1 st Langaroud, s Conference On Electrical Engineering (LCEE2015) Mohammad Azimi Ashpazi University of Tabriz Tabriz, Iran

Size: px
Start display at page:

Download "1 st Langaroud, s Conference On Electrical Engineering (LCEE2015) Mohammad Azimi Ashpazi University of Tabriz Tabriz, Iran"

Transcription

1 An Approach to Determine the Optimal Location of Thyristor-controlled Phase Shifting Transformer to Improve Transient Stability in Electric Power System Mohammad Azimi Ashpazi University of Tabriz Tabriz, Iran Abstract This paper presents an approach to determine the optimal location of thyristor-controlled phase shifting transformer (TCPST) for enhancing the transient stability of power system. TCPSTs are a cost-effective means to ensure reliable and efficient power flow control in overloaded transmission lines. This feature leads to reduction of the rotor angle separation of synchronous generators during disturbance occurrence which, results in an improvement of transient stability of network. To select the optimal location of TCPST, the angular separation of the rotors of generators in different positions of TCPST installation was calculated. Implementation of the proposed method on WSCC 9-bus and New England 39- bus test system shows the good efficiency of this method for improving transient stability. The results show that installation of TCPST in proper possession decreases the angular separation of the rotors of generators, which effectively improves the system s transient stability. 1-1 Motivation I. INTRODUCTION (HEADING 1) Due to recent attitude in creation of a deregulated utility industry, the power systems face considerable challenges. Deregulation is aimed at a competitive energy market, in which results the power system to operate near its static and dynamic limits. It is simply possible, by equipment outages or power disturbances the synchronism of power system generators losses and instability occurs. This aspect of instability is influenced by the dynamics of generator s rotor angle. In power system, the necessary condition for satisfying the system operation is that all synchronous machines should remain in synchronism when transient disturbances such as loss of transmission line, increase of load or short-circuit appears. In this paper, an approach is presented to determine the optimal location of TCPST for improving the transient stability of power system. Control of transmitted power in transmission line is possible through the control of at least one of its three parameters: terminal voltages, impedance or phase angle between two ends of transmission lines. Practically, control of the phase angle appears the most suitable [1]. It is performed that using transformers can makes power flows shift in transmission lines during disturbance and improve the transient stability of power system. These transformers generate phase quadrature voltage components to be injected into lines via series connected boosting transformers. 1-2 Literature Review In this regard many efficient studies are assigned to the idea of improving transient stability of power system. The preference of using the TCSC operation for transient stability improvement of a multi-machine power system is explained in [2], by using trajectory sensitivity analysis (TSA). The optimal location of shunt FACTS controllers for transient stability improvement by employing genetic algorithm has been presented in [3]. In [4] a simplified nonlinear method is proposed to enhance the transient stability of multi machine power system using a SSSC. The method that presented in [5] determines the security margin against voltage collapse in power system and improves it using FACTS devices in the optimal continuous power flow framework. Finding the best location of series controllers in order to improve the transient stability margin of a power system has been studied in [6]. In this study, in order to achieve this aim, an approach has been developed based on an index of proximity to instability and trajectory sensitivity analysis. The optimal location of superconducting fault current limiter (SFCL), to improve the transient stability, is presented in single machine infinite bus 1

2 systems in [7]. The proposed algorithm is able to calculate and analyze the stability margin of system. The effects of using different types of TCSC and static compensator (STATCOM) on power system s transient stability by TSA are studied in [8]. In [9] TCPST was applied to improve transient stability of power system by determining control strategies which was obtained from mathematical modeling of TCPST in power flow equations. [10] presents the ways of entering effects of PST into power systems energy functions and shows that PST improves transient stability of power system. In [11] TCPST was used to shift power flow of the transmission lines where an accident occurs into other lines. II. DESCRIPTION OF TCPST IN POWER SYSTEM The TCPSTs built for transmission grids are generally 3- phase shunt transformers with series windings and have a thyristor based controllable tap changer, which makes it possible to bypass a winding or reverse its voltage polarity. The TCPST models in power system as a reactance in series with a phase angle shift, which had shown in Fig. 1. Depends on the type of TCPST, both the voltage magnitude and phase angle can be controlled. The electrical output power of generator in Fig. 1 is given by: Fig.1: Model of transmission line with TCPST Where is the sum of generator transient reactance, TCPST reactance and equivalent reactance of transmission line. The generator dynamics can be represented by the following first order differential equations: Where,,, and are the rotor angle, speed, input mechanical power, output electrical power and inertia of the generator, respectively. In (3), and are considered as constant, so is the main factor that determines the dynamic behavior of the Synchronous machine. The addition of a quadrature voltage to the bus voltage leads to increase or decrease of the voltage phase-angle. From (1) it is clear that the phase shift of makes it possible to control the power flow of a transmission lines. This feature makes it possible to increase the power transfer in remaining lines of transmission corridor, due to mitigate lines that would be over-loaded in an N-1 situation. In such a case, usually the TCPST could be on stand-by and only switched-in as quickly as possible. (1) (2) (3) 2 III. EXPLANATION OF PROPOSED METHOD In an electrical power system, when transient disturbances like three-phase short-circuits occur, the synchronicity of synchronous machines should be satisfied in order to maintain the stability of the network. This feature is influenced by dynamics of generators rotor angle and power-angle relationships. Disturbance causes changes in the operating point of generators. Till the fault is cleared, the angular separation between the rotor positions of each generator is modified. This angular separation depends on the location of the fault, the fault clearing time and the type of fault. When a three-phase short-circuits occurs near the generator buses, the magnitude of rotor angular separation increases and the probability of transient instability increases. Also, if the fault cleared before critical clearing time, the power system is perturbed and the angle oscillates between two extreme values, but a stable point will be found again after a few seconds. On the other hand, if the fault is not cleared till critical clearing time, the kinetic energy gained during the fault wouldn t be completely expended to the system. The power system is not capable of returning to a stable position and the system will experience the loss of synchronicity. To determine the optimal location of the TCPST, the method focuses on the angular separation between the rotors of all synchronous generators in case of fault. Assuming that generator is taken as reference and its rotor angle is expressed as. Then, the angular separation of all other generators (relative to reference generator) will be obtained and is expressed as. Where, is the number of generators of power system. Figure 2 presents the evolution of the angular separation of a sample power system, during a three-phase short circuit. In the presented figure, the angular separation expresses the difference between the angular positions of the rotor of one of the generators related to reference generator. Installing TCPST in the suitable place can reduce the two boundary markers in Fig. 2 and consequently, it improves the transient stability of the system. To determine the optimal location of the TCPST in power system, the index sum of maximum deviation of (SMD) is defined, as mentioned in (4-6). Fig.2: Evolution of the angular separation of the rotors. (4)

