Homework #1 due Monday at 6pm. White drop box in Student Lounge on the second floor of Cory. Tuesday labs cancelled next week

Size: px
Start display at page:

Download "Homework #1 due Monday at 6pm. White drop box in Student Lounge on the second floor of Cory. Tuesday labs cancelled next week"

Transcription

1 Announcements Homework #1 due Mondy t 6pm White drop ox in Student Lounge on the second floor of Cory Tuesdy ls cncelled next week Attend your other l slot Books on reserve in Bechtel Hmley, 2 nd nd 3 rd Edition EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 1 Review from Lst Clss KCL, KVL Node nd Loops Resistors in Series nd prllel Equivlent Resistnce Voltge nd Current Division I-V Chrcteristics Sources Resistors EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 2 1

2 Circuit w/ Dependent Source Exmple Find i 2, i 1 nd i o EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 3 Lecture #3 OUTLINE KCL, KVL Exmples Thevenin/Norton Equivlent circuit Mesurement Devices Reding Finish Chpter 1,2 EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 4 2

3 Using Equivlent Resistnces Simplify circuit efore pplying KCL nd/or KVL: Exmple: Find I 7 V - I R 1 R 2 R 4 R 5 R 3 R 6 R 1 = R 2 = 3 kw R 3 = 6 kw R 4 = R 5 = 5 kw R 6 = 10 kw EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 5 Node-Voltge Circuit Anlysis Method 1. Choose reference node ( ground ) Look for the one with the most connections! 2. Define unknown node voltges those which re not fixed y voltge sources 3. Write KCL t ech unknown node, expressing current in terms of the node voltges (using the I-V reltionships of rnch elements) Specil cses: floting voltge sources 4. Solve the set of independent equtions N equtions for N unknown node voltges EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 6 3

4 Nodl Anlysis: Exmple #1 R 1 R 3 - I S V 1 R 2 R 4 1. Choose reference node. 2. Define the node voltges (except reference node nd the one set y the voltge source). 3. Apply KCL t the nodes with unknown voltge. 4. Solve for unknown node voltges. EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 7 Nodl Anlysis: Exmple #2 R 1 R 3 I 1 V R 5 V 1 R 2 R 4 V 2 EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 8 4

5 Nodl Anlysis w/ Floting Voltge Source A floting voltge source is one for which neither side is connected to the reference node, e.g. V LL in the circuit elow: V VLL - V I1 R2 R4 I2 EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 9 Nodl Anlysis w/ Floting Voltge Source Prolem: We cnnot write KCL t nodes or ecuse there is no wy to express the current through the voltge source in terms of V-V. Solution: Define supernode tht chunk of the circuit contining nodes nd. Express KCL for this supernode. Incorporte voltge source constrint into KCL eqution. EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 10 5

6 Nodl Anlysis: Exmple #3 supernode V VLL - V I 1 R2 R 4 I 2 Eq n 1: KCL t supernode Sustitute property of voltge source: EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 11 Node-Voltge Method nd Dependent Sources If circuit contins dependent sources, wht to do? Exmple: i D 20 W 10 W 2.4 A 200 W 5i D 80 V EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 12 6

7 Node-Voltge Method nd Dependent Sources Dependent current source: tret s independent current source in orgnizing nd writing node eqns, ut include (sustitute) constrining dependency in terms of defined node voltges. Dependent voltge source: tret s independent voltge source in orgnizing nd writing node eqns, ut include (sustitute) constrining dependency in terms of defined node voltges. EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 13 Exmple: i D 2.4 A 200 W 20 W 10 W 5i D 80 V EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 14 7

8 Mesh Circuit Anlysis Method 1) Select M independent mesh currents such tht t lest one mesh current psses through ech rnch* M = #rnches - #nodes 1 2) Apply KVL to ech mesh, expressing voltges in terms of mesh currents => M equtions for M unknown mesh currents 3) Solve for mesh currents => determine node voltges EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 15 Mesh Anlysis: Exmple #1 1. Select M mesh currents. 2. Apply KVL to ech mesh. 3. Solve for mesh currents. EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 16 8

9 Mesh Anlysis with Current Source i i Prolem: We cnnot write KVL for meshes nd ecuse there is no wy to express the voltge drop cross the current source in terms of the mesh currents. Solution: Define supermesh mesh which voids the rnch contining the current source. Apply KVL for this supermesh. EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 17 Mesh Anlysis: Exmple #2 i i Eq n 1: KVL for supermesh Eq n 2: Constrint due to current source: EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 18 9

10 Mesh Anlysis with Dependent Sources Exctly nlogous to Node Anlysis Dependent Voltge Source: (1) Formulte nd write KVL mesh eqns. (2) Include nd express dependency constrint in terms of mesh currents Dependent Current Source: (1) Use supermesh. (2) Include nd express dependency constrint in terms of mesh currents EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 19 Forml Circuit Anlysis Methods NODAL ANALYSIS ( Node-Voltge Method ) 1) Choose reference node 2) Define unknown node voltges 3) Apply KCL to ech unknown node, expressing current in terms of the node voltges => N equtions for N unknown node voltges 4) Solve for node voltges => determine rnch currents MESH ANALYSIS ( Mesh-Current Method ) 1) Select M independent mesh currents such tht t lest one mesh current psses through ech rnch* M = #rnches - #nodes 1 2) Apply KVL to ech mesh, expressing voltges in terms of mesh currents => M equtions for M unknown mesh currents 3) Solve for mesh currents => determine node voltges EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 20 10

11 Superposition A liner circuit is one constructed only of liner elements (liner resistors, nd liner cpcitors nd inductors, liner dependent sources) nd independent sources. Liner mens I-V chrcteristic of elements/sources re stright lines when plotted Principle of Superposition: In ny liner circuit contining multiple independent sources, the current or voltge t ny point in the network my e clculted s the lgeric sum of the individul contriutions of ech source cting lone. EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 21 Superposition Procedure: 1. Determine contriution due to one independent source Set ll other sources to 0: Replce independent voltge source y short circuit, independent current source y open circuit Do not turn independent sources off!!! 2. Repet for ech independent source 3. Sum individul contriutions to otin desired voltge or current EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 22 11

12 Superposition Exmple Find V o 2 W 4 V 24 V 4 A 4 W V o EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 23 Equivlent Circuit Concept A network of voltge sources, current sources, nd resistors cn e replced y n equivlent circuit which hs identicl terminl properties (I-V chrcteristics) without ffecting the opertion of the rest of the circuit. network A of sources nd resistors i A i B v A v B i A (v A ) = i B (v B ) network B of sources nd resistors EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 24 12

