System/Imaging Imperfections

Size: px
Start display at page:

Download "System/Imaging Imperfections"

Transcription

1 System/Imaging Imperfections B0 variations: Shim, Susceptibility B1 variations: Transmit, Receive Gradient Imperfections: Non-linearities Delays and Eddy currents Concomitant terms 1

2 B0 Variations - Off-Resonance Imperfections in the B0 field (~1ppm) Coil design Imperfections in coil placement, currents Susceptibility variations (~1-5ppm, normal body) Chemical shift (-3.5ppm for fat, most common) 2

3 Susceptibility Tendency to be magnetized H field is continuous Η = χβ B0 is convolution of χ with a dipole field 3

4 Susceptibility Air-tissue interfaces and complex shapes Field can be improved by shimming Measured B0 may still vary considerably (500Hz here) 4! Image Mask B0 Shimmed B0

5 Chemical Shift Refers to the frequency shift due to electron shielding Reduces the resonance frequency Most common: Fat-Water: -3.5ppm (220Hz at 1.5T / 440Hz at 3T) Actually multiple peaks in fat (more complicated) Many Others ~ Spectroscopy F W (Frequency) ppm 5

6 Shimming Passive Shimming: Add small materials to correct field Active Shims: Coils with adjustable currents to correct field Linear: Small current usually added to imaging gradient High-Order: z 2 -(x 2 +y 2 )/2, 3zx, 3zy, 3(x 2 -y 2 ), 6xy 6

7 Minimizing Effects of B0 Variations Spin-echoes: Minimize T2 * dephasing High bandwidths / short readouts: Minimize imaging artifacts Post-processing corrections Fat suppression (eliminate species w/ Chem Shift) 7

8 B1 Transmit (B1 + ) Variations Coil Inhomogeneities (minimal with Birdcage) Dielectric effects (worse at high fields - shorter wavelengths, standing waves) RF amplifier non-linearity (small, harmonics) 3.0T 4.0T 7.0T 3T Images courtesy G. Glover, Stanford Univ 4T Images courtesy C. Charles, Duke Univ. 9/2000 7T Images courtesy T. Vaughan, M. Garwood, Univ. Minn. 6/2000 8

9 Minimizing Effects of B1 + Variations Better coil profiles B1 shimming: Adjust amplitude/phase of transmit currents Measure B1 and compensate signal, measurement Parallel transmit (multiple B1 + fields) B1-insensitive pulses (adiabatic, BIR4,...) 9

10 B1 - Receive Primarily coil sensitivity variations Somewhat fixable in reconstruction Measure sensitivities (SENSE) Surface-coil intensity correction Coil 1 Coil 2 Coil 3 Coil 4 Coil 5 Coil 6 Coil 7 Coil 8 All Coils 10

11 Gradient nonlinearity Ideally, linear mapping of position to Bz Must end somewhere(!) db/dt limited too Distortion of image Loss of resolution Aliasing 11

12 Gradient Non-linearity Correction Apply grad-warp warping to correct distortion Note image boundaries are curved 12 Marc Alley

13 Gradient Non-linearity and B0 Variation B(z) = B Gz (r)+ B 0 (r) Axial If B(r1) = B(r2), positions are indistinguishable Aliasing or Annefact (if RF coil sensitive in region) Applies to slice selection too: Can correct slice location Warps slice (harder to fix) Saggital 13 Marc Alley

14 Example: B0 and Gradient Nonlinearity Where does this point alias to? 14

15 RF / Gradient Delays Amplifier delays, circuit delays Can vary between scanners but also calibrated Cartesian imaging insensitive, but other methods much more affected Gradient delays can be axis-dependent RF transmit and receive delays can vary 15

16 Delay Questions How do these delays affect standard imaging: Slice select gradient delay (general)? Dephasing/signal loss (refocusing gradient not aligned) Readout gradient delay of 2 samples? 2 cycles of linear phase in readout direction Phase-encode gradient delay of 2 readout samples? Not noticeable (possibly affects 2 outer kx-space samples) 16

17 Eddy Currents Generated by gradient switching, subject independent Linear system models (dg/dt): B 0 (! r,t)= X h i (! r,t) G i (t) i=x,y,z Spatially-independent terms (global phase/rotation) Linear terms ~ gradient errors (self, cross axis) Higher-order terms - hardest to correct 17

18 Concomitant Gradients B c (x, y, z) = 1 2B 0 G 2 xz 2 + G 2 yz 2 + G 2 z x 2 + y 2 4 G x G z xz G y G z yz Maxwell terms - impossible to create Bz variation without some Bx and By variation Bigger problem at lower field strengths Some correction schemes (From Bernstein, MRM 39:300 (1998) 18

19 Summary: System Imperfections B0 variations: Shim, Susceptibility B1 variations: Transmit, Receive Gradient Imperfections: Non-linearities Delays and Eddy currents Concomitant terms 19

Background (~EE369B)

Background (~EE369B) Background (~EE369B) Magnetic Resonance Imaging D. Nishimura Overview of NMR Hardware Image formation and k-space Excitation k-space Signals and contrast Signal-to-Noise Ratio (SNR) Pulse Sequences 13

More information

RAD 229: MRI Signals and Sequences

RAD 229: MRI Signals and Sequences RAD 229: MRI Signals and Sequences Brian Hargreaves All notes are on the course website web.stanford.edu/class/rad229 Course Goals Develop Intuition Understand MRI signals Exposure to numerous MRI sequences

More information

(N)MR Imaging. Lab Course Script. FMP PhD Autumn School. Location: C81, MRI Lab B0.03 (basement) Instructor: Leif Schröder. Date: November 3rd, 2010

