Acoustic propagation affected by environmental parameters in coastal waters

Size: px
Start display at page:

Download "Acoustic propagation affected by environmental parameters in coastal waters"

Transcription

1 Indian Journal of Geo-Marine Sciences Vol. 43(1), January 2014, pp Acoustic propagation affected by environmental parameters in coastal waters Sanjana M C, G Latha, A Thirunavukkarasu & G Raguraman National Institute of Ocean Technology, Velachery-Tambaram Road, Pallikaranai, Chennai , India. [ sanjana@niot.res.in] Received 13 July 2011; revised 26 March 2013 In coastal regions various factors affect the propagation of acoustic signals such as wind, tidal effects, off shore currents and even river outflows. Shallow water waveguide is also characterised by site-specific source nature, bathymetry, sediment properties and sound speed profile. Monterey-Miami Parabolic Equation (MMPE) model has been used to study the propagation in very shallow waters of Arabian Sea with respect to environmental parameters. Sound speed Profiles (SSP) and bottom sediment samples measured at the site characterize the water column and the ocean bottom respectively. Bottom is clay (soft bottom) which can lead to absorption of acoustic intensity into the sediment leading to a decrease in reflected acoustic rays. Under these conditions propagation to large distances will be associated with large losses in acoustic energy. Critical angle of propagation determined theoretically is found to be ±11.42 o with respect to horizontal representing low order trapped modes. SSP is downward refracting enhancing propagation along the bottom. In this paper Transmission Loss (TL) computation have been carried out for different frequencies with respect to range and depth. Signal loss and arrival structure and the travel time have been computed for different ranges from 0 to 6 km. Model results have been evaluated by comparing with field measurements and are found to be suitable for modelling extremely shallow water environments. [Keywords: Acoustic propagation, Sound speed profile, Transmission loss, Shallow water] Introduction The complex environment in coastal waters is manipulated by temporal and spatial fluctuations which can alter the existing sound speed profile which decides the propagation of sound. Propagation in shallow water is also influenced by the sediment bottom properties since multiple reflections takes place owing to the wave guide nature of the environment. River influx is also an entity which is variable across the year and can influence sites at very shallow waters. Modified Parabolic Equation (PE) models have been used successfully in such complex coastal environments to study propagation effects 1-3. Monterey-Miami Parabolic Equation Model (MMPE) have been used to relate environmental parameters to Transmission Loss (TL) in two extremely shallow water environments 4. This work examines the propagation for a 32 m water column with a downward refracting sound velocity profile and a clay sea bed with sandy sub bottom using Monterey-Miami Parabolic Equation model(mmpe) in the frequency band up to 5 khz. PE models are best suited for range dependent environments and also for broad frequency band as is being considered here. Critical angle of seabed has been determined from the measured bottom and water column properties and inputs from Hamilton model. Characteristics of near surface source propagation in terms of travel time and arrival structure and Transmission loss in db with respect to range and depth for different frequencies is investigated for a downward refracting environment. Materials and Methods Study site The environment considered is a sloping bottom shallow water wave guide with depth ranging from 16 m to 32 m and a range extent of 6 km, with clayey bottom (Fig.1a). Two major rivers Muvattupuzha and Periyar empty into the site which leads to variation in the distribution of water properties. Near to the shore the sound velocity is less and increases as we go offshore. Sound velocity profile is typically

2 18 INDIAN J MAR SCI VOL. 43(1), JANUARY 2014 speed profiles have been considered starting from the initial point and every 2 km apart in range. We are considering 1 m layer of clay and below that sandy layer. Sound speed in the sediment is 1596 m/s with a density of 1.26 g/cc with a bottom attenuation of 0.1 db/km/hz. A sub bottom layer with sound speed of 1705 m/s, density of 1.5 g/cc and attenuation of 0.1 db/km/hz is also considered. Source depth is considered at just below the surface and the frequency band considered is up to 5 khz. Wide angle source (approximates to a point source) is considered initially. To perform broadband analysis centre frequencies of 2520 Hz was used with a bandwidth of 5000 Hz. Results & Discussion The critical angle at this site determined from water column and bottom properties is èc=arccos(1538/1569)=11.42 o. Propagation is characterized by normal modes corresponding to waves striking the bottom at grazing angles lower than the critical angle <11.42 o. So waves striking the bottom at angles less than 11.42p will be totally internally reflected whereas rays with grazing angles greater than 11.42p are heavily attenuated on encountering the bottom. However in shallow water most of the energy that propagates is along the horizontal (Fig. 2). Fig. 1(a) Study site and (b) Sound speed profiles at different depths. downward refracting enhancing propagation along the bottom (Fig.1b). Sediment samples have been collected at the site and sieve analysis has been carried out. Bottom is mainly clay with admixture of sand leading to absorption of sound into the sediment. Shallow Water propagation modelling The second release of the Monterey-Miami Parabolic Equation (MMPE) propagation Model has been used to understand the shallow water propagation at this site. This model was developed by 5 based on Split Step Fourier (SSF) technique and since then many improvements have been made on this. It is a full wave underwater acoustic propagation model that utilizes the split step Fourier marching algorithm. Parabolic equation is popular for solving range dependent propagation problems. Total 4 sound Fig. 2 Reflection coefficient for the site. Understanding how sound is propagating at a site is important in assessing the ambient noise field and the contribution due to different sources. For a broad band point source at 0.1 m and 3 m depth from the water surface, at a water column depth of ~16 m, the output starting field data is given in Fig. 3. As the frequency increases the noise is restricted more and more towards the surface and maximum noise seen at the source depth for all frequencies. For frequencies above 2 khz, sound waves are mostly restricted to the upper 4 m and 6 m of the water column at the start of the simulation for source depths of 0.1 and 3 m respectively.