13 Source Comintions Voltge sources in series cn e replced y n equivlent voltge source: v 1 v 2 v 1 v 2 Current sources in prllel cn e replced y n equivlent current source: i 1 i 2 i 1 i 2 EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 25 Thévenin Equivlent Circuit Any* liner 2-terminl (1-port) network of indep. voltge sources, indep. current sources, nd liner resistors cn e replced y n equivlent circuit consisting of n independent voltge source in series with resistor without ffecting the opertion of the rest of the circuit. Thévenin equivlent circuit R Th network of sources nd resistors v L i L R L V Th v L i L R L lod resistor EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 26 13

14 I-V Chrcteristic of Thévenin Equivlent The I-V chrcteristic for the series comintion of elements is otined y dding their voltge drops: For given current i, the voltge drop v i is equl to the sum of the voltges dropped cross the source (V Th ) nd cross the resistor (ir Th ) V Th R Th i v v = V Th ir v I-V chrcteristic of resistor: v = ir I-V chrcteristic of voltge source: v = V Th EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 27 Procedure to Find V Th 1. Clculte the open circuit voltge v OC from the originl circuit. v OC = V Th. Originl circuit Thévenin equivlent circuit R Th network of sources nd resistors v OC V Th v Th EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 28 14

15 Procedure to Find R Th 1. Turn off ll independent sources in originl circuit. Dependent source should e left s is. 2. Apply test voltge v test source etween terminls nd. Clculte the resulting current i test. 3. R th = v test / i test. Originl circuit network of sources nd resistors v test i test Thévenin equivlent circuit R Th v test i test EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 29 Thévenin Equivlent Voltge Exmple Find the Thevenin equivlent voltge with respect to the terminls,: EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 30 15

16 More wys of clculting R Th 1. Clculte I SC, the short circuit current flowing from to. R Th = V OC / I SC 2. Turn off ll independent sources nd find the equivlent resistnce R eq etween nd. R Th = R eq Network of Resistors And Sources (indep. Sources Enled) Method 1 I SC Network of Resistors (indep. Sources Disled) Method 2 R eq = R Th EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 31 Cution when clculting R Th using lgorithms from previous slide Method 1 is very quick, ut cnnot e used when I SC or V Th = 0 Method 2 cnnot e used when there re dependent sources in the network or when the resistive network is too complicted: R 1 R 3 R 5 R 2 R 4 Advise: Use V test nd I test method!!! EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 32 16

17 Comments on Dependent Sources A dependent source estlishes voltge or current whose vlue depends on the vlue of voltge or current t specified loction in the circuit. (device model, used to model ehvior of trnsistors & mplifiers) To specify dependent source, we must identify: 1. the controlling voltge or current (must e clculted, in generl) 2. the reltionship etween the controlling voltge or current nd the supplied voltge or current 3. the reference direction for the supplied voltge or current The reltionship etween the dependent source nd its reference cnnot e roken! Dependent sources cnnot e turned off for vrious purposes (e.g. to find the Thévenin resistnce, or in nlysis using Superposition). EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 33 Thevenin Equivlent Exmple #2 Find the Thevenin equivlent with respect to the terminls,: Methods 1 nd 2 fil in this cse. EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 34 17

18 Networks Contining Time-Vrying Sources Cre must e tken in summing time-vrying sources! Exmple: 10 sin (100t) 1 kw 20 cos (100t) 1 kw EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 35 Norton Equivlent Circuit Any* liner 2-terminl (1-port) network of indep. voltge sources, indep. current sources, nd liner resistors cn e replced y n equivlent circuit consisting of n independent current source in prllel with resistor without ffecting the opertion of the rest of the circuit. Norton equivlent circuit network of sources nd resistors v L i L R L i N R N v L i L R L EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 36 18

19 I-V Chrcteristic of Norton Equivlent The I-V chrcteristic for the prllel comintion of elements is otined y dding their currents: For given voltge v, the current i is equl to the sum of the currents in i ech of the two rnches: i N R N i v i = -I N Gv v I-V chrcteristic of resistor: i=gv I-V chrcteristic of current source: i = -I N EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 37 Finding I N nd R N = R Th Anlogous to clcultion of Thevenin Eq. Ckt: 1) Find s.c. current nd Norton (Thev) resistnce Find I SC nd then use the V test / I test method to find R N 2) or find o.c voltge nd s.c. current (with cution!!) I N I sc = V Th /R Th EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 38 19

20 Finding I N nd R N We cn derive the Norton equivlent circuit from Thévenin equivlent circuit simply y mking source trnsformtion: R Th i L i L v Th v L R L i N R N v L R L v v R N = RTh = = i oc Th ; in = isc sc RTh EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 39 Mximum Power Trnsfer Theorem Thévenin equivlent circuit R Th Power sored y lod resistor: V Th v L i L R L p = i 2 L R L æ VTh = ç è RTh R L ö ø 2 R L dp To find the vlue of R L for which p is mximum, set to 0: dr dp ù L = V ú = 0 dr L û Þ Þ 2 é 2 ( RTh RL ) - RL 2( RTh RL ) Th ê 4 ë ( RTh RL ) 2 ( R R ) - R 2( R R ) = 0 R Th Th = R L L L Th L A resistive lod receives mximum power from circuit if the lod resistnce equls the Thévenin resistnce of the circuit. EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 40 20

21 Mesuring Voltge To mesure the voltge drop cross n element in rel circuit, insert voltmeter (digitl multimeter in voltge mode) in prllel with the element. Voltmeters re chrcterized y their voltmeter input resistnce (R in ). Idelly, this should e very high (typicl vlue 10 MW) Idel Voltmeter R in EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 41 Effect of Voltmeter undistured circuit circuit with voltmeter inserted V SS _ R 1 R 2 V V SS _ 2 V 2 ' R 1 R 2 R in V2 é R ù = V 2 SS ê ú ër1 R2 û V2 é R ù = 2 R V in SS ê ú ër2 Rin R1 û Exmple: VSS = 10 V, R2 = 100K, R1 = 900K Þ V2 = R = 1M 0 V =, i n 2 1V EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 42 21

22 Mesuring Current To mesure the current flowing through n element in rel circuit, insert n mmeter (digitl multimeter in current mode) in series with the element. Ammeters re chrcterized y their mmeter input resistnce (R in ). Idelly, this should e very low (typicl vlue 1W). Idel Ammeter R in EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 43 Effect of Ammeter V 1 Mesurement error due to non-zero input resistnce: undistured circuit _ R 1 I R 2 circuit with mmeter inserted V 1 _ R 1 I mes R in R 2 mmeter V1 V I = I 1 mes = R1 R2 R1 R2 Rin Exmple: V 1 = 1 V, R 1 = R 2 = 500 W, R in = 1W 1V I = m = A 1, I= mes 5 0W W0 EE40 Summer 2006: Lecture 3 Instructor: Octvin Florescu 44 22