(N)MR Imaging. Lab Course Script. FMP PhD Autumn School. Location: C81, MRI Lab B0.03 (basement) Instructor: Leif Schröder. Date: November 3rd, 2010 (N)MR Imaging Lab Course Script FMP PhD Autumn School Location: C81, MRI Lab B0.03 (basement) Instructor: Leif Schröder Date: November 3rd, 2010 1 Purpose: Understanding the basic principles of MR imaging

More information

MR in RTP. MR Data for Treatment Planning: Spatial Accuracy Issues, Protocol Optimization, and Applications (Preview of TG117 Report) Acknowledgements

MR in RTP. MR Data for Treatment Planning: Spatial Accuracy Issues, Protocol Optimization, and Applications (Preview of TG117 Report) Acknowledgements MR Data for Treatment Planning: Issues, Protocol Optimization, and s (Preview of TG117 Report) Debra H. Brinkmann Mayo Clinic, Rochester MN Acknowledgements TG-117 Use of MRI Data in Treatment Planning

More information

Pulse Sequence Design and Image Procedures

Pulse Sequence Design and Image Procedures Pulse Sequence Design and Image Procedures 1 Gregory L. Wheeler, BSRT(R)(MR) MRI Consultant 2 A pulse sequence is a timing diagram designed with a series of RF pulses, gradients switching, and signal readout

More information

Half-Pulse Excitation Pulse Design and the Artifact Evaluation

Half-Pulse Excitation Pulse Design and the Artifact Evaluation Half-Pulse Excitation Pulse Design and the Artifact Evaluation Phillip Cho. INRODUCION A conventional excitation scheme consists of a slice-selective RF excitation followed by a gradient-refocusing interval

More information

Echo-Planar Imaging for a 9.4 Tesla Vertical-Bore Superconducting Magnet Using an Unshielded Gradient Coil

Echo-Planar Imaging for a 9.4 Tesla Vertical-Bore Superconducting Magnet Using an Unshielded Gradient Coil Magn Reson Med Sci, Vol. XX, No. X, pp. XXX XXX, 2015 2016 Japanese Society for Magnetic Resonance in Medicine TECHNICAL NOTE by J-STAGE doi:10.2463/mrms.tn.2015-0123 Echo-Planar Imaging for a 9.4 Tesla

More information

Module 2. Artefacts and Imaging Optimisation for single shot methods. Content: Introduction. Phase error. Phase bandwidth. Chemical shift review

Module 2. Artefacts and Imaging Optimisation for single shot methods. Content: Introduction. Phase error. Phase bandwidth. Chemical shift review MRES 7005 - Fast Imaging Techniques Module 2 Artefacts and Imaging Optimisation for single shot methods Content: Introduction Phase error Phase bandwidth Chemical shift review Chemical shift in pixels

More information

MR in Tx Planning. Acknowledgements. Outline. Overview MR in RTP

MR in Tx Planning. Acknowledgements. Outline. Overview MR in RTP MR Data for Treatment Planning and Stereotactic Procedures: Sources of Distortion, Protocol Optimization, and Assessment (Preview of TG117 Report) Debra H. Brinkmann Mayo Clinic, Rochester MN Acknowledgements

More information

BOLD fmri: signal source, data acquisition, and interpretation

BOLD fmri: signal source, data acquisition, and interpretation BOLD fmri: signal source, data acquisition, and interpretation Cheryl Olman 4 th year student, Department of Neuroscience and Center for Magnetic Resonance Research Discussion series Week 1: Biological

More information

MRI Metal Artifact Reduction

MRI Metal Artifact Reduction MRI Metal Artifact Reduction PD Dr. med. Reto Sutter University Hospital Balgrist Zurich University of Zurich OUTLINE Is this Patient suitable for MR Imaging? Metal artifact reduction Is this Patient suitable

More information

Pulse Sequence Design Made Easier

Pulse Sequence Design Made Easier Pulse Sequence Design Made Easier Gregory L. Wheeler, BSRT(R)(MR) MRI Consultant gurumri@gmail.com 1 2 Pulse Sequences generally have the following characteristics: An RF line characterizing RF Pulse applications

More information

Improving high-field MRI using parallel excitation

Improving high-field MRI using parallel excitation review Improving high-field MRI using parallel excitation MRI at high magnetic field strengths promises to deliver clearer images of the body s structure and function. However, high-field MRI currently

More information

Advanced MSK MRI Protocols at 3.0T. Garry E. Gold, M.D. Associate Professor Department of Radiology Stanford University

Advanced MSK MRI Protocols at 3.0T. Garry E. Gold, M.D. Associate Professor Department of Radiology Stanford University Advanced MSK MRI Protocols at 3.0T Garry E. Gold, M.D. Associate Professor Department of Radiology Stanford University Outline Why High Field for MSK? SNR and Relaxation Times Technical Issues Example

More information

2 Hardware for Magnetic Resonance Imaging

2 Hardware for Magnetic Resonance Imaging Hardware for Magnetic Resonance Imaging 13 2 Hardware for Magnetic Resonance Imaging Kenneth W. Fishbein, Joseph C. McGowan, and Richard G. Spencer CONTENTS 2.1 Introduction 13 2.2 Magnets 13 2.2.1 Permanent

More information

2015 Spin echoes and projection imaging

2015 Spin echoes and projection imaging 1. Spin Echoes 1.1 Find f0, transmit amplitudes, and shim settings In order to acquire spin echoes, we first need to find the appropriate scanner settings using the FID GUI. This was all done last week,