3 SANJANA et al.: ACOUSTIC PROPAGATION IN COASTAL WATERS Fig. 3 Output starting field data for a source beneath the surface at 3m and 0.1 m, in ~ 16 m water column. Transmission loss arrival structure: At 16 m water depth, for a near surface source, the arrival is crisp with no signal distortion with a sound speed fluctuation of only 1 m/s (Fig. 4). The transmission of the high frequency signal produced more multipath arrival structure and a weaker head wave due to more attenuation in the floor sediment. At 25 m depth, the sound speed gradient is 4.5 m/s and we can observe slight distortion in the reflected rays. In order to test the validity of the model, the 2.5 khz source responses Fig. 4 Transmission loss arrival structure for the source signal at 16 m, 25 m & different ranges.

4 20 INDIAN J MAR SCI VOL. 43(1), JANUARY 2014 were recomputed out to a range of 6 km. It is clear that the perturbation does impact the propagation at larger ranges. Travel time for the signal at different ranges for centre frequency of 2.5 khz is given in Fig. 4. At 0.5 km range ( 20 m depth) sound is seen to decay fast due to intense surface and bottom reflections compared to 6 km range (32 m depth). Since the waves are striking at much greater angles than the critical angle, energy is lost fast into the bottom. Transmission loss: The term transmission loss describes the drop in sound energy level as it propagates from one point in the ocean to another. It can be considered as the signal which is lost due to the sum of geometric spreading, refraction, interference and the loss due to attenuation in the ocean. Since the environment is shallow water, cylindrical spreading is assumed to dominate the propagation. In cylindrical spreading the intensity decreases linearly with increasing range. Transmission loss outputs from MMPE are in three different forms, TL at a single frequency versus range and depth, TL at a single range versus frequency and depth and TL at a single depth versus frequency and range. Transmission loss for different frequencies with respect to tange and depth are given in Fig.5. For 0.1 & 0.25 khz, there is more penetration into the sediment both surface and subsurface layers whereas for higher frequencies the penetration is only into the surface clay layer. Fig. 5 Transmission loss for different frequencies (a) with range at 15 m depth (b) with depth at 250 m range (c) with depth at 6 km range. Transmission loss for different ranges in the frequency band up to 5 khz is given in Fig. 6. At 0.1 km range the sound speed profile is almost is o-velocity Fig. 6 Transmission loss for 0.1 km range. with a gradient of 1 m/s between surface and bottom and the corresponding Fig. shows noise spread out along the depth with penetration into the bottom especially at low frequencies. Model Evaluation Difference techniques measure the distance between the model prediction and a standard (which can comprise field measurements or outputs from other models) in terms of db differences at a given range, or over a set range interval. These techniques are best suited to comparative model evaluations conducted in research environments 2. Model accuracy was evaluated by examining field measurements with respect to model output as a function of range and frequency (Fig.7). Conclusions The sound propagation cone for the shallow water channel is defined in terms of critical angle. The critical angle of propagation at the site is estimated

5 SANJANA et al.: ACOUSTIC PROPAGATION IN COASTAL WATERS Fig. 7 Comparison of model with field results. to be o based on measurements and the source in such a waveguide propagates at an angle confined to a cone of 2*è c =22.8 o. The sound speed profile is downward refracting enhancing propagation along the bottom with a clay sediment layer which leads to loss in acoustic energy. Transmission loss analysis was done to illustrate the effects of shallow water variability on sound propagation. The signal arrival structure has been determined and signal distortion in terms of sound speed fluctuation examined. Signal distortion is observed for sound speed gradients at long ranges. On examining the TL for different frequencies over range and depth it shows that the loss with respect to range is more for low frequencies and decreases with increase in frequency. Transmission loss at short ranges clearly shows the influence of lossy bottom on acoustic propagation for low frequencies. From the different model runs, it is found that the model is able to incorporate water column variability, sediment properties, broad band sources etc and is suitable for modelling extremely shallow water environments. Model results have been compared with field measurements at the site and are found to be satisfactory. Acknowledgements Authors thank Director, NIOT for his support in carrying out this work. Prof. Gopu R Potty, University of Rhode Island, USA is gratefully acknowledged for his valuable guidance in running the model. References 1. Jensen F B Numerical models in Underwater acoustics, in Hybrid Formulation of Wave Propagation and scattering (Martinus Nijhoff, Dordrecht), (1984), pp Etter P C, Underwater Acoustic modeling (E & FN SPON. London), (1996). 3. Smith K B, Convergence, stability and variability of shallow water acoustic predictions using a split-step Fourier Parabolic Equation model, J. of Comput. Acoust., 9 (2001), Miksis-Olds J L, & Miller J H. Transmission loss in Manatee habitats, J. Acoust. Soc. Am., 120(4) (2006), Smith, K B and Tappert, F D, UMPE: The University of Miami Parabolic Equation Model, Version 1.3, Marine Physical Laboratory, SIO Technical Memorandum No. 432, (1993).

3D Propagation and Geoacoustic Inversion Studies in the Mid-Atlantic Bight

3D Propagation and Geoacoustic Inversion Studies in the Mid-Atlantic Bight 3D Propagation and Geoacoustic Inversion Studies in the Mid-Atlantic Bight Kevin B. Smith Code PH/Sk, Department of Physics Naval Postgraduate School Monterey, CA 93943 phone: (831) 656-2107 fax: (831)

More information

International Journal of Research in Computer and Communication Technology, Vol 3, Issue 1, January- 2014

International Journal of Research in Computer and Communication Technology, Vol 3, Issue 1, January- 2014 A Study on channel modeling of underwater acoustic communication K. Saraswathi, Netravathi K A., Dr. S Ravishankar Asst Prof, Professor RV College of Engineering, Bangalore ksaraswathi@rvce.edu.in, netravathika@rvce.edu.in,

More information

The spatial structure of an acoustic wave propagating through a layer with high sound speed gradient