Announcements. To stop blowing fuses in the lab, note how the breadboards are wired. EECS 42, Spring 2005 Week 3a 1

Announcements. To stop blowing fuses in the lab, note how the breadboards are wired. EECS 42, Spring 2005 Week 3a 1 Announcements New topics: Mesh (loop) method of circuit analysis Superposition method of circuit analysis Equivalent circuit idea (Thevenin, Norton) Maximum power transfer from a circuit to a load To stop

More information

Announcements. To stop blowing fuses in the lab, note how the breadboards are wired. EECS 42, Spring 2005 Week 3a 1

Announcements. To stop blowing fuses in the lab, note how the breadboards are wired. EECS 42, Spring 2005 Week 3a 1 Announcements New topics: Mesh (loop) method of circuit analysis Superposition method of circuit analysis Equivalent circuit idea (Thevenin, Norton) Maximum power transfer from a circuit to a load To stop

More information

Experiment 3: The research of Thevenin theorem

Experiment 3: The research of Thevenin theorem Experiment 3: The reserch of Thevenin theorem 1. Purpose ) Vlidte Thevenin theorem; ) Mster the methods to mesure the equivlent prmeters of liner twoterminl ctive. c) Study the conditions of the mximum

More information

(CATALYST GROUP) B"sic Electric"l Engineering

(CATALYST GROUP) Bsic Electricl Engineering (CATALYST GROUP) B"sic Electric"l Engineering 1. Kirchhoff s current l"w st"tes th"t (") net current flow "t the junction is positive (b) Hebr"ic sum of the currents meeting "t the junction is zero (c)

More information

Determine currents I 1 to I 3 in the circuit of Fig. P2.14. Solution: For the loop containing the 18-V source, I 1 = 0.

Determine currents I 1 to I 3 in the circuit of Fig. P2.14. Solution: For the loop containing the 18-V source, I 1 = 0. Prolem.14 Determine currents 1 to 3 in the circuit of Fig. P.14. 1 A 18 V Ω 3 A 1 8 Ω 1 Ω 7 Ω 4 Ω 3 Figure P.14: Circuit for Prolem.14. For the loop contining the 18-V source, Hence, 1 = 1.5 A. KCL t node

More information

Mesh and Node Equations: More Circuits Containing Dependent Sources

Mesh and Node Equations: More Circuits Containing Dependent Sources Mesh nd Node Equtions: More Circuits Contining Dependent Sources Introduction The circuits in this set of problems ech contin single dependent source. These circuits cn be nlyzed using mesh eqution or

More information

Superposition, Thevenin and Norton. Superposition

Superposition, Thevenin and Norton. Superposition Superposton, Thevenn nd Norton OUTINE Superposton Thevenn Equvlent Crcut Norton Equvlent Crcut Mxmum Power Theorem ecture 6, 9/1/05 Redng Chpter.6-.8 ecture 6, Slde 1 Superposton A lner crcut s one constructed

More information

REVIEW QUESTIONS. Figure For Review Question Figure For Review Question Figure For Review Question 10.2.

REVIEW QUESTIONS. Figure For Review Question Figure For Review Question Figure For Review Question 10.2. HAPTE 0 Sinusoidl Stedy-Stte Anlysis 42 EVIEW QUESTIONS 0. The voltge cross the cpcitor in Fig. 0.43 is: () 5 0 V () 7.07 45 V (c) 7.07 45 V (d) 5 45 V Ω 0.5 efer to the circuit in Fig. 0.47 nd oserve

More information

Kirchhoff s Rules. Kirchhoff s Laws. Kirchhoff s Rules. Kirchhoff s Laws. Practice. Understanding SPH4UW. Kirchhoff s Voltage Rule (KVR):

Kirchhoff s Rules. Kirchhoff s Laws. Kirchhoff s Rules. Kirchhoff s Laws. Practice. Understanding SPH4UW. Kirchhoff s Voltage Rule (KVR): SPH4UW Kirchhoff s ules Kirchhoff s oltge ule (K): Sum of voltge drops round loop is zero. Kirchhoff s Lws Kirchhoff s Current ule (KC): Current going in equls current coming out. Kirchhoff s ules etween

More information

REVIEW QUESTIONS. Figure 2.63 For Review Question 2.6. Figure 2.64 For Review Question The reciprocal of resistance is:

REVIEW QUESTIONS. Figure 2.63 For Review Question 2.6. Figure 2.64 For Review Question The reciprocal of resistance is: EVIEW QUESTIONS 2.1 The reciprocl of resistnce is: () voltge () current (c) conductnce (d) couloms 2.2 An electric heter drws 10 A from 120-V line. The resistnce of the heter is: () 1200 () 120 (c) 12

More information

& Y Connected resistors, Light emitting diode.

& Y Connected resistors, Light emitting diode. & Y Connected resistors, Light emitting diode. Experiment # 02 Ojectives: To get some hndson experience with the physicl instruments. To investigte the equivlent resistors, nd Y connected resistors, nd

More information

Network Theorems. Objectives 9.1 INTRODUCTION 9.2 SUPERPOSITION THEOREM

Network Theorems. Objectives 9.1 INTRODUCTION 9.2 SUPERPOSITION THEOREM M09_BOYL3605_13_S_C09.indd Pge 359 24/11/14 1:59 PM f403 /204/PH01893/9780133923605_BOYLSTAD/BOYLSTAD_NTRO_CRCUT_ANALYSS13_S_978013... Network Theorems Ojectives Become fmilir with the superposition theorem

More information

EE 105 Discussion #1: Fundamentals of Circuit Analysis

EE 105 Discussion #1: Fundamentals of Circuit Analysis EE 105 Discussion #1: Fundamentals of Circuit Analysis 1.1 Ohm s Law V = ir i = V/R 1.2 KCL & KVL Kirchoff s Current Law (KCL) Kirchoff s Voltage Law (KVL) The algebraic sum of all currents entering a

More information

Direct Current Circuits. Chapter Outline Electromotive Force 28.2 Resistors in Series and in Parallel 28.3 Kirchhoff s Rules 28.