More information

2014 M.S. Cohen all rights reserved

2014 M.S. Cohen all rights reserved 2014 M.S. Cohen all rights reserved mscohen@g.ucla.edu IMAGE QUALITY / ARTIFACTS SYRINGOMYELIA Source http://gait.aidi.udel.edu/res695/homepage/pd_ortho/educate/clincase/syrsco.htm Surgery is usually recommended

More information

Pulse Sequences: Rapid Gradient Echo

Pulse Sequences: Rapid Gradient Echo Pulse Sequences: Rapid Gradient Echo M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.04.17 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business Office hours -

More information

High Field MRI: Technology, Applications, Safety, and Limitations

High Field MRI: Technology, Applications, Safety, and Limitations High Field MRI: Technology, Applications, Safety, and Limitations R. Jason Stafford, Ph.D. The University of Texas M. D. Anderson Cancer Center, Houston, TX Introduction The amount of available signal

More information

Spiral MRI on a 9.4T Vertical-bore Superconducting Magnet Using Unshielded and Self-shielded Gradient Coils

Spiral MRI on a 9.4T Vertical-bore Superconducting Magnet Using Unshielded and Self-shielded Gradient Coils Magn Reson Med Sci doi:10.2463/mrms.tn.2016-0049 Published Online: March 27, 2017 TECHNICAL NOTE Spiral MRI on a 9.4T Vertical-bore Superconducting Magnet Using Unshielded and Self-shielded Gradient Coils

More information

Hardware. MRI System. MRI system Multicoil Microstrip. Part1

Hardware. MRI System. MRI system Multicoil Microstrip. Part1 Hardware MRI system Multicoil Microstrip MRI System Part1 1 The MRI system is made up of a variety of subsystems. the Operator Workspace Gradient Driver subsystem The Physiological Acquisition Controller

More information

H 2 O and fat imaging

H 2 O and fat imaging H 2 O and fat imaging Xu Feng Outline Introduction benefit from the separation of water and fat imaging Chemical Shift definition of chemical shift origin of chemical shift equations of chemical shift

More information

In a typical biological sample the concentration of the solute is 1 mm or less. In many situations,

In a typical biological sample the concentration of the solute is 1 mm or less. In many situations, Water suppression n a typical biological sample the concentration of the solute is 1 mm or less. n many situations, the signals of interest are those of amide protons that exchange with the solvent water.

More information

Image Quality/Artifacts Frequency (MHz)

Image Quality/Artifacts Frequency (MHz) The Larmor Relation 84 Image Quality/Artifacts (MHz) 42 ω = γ X B = 2πf 84 0.0 1.0 2.0 Magnetic Field (Tesla) 1 A 1D Image Magnetic Field Gradients Magnet Field Strength Field Strength / Gradient Coil

More information

10. Phase Cycling and Pulsed Field Gradients Introduction to Phase Cycling - Quadrature images

10. Phase Cycling and Pulsed Field Gradients Introduction to Phase Cycling - Quadrature images 10. Phase Cycling and Pulsed Field Gradients 10.1 Introduction to Phase Cycling - Quadrature images The selection of coherence transfer pathways (CTP) by phase cycling or PFGs is the tool that allows the

More information

Lab 8 6.S02 Spring 2013 MRI Projection Imaging

Lab 8 6.S02 Spring 2013 MRI Projection Imaging 1. Spin Echos 1.1 Find f0, TX amplitudes, and shim settings In order to acquire spin echos, we first need to find the appropriate scanner settings using the FID GUI. This was all done last week, but these

More information

1 Introduction. 2 The basic principles of NMR

1 Introduction. 2 The basic principles of NMR 1 Introduction Since 1977 when the first clinical MRI scanner was patented nuclear magnetic resonance imaging is increasingly being used for medical diagnosis and in scientific research and application

More information

MR Basics: Module 6 Pulse Sequences

MR Basics: Module 6 Pulse Sequences Module 6 Transcript For educational and institutional use. This transcript is licensed for noncommercial, educational inhouse or online educational course use only in educational and corporate institutions.

More information

Magnetic Resonance Imaging Principles, Methods, and Techniques

Magnetic Resonance Imaging Principles, Methods, and Techniques Magnetic Resonance Imaging Principles, Methods, and Techniques Perry Sprawls Jr., Emory University Publisher: Medical Physics Publishing Corporation Publication Place: Madison, Wisconsin Publication Date:

More information

Magnetic Resonance Imaging

Magnetic Resonance Imaging Magnetic Resonance Imaging Principles, Methods, and Techniques Perry Sprawls, Ph.D., FACR, FAAPM, FIOMP Distinguished Emeritus Professor Department of Radiology Emory University Atlanta, Georgia Medical

More information

Chapter 1. 1 The NMR Spectrometer. 1.1 Components of an NMR Spectrometer The Magnet

Chapter 1. 1 The NMR Spectrometer. 1.1 Components of an NMR Spectrometer The Magnet Chapter 1 1 The NMR Spectrometer 1.1 Components of an NMR Spectrometer 1.1.1 The Magnet In most current NMR spectrometers the magnetic field is generated by a superconducting magnet (Fig. 1.1). The first

More information

Challenges of Field Inhomogeneities and a Method for Compensation. Angela Lynn Styczynski Snyder. Michael Garwood, Ph.D., Adviser

Challenges of Field Inhomogeneities and a Method for Compensation. Angela Lynn Styczynski Snyder. Michael Garwood, Ph.D., Adviser Challenges of Field Inhomogeneities and a Method for Compensation A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Angela Lynn Styczynski Snyder IN PARTIAL

More information

Noninvasive Blood Flow Mapping with Arterial Spin Labeling (ASL) Paul Kyu Han and Sung-Hong Park

