, delivery, P.O. and Box to 96, place Norwood, orders: Analog MA Phone: Order online One at Technology Way, P.O. Box 96, Norwood, MA Phone: Order online at

Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz Attenuation Range DC GHz 31.5 db

Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz Attenuation Range DC GHz 31.5 db Typical Applications The is ideal for: 3G Infrastructure & access points Cellular/3G, LTE & UMB WiMAX, WiBN & Fixed Wireless Test Equipment and Sensors GSM, WCDMA & TD-SCDMA Functional Diagram Features.5

More information

HMC468LP3 / 468LP3E v

HMC468LP3 / 468LP3E v Typical Applications 1 LSB GaAs MMIC 3-BIT DIGITAL Features The HMC468LP3 / HMC468LP3E is ideal for: Cellular; UMTS/3G Infrastructure Fixed Wireless & WLL Microwave Radio & VSAT Test Equipment Functional

More information

Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz GHz Attenuation Range DC - 5.

Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz GHz Attenuation Range DC - 5. 5 Typical Applications HMC54LP3 / 54LP3E v.65 1 LSB GaAs MMIC 4-BIT DIGITAL Features The HMC54LP3 / HMC54LP3E is ideal for both RF and IF applications: Cellular Infrastructure ISM, MMDS, WLAN, WiMAX, WiBro

More information

OBSOLETE. Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz Attenuation Range DC - 5.

OBSOLETE. Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz Attenuation Range DC - 5. 5 Typical Applications HMC54LP3 / 54LP3E v.65 1 LSB GaAs MMIC 4-BIT DIGITAL Features The HMC54LP3 / HMC54LP3E is ideal for both RF and IF applications: Cellular Infrastructure ISM, MMDS, WLAN, WiMAX, WiBro

More information

OBSOLETE. = +25 C, With Vdd = +5V & Vctl = 0/+5V. Parameter Frequency Min. Typ. Max. Units DC - 4 GHz GHz Attenuation Range DC - 10 GHz 10 db

OBSOLETE. = +25 C, With Vdd = +5V & Vctl = 0/+5V. Parameter Frequency Min. Typ. Max. Units DC - 4 GHz GHz Attenuation Range DC - 10 GHz 10 db Typical Applications The HMC8LP3E is ideal for: Test Equipment and Sensors ISM, MMDS, WLAN, WiMAX, WiBro Microwave Radio & VSAT Cellular Infrastructure Functional Diagram HMC8LP3E v.11 1 GaAs MMIC 1-BIT

More information

Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz Attenuation Range DC GHz 31.5 db

Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz Attenuation Range DC GHz 31.5 db v..5 LSB GaAs MMIC 6-BIT DIGITAL Typical Applications The is ideal for: 3G Infrastructure & access points Cellular/3G, LTE & UMB WiMAX, WiBN & Fixed Wireless Test Equipment and Sensors GSM, WCDMA & TD-SCDMA

More information

OBSOLETE. Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz. Attenuation Range DC - 3 GHz 31 db

OBSOLETE. Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz. Attenuation Range DC - 3 GHz 31 db 5 Typical Applications The HMC47LP3(E) is ideal for: Cellular; UMTS/3G Infrastructure ISM, MMDS, WLAN, WiMAX Microwave Radio & VSAT Test Equipment and Sensors Functional Diagram HMC47LP3 / 47LP3E v4.118

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK 5 Typical Applications The HMC472LP4(E)

More information

Features. Parameter Frequency (GHz) Min. Typ. Max. Units GHz GHz GHz. Attenuation Range GHz 15.

Features. Parameter Frequency (GHz) Min. Typ. Max. Units GHz GHz GHz. Attenuation Range GHz 15. v.91.5 db LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR,.1-33 GHz Typical Applications The HMC941LP4 / HMC941LP4E is ideal for: Fiber Optics & Broadband Telecom Microwave Radio & VSAT Military Radios, Radar &

More information

OBSOLETE. = +25 C, Vdd = Vs= +5V, Vctl= 0/ +5V. Parameter Frequency Min. Typ. Max. Units DC GHz 37. db Gain (Maximum Gain State)

OBSOLETE. = +25 C, Vdd = Vs= +5V, Vctl= 0/ +5V. Parameter Frequency Min. Typ. Max. Units DC GHz 37. db Gain (Maximum Gain State) v.1212.5 db LSB GaAs MMIC 6-BIT DIGITAL Typical Applications The is ideal for: IF & RF Applications Cellular/3G Infrastructure WiBro / WiMAX / 4G Microwave Radio & VSAT Test Equipment and Sensors Functional

More information

HMC542LP4 / 542LP4E v

HMC542LP4 / 542LP4E v 5 Typical Applications The HMC542LP4 / HMC542LP4E is ideal for both RF and IF applications: Cellular/PCS/3G Infrastructure ISM, MMDS, WLAN, WiMAX, & WiBro Microwave Radio & VSAT Test Equipment and Sensors

More information

= +25 C, With Vee = -5V & VCTL= 0/-5V

= +25 C, With Vee = -5V & VCTL= 0/-5V v.3.5db LSB GaAs MMIC 6-BIT DIGITAL Typical Applications Features The is ideal for: Basestation Infrastructure Fiber Optics & Broadband Telecom Microwave & VSAT Radios Military & Space Test Instrumentation

More information

Features. Parameter Frequency (GHz) Min. Typ. Max. Units GHz GHz GHz. Attenuation Range GHz 15.

