Final Examination Copyright reserved. Finale Eksamen Kopiereg voorbehou. Analoogelektronika ENE Junie 2008

Size: px
Start display at page:

Download "Final Examination Copyright reserved. Finale Eksamen Kopiereg voorbehou. Analoogelektronika ENE Junie 2008"

Transcription

1 Departement Elektriese, Elektroniese en Rekenaar-Ingenieurswese Finale Eksamen Kopiereg voorbehou Analoogelektronika ENE Junie 2008 Department of Electrical, Electronic and Computer Engineering Final Examination Copyright reserved Analogue Electronics ENE June 2008 Toetsinligting / Test information: Maksimum punte / Maximum marks: 100 Volpunte / Full marks: 100 Duur van vraestel: Duration of paper: 180 minute 180 minutes Eksamineringsbeplanning: n Addisionele 10 minute sal aan die begin van die eksaminering beskikbaar gestel word. Gedurende hierdie tydperk mag kandidate nie op die antwoordstelle skryf nie. Test planning: An additional 10 minutes will be availed at the start of the test. During this period, candidates may not make any markings on the answer scripts. Oopboek / toeboek: Open / closed book: Oop (Enige materiaal) Open (Any material) Geen toestel met n kommunikasiepoort (van enige aard) word toegelaat nie. Any device with a communication port (of whatsoever kind) may not be used. BELANGRIK- IMPORTANT 1. Die eksamenregulasies van die Universiteit van Pretoria geld. The test & examination regulations of the University of Pretoria apply. 2. Vrae moet in onuitwisbare ink beantwoord word. Geen antwoorde wat in potlood geskryf is sal gemerk word nie. Questions must be answered in indelible ink. Answers in pencil will not be marked. 3. Beantwoord al die vrae en skryf u antwoorde in u Antwoordboek neer. Geen vrae mag op die vraestel beantwoord word nie. Answer all the questions and write the answers in the supplied Answer Book. No questions are to be answered on the Question Paper. 4. Toon alle berekeninge waar van toepassing. Geen punte sal toegeken word vir korrekte antwoorde sonder berekeninge om dit te staaf nie. Show all calculations where applicable. No marks will be given for correct answers without calculations/reasoning to support them. 5. Gebruik duidelik geregverdigde & kundige Ingenieursbenaderings (en/of aannames) waar/indien van toepassing. Use clearly justified & educated Engineering approximations (and/or stated assumptions) where/as appropriate. 6. Datavelle: Vir karakteristieke waar beide tipiese, maksimum en (moontlik) minimum waardes gespesifiseer word, gebruik die tipiese waardes. (tensy anders in vraag gespesifiseer) Datasheets: For characteristics where the typical, maximum and (possibly) minimum values are specified, make use of the typical value (unless/otherwise specified in the question). Dosent: Lecturer: Mr Saurabh Sinha ( ssinha@ieee.org) Eksterne Eksaminator: External examiner: Prof. M. du Plessis ( monuko.du.plessis@eng.up.ac.za) Vertaler (Engels Afrikaans): Translator (English Afrikaans): Wynand Lambrechts ( wynand_lam@vodamail.co.za) Groephoof: Ek bevestig dat die vraestel die uitkomstes toets soos gespesifiseer in die studiehandleiding. Group head: I confirm that the question paper evaluates the outcomes as specified in the study guide. Groephoof: Group Head: Prof. M. du Plessis Handtekening: Signature: Totale aantal bladsye (hierdie blad ingesluit) / Total number of pages (including this page): 9

2 Study theme and Study units 1. Introduction to amplifier circuits SU1 Signals SU2 Basic amplifiers 2. Bipolar transistor amplifiers SU3 Bipolar transistor amplifiers & small signal analysis SU4 Graphical analysis and biasing SU5 Basic single stage BJT amplifier configurations 3. Field effect transistor amplifiers SU6 MOSFET transistor amplifier SU7 MOS circuit biasing and basic configurations 4. Differential and multistage amplifiers SU8 BJT and MOSFET differential amplifiers (DAs) 5. Amplifier frequency response SU9 Frequency terminology and Bode plots SU10 Transistor frequency response SU11 s-domain analysis and amplifier transfer functions SU12 Low- and high-frequency responses of the CS and CE amplifiers SU13 Cascode configurations and frequency responses 6. Feedback SU14 Feedback structure and basic feedback topologies SU15 Feedback topology analysis SU16 Loop gain, loop stability, and frequency compensation 7. Output stages and power amplifiers SU17 Output stages SU18 Power transistors and variations on the class AB configurations Questions Notional hours % Contribution 1, 2 & , 4 & & & & 6 Total credits AFRIKAANS AGTER-OP 1