3 Which and is the number of faults that are considered in the system and the location of TCPST that will be installed, respectively. is the maximum deviation of of generator related to reference generator. In this algorithm is the number of possible places that TCPST can be installed. The number of depends on the number of transmission lines of power system. The TCPST can be installed in the beginning or ending bus of transmission lines. So, if the number of transmission lines of network is, the will be. Regarding this algorithm, effects of lots of faults are considered, so the index could be proper decision criteria to install the TCPST in optimum place. IV. CASE STUDY To assess the efficiency of the proposed method, it has been applied on WSCC 9-bus and 39 bus New England test systems. In Fig. 3 the schematic diagram of WSCC 9-bustest system is represented. As shown in this figure, there are six transmission lines. So, the number of possible places to install TCPST is 12. In the time based simulation for simplicity, all disturbances were considered as three-phase short circuit, which occurs in middle of transmission lines. It is assumed that the faults will be cleared after 10 cycles, which is too long time. To determine the optimal location of TCPST, the value of index SMD is evaluated. Calculation of this index needs time based simulation, which is done by Dig-silent software. In this algorithm, first, one of the TCPSTs is installed in the appropriate place, by considering a specific tap adjustment. Next, the three-phase short circuit runs and the diagrams of for all synchronous machines related to reference machine obtains for each considered three-phase short circuit. Now, it is possible to calculate the index SMD, as explained in (6). Afterward, the tap position of TCPST changes and the same process done again and the SMD index calculates for each tap adjustments. The process explained above, runs for other TCPSTs one by one. So, the SMD index for each of TCPSTs that could be installed in power system is available. It is clear that, the minimum value of SMD is appropriate. The result of index SMD for WSCC 9-bus test system shows that the minimum value of SMD is obtained when the TCPST is installed in line 5 to 4. In Fig. 4 and Fig. 5 the diagram of all synchronous machines related to reference machine of WSCC 9-bus test system are represented during three-phase short circuit before and after installing TCPST, respectively. In the presented diagram, it is assumed that three-phase short circuit occurred in line 5 to 7. These diagrams show that by installing TCPST in line 5 to 4, the rotor angle separation of all (5) (6) 3 synchronous machines is reduced and consequently, the transient stability of system improves. Fig.3: schematic diagram of WSCC 9-bus test system. Fig.4: diagram of synchronous machines during threephase short circuit in line 5 to 7 before installing TCPST. Fig.5: diagram of synchronous machines during threephase short circuit in line 5 to 7 after installing TCPST. Figure 6 shows the schematic diagram of 39 bus New England test system. In this system only one TCPST is not able to improve the stability. In this case we can split the power system into smaller areas depending on the coherency of the areas when disturbances occurs. The optimal location of

4 TCPSTs in each area can be determined by applying the proposed method to each area by considering three-phase short circuits at different locations. As shown in Fig. 6, we divided system into three areas. Figure 7, 8 and 9 shows the value of SMD for areas 1, 2 and 3, respectively. According to these diagrams its clear that the optimal location of TCPST in area 1 is which is the begining line 26 to 27, which is the beginning of line 16 to 24 in area 2 and which is the beginning of line 6 to 5 in area 3, respectively. In Fig. 10 the diagram of four generators of bus 31, 32, 34 and 36 before and after installing TCPSTs are represented, respectively. It is assumed that three-phase short circuit is in middle of line 17 to 16. From these diagrams it is clear that by installing TCPSTs in optimum places of each area, the rotor angle separation is reduced and consequently, the transient stability of system improves. Fig.8: Value of SMD for each candidate location of area 2. Fig.9: Value of SMD for each candidate location of area 3. Fig.10: Rotor angle of the four generators before and after TCPST installation when a fault occurs at line 17 to 16. Fig.6: schematic diagram of 10 generator New England test system. V. CONCLUSION This paper presents an approach to determine the optimal location of TCPST for improving the transient stability of power system. TCPSTs are able to control the power flow in overloaded transmission lines. Due to this, they are capable of increasing the transient stability of network. This feature leads to reduction of the rotor angle separation of synchronous generators during disturbances. In this paper, via the difference of rotor angular of synchronous machines, SMD index is defined to finding the optimal location of the TCPST. The effects of possible faults in power system are considered in this index. The low value of SMD index indicates the optimum location to install TCPST. Fig.7: Value of SMD for each candidate location of area 1. REFERENCES 4 [1] G. El-Saady, A variable structure static phase shifting transformer for power system stabilization, Electric Power Systems Research 50 (1999) [2] D. Chatterjee and A. Ghosh TCSC control design for transient stability improvement of a multi-machine power system using trajectory sensitivity, Electrical. Power Systems Research, vol. 77, pp , 2007.

5 [3] S. Panda and R. N. Patel, Optimal location of shunt FACTS controllers for transient stability improvement employing genetic algorithm, Electric Power Components and Systems, vol.35, no.2,pp , [4] Jean de Dieu Nguimfack-N dongmo, Godpromesse Kenné, René Kuate-Fochie, André Cheukem Hilaire Bertrand Fotsi, Françoise Lamnabhi-Lagarrigue, A simplified nonlinear controller for transient stability enhancement of multi-machine power systems using SSSC device, Electrical Power and Energy Systems 54 (2014) [5] J. Aghaei, M. Gitizadeh, M. Kaji, Placement and operation strategy of FACTS devices using optimal continuous power flow Scientia Iranica D (2012) 19 (6), [6] A. Zamora-Cárdenas, Claudio R. Fuerte-Esquivel, Multi-parameter trajectory sensitivity approach for location of series-connected controllers to enhance power system transient stability Electric Power Systems Research 80 (2010) [7] B. Sung et al., Study on a series resistive SFCL to improve power transient stability: Modeling, simulation, experimental verification, IEEE Trans. Ind. Electron., vol. 56, no. 7, pp , Jun [8] D. Chatterjee and A. Ghosh, Transient stability assessment of power systems containing series and shunt compensators, IEEE Trans. Power Syst., vol. 22, no. 3,, pp , Aug [9] P. Kumkratug, Improvement of Transient Stability of Power System by Thyristor Controlled Phase Shifter Transformer American Journal of Applied Sciences 7 (11): , [10] U. Gabrijel, R. Mihalic, Transient Stability Assessment of Power Systems with Phase Shifting Transformers EUROCON 2003 Ljubljana, Slovenia. [11] C. N. Huang, Preventive Flow Control for Transient Stability by Phase Shifting Transformers, Transmission and Distribution Conference and Exposition, 2003 IEEE PES, pp vol.2. 5