The spatial structure of an acoustic wave propagating through a layer with high sound speed gradient The spatial structure of an acoustic wave propagating through a layer with high sound speed gradient Alex ZINOVIEV 1 ; David W. BARTEL 2 1,2 Defence Science and Technology Organisation, Australia ABSTRACT

More information

Environmental Acoustics and Intensity Vector Acoustics with Emphasis on Shallow Water Effects and the Sea Surface

Environmental Acoustics and Intensity Vector Acoustics with Emphasis on Shallow Water Effects and the Sea Surface DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Environmental Acoustics and Intensity Vector Acoustics with Emphasis on Shallow Water Effects and the Sea Surface LONG-TERM

More information

High-Frequency Rapid Geo-acoustic Characterization

High-Frequency Rapid Geo-acoustic Characterization High-Frequency Rapid Geo-acoustic Characterization Kevin D. Heaney Lockheed-Martin ORINCON Corporation, 4350 N. Fairfax Dr., Arlington VA 22203 Abstract. The Rapid Geo-acoustic Characterization (RGC) algorithm

More information

Analysis of South China Sea Shelf and Basin Acoustic Transmission Data

Analysis of South China Sea Shelf and Basin Acoustic Transmission Data DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Analysis of South China Sea Shelf and Basin Acoustic Transmission Data Ching-Sang Chiu Department of Oceanography

More information

Ocean Ambient Noise Studies for Shallow and Deep Water Environments

Ocean Ambient Noise Studies for Shallow and Deep Water Environments DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Ocean Ambient Noise Studies for Shallow and Deep Water Environments Martin Siderius Portland State University Electrical

More information

Design and Implementation of Short Range Underwater Acoustic Communication Channel using UNET

Design and Implementation of Short Range Underwater Acoustic Communication Channel using UNET Design and Implementation of Short Range Underwater Acoustic Communication Channel using UNET Pramod Bharadwaj N Harish Muralidhara Dr. Sujatha B.R. Software Engineer Design Engineer Associate Professor

More information

HIGH-FREQUENCY ACOUSTIC PROPAGATION IN THE PRESENCE OF OCEANOGRAPHIC VARIABILITY

HIGH-FREQUENCY ACOUSTIC PROPAGATION IN THE PRESENCE OF OCEANOGRAPHIC VARIABILITY HIGH-FREQUENCY ACOUSTIC PROPAGATION IN THE PRESENCE OF OCEANOGRAPHIC VARIABILITY M. BADIEY, K. WONG, AND L. LENAIN College of Marine Studies, University of Delaware Newark DE 19716, USA E-mail: Badiey@udel.edu

More information

BROADBAND ACOUSTIC SIGNAL VARIABILITY IN TWO TYPICAL SHALLOW-WATER REGIONS

BROADBAND ACOUSTIC SIGNAL VARIABILITY IN TWO TYPICAL SHALLOW-WATER REGIONS BROADBAND ACOUSTIC SIGNAL VARIABILITY IN TWO TYPICAL SHALLOW-WATER REGIONS PETER L. NIELSEN SACLANT Undersea Research Centre, Viale San Bartolomeo 400, 19138 La Spezia, Italy E-mail: nielsen@saclantc.nato.int

More information

Broadband Temporal Coherence Results From the June 2003 Panama City Coherence Experiments

Broadband Temporal Coherence Results From the June 2003 Panama City Coherence Experiments Broadband Temporal Coherence Results From the June 2003 Panama City Coherence Experiments H. Chandler*, E. Kennedy*, R. Meredith*, R. Goodman**, S. Stanic* *Code 7184, Naval Research Laboratory Stennis

More information

Computer modeling of acoustic modem in the Oman Sea with inhomogeneities

Computer modeling of acoustic modem in the Oman Sea with inhomogeneities Indian Journal of Geo Marine Sciences Vol.46 (08), August 2017, pp. 1651-1658 Computer modeling of acoustic modem in the Oman Sea with inhomogeneities * Mohammad Akbarinassab University of Mazandaran,

More information

Modeling high-frequency reverberation and propagation loss in support of a submarine target strength trial

Modeling high-frequency reverberation and propagation loss in support of a submarine target strength trial Acoustics 8 Paris Modeling high-frequency reverberation and propagation loss in support of a submarine target strength trial B. Vasiliev and A. Collier DRDC Atlantic, 9 Grove St., Dartmouth, NS B2Y 3Z7,

More information

The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling

The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling Grant B. Deane Marine

More information

High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise

High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise Martin Siderius Portland State University, ECE Department 1900 SW 4 th Ave., Portland, OR 97201 phone: (503) 725-3223

More information

Mid-Frequency Noise Notch in Deep Water. W.S. Hodgkiss / W.A. Kuperman. June 1, 2012 May 31, 2013

Mid-Frequency Noise Notch in Deep Water. W.S. Hodgkiss / W.A. Kuperman. June 1, 2012 May 31, 2013 Mid-Frequency Noise Notch in Deep Water W.S. Hodgkiss and W.A. Kuperman June 1, 2012 May 31, 2013 A Proposal to ONR Code 322 Attn: Dr. Robert Headrick, Office of Naval Research BAA 12-001 UCSD 20123651

More information

TARUN K. CHANDRAYADULA Sloat Ave # 3, Monterey,CA 93940

TARUN K. CHANDRAYADULA Sloat Ave # 3, Monterey,CA 93940 TARUN K. CHANDRAYADULA 703-628-3298 650 Sloat Ave # 3, cptarun@gmail.com Monterey,CA 93940 EDUCATION George Mason University, Fall 2009 Fairfax, VA Ph.D., Electrical Engineering (GPA 3.62) Thesis: Mode