Features. Parameter Frequency (GHz) Min. Typ. Max. Units GHz GHz GHz. Attenuation Range GHz 15. v.6.5 LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR,. - 33 GHz Typical Applications Features The is ideal for: Fiber Optics & Broadband Telecom Microwave Radio & VSAT Military Radios, Radar & ECM Space Applications

More information

Insertion Loss INSERTION LOSS () C +85C -4C Normalized Attenuation (Only Major States are Shown)

Insertion Loss INSERTION LOSS () C +85C -4C Normalized Attenuation (Only Major States are Shown) 5 Typical Applications The HMC35LP4 / HMC35LP4E is ideal for: Cellular/3G Infrastructure Fixed Wireless, WiMax & WiBro Test Instrumentation Functional Diagram.5 LSB GaAs MMIC 5-BIT SERIAL Features.5 LSB

More information

Features. = +25 C, With Vdd = Vdd1 = +5V, Vss = -5V. Parameter Frequency (GHz) Min. Typ. Max. Units GHz GHz

Features. = +25 C, With Vdd = Vdd1 = +5V, Vss = -5V. Parameter Frequency (GHz) Min. Typ. Max. Units GHz GHz v1.1116 Typical Applications The is ideal for: Features 1. LSB Steps to 3 Fiber Optics & Broadband Telecom Microwave Radio & VSAT Military Radios, Radar & ECM Space Applications Sensors Test & Measurement

More information

= +25 C, Vdd = Vs= P/S= +5V

= +25 C, Vdd = Vs= P/S= +5V v.3.5 db LSB GaAs MMIC 6-BIT DIGITAL VARIABLE GAIN Typical Applications The HMC68ALP5E is ideal for: IF & RF Applications Cellular/3G Infrastructure WiBro / WiMAX / 4G Microwave Radio & VSAT Test Equipment

More information

= +25 C, with Vcc = +5V. Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz Attenuation Range DC GHz 31.

= +25 C, with Vcc = +5V. Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz Attenuation Range DC GHz 31. Typical Applications The is ideal for: Cellular/PCS/3G Infrastructure ISM, MMDS, WLAN, WiMAX, & WiBro Microwave Radio & VSAT Test Equipment and Sensors Functional Diagram Features.5 db LSB Steps to 31.5

More information

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units Typical Applications Features The HMC232ALP4E is ideal for: Telecom Infrastructure Microwave Radio & VSAT Military Radios, Radar & ECM Test Instrumentation Functional Diagram Isolation: 57 @ 3 GHz 50 @

More information

Parameter Frequency Min. Typ. Max. Units GHz GHz Attenuation Range GHz 31.5 db

Parameter Frequency Min. Typ. Max. Units GHz GHz Attenuation Range GHz 31.5 db v.37. db LSB GaAs MMIC 6-BIT DIGITAL POSITIVE CONTROL ATTENUATOR,. - 8. GHz Typical Applications Features ATTENUATORS - SMT The HMCALP3E is ideal for: WLAN & Point-to-Multi-Point Fiber Optics & Broadband

More information

Features OBSOLETE. = +25 C, With 0/+5V Control, 50 Ohm System

Features OBSOLETE. = +25 C, With 0/+5V Control, 50 Ohm System Typical Applications This switch is suitable for usage in 50- Ohm or 75-Ohm systems: Broadband Fiber Optics Switched Filter Banks Wireless below 8 GHz Functional Diagram Features Broadband Performance:

More information

Features OBSOLETE. = +25 C, With 0/+5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units

Features OBSOLETE. = +25 C, With 0/+5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units v5.85 Typical Applications Features The HMC348LP3 / HMC348LP3E is ideal for: 75 Ohm Systems CATV Signal Distribution, Cable Modem Headend & DBS IF Switching 5 Ohm Systems Basestation Infrastructure & Test

More information

Features. Parameter Frequency Min. Typ. Max. Units. Return Loss Off State DC - 20 GHz 13 db

Features. Parameter Frequency Min. Typ. Max. Units. Return Loss Off State DC - 20 GHz 13 db Typical Applications The is ideal for: Telecom Infrastructure Microwave Radio & VSAT Military & Space Hybrids Test Instrumentation SATCOM & Sensors Functional Diagram Features Broadband Performance: DC

More information

HMC849ALP4CE SWITCHES - SPDT - SMT. HIGH ISOLATION SPDT NON-REFLECTIVE SWITCH, DC - 6 GHz. Typical Applications. Features. Functional Diagram

HMC849ALP4CE SWITCHES - SPDT - SMT. HIGH ISOLATION SPDT NON-REFLECTIVE SWITCH, DC - 6 GHz. Typical Applications. Features. Functional Diagram Typical Applications The is ideal for: Cellular/4G Infrastructure WiMAX, WiBro & Fixed Wireless Automotive Telematics Mobile Radio Test Equipment Functional Diagram Features High Isolation: up to Single

More information

HMC349LP4C / 349LP4CE

HMC349LP4C / 349LP4CE Typical Applications The HMC349LP4C / HMC349LP4CE is ideal for: Basestation Infrastructure MMDS & 3.5 GHz WLL CATV/CMTS Test Instrumentation Functional Diagram Features High Isolation: 67 @ 1 GHz 62 @

More information

Features OBSOLETE. = +25 C, Rbias = 0 Ohm. Bypass Mode Failsafe Mode Parameter

Features OBSOLETE. = +25 C, Rbias = 0 Ohm. Bypass Mode Failsafe Mode Parameter 7 Typical Applications The HMC668LP3(E) is ideal for: Cellular/3G and LTE/WiMAX/4G BTS & Infrastructure Repeaters and Femtocells Tower Mounted Amplifiers Test & Measurement Equipment Functional Diagram