ELEMENTS OF FACTS CONTROLLERS

ELEMENTS OF FACTS CONTROLLERS 1 ELEMENTS OF FACTS CONTROLLERS Rajiv K. Varma Associate Professor Hydro One Chair in Power Systems Engineering University of Western Ontario London, ON, CANADA rkvarma@uwo.ca POWER SYSTEMS - Where are

More information

Chapter 10: Compensation of Power Transmission Systems

Chapter 10: Compensation of Power Transmission Systems Chapter 10: Compensation of Power Transmission Systems Introduction The two major problems that the modern power systems are facing are voltage and angle stabilities. There are various approaches to overcome

More information

ENHANCEMENT OF POWER FLOW USING SSSC CONTROLLER

ENHANCEMENT OF POWER FLOW USING SSSC CONTROLLER ENHANCEMENT OF POWER FLOW USING SSSC CONTROLLER 1 PRATIK RAO, 2 OMKAR PAWAR, 3 C. L. BHATTAR, 4 RUSHIKESH KHAMBE, 5 PRITHVIRAJ PATIL, 6 KEDAR KULKARNI 1,2,4,5,6 B. Tech Electrical, 3 M. Tech Electrical

More information

The Influence of Thyristor Controlled Phase Shifting Transformer on Balance Fault Analysis

The Influence of Thyristor Controlled Phase Shifting Transformer on Balance Fault Analysis Vol.2, Issue.4, July-Aug. 2012 pp-2472-2476 ISSN: 2249-6645 The Influence of Thyristor Controlled Phase Shifting Transformer on Balance Fault Analysis Pratik Biswas (Department of Electrical Engineering,

More information

Damping Power system Oscillation using Static Synchronous Series Compensator (SSSC)

Damping Power system Oscillation using Static Synchronous Series Compensator (SSSC) Damping Power system Oscillation using Static Synchronous Series Compensator (SSSC) Girish Kumar Prasad 1, Dr. Malaya S Dash 2 1M-Tech Scholar, Dept. of Electrical & Electronics Engineering, Technocrats

More information

Congestion management in power system using TCSC

Congestion management in power system using TCSC Congestion management in power system using TCSC KARTHIKA P L 1, JASMY PAUL 2 1 PG Student, Electrical and Electronics, ASIET kalady, Kerala, India 2 Asst. Professor, Electrical and Electronics, ASIET

More information

Power System Oscillations Damping and Transient Stability Enhancement with Application of SSSC FACTS Devices

Power System Oscillations Damping and Transient Stability Enhancement with Application of SSSC FACTS Devices Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2015, 2(11): 73-79 Research Article ISSN: 2394-658X Power System Oscillations Damping and Transient Stability

More information

Comparison of FACTS Devices for Power System Stability Enhancement

Comparison of FACTS Devices for Power System Stability Enhancement Comparison of FACTS Devices for Power System Stability Enhancement D. Murali Research Scholar in EEE Dept., Government College of Engineering, Bargur-635 104, Tamilnadu, India. Dr. M. Rajaram Professor

More information

Transient Stability Improvement Of Power System With Phase Shifting Transformer

Transient Stability Improvement Of Power System With Phase Shifting Transformer INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 3 19 Transient Stability Improvement Of Power System With Phase Shifting Transformer Jyothi Varanasi, Aditya

More information

Transient Stability Enhancement with Application of FACTS Devices

Transient Stability Enhancement with Application of FACTS Devices Transient Stability Enhancement with Application of FACTS Devices Joel.R. Sutter, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya E-mail: joelruttosutter@gmail.com

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 4, April -2017 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Damping

More information

POWER QUALITY. BENEFITS OF UTILIZING FACTS DEVICES IN ELECTRICAL POWER SYSTEMS

POWER QUALITY. BENEFITS OF UTILIZING FACTS DEVICES IN ELECTRICAL POWER SYSTEMS POWER QUALITY. BENEFITS OF UTILIZING FACTS DEVICES IN ELECTRICAL POWER SYSTEMS M.P.Donsión 1, J.A. Güemes 2, J.M. Rodríguez 1 1 Department of Electrical Engineering, University of Vigo, Campus of Lagoas

More information

Unit.2-Voltage Sag. D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203

Unit.2-Voltage Sag. D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203 Unit.2-Voltage Sag D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203 13/09/2012 Unit.2 Voltage sag 1 Unit-2 -Voltage Sag Mitigation Using

More information

Keywords: Stability, Power transfer, Flexible a.c. transmission system (FACTS), Unified power flow controller (UPFC). IJSER

Keywords: Stability, Power transfer, Flexible a.c. transmission system (FACTS), Unified power flow controller (UPFC). IJSER International Journal of Scientific & Engineering Research, Volume, Issue, March-4 74 ISSN 9-8 IMPACT OF UPFC ON SWING, VOLTAGE STABILITY AND POWER TRANSFER CAPABILITY IN TRANSMISSION SYSTEM Mr. Rishi

More information

Transient stability improvement by using shunt FACT device (STATCOM) with Reference Voltage Compensation (RVC) control scheme

Transient stability improvement by using shunt FACT device (STATCOM) with Reference Voltage Compensation (RVC) control scheme I J E E E C International Journal of Electrical, Electronics ISSN No. (Online) : 2277-2626 and Computer Engineering 2(1): 7-12(2013) Transient stability improvement by using shunt FACT device (STATCOM)

More information

Power System Stability. Course Notes PART-1

Power System Stability. Course Notes PART-1 PHILADELPHIA UNIVERSITY ELECTRICAL ENGINEERING DEPARTMENT Power System Stability Course Notes PART-1 Dr. A.Professor Mohammed Tawfeeq Al-Zuhairi September 2012 1 Power System Stability Introduction Dr.Mohammed