Direct Current Circuits. Chapter Outline Electromotive Force 28.2 Resistors in Series and in Parallel 28.3 Kirchhoff s Rules 28. P U Z Z L E R If ll these pplinces were operting t one time, circuit reker would proly e tripped, preventing potentilly dngerous sitution. Wht cuses circuit reker to trip when too mny electricl devices

More information

CHAPTER 3 AMPLIFIER DESIGN TECHNIQUES

CHAPTER 3 AMPLIFIER DESIGN TECHNIQUES CHAPTER 3 AMPLIFIER DEIGN TECHNIQUE 3.0 Introduction olid-stte microwve mplifiers ply n importnt role in communiction where it hs different pplictions, including low noise, high gin, nd high power mplifiers.

More information

Unit 2. Circuit Analysis Techniques. 2.1 The Node-Voltage Method

Unit 2. Circuit Analysis Techniques. 2.1 The Node-Voltage Method Unit 2 Circuit Analysis Techniques In this unit we apply our knowledge of KVL, KCL and Ohm s Law to develop further techniques for circuit analysis. The material is based on Chapter 4 of the text and that

More information

Electronic Circuits I - Tutorial 03 Diode Applications I

Electronic Circuits I - Tutorial 03 Diode Applications I Electronic Circuits I - Tutoril 03 Diode Applictions I -1 / 9 - T & F # Question 1 A diode cn conduct current in two directions with equl ese. F 2 When reverse-bised, diode idelly ppers s short. F 3 A

More information

Math Circles Finite Automata Question Sheet 3 (Solutions)

Math Circles Finite Automata Question Sheet 3 (Solutions) Mth Circles Finite Automt Question Sheet 3 (Solutions) Nickols Rollick nrollick@uwterloo.c Novemer 2, 28 Note: These solutions my give you the nswers to ll the prolems, ut they usully won t tell you how

More information

Understanding Basic Analog Ideal Op Amps

Understanding Basic Analog Ideal Op Amps Appliction Report SLAA068A - April 2000 Understnding Bsic Anlog Idel Op Amps Ron Mncini Mixed Signl Products ABSTRACT This ppliction report develops the equtions for the idel opertionl mplifier (op mp).

More information

Exercise 1-1. The Sine Wave EXERCISE OBJECTIVE DISCUSSION OUTLINE. Relationship between a rotating phasor and a sine wave DISCUSSION

Exercise 1-1. The Sine Wave EXERCISE OBJECTIVE DISCUSSION OUTLINE. Relationship between a rotating phasor and a sine wave DISCUSSION Exercise 1-1 The Sine Wve EXERCISE OBJECTIVE When you hve completed this exercise, you will be fmilir with the notion of sine wve nd how it cn be expressed s phsor rotting round the center of circle. You

More information

5. Handy Circuit Analysis Techniques

5. Handy Circuit Analysis Techniques 1 5. Handy Circuit Analysis Techniques The nodal and mesh analysis require a complete set of equations to describe a particular circuit, even if only one current, voltage, or power quantity is of interest

More information

Experiment 8 Series DC Motor (II)

Experiment 8 Series DC Motor (II) Ojectives To control the speed of loded series dc motor y chnging rmture voltge. To control the speed of loded series dc motor y dding resistnce in prllel with the rmture circuit. To control the speed

More information

Lab 8. Speed Control of a D.C. motor. The Motor Drive

Lab 8. Speed Control of a D.C. motor. The Motor Drive Lb 8. Speed Control of D.C. motor The Motor Drive Motor Speed Control Project 1. Generte PWM wveform 2. Amplify the wveform to drive the motor 3. Mesure motor speed 4. Mesure motor prmeters 5. Control

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009 Problem 1: Using DC Mchine University o North Crolin-Chrlotte Deprtment o Electricl nd Computer Engineering ECGR 4143/5195 Electricl Mchinery Fll 2009 Problem Set 4 Due: Thursdy October 8 Suggested Reding:

More information

Engineering: Elec 3509 Electronics II Instructor: Prof. Calvin Plett,

Engineering: Elec 3509 Electronics II Instructor: Prof. Calvin Plett, Engineering: Elec 3509 Electronics II Instructor: Prof. Clvin Plett, emil cp@doe.crleton.c Objective: To study the principles, design nd nlysis of nlog electronic circuits. Description: In this course,

More information

Student Book SERIES. Patterns and Algebra. Name

Student Book SERIES. Patterns and Algebra. Name E Student Book 3 + 7 5 + 5 Nme Contents Series E Topic Ptterns nd functions (pp. ) identifying nd creting ptterns skip counting completing nd descriing ptterns predicting repeting ptterns predicting growing

More information

(1) Non-linear system

(1) Non-linear system Liner vs. non-liner systems in impednce mesurements I INTRODUCTION Electrochemicl Impednce Spectroscopy (EIS) is n interesting tool devoted to the study of liner systems. However, electrochemicl systems

More information

ECE 201, Section 3 Lecture 12. Prof. Peter Bermel September 17, 2012

ECE 201, Section 3 Lecture 12. Prof. Peter Bermel September 17, 2012 ECE 201, Section 3 Lecture 12 Prof. Peter ermel September 17, 2012 Exam #1: Thursday, Sep. 20 6:307:30 pm Most of you will be in WTHR 200, unless told otherwise Review session tonight at 8 pm (MTH 175)

More information

ECE 215 Lecture 8 Date:

ECE 215 Lecture 8 Date: ECE 215 Lecture 8 Date: 28.08.2017 Phase Shifter, AC bridge AC Circuits: Steady State Analysis Phase Shifter the circuit current I leads the applied voltage by some phase angle θ, where 0 < θ < 90 ο depending

More information

Synchronous Generator Line Synchronization

Synchronous Generator Line Synchronization Synchronous Genertor Line Synchroniztion 1 Synchronous Genertor Line Synchroniztion Introduction One issue in power genertion is synchronous genertor strting. Typiclly, synchronous genertor is connected

More information

EECE251 Circuit Analysis I Lecture Integrated Program Set 2: Methods of Circuit Analysis

EECE251 Circuit Analysis I Lecture Integrated Program Set 2: Methods of Circuit Analysis EECE251 Circuit Analysis I Lecture Integrated Program Set 2: Methods of Circuit Analysis Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca

More information

Module 9. DC Machines. Version 2 EE IIT, Kharagpur

Module 9. DC Machines. Version 2 EE IIT, Kharagpur Module 9 DC Mchines Version EE IIT, Khrgpur esson 40 osses, Efficiency nd Testing of D.C. Mchines Version EE IIT, Khrgpur Contents 40 osses, efficiency nd testing of D.C. mchines (esson-40) 4 40.1 Gols

More information

Synchronous Machine Parameter Measurement

Synchronous Machine Parameter Measurement Synchronous Mchine Prmeter Mesurement 1 Synchronous Mchine Prmeter Mesurement Introduction Wound field synchronous mchines re mostly used for power genertion but lso re well suited for motor pplictions