More information

HMC629ALP4E. 3 db LSB GaAs MMIC 4-BIT DIGITAL ATTENUATOR, DC - 10GHz. Typical Applications. Functional Diagram. General Description

HMC629ALP4E. 3 db LSB GaAs MMIC 4-BIT DIGITAL ATTENUATOR, DC - 10GHz. Typical Applications. Functional Diagram. General Description Typical Applications The is ideal for: Cellular/3G Infrastructure WiBro / WiMAX / 4G Microwave Radio & VSAT Test Equipment and Sensors IF & RF Applications Functional Diagram Features 3 LSB Steps to 45

More information

Features. = +25 C, 50 Ohm system

Features. = +25 C, 50 Ohm system v6.312 Typical Applications Features The E is ideal for: Point-to-Point Radio VSAT Radio Test Instrumentation Microwave Sensors Military, ECM & Radar Functional Diagram Wide Bandwidth: 5-26.5 GHz Excellent

More information

= +25 C, Vdd = Vs= P/S= +5V

= +25 C, Vdd = Vs= P/S= +5V v3. HMC68LP5 / 68LP5E.5 db LSB GaAs MMIC 6-BIT DIGITAL VARIABLE GAIN AMPLIFIER w/ SERIAL CONTROL, DC - GHz Variable gain amplifiers - digital - SMT Typical Applications The HMC68LP5(E) is ideal for: IF

More information

Features. = +25 C, With 0/+5V Control, 50 Ohm System

Features. = +25 C, With 0/+5V Control, 50 Ohm System Typical Applications This switch is suitable for usage in 50- Ohm or 75-Ohm systems: Broadband Fiber Optics Switched Filter Banks Wireless below 8 GHz Features Broadband Performance: DC - 8 GHz High Isolation:

More information

DC GHz GHz

DC GHz GHz 8 Typical Applications The HMC624LP4(E) is ideal for: Cellular/3G Infrastructure WiBro / WiMAX / 4G Microwave Radio & VSAT Test Equipment and Sensors IF & RF Applications Functional Diagram Features.5

More information

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units Typical Applications The is ideal for: Basestation Infrastructure Fiber Optics & Broadband Telecom Microwave Radio & VSAT Military Radios, Radar, & ECM Test Instrumentation Functional Diagram Features

More information

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units DC GHz

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units DC GHz Typical Applications This switch is suitable for usage in 50- Ohm or 75-Ohm systems: Broadband Fiber Optics Switched Filter Banks Wireless below 8 GHz Functional Diagram Features Broadband Performance:

More information

HMC274QS16 / 274QS16E. Features OBSOLETE. = +25 C, Vdd = +3V to +5V & Vctl = 0/Vdd. Parameter Frequency Min. Typical Max. Units

HMC274QS16 / 274QS16E. Features OBSOLETE. = +25 C, Vdd = +3V to +5V & Vctl = 0/Vdd. Parameter Frequency Min. Typical Max. Units Typical Applications Functional Diagram v1. The HMC274QS16 / HMC274QS16E is ideal for: Cellular/PCS/3G Infrastructure 2.4 GHz ISM Radios Wireless Data HMC274QS16 / 274QS16E 1 LSB GaAs IC -BIT DIGITAL ATTENUATOR,.7-2.7

More information

Features. = +25 C, 50 Ohm system. DC - 10GHz DC - 14 Ghz DC - 10 GHz DC - 14 GHz Return Loss DC - 14 GHz 5 10 db

Features. = +25 C, 50 Ohm system. DC - 10GHz DC - 14 Ghz DC - 10 GHz DC - 14 GHz Return Loss DC - 14 GHz 5 10 db Typical Applications v2.717 Features The is ideal for: Basestation Infrastructure Fiber Optics & Broadband Telecom Microwave Radio & VSAT Military Radios, Radar, & ECM Test Instrumentation Functional Diagram

More information

OBSOLETE. Output Power for 1 db Compression dbm Output Third Order Intercept Point (Two-Tone Output Power= 12 dbm Each Tone)

OBSOLETE. Output Power for 1 db Compression dbm Output Third Order Intercept Point (Two-Tone Output Power= 12 dbm Each Tone) Designer s Kit Available v.211t Typical Applications The is ideal for: Cellular/3G Infrastructure WiBro / WiMAX / 4G Microwave Radio & VSAT Test Equipment and Sensors IF & RF Applications Functional Diagram

More information

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units. DC - 20 GHz 2

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units. DC - 20 GHz 2 Typical Applications The is ideal for: Basestation Infrastructure Fiber Optics & Broadband Telecom Microwave Radio & VSAT Military Radios, Radar, & ECM Test Instrumentation Functional Diagram Features

More information

SURFACE MOUNT PHEMT 2 WATT POWER AMPLIFIER,

SURFACE MOUNT PHEMT 2 WATT POWER AMPLIFIER, v2.617 AMPLIFIER, - 12 GHz Typical Applications The is ideal for use as a power amplifier for: Point-to-Point Radios Point-to-Multi-Point Radios Test Equipment and Sensors Military End-Use Features Saturated

More information

Features +3V +5V GHz

Features +3V +5V GHz Typical Applications The is ideal for: Cellular/4G Infrastructure WiMAX, WiBro & Fixed Wireless Automotive Telematics Mobile Radio Test Equipment Functional Diagram Features High Isolation: up to Single

More information

Features OBSOLETE. = +25 C, Vdd = +3V to +5V & Vctl = 0/Vdd (Unless Otherwise Stated) Parameter Frequency Min. Typical Max. Units