Noninvasive Blood Flow Mapping with Arterial Spin Labeling (ASL) Paul Kyu Han and Sung-Hong Park Noninvasive Blood Flow Mapping with Arterial Spin Labeling (ASL) Paul Kyu Han and Sung-Hong Park Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon,

More information

MARP. MR Accreditation Program Quality Control Beyond Just the Scans and Measurements July 2005

MARP. MR Accreditation Program Quality Control Beyond Just the Scans and Measurements July 2005 ACR MRI accreditation program MR Accreditation Program Quality Control Beyond Just the Scans and Measurements July 2005 Carl R. Keener, Ph.D., DABMP, DABR keener@marpinc.com MARP Medical & Radiation Physics,

More information

Encoding of inductively measured k-space trajectories in MR raw data

Encoding of inductively measured k-space trajectories in MR raw data Downloaded from orbit.dtu.dk on: Apr 10, 2018 Encoding of inductively measured k-space trajectories in MR raw data Pedersen, Jan Ole; Hanson, Christian G.; Xue, Rong; Hanson, Lars G. Publication date:

More information

磁振影像學 MRI 磁振假影與磁振安全 磁振假影. 本週課程內容 Hardware-related Artifacts 盧家鋒助理教授 磁振假影 磁振安全

磁振影像學 MRI 磁振假影與磁振安全 磁振假影. 本週課程內容   Hardware-related Artifacts 盧家鋒助理教授 磁振假影 磁振安全 本週課程內容 http://www.ym.edu.tw/~cflu 磁振假影 磁振安全 磁振影像學 MRI 磁振假影與磁振安全 盧家鋒助理教授 國立陽明大學生物醫學影像暨放射科學系 alvin4016@ym.edu.tw MRI The Basics (3rd edition) Chapter 18: Artifacts in MRI MRI in Practice, (4th edition) Chapter

More information

HETERONUCLEAR IMAGING. Topics to be Discussed:

HETERONUCLEAR IMAGING. Topics to be Discussed: HETERONUCLEAR IMAGING BioE-594 Advanced MRI By:- Rajitha Mullapudi 04/06/2006 Topics to be Discussed: What is heteronuclear imaging. Comparing the hardware of MRI and heteronuclear imaging. Clinical applications

More information

ISSN X CODEN (USA): PCHHAX. The role of dual spin echo in increasing resolution in diffusion weighted imaging of brain

ISSN X CODEN (USA): PCHHAX. The role of dual spin echo in increasing resolution in diffusion weighted imaging of brain Available online at www.derpharmachemica.com ISSN 0975-413X CODEN (USA): PCHHAX Der Pharma Chemica, 2016, 8(17):15-20 (http://derpharmachemica.com/archive.html) The role of in increasing resolution in

More information

MRI SYSTEM COMPONENTS Module One

MRI SYSTEM COMPONENTS Module One MRI SYSTEM COMPONENTS Module One 1 MAIN COMPONENTS Magnet Gradient Coils RF Coils Host Computer / Electronic Support System Operator Console and Display Systems 2 3 4 5 Magnet Components 6 The magnet The

More information

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Magnetic Resonance Imaging Spatial

More information

RF Pulse Toolkit: Application Specific Design

RF Pulse Toolkit: Application Specific Design RF Pulse Toolkit: Application Specific Design William A Grissom Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA will.grissom@vanderbilt.edu Introduction RF excitation is

More information

A. SPECIFIC AIMS: phase graph (EPG) algorithms to cover a wide range of MRI

A. SPECIFIC AIMS: phase graph (EPG) algorithms to cover a wide range of MRI A. SPECIFIC AIMS: A.. Overview: The promise of improved MRI results at high field strength is compromised by the difficulties encountered at high field, including: i) Non-uniform excitation, due to the

More information

Weber State University Radiologic Technology 4603

Weber State University Radiologic Technology 4603 Weber State University Radiologic Technology 4603 MRI Physics and Instrumentation Instructor: Rex T. Christensen MHA R.T. (R) (MR) (CT) (ARRT) CIIP Contact Info: E-mail: rexchristensen@weber.edu Phone:

More information

Diffusion and Functional MRI of the Spinal Cord Methods and Clinical Applications

Diffusion and Functional MRI of the Spinal Cord Methods and Clinical Applications Diffusion and Functional MRI of the Spinal Cord Methods and Clinical Applications Susceptibility artifacts in DTI of the spinal cord J. Cohen-Adad Q-space imaging and axon diameter measurements Functional

More information

EE225E/BIOE265 Spring 2012 Principles of MRI. Assignment 7. Due March 16, 2012

EE225E/BIOE265 Spring 2012 Principles of MRI. Assignment 7. Due March 16, 2012 EE225E/BIOE265 Spring 2012 Principles of MRI Miki Lustig Assignment 7 Due March 16, 2012 1. From Midterm I 2010: You ve just programmed up your first 2DFT pulse sequence, and are trying it out on the scanner.

More information

MRI Summer Course Lab 2: Gradient Echo T1 & T2* Curves

MRI Summer Course Lab 2: Gradient Echo T1 & T2* Curves MRI Summer Course Lab 2: Gradient Echo T1 & T2* Curves Experiment 1 Goal: Examine the effect caused by changing flip angle on image contrast in a simple gradient echo sequence and derive T1-curves. Image

More information

The SENSE Ghost: Field-of-View Restrictions for SENSE Imaging

The SENSE Ghost: Field-of-View Restrictions for SENSE Imaging JOURNAL OF MAGNETIC RESONANCE IMAGING 20:1046 1051 (2004) Technical Note The SENSE Ghost: Field-of-View Restrictions for SENSE Imaging James W. Goldfarb, PhD* Purpose: To describe a known (but undocumented)

More information

TimTX TrueShape. The parallel transmit architecture of the future. Answers for life.