More information

A Development of Earthing-Resistance-Estimation Instrument

A Development of Earthing-Resistance-Estimation Instrument A Development of Erthing-Resistnce-Estimtion Instrument HITOSHI KIJIMA Abstrct: - Whenever erth construction work is done, the implnted number nd depth of electrodes hve to be estimted in order to obtin

More information

Mixed CMOS PTL Adders

Mixed CMOS PTL Adders Anis do XXVI Congresso d SBC WCOMPA l I Workshop de Computção e Aplicções 14 20 de julho de 2006 Cmpo Grnde, MS Mixed CMOS PTL Adders Déor Mott, Reginldo d N. Tvres Engenhri em Sistems Digitis Universidde

More information

MEASURE THE CHARACTERISTIC CURVES RELEVANT TO AN NPN TRANSISTOR

MEASURE THE CHARACTERISTIC CURVES RELEVANT TO AN NPN TRANSISTOR Electricity Electronics Bipolr Trnsistors MEASURE THE HARATERISTI URVES RELEVANT TO AN NPN TRANSISTOR Mesure the input chrcteristic, i.e. the bse current IB s function of the bse emitter voltge UBE. Mesure

More information

Dataflow Language Model. DataFlow Models. Applications of Dataflow. Dataflow Languages. Kahn process networks. A Kahn Process (1)

Dataflow Language Model. DataFlow Models. Applications of Dataflow. Dataflow Languages. Kahn process networks. A Kahn Process (1) The slides contin revisited mterils from: Peter Mrwedel, TU Dortmund Lothr Thiele, ETH Zurich Frnk Vhid, University of liforni, Riverside Dtflow Lnguge Model Drsticlly different wy of looking t computtion:

More information

Survival Skills for Circuit Analysis

Survival Skills for Circuit Analysis P. R. Nelson Fall 2010 WhatToKnow - p. 1/46 Survival Skills for Circuit Analysis What you need to know from ECE 109 Phyllis R. Nelson prnelson@csupomona.edu Professor, Department of Electrical and Computer

More information

Analysis of circuits containing active elements by using modified T - graphs

Analysis of circuits containing active elements by using modified T - graphs Anlsis of circuits contining ctive elements using modified T - grphs DALBO BOLEK *) nd EA BOLKOA**) Deprtment of Telecommunictions *) dioelectronics **) Brno Universit of Technolog Purknov 8, 6 Brno CECH

More information

SOLVING TRIANGLES USING THE SINE AND COSINE RULES

SOLVING TRIANGLES USING THE SINE AND COSINE RULES Mthemtics Revision Guides - Solving Generl Tringles - Sine nd Cosine Rules Pge 1 of 17 M.K. HOME TUITION Mthemtics Revision Guides Level: GCSE Higher Tier SOLVING TRIANGLES USING THE SINE AND COSINE RULES

More information

Lecture 20. Intro to line integrals. Dan Nichols MATH 233, Spring 2018 University of Massachusetts.

Lecture 20. Intro to line integrals. Dan Nichols MATH 233, Spring 2018 University of Massachusetts. Lecture 2 Intro to line integrls Dn Nichols nichols@mth.umss.edu MATH 233, Spring 218 University of Msschusetts April 12, 218 (2) onservtive vector fields We wnt to determine if F P (x, y), Q(x, y) is

More information

University f P rtland Sch l f Engineering

University f P rtland Sch l f Engineering University f P rtland Sch l f Engineering Electric Circuits 101 Wednesday, November 31, 2012 (10312012) Happy Halloween! Copyright by Aziz S. Inan, Ph.D. http://faculty.up.edu/ainan/ Math puzzler # 1:

More information

Experiment 3: Non-Ideal Operational Amplifiers

Experiment 3: Non-Ideal Operational Amplifiers Experiment 3: Non-Idel Opertionl Amplifiers Fll 2009 Equivlent Circuits The bsic ssumptions for n idel opertionl mplifier re n infinite differentil gin ( d ), n infinite input resistnce (R i ), zero output

More information

ABB STOTZ-KONTAKT. ABB i-bus EIB Current Module SM/S Intelligent Installation Systems. User Manual SM/S In = 16 A AC Un = 230 V AC

ABB STOTZ-KONTAKT. ABB i-bus EIB Current Module SM/S Intelligent Installation Systems. User Manual SM/S In = 16 A AC Un = 230 V AC User Mnul ntelligent nstlltion Systems A B 1 2 3 4 5 6 7 8 30 ma 30 ma n = AC Un = 230 V AC 30 ma 9 10 11 12 C ABB STOTZ-KONTAKT Appliction Softwre Current Vlue Threshold/1 Contents Pge 1 Device Chrcteristics...

More information

MAXIMUM FLOWS IN FUZZY NETWORKS WITH FUNNEL-SHAPED NODES

MAXIMUM FLOWS IN FUZZY NETWORKS WITH FUNNEL-SHAPED NODES MAXIMUM FLOWS IN FUZZY NETWORKS WITH FUNNEL-SHAPED NODES Romn V. Tyshchuk Informtion Systems Deprtment, AMI corportion, Donetsk, Ukrine E-mil: rt_science@hotmil.com 1 INTRODUCTION During the considertion

More information

Synchronous Machine Parameter Measurement

Synchronous Machine Parameter Measurement Synchronous Mchine Prmeter Mesurement 1 Synchronous Mchine Prmeter Mesurement Introduction Wound field synchronous mchines re mostly used for power genertion but lso re well suited for motor pplictions

More information

Application Note. Differential Amplifier

Application Note. Differential Amplifier Appliction Note AN367 Differentil Amplifier Author: Dve n Ess Associted Project: Yes Associted Prt Fmily: CY8C9x66, CY8C7x43, CY8C4x3A PSoC Designer ersion: 4. SP3 Abstrct For mny sensing pplictions, desirble

More information

Alternating-Current Circuits

Alternating-Current Circuits chpter 33 Alternting-Current Circuits 33.1 AC Sources 33.2 esistors in n AC Circuit 33.3 Inductors in n AC Circuit 33.4 Cpcitors in n AC Circuit 33.5 The LC Series Circuit 33.6 Power in n AC Circuit 33.7

More information

CS 135: Computer Architecture I. Boolean Algebra. Basic Logic Gates

CS 135: Computer Architecture I. Boolean Algebra. Basic Logic Gates Bsic Logic Gtes : Computer Architecture I Boolen Algebr Instructor: Prof. Bhgi Nrhri Dept. of Computer Science Course URL: www.ses.gwu.edu/~bhgiweb/cs35/ Digitl Logic Circuits We sw how we cn build the