Features OBSOLETE. = +25 C, Vdd = +3V to +5V & Vctl = 0/Vdd (Unless Otherwise Stated) Parameter Frequency Min. Typical Max. Units Typical Applications The HMC288MS8 / HMC288MS8E is ideal for: Cellular PCS, ISM, MMDS WLL applications Functional Diagram 2 LSB GaAs MMIC 3-BIT DIGITAL ATTENUATOR,.7-3.7 GHz Features 2 LSB Steps to 14

More information

HMC629ALP4E. 3 db LSB GaAs MMIC 4-BIT DIGITAL ATTENUATOR, DC - 10GHz. Typical Applications. Functional Diagram. General Description

HMC629ALP4E. 3 db LSB GaAs MMIC 4-BIT DIGITAL ATTENUATOR, DC - 10GHz. Typical Applications. Functional Diagram. General Description v1.716 DIGITAL ATTENUATOR, DC - 1GHz Typical Applications The is ideal for: Cellular/3G Infrastructure WiBro / WiMAX / 4G Microwave Radio & VSAT Test Equipment and Sensors IF & RF Applications Functional

More information

Features OBSOLETE. = +25 C, 50 Ohm system, Vdd = +5V. Parameter Frequency Min. Typ. Max. Units GHz

Features OBSOLETE. = +25 C, 50 Ohm system, Vdd = +5V. Parameter Frequency Min. Typ. Max. Units GHz Typical Applications v.91 ATTENUATOR,.5-6. GHz Features The is ideal for: Point-to-Point Radio Cellular/3G & WiMAX/4G Infrastructure Test Instrumentation Microwave Sensors Military, ECM & Radar Functional

More information

HMC307QS16G / 307QS16GE. Features OBSOLETE. = +25 C, Vee = -5V & VCTL= 0/Vee. Parameter Frequency Min. Typical Max. Units DC - 1.

HMC307QS16G / 307QS16GE. Features OBSOLETE. = +25 C, Vee = -5V & VCTL= 0/Vee. Parameter Frequency Min. Typical Max. Units DC - 1. 5 Typical Applications v8.98 HMC37QS16G / 37QS16GE 1 LSB GaAs MMIC 5-BIT DIGITAL Features The HMC37QS16G(E) is ideal for: Cellular PCS, ISM, MMDS Wireless Local Loop Functional Diagram 1 LSB Steps to 31

More information

Features. = +25 C, With Vee = -5V & VCTL= 0/-5V. Attenuation Range DC GHz 31.5 db

Features. = +25 C, With Vee = -5V & VCTL= 0/-5V. Attenuation Range DC GHz 31.5 db v4.64.5 LSB GaAs MMIC 6-BIT DIGITAL Typical Applications The is ideal for: Basestation Infrastructure Fiber Optics & Broadband Telecom Microwave & VSAT Radios Military & Space Test Instrumentation Functional

More information

HMC1095LP4E v db LSB GaAs MMIC 6-BIT 75 Ohms DIGITAL ATTENUATOR, DC - 3 GHz. Typical Applications. Functional Diagram. General Description

HMC1095LP4E v db LSB GaAs MMIC 6-BIT 75 Ohms DIGITAL ATTENUATOR, DC - 3 GHz. Typical Applications. Functional Diagram. General Description v1.713 Typical Applications The is ideal for: CATV/ Sattelite Set Top Boxes CATV Modems CATV Infrastructure Data Network Equipment Functional Diagram Features.5 db LSB Steps to Power-Up State Selection

More information

= +25 C, 50 Ohm System, Vdd = +5V

= +25 C, 50 Ohm System, Vdd = +5V v3.69 HMC68LP4 / 68LP4E VARIABLE GAIN AMPLIFIER, 3-4 MHz Variable gain amplifiers - digital - SMT Typical Applications The HMC68lp4(E) is ideal for: Cellular/3G Infrastructure WiBro / WimaX / 4G Microwave

More information

Parameter Min. Typ. Max. Units Frequency Range GHz

Parameter Min. Typ. Max. Units Frequency Range GHz v.312 27-31. GHz Typical Applications The is ideal for: Point-to-Point Radio Point-to-Multi-Point Radio EW & ECM Subsystems Ka-Band Radar & VSAT Test Equipment Functional Diagram Features Wide Gain Control

More information

HMC596LP4 / HMC596LP4E

HMC596LP4 / HMC596LP4E v1.49 HMC596LP4 / HMC596LP4E MATRIX,.2-3. GHz Typical Applications 4x2 Switch Matrix for.2-3. GHz Applications: DBS LNBs & Multiswitches Cable Modem / CATV Cellular Systems Functional Diagram Features

More information

Gain Control Range db

Gain Control Range db v1.112-12 GHz Typical Applications The is ideal for: Point-to-Point Radio Point-to-Multi-Point Radio EW & ECM Subsystems X-Band Radar Test Equipment & Sensors Functional Diagram Features Wide Gain Control

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v2.49 Typical Applications The HMC536LP2(E)

More information

HMC694LP4 / 694LP4E. Variable gain amplifiers - ANALOG - smt. GaAs MMIC ANALOG VARIABLE GAIN AMPLIFIER, 6-17 GHz. Typical Applications

HMC694LP4 / 694LP4E. Variable gain amplifiers - ANALOG - smt. GaAs MMIC ANALOG VARIABLE GAIN AMPLIFIER, 6-17 GHz. Typical Applications v2.1 Typical Applications The HMC694LP4(E) is ideal for: Point-to-Point Radio Point-to-Multi-Point Radio EW & ECM X-Band Radar Test Equipment Features Wide Gain Control Range: 23 db Single Control Voltage