More information

Stability Issues of Smart Grid Transmission Line Switching

Stability Issues of Smart Grid Transmission Line Switching Preprints of the 19th World Congress The International Federation of Automatic Control Stability Issues of Smart Grid Transmission Line Switching Garng. M. Huang * W. Wang* Jun An** *Texas A&M University,

More information

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India e t International Journal on Emerging Technologies 4(1): 10-16(2013) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Control of Synchronous Generator Excitation and Rotor Angle Stability by

More information

FACTS devices in Distributed Generation

FACTS devices in Distributed Generation FACTS devices in Distributed Generation 1 K. B. MOHD. UMAR ANSARI, 2 SATYENDRA VISHWAKARMA, 3 GOLDY SHARMA 1, 2, 3 M.Tech (Electrical Power & Energy Systems), Department of Electrical & Electronics Engineering,

More information

CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS

CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS 84 CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS 4.1 INTRODUCTION Now a days, the growth of digital economy implies a widespread use of electronic equipment not only in the industrial

More information

VOLTAGE STABILITY OF THE NORDIC TEST SYSTEM

VOLTAGE STABILITY OF THE NORDIC TEST SYSTEM 1 VOLTAGE STABILITY OF THE NORDIC TEST SYSTEM Thierry Van Cutsem Department of Electrical and Computer Engineering University of Liège, Belgium Modified version of a presentation at the IEEE PES General

More information

Identification of Critical Bus and Optimal Allocation of Facts Device

Identification of Critical Bus and Optimal Allocation of Facts Device Identification of Critical Bus and Optimal Allocation of Facts Device Dipali Kiratsata 1, Gaurav Gangil 2 M.Tech Scholar, Department of Electrical, Sobhasaria Group of Institutions Sikar, India Assistant

More information

Investigation of TCSC Impacts on Voltage Stability of Electric Power System

Investigation of TCSC Impacts on Voltage Stability of Electric Power System Research Journal of Applied Sciences, Engineering and Technology 3(12): 1409-1413, 2011 ISSN: 2040-7467 Maxwell Scientific Organization, 2011 Submitted: July 26, 2011 Accepted: September 09, 2011 Published:

More information

Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator

Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator Ishwar Lal Yadav Department of Electrical Engineering Rungta College of Engineering and Technology Bhilai, India

More information

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India)

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India) ISSN: 2349-7637 (Online) RESEARCH HUB International Multidisciplinary Research Journal (RHIMRJ) Research Paper Available online at: www.rhimrj.com Modeling and Simulation of Distribution STATCOM Bhavin

More information

Fundamental Concepts of Dynamic Reactive Compensation. Outline

Fundamental Concepts of Dynamic Reactive Compensation. Outline 1 Fundamental Concepts of Dynamic Reactive Compensation and HVDC Transmission Brian K. Johnson University of Idaho b.k.johnson@ieee.org 2 Outline Objectives for this panel session Introduce Basic Concepts

More information

Improvement of Power system transient stability using static synchronous series compensator

Improvement of Power system transient stability using static synchronous series compensator Improvement of Power system transient stability using static synchronous series compensator 1 Dharmendrasinh Chauhan, 2 Mr.Ankit Gajjar 1 ME Student, 2 Assistant Professor Electrical Engineering Department,

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control Spring 2014 Instructor: Kai Sun 1 References Saadat s Chapters 12.6 ~12.7 Kundur s Sections

More information

Comparison of Simulation Results of D-Facts & UPFC Used for Power Quality Improvement

Comparison of Simulation Results of D-Facts & UPFC Used for Power Quality Improvement International Journal of Scientific and Research Publications, Volume 3, Issue 9, September 2013 1 Comparison of Simulation Results of D-Facts & UPFC Used for Power Quality Improvement Dr.K.Ravichandrudu

More information

Control of Dynamically Assisted Phase-shifting Transformers

Control of Dynamically Assisted Phase-shifting Transformers Control of Dynamically Assisted Phase-shifting Transformers Nicklas Johansson Royal Institute of Technology School of Electrical Engineering Division of Electrical Machines and Power Electronics Stockholm

More information

1 Introduction General Background The New Computer Environment Transmission System Developments Theoretical Models and Computer Programs

1 Introduction General Background The New Computer Environment Transmission System Developments Theoretical Models and Computer Programs Modeling Techniques in Power Systems 1 General Background The New Computer Environment Transmission System Developments Theoretical Models and Computer Programs 2 Transmission Systems Linear Transformation

More information

Interline Power Flow Controller: Review Paper

Interline Power Flow Controller: Review Paper Vol. (0) No. 3, pp. 550-554 ISSN 078-365 Interline Power Flow Controller: Review Paper Akhilesh A. Nimje, Chinmoy Kumar Panigrahi, Ajaya Kumar Mohanty Abstract The Interline Power Flow Controller (IPFC)

More information

Er.JASPREET SINGH Er.SATNAM SINGH MATHARU Punjab technical university Dept. of Electrical Engg Jalandhar CTIEMT Jalandhar

Er.JASPREET SINGH Er.SATNAM SINGH MATHARU Punjab technical university Dept. of Electrical Engg Jalandhar CTIEMT Jalandhar International Journal of Scientific & Engineering Research, Volume, Issue, January- ISSN - POWER SYSTEM STABILITY IMPROVEMENT BY FACT DEVICES Er.JASPREET SINGH Punjab technical university Jalandhar Jaspreet@gmail.com

More information

Optimal Allocation of FACTS Devices in Power Networks Using Imperialist Competitive Algorithm (ICA)

Optimal Allocation of FACTS Devices in Power Networks Using Imperialist Competitive Algorithm (ICA) Optimal Allocation of FACTS Devices in Power Networks Using Imperialist Competitive Algorithm (ICA) A thesis submitted for the degree of Doctor of Philosophy By Mohammad Shahrazad Supervised by Dr. Ahmed

More information

Implementation of Line Stability Index for Contingency Analysis and Screening in Power Systems

Implementation of Line Stability Index for Contingency Analysis and Screening in Power Systems Journal of Computer Science 8 (4): 585-590, 2012 ISSN 1549-3636 2012 Science Publications Implementation of Line Stability Index for Contingency Analysis and Screening in Power Systems Subramani, C., Subhransu