More information

Sinusoidal Steady State Analysis

Sinusoidal Steady State Analysis CHAPTER 8 Snusodl Stedy Stte Anlyss 8.1. Generl Approch In the prevous chpter, we hve lerned tht the stedy-stte response of crcut to snusodl nputs cn e otned y usng phsors. In ths chpter, we present mny

More information

Unit-1(A) Circuit Analysis Techniques

Unit-1(A) Circuit Analysis Techniques Unit-1(A Circuit Analysis Techniques Basic Terms used in a Circuit 1. Node :- It is a point in a circuit where two or more circuit elements are connected together. 2. Branch :- It is that part of a network

More information

MOS Transistors. Silicon Lattice

MOS Transistors. Silicon Lattice rin n Width W chnnel p-type (doped) sustrte MO Trnsistors n Gte Length L O 2 (insultor) ource Conductor (poly) rin rin Gte nmo trnsistor Gte ource pmo trnsistor licon sustrte doped with impurities dding

More information

Experiment 3: Non-Ideal Operational Amplifiers

Experiment 3: Non-Ideal Operational Amplifiers Experiment 3: Non-Idel Opertionl Amplifiers 9/11/06 Equivlent Circuits The bsic ssumptions for n idel opertionl mplifier re n infinite differentil gin ( d ), n infinite input resistnce (R i ), zero output

More information

Job Sheet 2. Variable Speed Drive Operation OBJECTIVE PROCEDURE. To install and operate a Variable Speed Drive.

Job Sheet 2. Variable Speed Drive Operation OBJECTIVE PROCEDURE. To install and operate a Variable Speed Drive. Job Sheet 2 Vrible Speed Drive Opertion OBJECTIVE To instll nd operte Vrible Speed Drive. PROCEDURE Before proceeding with this job, complete the sfety check list in Appendix B. 1. On the Vrible Speed

More information

Compared to generators DC MOTORS. Back e.m.f. Back e.m.f. Example. Example. The construction of a d.c. motor is the same as a d.c. generator.

Compared to generators DC MOTORS. Back e.m.f. Back e.m.f. Example. Example. The construction of a d.c. motor is the same as a d.c. generator. Compred to genertors DC MOTORS Prepred by Engr. JP Timol Reference: Electricl nd Electronic Principles nd Technology The construction of d.c. motor is the sme s d.c. genertor. the generted e.m.f. is less

More information

CHAPTER 2 LITERATURE STUDY

CHAPTER 2 LITERATURE STUDY CHAPTER LITERATURE STUDY. Introduction Multipliction involves two bsic opertions: the genertion of the prtil products nd their ccumultion. Therefore, there re two possible wys to speed up the multipliction:

More information

TUTORIAL Electric Machine Modeling

TUTORIAL Electric Machine Modeling TUTORIAL Electric Mchine Modeling October 206 Electric Mchine Modeling One cn crete electric chine odels using the bsic unction blocks in PSIM. In this tutoril, we will illustrte how to crete the odel

More information

Geometric quantities for polar curves

Geometric quantities for polar curves Roerto s Notes on Integrl Clculus Chpter 5: Bsic pplictions of integrtion Section 10 Geometric quntities for polr curves Wht you need to know lredy: How to use integrls to compute res nd lengths of regions

More information

Computing Logic-Stage Delays Using Circuit Simulation and Symbolic Elmore Analysis

Computing Logic-Stage Delays Using Circuit Simulation and Symbolic Elmore Analysis Computing Logic-Stge Delys Using Circuit Simultion nd Symolic Elmore Anlysis Clyton B. McDonld Rndl E. Brynt Deprtment of Electricl nd Computer Engineering Crnegie Mellon University, Pittsurgh, PA 15213

More information

LABORATORY MODULE. ENT 163 Fundamental of Electrical Engineering Semester 1 (2006/2007) EXPERIMENT 4: Thevenin s and Norton s Theorem

LABORATORY MODULE. ENT 163 Fundamental of Electrical Engineering Semester 1 (2006/2007) EXPERIMENT 4: Thevenin s and Norton s Theorem LABORATORY MODULE ENT 163 Fundamental of Electrical Engineering Semester 1 (2006/2007) EXPERIMENT 4: Thevenin s and Norton s Theorem Name Matrix No. : : School of Mechatronic Engineering Northern Malaysia

More information

EET 438a Automatic Control Systems Technology Laboratory 5 Control of a Separately Excited DC Machine

EET 438a Automatic Control Systems Technology Laboratory 5 Control of a Separately Excited DC Machine EE 438 Automtic Control Systems echnology bortory 5 Control of Seprtely Excited DC Mchine Objective: Apply proportionl controller to n electromechnicl system nd observe the effects tht feedbck control

More information

ECE 274 Digital Logic. Digital Design. Datapath Components Shifters, Comparators, Counters, Multipliers Digital Design

ECE 274 Digital Logic. Digital Design. Datapath Components Shifters, Comparators, Counters, Multipliers Digital Design ECE 27 Digitl Logic Shifters, Comprtors, Counters, Multipliers Digitl Design..7 Digitl Design Chpter : Slides to ccompny the textbook Digitl Design, First Edition, by Frnk Vhid, John Wiley nd Sons Publishers,

More information

Multi-beam antennas in a broadband wireless access system

Multi-beam antennas in a broadband wireless access system Multi-em ntenns in rodnd wireless ccess system Ulrik Engström, Mrtin Johnsson, nders Derneryd nd jörn Johnnisson ntenn Reserch Center Ericsson Reserch Ericsson SE-4 84 Mölndl Sweden E-mil: ulrik.engstrom@ericsson.com,

More information

+ R 2. EE 2205 Lab 2. Circuit calculations: Node-Voltage and Mesh-Current

+ R 2. EE 2205 Lab 2. Circuit calculations: Node-Voltage and Mesh-Current Circuit calculations: Node-Voltage and Mesh-Current We continue our study of some simple and representative circuits as we develop and practice our understanding of basic circuit analysis techniques. Below

More information

Example. Check that the Jacobian of the transformation to spherical coordinates is

Example. Check that the Jacobian of the transformation to spherical coordinates is lss, given on Feb 3, 2, for Mth 3, Winter 2 Recll tht the fctor which ppers in chnge of vrible formul when integrting is the Jcobin, which is the determinnt of mtrix of first order prtil derivtives. Exmple.

More information

electronics fundamentals

electronics fundamentals electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA chapter 6 Identifying series-parallel relationships Most practical circuits have combinations of series and

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 8 NETWORK ANALYSIS OBJECTIVES The purpose of this experiment is to mathematically analyze a circuit

More information

Algebra Practice. Dr. Barbara Sandall, Ed.D., and Travis Olson, M.S.