More information

Features. = +25 C, With 0/-5V Control, 50 Ohm system

Features. = +25 C, With 0/-5V Control, 50 Ohm system Typical Applications The HMC27AMS8GE is ideal for applications: CATV MMDS & WirelessLAN Wireless Local Loop Functional Diagram Features Broadband Performance: DC - 8 GHz Very High Isolation: 45 @ 6 GHz

More information

HMC241AQS16 / 241AQS16E

HMC241AQS16 / 241AQS16E v00.1213 Typical Applications Features The HMC241AQS16 & HMC241AQS16E are ideal for: Base Stations & Portable Wireless CATV / DBS Wireless Local Loop Test Equipment Functional Diagram RoHS Compliant Product

More information

Features. = +25 C, Vdd = +3V to +5V & Vctl = 0/Vdd (Unless Otherwise Stated)

Features. = +25 C, Vdd = +3V to +5V & Vctl = 0/Vdd (Unless Otherwise Stated) Typical Applications Functional Diagram v1.7 The HMC288MS8 / HMC288MS8E is ideal for: Cellular PCS, ISM, MMDS WLL applications HMC288MS8 / 288MS8E 2 LSB GaAs MMIC 3-BIT DIGITAL ATTENUATOR,.7-3.7 GHz Features

More information

HMC662LP3E POWER DETECTORS - SMT. 54 db, LOGARITHMIC DETECTOR, 8-30 GHz. Typical Applications. Features. Functional Diagram. General Description

HMC662LP3E POWER DETECTORS - SMT. 54 db, LOGARITHMIC DETECTOR, 8-30 GHz. Typical Applications. Features. Functional Diagram. General Description Typical Applications The is ideal for: Point-to-Point Microwave Radio VSAT Wideband Power Monitoring Receiver Signal Strength Indication (RSSI) Test & Measurement Functional Diagram Features Wide Input

More information

Features. = +25 C, Vdd= 5V. Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Units. Frequency Range GHz

Features. = +25 C, Vdd= 5V. Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Units. Frequency Range GHz Typical Applications The HMC62LP / HMC62LPE Wideband LNA is ideal for: Telecom Infrastructure Microwave Radio & VSAT Military EW, ECM & C 3 I Test Instrumentation Fiber Optics Functional Diagram Features

More information

HMC245QS16 / 245QS16E. Features OBSOLETE. Parameter Frequency Min. Typ. Max. Units. DC GHz DC GHz DC GHz

HMC245QS16 / 245QS16E. Features OBSOLETE. Parameter Frequency Min. Typ. Max. Units. DC GHz DC GHz DC GHz Typical Applications The HMC245QS16 / HMC245QS16E is ideal for: Basestation Infrastructure CATV / DBS Wireless Local Loop Test Equipment Functional Diagram Features Low Insertion Loss:.5 @ 2. GHz Non-Refl

More information

Features OBSOLETE. Parameter Min. Typ. Max. Units. Frequency Range GHz Insertion Loss 5 7 db. Input Return Loss 16 db

Features OBSOLETE. Parameter Min. Typ. Max. Units. Frequency Range GHz Insertion Loss 5 7 db. Input Return Loss 16 db v1.611 Typical Applications The is ideal for: EW Receivers Weather & Military Radar Satellite Communications Beamforming Modules Phase Cancellation Functional Diagram Features Low RMS Phase Error: 1.2

More information

HMC948LP3E POWER DETECTORS - SMT. 54 db, LOGARITHMIC DETECTOR, 1-23 GHz. Typical Applications. Features. Functional Diagram. General Description

HMC948LP3E POWER DETECTORS - SMT. 54 db, LOGARITHMIC DETECTOR, 1-23 GHz. Typical Applications. Features. Functional Diagram. General Description v.9 HMC948LPE DETECTOR, - GHz Typical Applications The HMC948LPE is ideal for: Point-to-Point Microwave Radio VSAT Wideband Power Monitoring Receiver Signal Strength Indication (RSSI) Test & Measurement

More information

Features. = +25 C, Vdd= +12V, Vgg2= +5V, Idd= 400 ma*

Features. = +25 C, Vdd= +12V, Vgg2= +5V, Idd= 400 ma* Typical Applications The HMC637LP5(E) wideband PA is ideal for: Features P1dB Output Power: +29 dbm Telecom Infrastructure Microwave Radio & VSAT Military & Space Test Instrumentation Fiber Optics Functional

More information

HMC1040LP3CE. Amplifiers - Low Noise - smt. GaAs phemt MMIC LOW NOISE AMPLIFIER, GHz. Features. Typical Applications. General Description

HMC1040LP3CE. Amplifiers - Low Noise - smt. GaAs phemt MMIC LOW NOISE AMPLIFIER, GHz. Features. Typical Applications. General Description v.112 HMC14LP3CE AMPLIFIER, 24-43. GHz Typical Applications This HMC14LP3BE is ideal for: Point-to-Point Radios Test Instrumentation SatCom Transponders & VSAT Industrial Sensors EW & ECM Subsystems Functional

More information

Analog Devices Welcomes Hittite Microwave Corporation

Analog Devices Welcomes Hittite Microwave Corporation Analog Devices Welcomes Hittite Microwave Corporation www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v.915 GaAs MMIC 6-BIT DIGITAL Typical Applications The HMC648ALP6E is ideal for:

More information

= +25 C, With Vee = -5V & Vctl = 0/-5V

= +25 C, With Vee = -5V & Vctl = 0/-5V v.46.5db LSB GaAs MMIC 6-BIT DIGITAL Typical Applications Features The HMC44AG6 is ideal for: Telecom Infrastructure Military Radios, Radar & ECM Space Applications Test Instrumentation Functional Diagram.5

More information

OBSOLETE HMC915LP4E. GaAs MMIC MIXER w/ INTEGRATED LO AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram. General Description

OBSOLETE HMC915LP4E. GaAs MMIC MIXER w/ INTEGRATED LO AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram. General Description v1.5 LO AMPLIFIER,.5-2.7 GHz Typical Applications The is ideal for: PCS / 3G Infrastructure Base Stations & Repeaters WiMAX & WiBro ISM & Fixed Wireless Functional Diagram Features Input IP3: +28 dbm Low

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v3.38 POWER AMPLIFIER, 2-2 GHz Typical

More information

HMC486LP5 / 486LP5E LINEAR & POWER AMPLIFIERS - SMT. SURFACE MOUNT PHEMT 2 WATT POWER AMPLIFIER, 7-9 GHz. Typical Applications.

HMC486LP5 / 486LP5E LINEAR & POWER AMPLIFIERS - SMT. SURFACE MOUNT PHEMT 2 WATT POWER AMPLIFIER, 7-9 GHz. Typical Applications. v2. Typical Applications The HMC486LP5(E) is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios Test Equipment and Sensors Military End-Use Features Saturated Power: +33 dbm @ 2% PAE Output IP3:

More information

HMC695LP4 / HMC695LP4E

HMC695LP4 / HMC695LP4E v.1 Typical Applications The HMC95LP(E) is ideal for: Fiber Optic Applications Point-to-Point Radios Military Radar Functional Diagram Features Output Power: +7 dbm Sub-Harmonic Suppression: >5 dbc SSB

More information

HMC618ALP3E AMPLIFIERS - LOW NOISE - SMT. GaAs SMT phemt LOW NOISE AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram

HMC618ALP3E AMPLIFIERS - LOW NOISE - SMT. GaAs SMT phemt LOW NOISE AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram 7 Typical Applications The is ideal for: Cellular/3G and LTE/WiMAX/4G BTS & Infrastructure Repeaters and Femto Cells Public Safety Radios Functional Diagram v. Electrical Specifications T A = + C, Rbias

More information

HMC546MS8G / 546MS8GE

HMC546MS8G / 546MS8GE v6.89 HMC546MS8G / 546MS8GE GaAs MMIC 2W FAILSAFE SWITCH.2-2.2 GHz Typical Applications The HMC546MS8G(E) is ideal for: LNA Protection, WiMAX, WiBro Cellular/PCS/3G Infrastructure Private Mobile Radio

More information

Features. = +25 C, Vdd = +5 Vdc, 50 Ohm System

Features. = +25 C, Vdd = +5 Vdc, 50 Ohm System v4.19 Typical Applications The HMC174MS8(E) is ideal for: Infrastructure & Repeaters Cellular/3G & WiMAX Portable Wireless LNA Protection Automotive Telematics Test Equipment Features Low Insertion Loss:.5

More information

Features. Parameter Frequency Min. Typ. Max. Units DC GHz DC GHz DC GHz DC GHz DC GHz Isolation DC - 4.

Features. Parameter Frequency Min. Typ. Max. Units DC GHz DC GHz DC GHz DC GHz DC GHz Isolation DC - 4. Typical Applications The is ideal for: Cellular / 4G Infrastructure WiMAX, WiBro & Fixed Wireless Automotive Telematics Mobile Radio Test Equipment Features Input P1: +40 @ Vdd = +8V High Third Order Intercept:

More information

HMC346MS8G / 346MS8GE

HMC346MS8G / 346MS8GE Typical Applications v7.18 Features This attenuator is ideal for use as a VVA for DC - 8 GHz applications: Point-to-Point Radio VSAT Radio Functional Diagram Wide Bandwidth: DC - 8 GHz Low Phase Shift

More information

Features. Gain: 14.5 db. Electrical Specifications [1] [2] = +25 C, Rbias = 825 Ohms for Vdd = 5V, Rbias = 5.76k Ohms for Vdd = 3V

Features. Gain: 14.5 db. Electrical Specifications [1] [2] = +25 C, Rbias = 825 Ohms for Vdd = 5V, Rbias = 5.76k Ohms for Vdd = 3V Typical Applications The HMC77ALP3E is ideal for: Fixed Wireless and LTE/WiMAX/4G BTS & Infrastructure Repeaters and Femtocells Public Safety Radio Access Points Functional Diagram Features Noise Figure:.

More information

HMC368LP4 / 368LP4E FREQ. MULTIPLIERS - ACTIVE - SMT. SMT GaAs PHEMT MMIC AMP-DOUBLER-AMP, 9-16 GHz OUTPUT. Typical Applications.