More information

Scaled Laboratory Experiments of Shallow Water Acoustic Propagation

Scaled Laboratory Experiments of Shallow Water Acoustic Propagation Scaled Laboratory Experiments of Shallow Water Acoustic Propagation Panagiotis Papadakis, Michael Taroudakis FORTH/IACM, P.O.Box 1527, 711 10 Heraklion, Crete, Greece e-mail: taroud@iacm.forth.gr Patrick

More information

Fluctuations of Broadband Acoustic Signals in Shallow Water

Fluctuations of Broadband Acoustic Signals in Shallow Water Fluctuations of Broadband Acoustic Signals in Shallow Water LONG-TERM GOALS Mohsen Badiey College of Earth, Ocean, and Environment University of Delaware Newark, DE 19716 Phone: (302) 831-3687 Fax: (302)

More information

Mid-Frequency Reverberation Measurements with Full Companion Environmental Support

Mid-Frequency Reverberation Measurements with Full Companion Environmental Support DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Mid-Frequency Reverberation Measurements with Full Companion Environmental Support Dajun (DJ) Tang Applied Physics Laboratory,

More information

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Propagation of Low-Frequency, Transient Acoustic Signals through a Fluctuating Ocean: Development of a 3D Scattering Theory

More information

7. Consider the following common offset gather collected with GPR.

7. Consider the following common offset gather collected with GPR. Questions: GPR 1. Which of the following statements is incorrect when considering skin depth in GPR a. Skin depth is the distance at which the signal amplitude has decreased by a factor of 1/e b. Skin

More information

Underwater Noise Levels

Underwater Noise Levels TO: FROM: John Callahan Rick Huey Jim Laughlin (206) 440-4643 SUBJECT: Keystone Ferry Terminal Vibratory Pile Monitoring Technical Memorandum. Underwater Noise Levels This memo summarizes the vibratory

More information

Underwater communication implementation with OFDM

Underwater communication implementation with OFDM Indian Journal of Geo-Marine Sciences Vol. 44(2), February 2015, pp. 259-266 Underwater communication implementation with OFDM K. Chithra*, N. Sireesha, C. Thangavel, V. Gowthaman, S. Sathya Narayanan,

More information

Direct Imaging of Group Velocity Dispersion Curves in Shallow Water Christopher Liner*, University of Houston; Lee Bell and Richard Verm, Geokinetics

Direct Imaging of Group Velocity Dispersion Curves in Shallow Water Christopher Liner*, University of Houston; Lee Bell and Richard Verm, Geokinetics Direct Imaging of Group Velocity Dispersion Curves in Shallow Water Christopher Liner*, University of Houston; Lee Bell and Richard Verm, Geokinetics Summary Geometric dispersion is commonly observed in

More information

Effect of random hydrodynamic. loss in shallow water Session: 1pAO8 (session in Honor of Stanley Flatté II)

Effect of random hydrodynamic. loss in shallow water Session: 1pAO8 (session in Honor of Stanley Flatté II) GPI RAS Effect of random hydrodynamic inhomogeneities on lowfrequency sound propagation loss in shallow water Session: 1pAO8 (session in Honor of Stanley Flatté II) Andrey A. Lunkov, Valeriy G. Petnikov

More information

Acoustic Blind Deconvolution in Uncertain Shallow Ocean Environments

Acoustic Blind Deconvolution in Uncertain Shallow Ocean Environments DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Acoustic Blind Deconvolution in Uncertain Shallow Ocean Environments David R. Dowling Department of Mechanical Engineering

More information

Underwater noise survey during impact piling to construct the Burbo Bank Offshore Wind Farm.

Underwater noise survey during impact piling to construct the Burbo Bank Offshore Wind Farm. Project Title Project Number Investigators Company Report Number Underwater noise and offshore wind farms. COWRIE ACO-04-2 S J Parvin and J R Nedwell Subacoustech Ltd. 726R0103 Date 25 th October 6 Underwater

More information

TREX13 data analysis/modeling

TREX13 data analysis/modeling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TREX13 data analysis/modeling Dajun (DJ) Tang Applied Physics Laboratory, University of Washington 1013 NE 40 th Street,

More information

Shallow Water Fluctuations and Communications

Shallow Water Fluctuations and Communications Shallow Water Fluctuations and Communications H.C. Song Marine Physical Laboratory Scripps Institution of oceanography La Jolla, CA 92093-0238 phone: (858) 534-0954 fax: (858) 534-7641 email: hcsong@mpl.ucsd.edu

More information

Dispersion of Sound in Marine Sediments

Dispersion of Sound in Marine Sediments DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Dispersion of Sound in Marine Sediments N. Ross Chapman School of Earth and Ocean Sciences University of Victoria 3800

More information

Exploitation of frequency information in Continuous Active Sonar

Exploitation of frequency information in Continuous Active Sonar PROCEEDINGS of the 22 nd International Congress on Acoustics Underwater Acoustics : ICA2016-446 Exploitation of frequency information in Continuous Active Sonar Lisa Zurk (a), Daniel Rouseff (b), Scott

More information

STUDY OF ABSORPTION LOSS EFFECTS ON ACOUSTIC WAVE PROPAGATION IN SHALLOW WATER USING DIFFERENT EMPIRICAL MODELS

STUDY OF ABSORPTION LOSS EFFECTS ON ACOUSTIC WAVE PROPAGATION IN SHALLOW WATER USING DIFFERENT EMPIRICAL MODELS STUDY OF ABSORPTION LOSS EFFECTS ON ACOUSTIC WAVE PROPAGATION IN SHALLOW WATER USING DIFFERENT EMPIRICAL MODELS Yasin Yousif Al-Aboosi 1,3, Mustafa Sami Ahmed 2, Nor Shahida Mohd Shah 2 and Nor Hisham

More information

Modeling Acoustic Signal Fluctuations Induced by Sea Surface Roughness

Modeling Acoustic Signal Fluctuations Induced by Sea Surface Roughness Modeling Acoustic Signal Fluctuations Induced by Sea Surface Roughness Robert M. Heitsenrether, Mohsen Badiey Ocean Acoustics Laboratory, College of Marine Studies, University of Delaware, Newark, DE 19716