Algebra Practice. Dr. Barbara Sandall, Ed.D., and Travis Olson, M.S. By Dr. Brr Sndll, Ed.D., Dr. Melfried Olson, Ed.D., nd Trvis Olson, M.S. COPYRIGHT 2006 Mrk Twin Medi, Inc. ISBN 978-1-58037-754-6 Printing No. 404042-EB Mrk Twin Medi, Inc., Pulishers Distriuted y Crson-Dellos

More information

Translate and Classify Conic Sections

Translate and Classify Conic Sections TEKS 9.6 A.5.A, A.5.B, A.5.D, A.5.E Trnslte nd Clssif Conic Sections Before You grphed nd wrote equtions of conic sections. Now You will trnslte conic sections. Wh? So ou cn model motion, s in E. 49. Ke

More information

ELECTRICAL CIRCUITS LABORATORY MANUAL (II SEMESTER)

ELECTRICAL CIRCUITS LABORATORY MANUAL (II SEMESTER) ELECTRICAL CIRCUITS LABORATORY MANUAL (II SEMESTER) LIST OF EXPERIMENTS. Verification of Ohm s laws and Kirchhoff s laws. 2. Verification of Thevenin s and Norton s Theorem. 3. Verification of Superposition

More information

Regular languages can be expressed as regular expressions.

Regular languages can be expressed as regular expressions. Regulr lnguges cn e expressed s regulr expressions. A generl nondeterministic finite utomton (GNFA) is kind of NFA such tht: There is unique strt stte nd is unique ccept stte. Every pir of nodes re connected

More information

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING Tai-Chang Chen University of Washington, Bothell Spring 2010 EE215 1 1 WEEK 2 SIMPLE RESISTIVE CIRCUITS April 9 th, 2010 TC Chen UWB 2010 EE215 2 2 QUESTIONS

More information

MATH 118 PROBLEM SET 6

MATH 118 PROBLEM SET 6 MATH 118 PROBLEM SET 6 WASEEM LUTFI, GABRIEL MATSON, AND AMY PIRCHER Section 1 #16: Show tht if is qudrtic residue modulo m, nd b 1 (mod m, then b is lso qudrtic residue Then rove tht the roduct of the

More information

AC : A CIRCUITS COURSE FOR MECHATRONICS ENGINEERING

AC : A CIRCUITS COURSE FOR MECHATRONICS ENGINEERING AC 2010-2256: A CIRCUITS COURSE FOR MECHATRONICS ENGINEERING L. Brent Jenkins, Southern Polytechnic State University American Society for Engineering Education, 2010 Page 15.14.1 A Circuits Course for

More information

ABSTRACT. We further show that using pixel variance for flat field correction leads to errors in cameras with good factory calibration.

ABSTRACT. We further show that using pixel variance for flat field correction leads to errors in cameras with good factory calibration. Quntittive evlution of the ccurcy nd vrince of individul pixels in scientific CMOS (scmos) cmer for computtionl imging Shigeo Wtne*, Teruo Tkhshi, Keith Bennett Systems Division, Hmmtsu Photonics K.K.

More information

Solutions to exercise 1 in ETS052 Computer Communication

Solutions to exercise 1 in ETS052 Computer Communication Solutions to exercise in TS52 Computer Communiction 23 Septemer, 23 If it occupies millisecond = 3 seconds, then second is occupied y 3 = 3 its = kps. kps If it occupies 2 microseconds = 2 6 seconds, then

More information

Engineer-to-Engineer Note

Engineer-to-Engineer Note Engineer-to-Engineer Note EE-297 Technicl notes on using Anlog Devices DSPs, processors nd development tools Visit our Web resources http://www.nlog.com/ee-notes nd http://www.nlog.com/processors or e-mil

More information

(1) Primary Trigonometric Ratios (SOH CAH TOA): Given a right triangle OPQ with acute angle, we have the following trig ratios: ADJ

(1) Primary Trigonometric Ratios (SOH CAH TOA): Given a right triangle OPQ with acute angle, we have the following trig ratios: ADJ Tringles nd Trigonometry Prepred y: S diyy Hendrikson Nme: Dte: Suppose we were sked to solve the following tringles: Notie tht eh tringle hs missing informtion, whih inludes side lengths nd ngles. When

More information

Resistors, Current and Voltage measurements, Ohm s law, Kirchhoff s first and second law. Kirchhoff s first Objectives:

Resistors, Current and Voltage measurements, Ohm s law, Kirchhoff s first and second law. Kirchhoff s first Objectives: EE -050 Ciruit L Experiment # esistors, Current nd Voltge mesurements, Ohm s lw, Kirhhoff s first nd seond lw. Kirhhoff s first Ojetives: Slmn in Adul Aziz University Eletril Engineering Deprtment. Fmiliriztion

More information

Thevenin Equivalent Circuits: (Material for exam - 3)

Thevenin Equivalent Circuits: (Material for exam - 3) Thevenin Equivalent Circuits: (Material for exam 3) The Thevenin equivalent circuit is a two terminal output circuit that contains only one source called E TH and one series resistors called R TH. This

More information

Section Thyristor converter driven DC motor drive

Section Thyristor converter driven DC motor drive Section.3 - Thyristor converter driven DC motor drive.3.1 Introduction Controllble AC-DC converters using thyristors re perhps the most efficient nd most robust power converters for use in DC motor drives.

More information

Sequential Logic (2) Synchronous vs Asynchronous Sequential Circuit. Clock Signal. Synchronous Sequential Circuits. FSM Overview 9/10/12

Sequential Logic (2) Synchronous vs Asynchronous Sequential Circuit. Clock Signal. Synchronous Sequential Circuits. FSM Overview 9/10/12 9//2 Sequentil (2) ENGG5 st Semester, 22 Dr. Hden So Deprtment of Electricl nd Electronic Engineering http://www.eee.hku.hk/~engg5 Snchronous vs Asnchronous Sequentil Circuit This Course snchronous Sequentil

More information

Polar Coordinates. July 30, 2014

Polar Coordinates. July 30, 2014 Polr Coordintes July 3, 4 Sometimes it is more helpful to look t point in the xy-plne not in terms of how fr it is horizontlly nd verticlly (this would men looking t the Crtesin, or rectngulr, coordintes

More information

ES250: Electrical Science. HW6: The Operational Amplifier

ES250: Electrical Science. HW6: The Operational Amplifier ES250: Electrical Science HW6: The Operational Amplifier Introduction This chapter introduces the operational amplifier or op amp We will learn how to analyze and design circuits that contain op amps,