HMC368LP4 / 368LP4E FREQ. MULTIPLIERS - ACTIVE - SMT. SMT GaAs PHEMT MMIC AMP-DOUBLER-AMP, 9-16 GHz OUTPUT. Typical Applications. v3.5 Typical Applications Microwave Radios & VSAT Fiber Optic Infrastructure Military Communications & Radar Functional Diagram Features Output Power: +15 dbm Wide Input Power Range: to +1 dbm 1 khz SSB

More information

Features OBSOLETE. = +25 C, Vdd = +3.3 Vdc, 50 Ohm System

Features OBSOLETE. = +25 C, Vdd = +3.3 Vdc, 50 Ohm System Typical Applications v1.1 ATTENUATOR,.4-2.2 GHz Features The HMC473MS8 / HMC473MS8E is ideal for: Cellular, UMTS/3G Infrastructure Portable Wireless GPS Functional Diagram RoHS Compliant Product Single

More information

Features = +5V. = +25 C, Vdd 1. = Vdd 2

Features = +5V. = +25 C, Vdd 1. = Vdd 2 v1.11 HMC51LP3 / 51LP3E POWER AMPLIFIER, 5-1 GHz Typical Applications The HMC51LP3(E) is ideal for: Microwave Radio & VSAT Military & Space Test Equipment & Sensors Fiber Optics LO Driver for HMC Mixers

More information

Features. = +25 C, Vdd = +5V, Rbias = 10 Ohms*

Features. = +25 C, Vdd = +5V, Rbias = 10 Ohms* Typical Applications Functional Diagram The HMC36LP3 / HMC36LP3E is ideal for: Cellular/3G Infrastructure Base Stations & Repeaters CDMA, W-CDMA, & TD-SCDMA Private Land Mobile Radio GSM/GPRS & EDGE UHF

More information

HMC284AMS8G / HMC284AMS8GE

HMC284AMS8G / HMC284AMS8GE Typical Applications The is ideal for: Cellular/PCS Base Stations 2.4 GHz ISM 3.5 GHz Wireless Local Loop Functional Diagram Features High Isolation: >45 Positive control: 0/+5V Non-Reflective Design Ultra

More information

Features. = +25 C, Vdd = +5V, 5 dbm Drive Level

Features. = +25 C, Vdd = +5V, 5 dbm Drive Level v1.4 Typical Applications The HMC561LP3E are suitable for: Clock Generation Applications: SONET OC-192 & SDH STM-64 Point-to-Point & VSAT Radios Test Instrumentation Military & Space Functional Diagram

More information

Features. Parameter Min. Typ. Max. Units. Frequency Range 8 12 GHz GHZ. Input Return Loss* GHZ 10 db

Features. Parameter Min. Typ. Max. Units. Frequency Range 8 12 GHz GHZ. Input Return Loss* GHZ 10 db v6.316 MMIC 4-BIT DIGITAL Typical Applications The HMC43LC4B is ideal for: EW Receivers Weather & Military Radar Satellite Communications Beamforming Modules Functional Diagram Features Low RMS Phase Error:

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK Typical Applications The HMC652LP2E

More information

Features. = +25 C, With 0/+5V Control, 50 Ohm System

Features. = +25 C, With 0/+5V Control, 50 Ohm System Typical Applications This switch is suitable for usage in 50-Ohm or 75-Ohm systems: Broadband Fiber Optics Switched Filter Banks Wireless below 8 GHz Functional Diagram Features Broadband Performance:

More information

HMC336MS8G / 336MS8GE. Features OBSOLETE. = +25 C, With 0/+5V Control, 50 Ohm System

HMC336MS8G / 336MS8GE. Features OBSOLETE. = +25 C, With 0/+5V Control, 50 Ohm System Typical Applications This switch is suitable for usage in 50- Ohm or 75-Ohm systems: Broadband Fiber Optics Switched Filter Banks Wireless below 6.0 GHz Functional Diagram Features Broadband Performance:

More information

Features. = +25 C, Vdd = +7V, Idd = 1340 ma [1]

Features. = +25 C, Vdd = +7V, Idd = 1340 ma [1] Typical Applications The HMC591LP5 / HMC591LP5E is ideal for use as a power amplifi er for: Point-to-Point Radios Point-to-Multi-Point Radios Test Equipment & Sensors Military End-Use Space Features Saturated

More information

Features. = +25 C, Vdd1 = Vdd2 = +3.5V, Idd = 80 ma [2]

Features. = +25 C, Vdd1 = Vdd2 = +3.5V, Idd = 80 ma [2] Typical Applications This is ideal for: Features Low Noise Figure: 1.8 db Point-to-Point Radios Point-to-Multi-Point Radios Military & Space Test Instrumentation Functional Diagram High Gain: 19 db High

More information

Features OBSOLETE. Isolation DC GHz db

Features OBSOLETE. Isolation DC GHz db Typical Applications Features - 224 The is ideal for: Cellular / 4G Infrastructure WiMAX, WiBro & Fixed Wireless Automotive Telematics Mobile Radio Test Equipment Functional Diagram Input P1dB: + @ Vdd

More information

Features. = +25 C, Vee = -5V & VCTL= 0/Vee GHz GHz GHz. Attenuation Range DC GHz 31 db. DC - 1.

Features. = +25 C, Vee = -5V & VCTL= 0/Vee GHz GHz GHz. Attenuation Range DC GHz 31 db. DC - 1. v5.112 HMC37QS16G 1 LSB GaAs MMIC 5-BIT DIGITAL Typical Applications The HMC37QS16G is ideal for: Cellular PCS, ISM, MMDS Wireless Local Loop Features 1 LSB Steps to 31 Single Control Line Per Bit +/-.5

More information

Features OBSOLETE. Saturated Output Power (Psat) dbm Output Third Order Intercept (IP3) dbm Supply Current (Idd) ma

Features OBSOLETE. Saturated Output Power (Psat) dbm Output Third Order Intercept (IP3) dbm Supply Current (Idd) ma 7 Typical Applications The HMC667LP2(E) is ideal for: WiMAX, WiBro & Fixed Wireless SDARS & WLAN Receivers Infrastructure & Repeaters Access Points Telematics & DMB Functional Diagram v2.11 Electrical