More information

Passive Measurement of Vertical Transfer Function in Ocean Waveguide using Ambient Noise

Passive Measurement of Vertical Transfer Function in Ocean Waveguide using Ambient Noise Proceedings of Acoustics - Fremantle -3 November, Fremantle, Australia Passive Measurement of Vertical Transfer Function in Ocean Waveguide using Ambient Noise Xinyi Guo, Fan Li, Li Ma, Geng Chen Key Laboratory

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/40158 holds various files of this Leiden University dissertation Author: Sertlek, Hüseyin Ӧzkan Title: Aria of the Dutch North Sea Issue Date: 2016-06-09

More information

Fluctuating arrivals of short-range acoustic data

Fluctuating arrivals of short-range acoustic data Fluctuating arrivals of short-range acoustic data Cheolsoo Park Maritime and Ocean Engineering Research Institute (MOERI), Daejeon 305-343, Korea Woojae Seong a) Department of Ocean Engineering, Seoul

More information

Geoacoustic inversions using Combustive Sound Sources (CSS)

Geoacoustic inversions using Combustive Sound Sources (CSS) Geoacoustic inversions using Combustive Sound Sources (CSS) Gopu Potty, James Miller (URI) James Lynch, Arthur Newhall (WHOI) Preston Wilson, David Knobles (UT, Austin) Work supported by Office of Naval

More information

Low Frequency Bottom Reflectivity from Reflection

Low Frequency Bottom Reflectivity from Reflection Low Frequency Bottom Reflectivity from Reflection,Alexander Kritski 1 and Chris Jenkins 2 1 School of Geosciences, University of Sydney, NSW, 2 Ocean Sciences Institute, University of Sydney, NSW. Abstract

More information

Fluctuations of Mid-to-High Frequency Acoustic Waves in Shallow Water

Fluctuations of Mid-to-High Frequency Acoustic Waves in Shallow Water Fluctuations of Mid-to-High Frequency Acoustic Waves in Shallow Water Mohsen Badiey University of Delaware College of Marine Studies Newark, DE 19716 phone: (32) 831-3687 fax: (32) 831-332 email: badiey@udel.edu

More information

Numerical Modeling of a Time Reversal Experiment in Shallow Singapore Waters

Numerical Modeling of a Time Reversal Experiment in Shallow Singapore Waters Numerical Modeling of a Time Reversal Experiment in Shallow Singapore Waters H.C. Song, W.S. Hodgkiss, and J.D. Skinner Marine Physical Laboratory, Scripps Institution of Oceanography La Jolla, CA 92037-0238,

More information

Bio-Alpha off the West Coast

Bio-Alpha off the West Coast DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Bio-Alpha off the West Coast Dr. Orest Diachok Johns Hopkins University Applied Physics Laboratory Laurel MD20723-6099

More information

Sonar advancements for coastal and maritime surveys

Sonar advancements for coastal and maritime surveys ConférenceMéditerranéenneCôtièreetMaritime EDITION1,HAMMAMET,TUNISIE(2009) CoastalandMaritimeMediterraneanConference Disponibleenligne http://www.paralia.fr Availableonline Sonar advancements for coastal

More information

Tank experiments of sound propagation over a tilted bottom: Comparison with a 3-D PE model

Tank experiments of sound propagation over a tilted bottom: Comparison with a 3-D PE model Tank experiments of sound propagation over a tilted bottom: Comparison with a 3-D PE model A. Korakas a, F. Sturm a, J.-P. Sessarego b and D. Ferrand c a Laboratoire de Mécanique des Fluides et d Acoustique

More information

Rec. ITU-R P RECOMMENDATION ITU-R P *

Rec. ITU-R P RECOMMENDATION ITU-R P * Rec. ITU-R P.682-1 1 RECOMMENDATION ITU-R P.682-1 * PROPAGATION DATA REQUIRED FOR THE DESIGN OF EARTH-SPACE AERONAUTICAL MOBILE TELECOMMUNICATION SYSTEMS (Question ITU-R 207/3) Rec. 682-1 (1990-1992) The

More information

ON WAVEFORM SELECTION IN A TIME VARYING SONAR ENVIRONMENT

ON WAVEFORM SELECTION IN A TIME VARYING SONAR ENVIRONMENT ON WAVEFORM SELECTION IN A TIME VARYING SONAR ENVIRONMENT Ashley I. Larsson 1* and Chris Gillard 1 (1) Maritime Operations Division, Defence Science and Technology Organisation, Edinburgh, Australia Abstract

More information

Acoustic Blind Deconvolution and Frequency-Difference Beamforming in Shallow Ocean Environments

Acoustic Blind Deconvolution and Frequency-Difference Beamforming in Shallow Ocean Environments DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Acoustic Blind Deconvolution and Frequency-Difference Beamforming in Shallow Ocean Environments David R. Dowling Department

More information

Measurement and Modelling of Underwater Noise from Pile Driving

Measurement and Modelling of Underwater Noise from Pile Driving Proceedings of 20 th International Congress on Acoustics, ICA 2010 23-27 August 2010, Sydney, Australia Measurement and Modelling of Underwater Noise from Pile Driving Alec J Duncan, Robert D McCauley,

More information

Doppler Effect in the Underwater Acoustic Ultra Low Frequency Band

Doppler Effect in the Underwater Acoustic Ultra Low Frequency Band Doppler Effect in the Underwater Acoustic Ultra Low Frequency Band Abdel-Mehsen Ahmad, Michel Barbeau, Joaquin Garcia-Alfaro 3, Jamil Kassem, Evangelos Kranakis, and Steven Porretta School of Engineering,