More information

c The scaffold pole EL is 8 m long. How far does it extend beyond the line JK?

c The scaffold pole EL is 8 m long. How far does it extend beyond the line JK? 3 7. 7.2 Trigonometry in three dimensions Questions re trgeted t the grdes indicted The digrm shows the ck of truck used to crry scffold poles. L K G m J F C 0.8 m H E 3 m D 6.5 m Use Pythgors Theorem

More information

Defining the Rational Numbers

Defining the Rational Numbers MATH10 College Mthemtis - Slide Set 2 1. Rtionl Numers 1. Define the rtionl numers. 2. Redue rtionl numers.. Convert etween mixed numers nd improper frtions. 4. Express rtionl numers s deimls.. Express

More information

COMPARISON OF THE EFFECT OF FILTER DESIGNS ON THE TOTAL HARMONIC DISTORTION IN THREE-PHASE STAND-ALONE PHOTOVOLTAIC SYSTEMS

COMPARISON OF THE EFFECT OF FILTER DESIGNS ON THE TOTAL HARMONIC DISTORTION IN THREE-PHASE STAND-ALONE PHOTOVOLTAIC SYSTEMS O. 0, NO., NOEMBER 05 ISSN 89-6608 ARPN Journl of Engineering nd Applied Sciences 006-05 Asin Reserch Pulishing Network (ARPN). All rights reserved. www.rpnjournls.com OMPARISON OF THE EFFET OF FITER ESIGNS

More information

Discontinued AN6262N, AN6263N. (planed maintenance type, maintenance type, planed discontinued typed, discontinued type)

Discontinued AN6262N, AN6263N. (planed maintenance type, maintenance type, planed discontinued typed, discontinued type) ICs for Cssette, Cssette Deck ANN, ANN Puse Detection s of Rdio Cssette, Cssette Deck Overview The ANN nd the ANN re the puse detection integrted circuits which select the progrm on the cssette tpe. In

More information

On the Description of Communications Between Software Components with UML

On the Description of Communications Between Software Components with UML On the Description of Communictions Between Softwre Components with UML Zhiwei An Dennis Peters Fculty of Engineering nd Applied Science Memoril University of Newfoundlnd St. John s NL A1B 3X5 zhiwei@engr.mun.c

More information

Questions Bank of Electrical Circuits

Questions Bank of Electrical Circuits Questions Bank of Electrical Circuits 1. If a 100 resistor and a 60 XL are in series with a 115V applied voltage, what is the circuit impedance? 2. A 50 XC and a 60 resistance are in series across a 110V

More information

ECET 102/CPET101 Lab 11 Thevenin and Norton Circuit Lab. Required Devices and Equipment Resistors: 1k, 2.2k, 3.3k, 3.9k, 10k, and a 5k potentiometer

ECET 102/CPET101 Lab 11 Thevenin and Norton Circuit Lab. Required Devices and Equipment Resistors: 1k, 2.2k, 3.3k, 3.9k, 10k, and a 5k potentiometer ECET 102/CPET101 Lab 11 Thevenin and Norton Circuit Lab Required Devices and Equipment Resistors: 1k, 2.2k, 3.3k, 3.9k, 10k, and a 5k potentiometer Objectives: 1. Calculate the Thevenin equivalent circuit.

More information

Study on SLT calibration method of 2-port waveguide DUT

Study on SLT calibration method of 2-port waveguide DUT Interntionl Conference on Advnced Electronic cience nd Technology (AET 206) tudy on LT clibrtion method of 2-port wveguide DUT Wenqing Luo, Anyong Hu, Ki Liu nd Xi Chen chool of Electronics nd Informtion

More information

Lecture # 4 Network Analysis

Lecture # 4 Network Analysis CPEN 206 Linear Circuits Lecture # 4 Network Analysis Dr. Godfrey A. Mills Email: gmills@ug.edu.gh Phone: 026-907-3163 February 22, 2016 Course TA David S. Tamakloe 1 What is Network Technique o Network

More information

LECTURE 9: QUADRATIC RESIDUES AND THE LAW OF QUADRATIC RECIPROCITY

LECTURE 9: QUADRATIC RESIDUES AND THE LAW OF QUADRATIC RECIPROCITY LECTURE 9: QUADRATIC RESIDUES AND THE LAW OF QUADRATIC RECIPROCITY 1. Bsic roerties of qudrtic residues We now investigte residues with secil roerties of lgebric tye. Definition 1.1. (i) When (, m) 1 nd

More information

Topic 20: Huffman Coding

Topic 20: Huffman Coding Topic 0: Huffmn Coding The uthor should gze t Noh, nd... lern, s they did in the Ark, to crowd gret del of mtter into very smll compss. Sydney Smith, dinburgh Review Agend ncoding Compression Huffmn Coding

More information

Physics 227: Lecture 11 Circuits, KVL, KCL, Meters

Physics 227: Lecture 11 Circuits, KVL, KCL, Meters Physics 227: Lecture 11 Circuits, KVL, KCL, Meters Lecture 10 review: EMF ξ is not a voltage V, but OK for now. Physical emf source has V ab = ξ - Ir internal. Power in a circuit element is P = IV. For

More information

Chapter 8. Constant Current Sources

Chapter 8. Constant Current Sources Chapter 8 Methods of Analysis Constant Current Sources Maintains same current in branch of circuit Doesn t matter how components are connected external to the source Direction of current source indicates

More information

Digital Design. Sequential Logic Design -- Controllers. Copyright 2007 Frank Vahid

Digital Design. Sequential Logic Design -- Controllers. Copyright 2007 Frank Vahid Digitl Design Sequentil Logic Design -- Controllers Slides to ccompny the tetook Digitl Design, First Edition, y, John Wiley nd Sons Pulishers, 27. http://www.ddvhid.com Copyright 27 Instructors of courses

More information

Algorithms for Memory Hierarchies Lecture 14

Algorithms for Memory Hierarchies Lecture 14 Algorithms for emory Hierrchies Lecture 4 Lecturer: Nodri Sitchinv Scribe: ichel Hmnn Prllelism nd Cche Obliviousness The combintion of prllelism nd cche obliviousness is n ongoing topic of reserch, in

More information

CHAPTER 4. Techniques of Circuit Analysis

CHAPTER 4. Techniques of Circuit Analysis CHAPTER 4 Techniques of Circuit Analysis 4.1 Terminology Planar circuits those circuits that can be drawn on a plane with no crossing branches. Figure 4.1 (a) A planar circuit. (b) The same circuit redrawn

More information