More information

Brief Study on TSCS, SSSC, SVC Facts Device

Brief Study on TSCS, SSSC, SVC Facts Device Brief Study on TSCS, SSSC, SVC Facts Device Ramesh Kumari, Parveen M.Tech. Student, Department of EEE, Mata Rajkaur Institute of Engineering & technology, Rewari, Haryana, India Asst. Professor, Department

More information

IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) ISSN: Volume 1, Issue 5 (July-Aug. 2012), PP

IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) ISSN: Volume 1, Issue 5 (July-Aug. 2012), PP IOSR Journal of Electrical Electronics Engineering (IOSRJEEE) ISSN: 2278-1676 Volume 1, Issue 5 (July-Aug. 2012), PP 16-25 Real Power Loss Voltage Stability Limit Optimization Incorporating through DE

More information

ECE 692 Advanced Topics on Power System Stability 5 - Voltage Stability

ECE 692 Advanced Topics on Power System Stability 5 - Voltage Stability ECE 692 Advanced Topics on Power System Stability 5 - Voltage Stability Spring 2016 Instructor: Kai Sun 1 Content Basic concepts Voltage collapse and Saddle-node bifurcation P-V curve and V-Q curve Causes

More information

Power System Stability Enhancement Using Static Synchronous Series Compensator (SSSC)

Power System Stability Enhancement Using Static Synchronous Series Compensator (SSSC) Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2530-2536 ISSN: 2249-6645 Power System Stability Enhancement Using Static Synchronous Series Compensator (SSSC) B. M. Naveen Kumar Reddy 1, Mr. G. V. Rajashekar 2,

More information

SIMULATION OF D-Q CONTROL SYSTEM FOR A UNIFIED POWER FLOW CONTROLLER

SIMULATION OF D-Q CONTROL SYSTEM FOR A UNIFIED POWER FLOW CONTROLLER SIMULATION OF D-Q CONTROL SYSTEM FOR A UNIFIED POWER FLOW CONTROLLER S. Tara Kalyani 1 and G. Tulasiram Das 1 1 Department of Electrical Engineering, Jawaharlal Nehru Technological University, Hyderabad,

More information

Development of Dynamic Test Cases in OPAL-RT Real-time Power System Simulator

Development of Dynamic Test Cases in OPAL-RT Real-time Power System Simulator Development of Dynamic Test Cases in OPAL-RT Real-time Power System Simulator Shiv Kumar Singh, Bibhu P. Padhy, Student Member, IEEE, S. Chakrabarti, Senior Member, IEEE, S.N. Singh, Senior Member, IEEE,

More information

TRADITIONALLY, if the power system enters the emergency

TRADITIONALLY, if the power system enters the emergency IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 1, FEBRUARY 2007 433 A New System Splitting Scheme Based on the Unified Stability Control Framework Ming Jin, Tarlochan S. Sidhu, Fellow, IEEE, and Kai

More information

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) ISSN 0976 6545(Print) ISSN 0976 6553(Online) Volume 3, Issue 1, January- June (2012), pp. 226-234 IAEME: www.iaeme.com/ijeet.html Journal

More information

Transfer Capability Enhancement of Transmission Line using Static Synchronous Compensator (STATCOM)

Transfer Capability Enhancement of Transmission Line using Static Synchronous Compensator (STATCOM) International Journal of Advanced Computer Research (ISSN (print): 49777 ISSN (online): 77797) Volume Number4 Issue7 December Transfer Capability Enhancement of Transmission Line using Static Synchronous

More information

Static Synchronous Compensator (STATCOM) for the improvement of the Electrical System performance with Non Linear load 1

Static Synchronous Compensator (STATCOM) for the improvement of the Electrical System performance with Non Linear load 1 Static Synchronous Compensator (STATCOM) for the improvement of the Electrical System performance with Non Linear load MADHYAMA V. WANKHEDE Department Of Electrical Engineering G. H. Raisoni College of

More information

Impact of Thyristor Controlled Series Capacitor on Voltage Profile of Transmission Lines using PSAT

Impact of Thyristor Controlled Series Capacitor on Voltage Profile of Transmission Lines using PSAT Impact of Thyristor Controlled Series Capacitor on Voltage Profile of Transmission Lines using PSAT Babar Noor 1, Muhammad Aamir Aman 1, Murad Ali 1, Sanaullah Ahmad 1, Fazal Wahab Karam. 2 Electrical

More information

Online Wide-Area Voltage Stability Monitoring and Control: RT-VSMAC Tool

Online Wide-Area Voltage Stability Monitoring and Control: RT-VSMAC Tool Online Wide-Area Voltage Stability Monitoring and Control: RT-VSMAC Tool A. Srivastava and S. Biswas The School of Electrical Engineering and Computer Science Smart Grid Demonstration and Research Investigation

More information

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE Ms. K. Kamaladevi 1, N. Mohan Murali Krishna 2 1 Asst. Professor, Department of EEE, 2 PG Scholar, Department of

More information

ROSE - Real Time Analysis Tool for Enhanced Situational Awareness

ROSE - Real Time Analysis Tool for Enhanced Situational Awareness ROSE - Real Time Analysis Tool for Enhanced Situational Awareness Marianna Vaiman V&R Energy Copyright 1997-2013 V&R Energy Systems Research, Inc. All rights reserved. WECC JSIS Salt Lake City, UT October

More information

Placement of Multiple Svc on Nigerian Grid System for Steady State Operational Enhancement

Placement of Multiple Svc on Nigerian Grid System for Steady State Operational Enhancement American Journal of Engineering Research (AJER) e-issn: 20-0847 p-issn : 20-0936 Volume-6, Issue-1, pp-78-85 www.ajer.org Research Paper Open Access Placement of Multiple Svc on Nigerian Grid System for

More information

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM N.Shakeela Begum M.Tech Student P.V.K.K Institute of Technology. Abstract This paper presents a modified instantaneous

More information

STATCOM Control of Ill-Conditioned Power Systems Using Dogleg Trust-Region Algorithm

STATCOM Control of Ill-Conditioned Power Systems Using Dogleg Trust-Region Algorithm Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 3 (2013), pp. 311-320 Research India Publications http://www.ripublication.com/aeee.htm STATCOM Control of Ill-Conditioned