More information

Advanced Structural Dynamics and Acoustics

Advanced Structural Dynamics and Acoustics Advanced Structural Dynamics and Acoustics Fundamentals of OCEAN ACOUSTICS Figures in this lecture are from Jensen, F.B., W.A. Kuperman, M.B. Porter, and H. Schmidt. Computational Ocean Acoustics. New

More information

Investigation of VHF signals in bands I and II in southern India and model comparisons

Investigation of VHF signals in bands I and II in southern India and model comparisons Indian Journal of Radio & Space Physics Vol. 35, June 2006, pp. 198-205 Investigation of VHF signals in bands I and II in southern India and model comparisons M V S N Prasad 1, T Rama Rao 2, Iqbal Ahmad

More information

Sound propagation through the Antarctic Convergence Zone and comments on three major experiments

Sound propagation through the Antarctic Convergence Zone and comments on three major experiments Sound propagation through the Antarctic Convergence Zone and comments on three major experiments Marshall V. Hall Emeritus Scientist, DSTO Sydney, Pyrmont NSW, Australia ABSTRACT Long-range hydroacoustic

More information

High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise

High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise Martin Siderius Portland State University, ECE Department 1900 SW 4 th Ave., Portland, OR 97201 phone: (503) 725-3223

More information

Antennas and Propagation

Antennas and Propagation Mobile Networks Module D-1 Antennas and Propagation 1. Introduction 2. Propagation modes 3. Line-of-sight transmission 4. Fading Slides adapted from Stallings, Wireless Communications & Networks, Second

More information

Ocean Variability Effects on High-Frequency Acoustic Propagation in KauaiEx

Ocean Variability Effects on High-Frequency Acoustic Propagation in KauaiEx Ocean Variability Effects on High-Frequency Acoustic Propagation in KauaiEx Mohsen Badiey 1, Stephen E. Forsythe 2, Michael B. Porter 3, and the KauaiEx Group 1 College of Marine Studies, University of

More information

ONR Graduate Traineeship Award

ONR Graduate Traineeship Award ONR Graduate Traineeship Award Tarun K. Chandrayadula George Mason University Electrical and Computer Engineering Department 4400 University Drive, MSN 1G5 Fairfax, VA 22030 phone: (703)993-1610 fax: (703)993-1601

More information

MULTIPATH EFFECT ON DPCA MICRONAVIGATION OF A SYNTHETIC APERTURE SONAR

MULTIPATH EFFECT ON DPCA MICRONAVIGATION OF A SYNTHETIC APERTURE SONAR MULTIPATH EFFECT ON DPCA MICRONAVIGATION OF A SYNTHETIC APERTURE SONAR L. WANG, G. DAVIES, A. BELLETTINI AND M. PINTO SACLANT Undersea Research Centre, Viale San Bartolomeo 400, 19138 La Spezia, Italy

More information

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies ACOUSTIC PROPAGATION THROUGH THE ANTARCTIC CONVERGENCE ZONE CALIBRATION TESTS FOR THE NUCLEAR TEST MONITORING SYSTEM Donna K. Blackman and Catherine de Groot-Hedlin University of California San Diego Sponsored

More information

Antennas and Propagation

Antennas and Propagation Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Bioacoustic Absorption Spectroscopy: Bio-alpha Measurements off the West Coast

Bioacoustic Absorption Spectroscopy: Bio-alpha Measurements off the West Coast DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Bioacoustic Absorption Spectroscopy: Bio-alpha Measurements off the West Coast Orest Diachok Johns Hopkins University Applied

More information

Ship source level. Aleksander Klauson, Janek Laanearu, Mirko Mustonen. Gothenburg, 01 June 2016

Ship source level. Aleksander Klauson, Janek Laanearu, Mirko Mustonen. Gothenburg, 01 June 2016 Ship source level Aleksander Klauson, Janek Laanearu, Mirko Mustonen Gothenburg, 01 June 2016 Outline 1. Why ship noise? 2. How to measure ship noise. Testing methods. 3. Sources of ship noise. 4. Source

More information

MODELING DOPPLER-SENSITIVE WAVEFORMS MEASURED OFF THE COAST OF KAUAI

MODELING DOPPLER-SENSITIVE WAVEFORMS MEASURED OFF THE COAST OF KAUAI Proceedings of the Eighth European Conference on Underwater Acoustics, 8th ECUA Edited by S. M. Jesus and O. C. Rodríguez Carvoeiro, Portugal 2-5 June, 26 MODELING DOPPLER-SENSITIVE WAVEFORMS MEASURED

More information

Analysis of South China Sea Shelf and Basin Acoustic Transmission Data

Analysis of South China Sea Shelf and Basin Acoustic Transmission Data DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Analysis of South China Sea Shelf and Basin Acoustic Transmission Data Ching-Sang Chiu Department of Oceanography

More information

Ocean Acoustics and Signal Processing for Robust Detection and Estimation

Ocean Acoustics and Signal Processing for Robust Detection and Estimation Ocean Acoustics and Signal Processing for Robust Detection and Estimation Zoi-Heleni Michalopoulou Department of Mathematical Sciences New Jersey Institute of Technology Newark, NJ 07102 phone: (973) 596

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Exploitation of Environmental Complexity in Shallow Water Acoustic Data Communications

Exploitation of Environmental Complexity in Shallow Water Acoustic Data Communications Exploitation of Environmental Complexity in Shallow Water Acoustic Data Communications W.S. Hodgkiss Marine Physical Laboratory Scripps Institution of Oceanography La Jolla, CA 92093-0701 phone: (858)

More information

Underwater Wideband Source Localization Using the Interference Pattern Matching

Underwater Wideband Source Localization Using the Interference Pattern Matching Underwater Wideband Source Localization Using the Interference Pattern Matching Seung-Yong Chun, Se-Young Kim, Ki-Man Kim Agency for Defense Development, # Hyun-dong, 645-06 Jinhae, Korea Dept. of Radio