TimTX TrueShape.  The parallel transmit architecture of the future. Answers for life. www.siemens.com/trueshape TimTX TrueShape The parallel transmit architecture of the future. The product/feature (mentioned herein) is not commercially available. Due to regulatory reasons its future availability

More information

COMMUNICATIONS Volume-Selective Multipulse Spin-Echo Spectroscopy

COMMUNICATIONS Volume-Selective Multipulse Spin-Echo Spectroscopy JOURNAL OF MAGNETC RESONANCE 72,379-384 (1987) COMMUNCATONS Volume-Selective Multipulse Spin-Echo Spectroscopy R. KMMCH* AND D. HOEPFEL? *Universitri t Urn, Sektion Kernresonanzspektroskopie, D-7900 Urn,

More information

Acoustic noise reduction of MRI systems by means of magnetic shielding

Acoustic noise reduction of MRI systems by means of magnetic shielding Acoustic noise reduction of MRI systems by means of magnetic shielding D. Biloen, N.B. Roozen Philips Applied Technologies, P.O.Box 218/Bldg. SAQ 2121, 56MD Eindhoven, The Netherlands {david.biloen, n.b.roozen}@philips.com,

More information

RF PULSE DESIGN FOR PARALLEL TRANSMISSION IN ULTRA HIGH FIELD MAGNETIC RESONANCE IMAGING. Hai Zheng. B.S., Xi an JiaoTong University, 2005

RF PULSE DESIGN FOR PARALLEL TRANSMISSION IN ULTRA HIGH FIELD MAGNETIC RESONANCE IMAGING. Hai Zheng. B.S., Xi an JiaoTong University, 2005 RF PULSE DESIGN FOR PARALLEL TRANSMISSION IN ULTRA HIGH FIELD MAGNETIC RESONANCE IMAGING by Hai Zheng B.S., Xi an JiaoTong University, 2005 Submitted to the Graduate Faculty of the Swanson School of Engineering

More information

Gradients. Effects of B0 gradients on transverse magnetisation Similar to figure 10 of Sattler review Progr. NMR 34 (1999), 93

Gradients. Effects of B0 gradients on transverse magnetisation Similar to figure 10 of Sattler review Progr. NMR 34 (1999), 93 Gradients 1. What are gradients? Modern high-resolution NMR probes contain -besides the RF coils - additional coils that can be fed a DC current. The coils are built so that a pulse (~1 ms long) of DC

More information

MRI MRI REGISTRY REVIEW PHYSICAL PRINCIPLES OF IMAGE FORMATION ARTIFACTS SUPERCONDUCTIVE MAGNET ANAIBI MOLINA(R) (RT) (MR) (CT) T2 DEPHASING

MRI MRI REGISTRY REVIEW PHYSICAL PRINCIPLES OF IMAGE FORMATION ARTIFACTS SUPERCONDUCTIVE MAGNET ANAIBI MOLINA(R) (RT) (MR) (CT) T2 DEPHASING MRI ANAIBI MOLINA(R) (RT) (MR) (CT) T2 DEPHASING SUPERCONDUCTIVE MAGNET FREE INDUCTION DECAY ARTIFACTS MRI REGISTRY REVIEW PHYSICAL PRINCIPLES OF IMAGE FORMATION Mri Registry Review Physical Principles

More information

The Pulsed Resistive Low-Field MR Scanner

The Pulsed Resistive Low-Field MR Scanner 39 Chapter 3 The Pulsed Resistive Low-Field MR Scanner 3.1 Background In the remaining part of this work we are going to describe hyperpolarized gas relaxation, diffusion and MR imaging experiments. These

More information

Principles of MRI EE225E / BIO265. Lecture 21. Instructor: Miki Lustig UC Berkeley, EECS. M. Lustig, EECS UC Berkeley

Principles of MRI EE225E / BIO265. Lecture 21. Instructor: Miki Lustig UC Berkeley, EECS. M. Lustig, EECS UC Berkeley Principles of MRI Lecture 21 EE225E / BIO265 Instructor: Miki Lustig UC Berkeley, EECS Question What is the difference between the images? Answer Both T1-weighted spin-echo gradient-echo Lower SNR Meniscus

More information

MR Basics: Module 8 Image Quality

MR Basics: Module 8 Image Quality Module 8 Transcript For educational and institutional use. This transcript is licensed for noncommercial, educational inhouse or online educational course use only in educational and corporate institutions.

More information

Saturated Double-Angle Method for Rapid B 1 Mapping

Saturated Double-Angle Method for Rapid B 1 Mapping Saturated Double-Angle Method for Rapid B 1 Mapping Charles H. Cunningham, 1 John M. Pauly, 1 and Krishna S. Nayak 2 * Magnetic Resonance in Medicine 55:1326 1333 (2006) For in vivo magnetic resonance

More information

MRI Systems and Coil Technology

MRI Systems and Coil Technology MRI for Technologists MRI Systems and Coil Technology PROGRAM INFORMATION MRI for Technologists is a training program designed to meet the needs of radiologic technologists entering or working in the field

More information

MRI: From Signal to Image

MRI: From Signal to Image MRI: From Signal to Image Johannes Koch physics654 2013-05-06 1 / 27 Tomography Magnetic Resonance Tomography Tomography: tomos: section graphein: to write Signal measured as function of space 2 / 27 Tomography

More information

MAGNETIC RESONANCE IMAGING

MAGNETIC RESONANCE IMAGING CSEE 4620 Homework 3 Fall 2018 MAGNETIC RESONANCE IMAGING 1. THE PRIMARY MAGNET Magnetic resonance imaging requires a very strong static magnetic field to align the nuclei. Modern MRI scanners require

More information

Principios Básicos de RMN en sólidos destinado a usuarios. Gustavo Monti. Fa.M.A.F. Universidad Nacional de Córdoba Argentina

Principios Básicos de RMN en sólidos destinado a usuarios. Gustavo Monti. Fa.M.A.F. Universidad Nacional de Córdoba Argentina Principios Básicos de RMN en sólidos destinado a usuarios Gustavo Monti Fa.M.A.F. Universidad Nacional de Córdoba Argentina magnet 1 2 4 5 6 computer 3 Block diagrama of a traditional NMR spectrometer.