More information

Installation and Benefits of FACTS Controllers and Voltage Stability in Electrical Power Systems

Installation and Benefits of FACTS Controllers and Voltage Stability in Electrical Power Systems Installation and Benefits of FACTS Controllers and Voltage Stability in Electrical Power Systems Sajid Ali 1, Sanjiv Kumar 2, Vipin Jain 2 1 Electrical Department, MIT Meerut (UP),India 2 Research Scholar,

More information

Protection from Voltage Sags and Swells by Using FACTS Controller

Protection from Voltage Sags and Swells by Using FACTS Controller Protection from Voltage Sags and Swells by Using FACTS Controller M.R.Mohanraj 1, V.P.Suresh 2, G.Syed Zabiyullah 3 Assistant Professor, Department of Electrical and Electronics Engineering, Excel College

More information

We can utilize the power flow control ability of a TCSC to assist the system in the following tasks:

We can utilize the power flow control ability of a TCSC to assist the system in the following tasks: Module 4 : Voltage and Power Flow Control Lecture 19a : Use of Controllable Devices : An example Objectives In this lecture you will learn the following The use of controllable devices with the help of

More information

Improving the Electric Power Quality by UPFC Systems in Electrical Networks

Improving the Electric Power Quality by UPFC Systems in Electrical Networks Improving the Electric Power Quality by UPFC Systems in Electrical Networks 1 *DIB Djalel, 1 A.Rezaiguia, 2 Z. Abada Abstract- Unified Power Flow Controller (UPFC) is used to control the power flow in

More information

Analysis and Enhancement of Voltage Stability using Shunt Controlled FACTs Controller

Analysis and Enhancement of Voltage Stability using Shunt Controlled FACTs Controller Volume 1, Issue 2, October-December, 2013, pp. 25-33, IASTER 2013 www.iaster.com, Online: 2347-5439, Print: 2348-0025 Analysis and Enhancement of Voltage Stability using Shunt Controlled FACTs Controller

More information

STATCOM Tuned Based on Tabu Search for Voltage Support in Power Systems

STATCOM Tuned Based on Tabu Search for Voltage Support in Power Systems J. Basic. Appl. Sci. Res., 1(10)1334-1341, 2011 2011, TextRoad Publication ISSN 2090-424X Journal of Basic and Applied Scientific Research www.textroad.com STATCOM Tuned Based on Tabu Search for Voltage

More information

Optimal Placement of Unified Power Flow Controllers to Improve Dynamic Voltage Stability Using Power System Variable Based Voltage Stability Indices

Optimal Placement of Unified Power Flow Controllers to Improve Dynamic Voltage Stability Using Power System Variable Based Voltage Stability Indices RESEARCH ARTICLE Optimal Placement of Unified Power Flow Controllers to Improve Dynamic Voltage Stability Using Power System Variable Based Voltage Stability Indices Fadi M. Albatsh 1 *, Shameem Ahmad

More information

Improving the Transient and Dynamic stability of the Network by Unified Power Flow Controller (UPFC)

Improving the Transient and Dynamic stability of the Network by Unified Power Flow Controller (UPFC) International Journal of Scientific and Research Publications, Volume 2, Issue 5, May 2012 1 Improving the Transient and Dynamic stability of the Network by Unified Power Flow Controller (UPFC) K. Manoz

More information

Available ONLINE

Available ONLINE Available ONLINE www.ijart.org IJART, Vol. 2 Issue 3, 2012,94-98 ISSN NO: 6602 3127 R E S E A R C H A R T II C L E Enhancement Of Voltage Stability And Power Oscillation Damping Using Static Synchronous

More information

Increasing Dynamic Stability of the Network Using Unified Power Flow Controller (UPFC)

Increasing Dynamic Stability of the Network Using Unified Power Flow Controller (UPFC) Increasing Dynamic Stability of the Network Using Unified Power Flow Controller (UPFC) K. Manoz Kumar Reddy (Associate professor, Electrical and Electronics Department, Sriaditya Engineering College, India)

More information

Energy-Based Damping Evaluation for Exciter Control in Power Systems

Energy-Based Damping Evaluation for Exciter Control in Power Systems Energy-Based Damping Evaluation for Exciter Control in Power Systems Luoyang Fang 1, Dongliang Duan 2, Liuqing Yang 1 1 Department of Electrical & Computer Engineering Colorado State University, Fort Collins,

More information

VOLTAGE SAG MITIGATION USING A NEW DIRECT CONTROL IN D-STATCOM FOR DISTRIBUTION SYSTEMS

VOLTAGE SAG MITIGATION USING A NEW DIRECT CONTROL IN D-STATCOM FOR DISTRIBUTION SYSTEMS U.P.B. Sci. Bull., Series C, Vol. 7, Iss. 4, 2009 ISSN 454-234x VOLTAGE SAG MITIGATION USING A NEW DIRECT CONTROL IN D-STATCOM FOR DISTRIBUTION SYSTEMS Rahmat-Allah HOOSHMAND, Mahdi BANEJAD 2, Mostafa

More information

I. INTRODUCTION. Keywords:- FACTS, TCSC, TCPAR,UPFC,ORPD

I. INTRODUCTION. Keywords:- FACTS, TCSC, TCPAR,UPFC,ORPD International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 11, Issue 11 (November 2015), PP.13-18 Modelling Of Various Facts Devices for Optimal

More information

Improvement of Voltage Profile using D- STATCOM Simulation under sag and swell condition

Improvement of Voltage Profile using D- STATCOM Simulation under sag and swell condition ISSN (Online) 232 24 ISSN (Print) 232 5526 Vol. 2, Issue 7, July 24 Improvement of Voltage Profile using D- STATCOM Simulation under sag and swell condition Brijesh Parmar, Prof. Shivani Johri 2, Chetan

More information

Analysis and modeling of thyristor controlled series capacitor for the reduction of voltage sag Manisha Chadar

Analysis and modeling of thyristor controlled series capacitor for the reduction of voltage sag Manisha Chadar Analysis and modeling of thyristor controlled series capacitor for the reduction of voltage sag Manisha Chadar Electrical Engineering department, Jabalpur Engineering College Jabalpur, India Abstract:

More information

IJCSIET--International Journal of Computer Science information and Engg., Technologies ISSN