More information

Features. Parameter Frequency Min. Typ. Max. Units Insertion Loss DC GHz db

Features. Parameter Frequency Min. Typ. Max. Units Insertion Loss DC GHz db v.1212 HMC55A / 55AE Typical Applications The HMC55A / HMC55AE is ideal for: RFID & Electronic Toll Collection (ETC) Tags, Handsets & Portables ISM, WLAN, WiMAX & WiBro Automotive Telematics Test Equipment

More information

HMC662LP3E POWER DETECTORS - SMT. 54 db, LOGARITHMIC DETECTOR, 8-30 GHz. Typical Applications. Features. Functional Diagram. General Description

HMC662LP3E POWER DETECTORS - SMT. 54 db, LOGARITHMIC DETECTOR, 8-30 GHz. Typical Applications. Features. Functional Diagram. General Description v5.94 HMC66LPE DETECTOR, 8 - GHz Typical Applications The HMC66LPE is ideal for: Point-to-Point Microwave Radio VSAT Wideband Power Monitoring Receiver Signal Strength Indication (RSSI) Test & Measurement

More information

Features OBSOLETE. = +25 C, Vcc= 5V [1]

Features OBSOLETE. = +25 C, Vcc= 5V [1] v.41 Typical Applications The is Ideal for: Microwave Radio & VSAT Military Radios, Radar & ECM Test Instrumentation Functional Diagram Electrical Specifications, T A = + C, Vcc= V [1] Features Output

More information

Parameter Min. Typ. Max. Units

Parameter Min. Typ. Max. Units v4.112 Typical Applications The is ideal for: Point-to-Point and Point-to-Multi-Point Radio Military Radar, EW & ELINT Satellite Communications Functional Diagram Features General Description The is a

More information

Features. = +25 C, Vs = +5V. Parameter Min. Typ. Max. Min. Typ. Max. Units Frequency Range MHz Gain

Features. = +25 C, Vs = +5V. Parameter Min. Typ. Max. Min. Typ. Max. Units Frequency Range MHz Gain Typical Applications Functional Diagram The HMC32LP3 / HMC32LP3E is ideal for basestation receivers: GSM, GPRS & EDGE CDMA & W-CDMA Private Land Mobile Radio HMC32LP3 / 32LP3E AMPLIFIER, 00-1000 MHz Features

More information

Features. Parameter Frequency Min. Typ. Max. Units. Return Loss Off State DC - 20 GHz 19 db

Features. Parameter Frequency Min. Typ. Max. Units. Return Loss Off State DC - 20 GHz 19 db Typical Applications The is ideal for: Telecom Infrastructure Microwave Radio & VSAT Military & Space Hybrids Test Instrumentation SATCOM & Sensors Functional Diagram Features Broadband Performance: DC

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com HMC596* Product Page Quick Links Last Content Update: 11/1/216 Comparable

More information

Features OBSOLETE. = +25 C, Vcc1 = Vcc2 = +5V

Features OBSOLETE. = +25 C, Vcc1 = Vcc2 = +5V v3.121.1-15 GHz LOW NOISE PROGRAMMABLE DIVIDER (N = 1, 2,, 8) Typical Applications The is ideal for: Satellite Communication Systems Point-to-Point & Point-to-Multi-Point Radios Military Applications Test

More information

Features. = +25 C, 50 Ohm System, Vcc= +5V

Features. = +25 C, 50 Ohm System, Vcc= +5V v5.1211 Typical Applications Prescaler for DC to 18 GHz PLL Applications: Point-to-Point / Multi-Point Radios VSAT Radios Fiber Optic Test Equipment Military Functional Diagram Features Ultra Low ssb Phase

More information

HMC659LC5 LINEAR & POWER AMPLIFIERS - SMT. GaAs PHEMT MMIC POWER AMPLIFIER, DC - 15 GHz. Features. Typical Applications. General Description

HMC659LC5 LINEAR & POWER AMPLIFIERS - SMT. GaAs PHEMT MMIC POWER AMPLIFIER, DC - 15 GHz. Features. Typical Applications. General Description v.61 Typical Applications The wideband PA is ideal for: Telecom Infrastructure Microwave Radio & VSAT Military & Space Test Instrumentation Fiber Optics Functional Diagram Features P1dB Output Power: +27.5

More information

Features. Parameter Min Typ. Max Min Typ. Max Min Typ Max Units Frequency Range GHz Gain

Features. Parameter Min Typ. Max Min Typ. Max Min Typ Max Units Frequency Range GHz Gain Typical Applications The is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios VSAT & SATCOM Marine Radar Military EW & ECM Functional Diagram Features High Saturated Output Power: dbm @ % PAE

More information

Features. Parameter Frequency Min. Typ. Max. Units

Features. Parameter Frequency Min. Typ. Max. Units v1.6 Typical Applications The HMC545A / HMC545AE is ideal for: Cellular/3G Infrastructure Private Mobile Radio Handsets WLAN, WiMAX & WiBro Automotive Telematics Test Equipment Functional Diagram Features

More information

Features. = +25 C, Vcc = +5V, Z o = 50Ω, Bias1 = GND

Features. = +25 C, Vcc = +5V, Z o = 50Ω, Bias1 = GND v1.612 Typical Applications The is ideal for: LO Generation with Low Noise Floor Clock Generators Mixer LO Drive Military Applications Test Equipment Sensors Functional Diagram Features Low Noise Floor:

More information