More information

NIH Public Access Author Manuscript Magn Reson Med. Author manuscript; available in PMC 2010 July 21.

NIH Public Access Author Manuscript Magn Reson Med. Author manuscript; available in PMC 2010 July 21. NIH Public Access Author Manuscript Published in final edited form as: Magn Reson Med. 2010 April ; 63(4): 1092 1097. doi:10.1002/mrm.22223. Spatially Varying Fat-Water Excitation Using Short 2DRF Pulses

More information

3T Unlimited. ipat on MAGNETOM Allegra The Importance of ipat at 3T. medical

3T Unlimited. ipat on MAGNETOM Allegra The Importance of ipat at 3T. medical 3T Unlimited ipat on MAGNETOM Allegra The Importance of ipat at 3T s medical ipat on MAGNETOM Allegra The Importance of ipat at 3T The rise of 3T MR imaging Ultra High Field MR (3T) has flourished during

More information

Gradient Spoiling. Average balanced SSFP magnetization Reduce sensitivity to off-resonance. FFE, FISP, GRASS, GRE, FAST, Field Echo

Gradient Spoiling. Average balanced SSFP magnetization Reduce sensitivity to off-resonance. FFE, FISP, GRASS, GRE, FAST, Field Echo Gradient Spoiling Average balanced SSFP magnetization Reduce sensitivity to off-resonance FFE, FISP, GRASS, GRE, FAST, Field Echo 1 Gradient-Spoiled Sequence (GRE, FFE, FISP, GRASS) RF TR G z G y G x Signal

More information

RF Pulse Design. Multi-dimensional Excitation II. M229 Advanced Topics in MRI Kyung Sung, Ph.D Class Business

RF Pulse Design. Multi-dimensional Excitation II. M229 Advanced Topics in MRI Kyung Sung, Ph.D Class Business RF Pulse Design Multi-dimensional Excitation II M229 Advanced Topics in MRI Kyung Sung, Ph.D. 2018.04.12 Class Business - Homework 1 will be due on 4/26 - Office hours Instructors: Fri 10-12 noon TAs:

More information

Lesson 06: Pulse-echo Imaging and Display Modes. These lessons contain 26 slides plus 15 multiple-choice questions.

Lesson 06: Pulse-echo Imaging and Display Modes. These lessons contain 26 slides plus 15 multiple-choice questions. Lesson 06: Pulse-echo Imaging and Display Modes These lessons contain 26 slides plus 15 multiple-choice questions. These lesson were derived from pages 26 through 32 in the textbook: ULTRASOUND IMAGING

More information

NMR Basics. Lecture 2

NMR Basics. Lecture 2 NMR Basics Lecture 2 Continuous wave (CW) vs. FT NMR There are two ways of tuning a piano: - key by key and recording each sound (or frequency). - or, kind of brutal, is to hit with a sledgehammer and

More information

Answer: TGC is needed to amplify echoes from deeper structures so that they appear as bright as similar structures located at more shallow depths.

Answer: TGC is needed to amplify echoes from deeper structures so that they appear as bright as similar structures located at more shallow depths. Q47. When performing a sonogram why the sonographer needs to use the TGC? TGC is needed to amplify echoes from deeper structures so that they appear as bright as similar structures located at more shallow

More information

NMR Hardware 06/06/2017. Outline. Instrumentation: Magnet. Increasing magnetic field increases Sensitivity, by power of 3/2 Dispersion, linearly

NMR Hardware 06/06/2017. Outline. Instrumentation: Magnet. Increasing magnetic field increases Sensitivity, by power of 3/2 Dispersion, linearly NMR Hardware Outline Magnet Lock Shims Gradient Probe Signal generation and transmitters Receiver and digitizer Variable temperature system Solids hardware Instrumentation: Magnet Often the most impressive

More information

RF and Electronic Design Perspective on Ultra-High Field MRI systems

RF and Electronic Design Perspective on Ultra-High Field MRI systems RF and Electronic Design Perspective on Ultra-High Field MRI systems A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY SUNG-MIN SOHN IN PARTIAL FULFILLMENT

More information

Magnetic Resonance Imaging and Radio Frequency. Part 1. Produced on behalf of Mid Sussex Amateur Radio Society by M5BTB

Magnetic Resonance Imaging and Radio Frequency. Part 1. Produced on behalf of Mid Sussex Amateur Radio Society by M5BTB Magnetic Resonance Imaging and Radio Frequency Part 1 Produced on behalf of Mid Sussex Amateur Radio Society by M5BTB Why Now? During 2011 my physical health was deteriorating, and a brain tumour was diagnosed

More information

functional MRI: A primer

functional MRI: A primer Activation Leads to: functional MRI: A primer CBF Increased +ΔR CBV Increased +ΔR (C+) O Utilization Increased slightly? Venous [O ] Increased -ΔR* Glucose Utilization Increased? Lactate BOLD R=/T R=/T