IJCSIET--International Journal of Computer Science information and Engg., Technologies ISSN A novel control strategy for Mitigation of Inrush currents in Load Transformers using Series Voltage source Converter Pulijala Pandu Ranga Rao *1, VenuGopal Reddy Bodha *2 #1 PG student, Power Electronics

More information

Design Strategy for Optimum Rating Selection of Interline D-STATCOM

Design Strategy for Optimum Rating Selection of Interline D-STATCOM International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 3 ǁ March. 2013 ǁ PP.12-17 Design Strategy for Optimum Rating Selection of Interline

More information

Transient Stability Improvement Of IEEE 9 Bus System With Shunt FACTS Device STATCOM

Transient Stability Improvement Of IEEE 9 Bus System With Shunt FACTS Device STATCOM Transient Stability Improvement Of IEEE 9 Bus System With Shunt FACTS Device STATCOM P.P. Panchbhai 1, P.S.Vaidya 2 1Pratiksha P Panchbhai, Dept. of Electrical Engineering, G H Raisoni College of Engineering

More information

Identification of weak buses using Voltage Stability Indicator and its voltage profile improvement by using DSTATCOM in radial distribution systems

Identification of weak buses using Voltage Stability Indicator and its voltage profile improvement by using DSTATCOM in radial distribution systems IOSR Journal of Electrical And Electronics Engineering (IOSRJEEE) ISSN : 2278-1676 Volume 2, Issue 4 (Sep.-Oct. 2012), PP 17-23 Identification of weak buses using Voltage Stability Indicator and its voltage

More information

Comparison and Simulation of Open Loop System and Closed Loop System Based UPFC used for Power Quality Improvement

Comparison and Simulation of Open Loop System and Closed Loop System Based UPFC used for Power Quality Improvement International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-1, Issue-6, January 2012 Comparison and Simulation of Open Loop System and Closed Loop System Based UPFC used for

More information

APPLICATION OF VOLTAGE SOURCE CONVERTOR IN INTERPHASE POWER CONTROLLER

APPLICATION OF VOLTAGE SOURCE CONVERTOR IN INTERPHASE POWER CONTROLLER Electrical and Electronics Engineering: n International Journal ol.1, No.3, November 01 PPLICTION OF OLTGE SOUCE CONETO IN INTEPHSE POWE CONTOLLE Mohammad min Chitsazan 1, G. B. Gharehpetian, Maryam rbabzadeh

More information

optimal allocation of facts devices to enhance voltage stability of power systems Amr Magdy Abdelfattah Sayed A thesis submitted to the

optimal allocation of facts devices to enhance voltage stability of power systems Amr Magdy Abdelfattah Sayed A thesis submitted to the optimal allocation of facts devices to enhance voltage stability of power systems By Amr Magdy Abdelfattah Sayed A thesis submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment

More information

Performance and Analysis of Reactive Power Compensation by Unified Power Flow Controller

Performance and Analysis of Reactive Power Compensation by Unified Power Flow Controller Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol. 3, No. 3, September 2015, pp. 141~149 ISSN: 2089-3272 141 Performance and Analysis of Reactive Power Compensation by Unified Power

More information

A DYNAMIC POWER FLOW CONTROLLER FOR POWER SYSTEM STABILITY IMPROVEMENT AND LOSS REDUCTION

A DYNAMIC POWER FLOW CONTROLLER FOR POWER SYSTEM STABILITY IMPROVEMENT AND LOSS REDUCTION A DYNAMIC POWER FLOW CONTROLLER FOR POWER SYSTEM STABILITY IMPROVEMENT AND LOSS REDUCTION Nicklas Johansson 1 Lennart Ängquist Hans-Peter Nee Bertil Berggren Royal Institute of Technology KTH School of

More information

Damping of Power System Oscillations and Control of Voltage Dip by Using STATCOM and UPFC

Damping of Power System Oscillations and Control of Voltage Dip by Using STATCOM and UPFC Volume 114 No. 10 2017, 487-496 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Damping of Power System Oscillations and Control of Voltage Dip by

More information

Power System Transient Stability Enhancement by Coordinated Control of SMES, SFCL & UPFC

Power System Transient Stability Enhancement by Coordinated Control of SMES, SFCL & UPFC ISSN: 39-8753 Vol. 3, Issue 4, April 4 Power System Transient Stability Enhancement by Coordinated Control of SMES, SFCL & UPFC Athira.B #, Filmy Francis * # PG Scholar, Department of EEE, Saintgits College

More information

Robust controller design for LFO damping

Robust controller design for LFO damping International society of academic and industrial research www.isair.org IJARAS International Journal of Academic Research in Applied Science 1(4): 1-8, 2012 ijaras.isair.org Robust controller design for

More information

Power flow improvement using Static Synchronous Series Compensator (SSSC)

Power flow improvement using Static Synchronous Series Compensator (SSSC) Page14 Power flow improvement using Static Synchronous Series Compensator (SSSC) Gandla Saraswathi*, Dr.N.Visali ** & B. Narasimha Reddy*** *P.G Student, Department of Electrical and Electronics Engineering,JNTUACEP,

More information

Application of Fuzzy Logic Controller in UPFC to Mitigate THD in Power System

Application of Fuzzy Logic Controller in UPFC to Mitigate THD in Power System International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 9, Issue 8 (January 2014), PP. 25-33 Application of Fuzzy Logic Controller in UPFC

More information

Differential Protection Optimal differential protection for phase shifter transformers and special transformers

Differential Protection Optimal differential protection for phase shifter transformers and special transformers Differential Protection Optimal differential protection for phase shifter transformers and special transformers Due to the energy transition, a demand for renewable energy sources integration into power

More information

Design and Control of Small Scale Laboratory Model of a Thyristor Controlled Series Capacitor (TCSC) to Improve System Stability

Design and Control of Small Scale Laboratory Model of a Thyristor Controlled Series Capacitor (TCSC) to Improve System Stability International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 1 Design and Control of Small Scale Laboratory Model of a Thyristor Controlled Series Capacitor (TCSC) to Improve

More information

Enhancement of Power Quality in 14 Bus System using UPFC

Enhancement of Power Quality in 14 Bus System using UPFC Research Journal of Applied Sciences, Engineering and Technology 2(4): 356-361, 2010 ISSN: 2040-7467 Maxwell Scientific Organization, 2010 Submitted Date: April 07, 2010 Accepted Date: May 21, 2010 Published

More information

Improvement in Power Quality of Distribution System Using STATCOM

Improvement in Power Quality of Distribution System Using STATCOM Improvement in Power Quality of Distribution System Using STATCOM 1 Pushpa Chakravarty, 2 Dr. A.K. Sharma 1 M.E. Scholar, Depart. of Electrical Engineering, Jabalpur Engineering College, Jabalpur, India.