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2005 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Appendix S1: Estimation of acoustic exposure in seals

Appendix S1: Estimation of acoustic exposure in seals Appendix S1: Estimation of acoustic exposure in seals Source characteristics The median broadband peak-to-peak source level (235 (SD=14.6) db re 1 µpa @ 1m) reported during previous pile driving at the

More information

Development of Mid-Frequency Multibeam Sonar for Fisheries Applications

Development of Mid-Frequency Multibeam Sonar for Fisheries Applications Development of Mid-Frequency Multibeam Sonar for Fisheries Applications John K. Horne University of Washington, School of Aquatic and Fishery Sciences Box 355020 Seattle, WA 98195 phone: (206) 221-6890

More information

Characterization of a Very Shallow Water Acoustic Communication Channel MTS/IEEE OCEANS 09 Biloxi, MS

Characterization of a Very Shallow Water Acoustic Communication Channel MTS/IEEE OCEANS 09 Biloxi, MS Characterization of a Very Shallow Water Acoustic Communication Channel MTS/IEEE OCEANS 09 Biloxi, MS Brian Borowski Stevens Institute of Technology Departments of Computer Science and Electrical and Computer

More information

Chapter 2 Channel Equalization

Chapter 2 Channel Equalization Chapter 2 Channel Equalization 2.1 Introduction In wireless communication systems signal experiences distortion due to fading [17]. As signal propagates, it follows multiple paths between transmitter and

More information

Shallow-Water Propagation

Shallow-Water Propagation Shallow-Water Propagation William L. Siegmann Rensselaer Polytechnic Institute 110 Eighth Street Troy, New York 12180-3590 phone: (518) 276-6905 fax: (518) 276-4824 email: siegmw@rpi.edu Award Numbers:

More information

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Propagation of How-Frequency, Transient Acoustic Signals through a Fluctuating Ocean: Development of a 3D Scattering Theory

More information

Underwater source localization using a hydrophone-equipped glider

Underwater source localization using a hydrophone-equipped glider SCIENCE AND TECHNOLOGY ORGANIZATION CENTRE FOR MARITIME RESEARCH AND EXPERIMENTATION Reprint Series Underwater source localization using a hydrophone-equipped glider Jiang, Y.M., Osler, J. January 2014

More information

Reverberation, Sediment Acoustics, and Targets-in-the-Environment

Reverberation, Sediment Acoustics, and Targets-in-the-Environment DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Reverberation, Sediment Acoustics, and Targets-in-the-Environment Kevin L. Williams Applied Physics Laboratory College

More information

A Matlab-Based Virtual Propagation Tool: Surface Wave Mixed-path Calculator

A Matlab-Based Virtual Propagation Tool: Surface Wave Mixed-path Calculator 430 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 A Matlab-Based Virtual Propagation Tool: Surface Wave Mixed-path Calculator L. Sevgi and Ç. Uluışık Doğuş University,

More information

GEOPIC, Oil & Natural Gas Corporation Ltd, Dehradun ,India b

GEOPIC, Oil & Natural Gas Corporation Ltd, Dehradun ,India b Estimation of Seismic Q Using a Non-Linear (Gauss-Newton) Regression Parul Pandit * a, Dinesh Kumar b, T. R. Muralimohan a, Kunal Niyogi a,s.k. Das a a GEOPIC, Oil & Natural Gas Corporation Ltd, Dehradun

More information

Sonobuoy-Based Acoustic Characterization of Shallow-Water Environments

Sonobuoy-Based Acoustic Characterization of Shallow-Water Environments DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sonobuoy-Based Acoustic Characterization of Shallow-Water Environments George V. Frisk Department of Ocean and Mechanical

More information

HIGH FREQUENCY INTENSITY FLUCTUATIONS

HIGH FREQUENCY INTENSITY FLUCTUATIONS Proceedings of the Seventh European Conference on Underwater Acoustics, ECUA 004 Delft, The Netherlands 5-8 July, 004 HIGH FREQUENCY INTENSITY FLUCTUATIONS S.D. Lutz, D.L. Bradley, and R.L. Culver Steven

More information

Anisotropic Frequency-Dependent Spreading of Seismic Waves from VSP Data Analysis

Anisotropic Frequency-Dependent Spreading of Seismic Waves from VSP Data Analysis Anisotropic Frequency-Dependent Spreading of Seismic Waves from VSP Data Analysis Amin Baharvand Ahmadi* and Igor Morozov, University of Saskatchewan, Saskatoon, Saskatchewan amin.baharvand@usask.ca Summary

More information

Low Spreading Loss in Underwater Acoustic Networks Reduces RTS/CTS Effectiveness

Low Spreading Loss in Underwater Acoustic Networks Reduces RTS/CTS Effectiveness Low Spreading Loss in Underwater Acoustic Networks Reduces RTS/CTS Effectiveness Jim Partan 1,2, Jim Kurose 1, Brian Neil Levine 1, and James Preisig 2 1 Dept. of Computer Science, University of Massachusetts

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Temporal Fluctuations of the Sound Speed Field and How They Affect Acoustic Mode Structures and Coherence

Temporal Fluctuations of the Sound Speed Field and How They Affect Acoustic Mode Structures and Coherence University of Miami Scholarly Repository Open Access Theses Electronic Theses and Dissertations 2012-12-11 Temporal Fluctuations of the Sound Speed Field and How They Affect Acoustic Mode Structures and

More information

From concert halls to noise barriers : attenuation from interference gratings

From concert halls to noise barriers : attenuation from interference gratings From concert halls to noise barriers : attenuation from interference gratings Davies, WJ Title Authors Type URL Published Date 22 From concert halls to noise barriers : attenuation from interference gratings