More information

EE469B: Assignment 1 Solutions

EE469B: Assignment 1 Solutions EE469B Fall 26-7 RF Pulse Design for MRI EE469B: Assignment Solutions Due Thursday Oct 6 Introduction This assignment concerns typical Fourier transform designs of excitation pulses. This includes designing

More information

Compensation in 3T Cardiac Imaging Using Short 2DRF Pulses

Compensation in 3T Cardiac Imaging Using Short 2DRF Pulses Magnetic Resonance in Medicine 59:441 446 (2008) B + 1 Compensation in 3T Cardiac Imaging Using Short 2DRF Pulses Kyunghyun Sung and Krishna S. Nayak The purpose of this study was to determine if tailored

More information

Chapter 2. The Physics of Magnetic Resonance Imaging

Chapter 2. The Physics of Magnetic Resonance Imaging Chapter 2. The Physics of Magnetic Resonance Imaging 2.1. Introduction The origins of the Nuclear Magnetic Resonance (NMR) signal and how it is manipulated to form images are the subjects of this chapter.

More information

Works-in-Progress package Version 1.0. For the SIEMENS Magnetom. Installation and User s Guide NUMARIS/4VA21B. January 22, 2003

Works-in-Progress package Version 1.0. For the SIEMENS Magnetom. Installation and User s Guide NUMARIS/4VA21B. January 22, 2003 Works-in-Progress package Version 1.0 For the Installation and User s Guide NUMARIS/4VA21B January 22, 2003 Section of Medical Physics, University Hospital Freiburg, Germany Contact: Klaus Scheffler PhD,

More information

Resonant Antennas: Wires and Patches

Resonant Antennas: Wires and Patches Resonant Antennas: Wires and Patches Dipole Antennas Antenna 48 Current distribution approximation Un-normalized pattern: and Antenna 49 Radiating power: For half-wave dipole and,, or at exact resonance.

More information

Hadamard Slice Encoding for Reduced-FOV Diffusion- Weighted Imaging

Hadamard Slice Encoding for Reduced-FOV Diffusion- Weighted Imaging FULL PAPER Magnetic Resonance in Medicine 00:00 00 (2013) Hadamard Slice Encoding for Reduced-FOV Diffusion- Weighted Imaging Emine Ulku Saritas, 1,2,3 * Daeho Lee, 1 Tolga Çukur, 1,2,3 Ajit Shankaranarayanan,

More information

Analysis of magnetic and electromagnetic field emissions produced by a MRI device

Analysis of magnetic and electromagnetic field emissions produced by a MRI device Sept. 8-1, 21, Kosice, Slovakia Analysis of magnetic and electromagnetic field emissions produced by a MRI device D. Giordano, M. Borsero, G. Crotti, M. ucca INRIM Istituto Nazionale di Ricerca Metrologica,

More information

RADIOWAVE PROPAGATION: PHYSICS AND APPLICATIONS. Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, / 31

RADIOWAVE PROPAGATION: PHYSICS AND APPLICATIONS. Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, / 31 RADIOWAVE PROPAGATION: PHYSICS AND APPLICATIONS Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 1 / 31 I. Introduction 1 EM waves and propagation 2 Influence of frequency 3 Propagation

More information

Point Spread Function. Confocal Laser Scanning Microscopy. Confocal Aperture. Optical aberrations. Alternative Scanning Microscopy

Point Spread Function. Confocal Laser Scanning Microscopy. Confocal Aperture. Optical aberrations. Alternative Scanning Microscopy Bi177 Lecture 5 Adding the Third Dimension Wide-field Imaging Point Spread Function Deconvolution Confocal Laser Scanning Microscopy Confocal Aperture Optical aberrations Alternative Scanning Microscopy

More information

SPECIFICATIONS FOR AN MRBR 7.0 TESLA / 210MM ACTIVELY SHIELDED MAGNET SYSTEM

SPECIFICATIONS FOR AN MRBR 7.0 TESLA / 210MM ACTIVELY SHIELDED MAGNET SYSTEM SPECIFICATIONS FOR AN MRBR 7.0 TESLA / 210MM ACTIVELY SHIELDED MAGNET SYSTEM Prepared by:- Magnex Scientific Limited The Magnet Technology Centre 6 Mead Road Oxford Industrial Park Yarnton, Oxford OX5

More information

Application Guide & Release Notes

Application Guide & Release Notes Application Guide & Release Notes Inner-volume-imaging (IVI) EPI C2P Release 002a 1 September 2015 TMII Translational and Molecular Imaging Institute Conditions of Use This package is provided to support

More information

Cardiac MR. Dr John Ridgway. Leeds Teaching Hospitals NHS Trust, UK

Cardiac MR. Dr John Ridgway. Leeds Teaching Hospitals NHS Trust, UK Cardiac MR Dr John Ridgway Leeds Teaching Hospitals NHS Trust, UK Cardiac MR Physics for clinicians: Part I Journal of Cardiovascular Magnetic Resonance 2010, 12:71 http://jcmr-online.com/content/12/1/71

More information

Gradient Coil Design and Acoustic Noise Control in Magnetic Resonance Imaging Systems

Gradient Coil Design and Acoustic Noise Control in Magnetic Resonance Imaging Systems Gradient Coil Design and Acoustic Noise Control in Magnetic Resonance Imaging Systems Yaohui Wang Master of Science Acoustics Bachelor of Engineering Environmental A thesis submitted for the degree of

More information

NMR FACILITY NEWSLETTER

NMR FACILITY NEWSLETTER NMR FACILITY NEWSLETTER Department of Chemistry and Biochemistry Matt Revington-Facility Coordinator mrevingt@uwindsor.ca Ext 3997 Workshop Announcement : Advanced Topics in NMR There will be an Advanced