More information

ISSUES OF SYSTEM AND CONTROL INTERACTIONS IN ELECTRIC POWER SYSTEMS

ISSUES OF SYSTEM AND CONTROL INTERACTIONS IN ELECTRIC POWER SYSTEMS ISSUES OF SYSTEM AND CONTROL INTERACTIONS IN ELECTRIC POWER SYSTEMS INDO-US Workshop October 2009, I.I.T. Kanpur INTRODUCTION Electric Power Systems are very large, spread over a wide geographical area

More information

II. RESEARCH METHODOLOGY

II. RESEARCH METHODOLOGY Comparison of thyristor controlled series capacitor and discrete PWM generator six pulses in the reduction of voltage sag Manisha Chadar Electrical Engineering Department, Jabalpur Engineering College

More information

Particle Swarm Based Optimization of Power Losses in Network Using STATCOM

Particle Swarm Based Optimization of Power Losses in Network Using STATCOM International Conference on Renewable Energies and Power Quality (ICREPQ 14) Cordoba (Spain), 8 th to 10 th April, 2014 Renewable Energy and Power Quality Journal (RE&PQJ) ISSN 2172-038 X, No.12, April

More information

The Eect of an Interline Power Flow Controller (IPFC) on Damping Inter-area Oscillations in Interconnected Power Systems

The Eect of an Interline Power Flow Controller (IPFC) on Damping Inter-area Oscillations in Interconnected Power Systems Scientia Iranica, Vol. 15, No., pp 11{1 c Sharif University of Technology, April 8 Research Note The Eect of an Interline Power Flow Controller (IPFC) on Damping Inter-area Oscillations in Interconnected

More information

Address for Correspondence

Address for Correspondence Research Paper COMPENSATION BY TCSC IN OPEN LOOP CONTROL SYSTEM 1* Sunita Tiwari, S.P. Shukla Address for Correspondence 1* Sr. Lecturer, Polytechnic,Durg Professor, Bhilai Institute of Technology, Durg

More information

Power Quality and the Need for Compensation

Power Quality and the Need for Compensation Power Quality and the Need for Compensation Risha Dastagir 1, Prof. Manish Khemariya 2, Prof. Vivek Rai 3 1 Research Scholar, 2,3 Asst. Professor, Lakshmi Narain College of Technology Bhopal, India Abstract

More information

Modeling and Simulation of SRF and P-Q based Control DSTATCOM

Modeling and Simulation of SRF and P-Q based Control DSTATCOM International Journal of Engineering Research and Development ISSN: 2278-067X, Volume 1, Issue 10 (June 2012), PP.65-71 www.ijerd.com Modeling and Simulation of SRF and P-Q based Control DSTATCOM Kasimvali.

More information

Enhancement of Power System Voltage Stability Using SVC and TCSC

Enhancement of Power System Voltage Stability Using SVC and TCSC International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 1 Enhancement of Power System Voltage Stability Using SVC and TCSC Deepa Choudhary Department of electrical engineering

More information

Transient Stability Analysis of Multimachine System Using Statcom

Transient Stability Analysis of Multimachine System Using Statcom IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 5(May. 2013), V3 PP 39-45 Transient Stability Analysis of Multimachine System Using Statcom Sujith. S, T.Nandagopal

More information

Improving The Quality Of Energy Using Phase Shifting Transformer PST

Improving The Quality Of Energy Using Phase Shifting Transformer PST WSEAS TRANSACTIONS on POWER SYSTEMS Improving The Quality Of Energy Using Phase Shifting Transformer PST KHELFI ABDERREZAK Electrical Engineering Department Badji Mokhtar-Annaba University P.O. Box 12,

More information

Power System Quality Improvement Using Flexible AC Transmission Systems Based on Adaptive Neuro-Fuzzy Inference System

Power System Quality Improvement Using Flexible AC Transmission Systems Based on Adaptive Neuro-Fuzzy Inference System Power System Quality Improvement Using Flexible AC Transmission Systems Based on Adaptive Neuro-Fuzzy Inference System M. Ramadan Sayed * M. A. Moustafa Hassan ** A. A. Hassan *** * Misr Petroleum Co.,

More information

PERFORMANCE COMPARISON OF POWER SYSTEM STABILIZER WITH AND WITHOUT FACTS DEVICE

PERFORMANCE COMPARISON OF POWER SYSTEM STABILIZER WITH AND WITHOUT FACTS DEVICE PERFORMANCE COMPARISON OF POWER SYSTEM STABILIZER WITH AND WITHOUT FACTS DEVICE Amit Kumar Vidyarthi 1, Subrahmanyam Tanala 2, Ashish Dhar Diwan 1 1 M.Tech Scholar, 2 Asst. Prof. Dept. of Electrical Engg.,

More information

Hydro-Québec s Defense Plan: Present and Future

Hydro-Québec s Defense Plan: Present and Future Hydro-Québec s Defense Plan: Present and Future Annissa Heniche Innocent Kamwa Hydro-Québec IREQ Varennes, Canada Abstract Recent cascading failures in several power systems worldwide have highlighted

More information

I. INTRODUCTION IJSRST Volume 3 Issue 2 Print ISSN: Online ISSN: X

I. INTRODUCTION IJSRST Volume 3 Issue 2 Print ISSN: Online ISSN: X 2017 IJSRST Volume 3 Issue 2 Print ISSN: 2395-6011 Online ISSN: 2395-602X National Conference on Advances in Engineering and Applied Science (NCAEAS) 16 th February 2017 In association with International

More information

Voltage Drop Compensation and Congestion Management by Optimal Placement of UPFC

Voltage Drop Compensation and Congestion Management by Optimal Placement of UPFC P P Assistant P International Journal of Automation and Power Engineering, 2012, 1: 29-36 - 29 - Published Online May 2012 www.ijape.org Voltage Drop Compensation and Congestion Management by Optimal Placement

More information