More information

MATCHED FIELD PROCESSING: ENVIRONMENTAL FOCUSING AND SOURCE TRACKING WITH APPLICATION TO THE NORTH ELBA DATA SET

MATCHED FIELD PROCESSING: ENVIRONMENTAL FOCUSING AND SOURCE TRACKING WITH APPLICATION TO THE NORTH ELBA DATA SET MATCHED FIELD PROCESSING: ENVIRONMENTAL FOCUSING AND SOURCE TRACKING WITH APPLICATION TO THE NORTH ELBA DATA SET Cristiano Soares 1, Andreas Waldhorst 2 and S. M. Jesus 1 1 UCEH - Universidade do Algarve,

More information

MULTI-TEMPORAL SATELLITE IMAGES WITH BATHYMETRY CORRECTION FOR MAPPING AND ASSESSING SEAGRASS BED CHANGES IN DONGSHA ATOLL

MULTI-TEMPORAL SATELLITE IMAGES WITH BATHYMETRY CORRECTION FOR MAPPING AND ASSESSING SEAGRASS BED CHANGES IN DONGSHA ATOLL MULTI-TEMPORAL SATELLITE IMAGES WITH BATHYMETRY CORRECTION FOR MAPPING AND ASSESSING SEAGRASS BED CHANGES IN DONGSHA ATOLL Chih -Yuan Lin and Hsuan Ren Center for Space and Remote Sensing Research, National

More information

Outline. Introduction to Sonar. Outline. History. Introduction Basic Physics Underwater sound INF-GEO4310. Position Estimation Signal processing

Outline. Introduction to Sonar. Outline. History. Introduction Basic Physics Underwater sound INF-GEO4310. Position Estimation Signal processing Outline Outline Introduction to Sonar INF-GEO4310 Roy Edgar Hansen Department of Informatics, University of Oslo October 2010 1 Basics Introduction Basic Physics 2 Sonar Sonar types Position Estimation

More information

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman Antennas & Propagation CSG 250 Fall 2007 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

ANALYSIS OF OUTAGE PROBABILITY IN COHERENT OFDM AND FAST-OFDM SYSTEMS IN TERRESTRIAL AND UNDERWATER WIRELESS OPTICAL COMMUNICATION LINKS

ANALYSIS OF OUTAGE PROBABILITY IN COHERENT OFDM AND FAST-OFDM SYSTEMS IN TERRESTRIAL AND UNDERWATER WIRELESS OPTICAL COMMUNICATION LINKS ANALYSIS OF OUTAGE PROBABILITY IN COHERENT OFDM AND FAST-OFDM SYSTEMS IN TERRESTRIAL AND UNDERWATER WIRELESS OPTICAL COMMUNICATION LINKS Abhishek Varshney and Sangeetha A School of Electronics Engineering

More information

Travel time estimation methods for mode tomography

Travel time estimation methods for mode tomography DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Travel time estimation methods for mode tomography Tarun K. Chandrayadula George Mason University Electrical

More information

Modeling of underwater sonar barriers

Modeling of underwater sonar barriers Acoustics 8 Paris Modeling of underwater sonar barriers A. Elminowicz and L. Zajaczkowski R&D Marine Technology Centre, Ul. Dickmana 62, 81-19 Gdynia, Poland andrzeje@ctm.gdynia.pl 3429 Acoustics 8 Paris

More information

Acoustic Monitoring of Flow Through the Strait of Gibraltar: Data Analysis and Interpretation

Acoustic Monitoring of Flow Through the Strait of Gibraltar: Data Analysis and Interpretation Acoustic Monitoring of Flow Through the Strait of Gibraltar: Data Analysis and Interpretation Peter F. Worcester Scripps Institution of Oceanography, University of California at San Diego La Jolla, CA

More information

Geoacoustic Inversion for Spatially and Temporally Varying Shallow Water Environments

Geoacoustic Inversion for Spatially and Temporally Varying Shallow Water Environments Geoacoustic Inversion for Spatially and Temporally Varying Shallow Water Environments ONR Special Research Awards in Underwater Acoustics: Entry Level Faculty Award Kyle M. Becker The Pennsylvania State

More information

Ocean Acoustic Propagation: Fluctuations and Coherence in Dynamically Active Shallow-Water Regions

Ocean Acoustic Propagation: Fluctuations and Coherence in Dynamically Active Shallow-Water Regions Ocean Acoustic Propagation: Fluctuations and Coherence in Dynamically Active Shallow-Water Regions Timothy F. Duda Applied Ocean Physics and Engineering Department, MS 11 Woods Hole Oceanographic Institution,

More information

Session2 Antennas and Propagation

Session2 Antennas and Propagation Wireless Communication Presented by Dr. Mahmoud Daneshvar Session2 Antennas and Propagation 1. Introduction Types of Anttenas Free space Propagation 2. Propagation modes 3. Transmission Problems 4. Fading

More information

Dynamic Ambient Noise Model Comparison with Point Sur, California, In-Situ Data

Dynamic Ambient Noise Model Comparison with Point Sur, California, In-Situ Data 1 Dynamic Ambient Noise Model Comparison with Point Sur, California, In-Situ Data Charlotte V. Leigh, APL-UW Anthony I. Eller, SAIC Applied Physics Laboratory, University of Washington Seattle, Washington

More information

Modelling the propagation of underwater acoustic emissions for condition monitoring of marine renewable energy

Modelling the propagation of underwater acoustic emissions for condition monitoring of marine renewable energy Modelling the propagation of underwater acoustic emissions for condition monitoring of marine renewable energy J. Walsh 1,2, I. Bashir 1, P. R. Thies 1, L. Johanning 1 1 College of Engineering, Mathematics

More information

Sonobuoy-Based, 3-D Acoustic Characterization of Shallow-Water Environments

Sonobuoy-Based, 3-D Acoustic Characterization of Shallow-Water Environments DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sonobuoy-Based, 3-D Acoustic Characterization of Shallow-Water Environments George V. Frisk Department of Ocean and Mechanical

More information