More information

Measurement and Analysis for Switchmode Power Design

Measurement and Analysis for Switchmode Power Design Measurement and Analysis for Switchmode Power Design Switched Mode Power Supply Measurements AC Input Power measurements Safe operating area Harmonics and compliance Efficiency Switching Transistor Losses

More information

Applications Guide. Spectral Editing with SVS. (Works-in-Progress) MAGNETOM TaTs and Verio Systems (3T)

Applications Guide. Spectral Editing with SVS. (Works-in-Progress) MAGNETOM TaTs and Verio Systems (3T) Applications Guide Spectral Editing with SVS (Works-in-Progress) MAGNETOM TaTs and Verio Systems (3T) syngo MR Numaris 4 VB17A June 2009 Version 1.1 WIP #529 Important Note This document provides a description

More information

BACKGROUND. ** 78% of all MRI scanners have Image Quality problems. *** *** 25% of all Multi-Channel RF coils have at least one bad channel.

BACKGROUND. ** 78% of all MRI scanners have Image Quality problems. *** *** 25% of all Multi-Channel RF coils have at least one bad channel. Range of Results from over 534 ACR-mandated Annual MRI Performance Evaluations on over 204 Magnets from 8 Vendors Spanning a 10-year Period Moriel NessAiver, Ph.D. - Simply Physics - Baltimore, MD moriel@simplyphysics.com

More information

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) C. A. Bouman: Digital Image Processing - February 15, 2 1 Magnetic Resonance Imaging (MRI) Can be very high resolution No radiation exposure Very flexible and programable Tends to be expensive, noisy,

More information

Inherent Insensitivity to RF Inhomogeneity in FLASH Imaging

Inherent Insensitivity to RF Inhomogeneity in FLASH Imaging Inherent Insensitivity to RF Inhomogeneity in FLASH Imaging Danli Wang, Keith Heberlein, Stephen LaConte, and Xiaoping Hu* Magnetic Resonance in Medicine 52:927 931 (2004) Radiofrequency (RF) field inhomogeneity

More information

SPECIFICATION FOR A 7.0 TESLA/400MM ROOM TEMPERATURE BORE MAGNET SYSTEM

SPECIFICATION FOR A 7.0 TESLA/400MM ROOM TEMPERATURE BORE MAGNET SYSTEM SPECIFICATION FOR A 7.0 TESLA/400MM ROOM TEMPERATURE BORE MAGNET SYSTEM Prepared by:- Magnex Scientific Limited The Magnet Technology Centre 6 Mead Road Oxford Industrial Park Yarnton, Oxford OX5 1QU,

More information

Passive Tracking Exploiting Local Signal Conservation: The White Marker Phenomenon

Passive Tracking Exploiting Local Signal Conservation: The White Marker Phenomenon Passive Tracking Exploiting Local Signal Conservation: The White Marker Phenomenon Jan-Henry Seppenwoolde,* Max A. Viergever, and Chris J.G. Bakker Magnetic Resonance in Medicine 50:784 790 (2003) This

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION Spatial resolution in ultrasonic imaging is one of many parameters that impact image quality. Therefore, mechanisms to improve system spatial resolution could result in improved

More information

Ultrasound Physics. History: Ultrasound 2/13/2019. Ultrasound

Ultrasound Physics. History: Ultrasound 2/13/2019. Ultrasound Ultrasound Physics History: Ultrasound Ultrasound 1942: Dr. Karl Theodore Dussik transmission ultrasound investigation of the brain 1949-51: Holmes and Howry subject submerged in water tank to achieve

More information

Reduced Field-of-View Excitation Using Second-Order Gradients and Spatial-Spectral Radiofrequency Pulses

Reduced Field-of-View Excitation Using Second-Order Gradients and Spatial-Spectral Radiofrequency Pulses Magnetic Resonance in Medicine 69:503 508 (2013) Reduced Field-of-View Excitation Using Second-Order Gradients and Spatial-Spectral Radiofrequency Pulses Chao Ma, 1,2* Dan Xu, 3 Kevin F. King, 3 and Zhi-Pei

More information

The promise of high-field MRI. High Field MRI Technology, Applications, Safety, and Limitations. High-field Scanners

The promise of high-field MRI. High Field MRI Technology, Applications, Safety, and Limitations. High-field Scanners High Field MRI Technology, Applications, Safety, and Limitations R. Jason Stafford, Ph.D. Department of Imaging Physics The University of Texas M. D. Anderson Cancer Center Houston, TX The promise of high-field

More information

Downloaded from by on 02/07/18 from IP address Copyright ARRS. For personal use only; all rights reserved

Downloaded from  by on 02/07/18 from IP address Copyright ARRS. For personal use only; all rights reserved Downloaded from www.ajronline.org by 46.3.192.5 on 02/07/18 from IP address 46.3.192.5. Copyright RRS. For personal use only; all rights reserved C oil sensitivity encoding (SENSE) is a new technique that

More information

Gradient hysteresis in MRI and NMR experiments

Gradient hysteresis in MRI and NMR experiments Journal of Magnetic Resonance 177 (2005) 336 340 Communication Gradient hysteresis in MRI and NMR experiments Brian J. Nieman a,b, *, Jonathan Bishop a, R. Mark Henkelman a,b a Mouse Imaging Centre, Hospital

More information

US 7,327,141 B2 Feb.5,2008

US 7,327,141 B2 Feb.5,2008 1111111111111111 11111 1111111111 111111111111111 1111111111111111 US007327141B2 c12) United States Patent Jung et al. (O) Patent No.: (45) Date of Patent: Feb.5,2008 (54) CHARACTERZATON OF RECEVER DEMODULATON

More information