3 QUESTION 1 [35] A multi-stage amplifier is proposed: V SUP r in r out/uit R source v 1 v o1 v u1 C C v o/u v s A 1 A 2 A v R L R source = 50 Ω, R L = 20 kω and V SUP = 12 V The multi-stage amplifier should achieve: Gain (v o /v s ) 50 V/V f L = 100 Hz Gain (v o1 /v s ) 3 V/V 0 1.0Hz 3.0Hz 10Hz 30Hz 100Hz 300Hz 1.0KHz 3.0KHz 10KHz 30KHz 100KHz 300KHz 1.0MHz 3.0MHz 10MHz 30MHz 100MHz Frequency The following circuit must be used for this problem: A 1 V SUP A 2 R 11 R D R 21 v C C o1 v u1 R C C OUT v o/u C VCC_BAR VCC 0 C IN v 1 R 12 R S R 22 R E C B SPICE Model for transistors:.model J2N3819 NJF(Beta=1.304m Betatce=-.5 Rd=1 Rs=1 Lambda=2.25m Vto=-3 + Vtotc=-2.5m Is=33.57f Isr=322.4f N=1 Nr=2 Xti=3 Alpha=311.7u + Vk=243.6 Cgd=1.6p M=.3622 Pb=1 Fc=.5 Cgs=2.414p Kf=9.882E-18 + Af=1) * National pid=50 case=to92 A V.model Q2N2222 NPN(Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=255.9 Ne= Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1 + Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75 + Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10) AFRIKAANS AGTER-OP 2

4 Only standard 5 % resistors, and standard capacitors are available (specification sheets attached). 1.1 [21] Complete the design by providing component values to achieve the above specifications. 1.2 [6] For your design, verify the high-frequency pole, f H. 1.3 [4] Propose the addition of a capacitor (also specify the component value) to limit the high-frequency response to 20 khz. Show this on the schematic (in the answer script). 1.4 [2] Sketch the phase plot for v o /v s. 1.5 [2] Determine the DC power consumption of the circuit. QUESTION 2 [10] Consider the simple active filter. Assume that the operational amplifier is ideal. C F R F v s R source C IN - VCC VCC + OUT v o Given: R source = 50 Ω R source C IN >> R F C F [2] Sketch the Bode magnitude plot for the amplifier. 2.2 [2] Approximately derive the transfer function of the amplifier, A v (jω), in terms of the passive circuit components. 2.3 [2] Sketch the phase plot for the amplifier. 2.4 [1] Resistor, R B is added in series to the non-inverting terminal. If the operational amplifier was a non-ideal amplifier, then R B compensates for the effects of input offset currents, I OS. Determine the value of RB. 2.5 [3] The active filter should have a low-frequency cut-off of 100 Hz, a highfrequency cut-off of 900 khz, and a pass-band gain of 50. Only standard 5 % resistors, and standard capacitors are available (specification sheets attached) [2] Determine C IN and C F [1] Determine R F. AFRIKAANS AGTER-OP 3

5 QUESTION 3 [10] Consider the differential amplifier shown below. V DD I SS V DD v 1 M 1 VCC_BAR v o1 VCC_CIRCLE v VCC_BAR o v o - M 2 v 2 R D R D V SS Voltage Supplies: V DD = 10 V V SS = -10 V Current Source: I SS = 40 μa Assume the output resistance of the current source to be 1.25 MΩ. Notation: v id = v 1 - v 2 Transistor parameters: W μa k p = μ pcox = 200 V 2 L V TO = -2.2 V V A [6] Design (choose a value for R D ) for a differential gain: vo A dm = = 28 db v [1] Determine the differential input resistance, r id [1] Determine the output resistance, r o (for a differential output, v o ). id 3.2 [2] For a single-ended output, v o1, determine (in db) the common-mode rejection ratio (CMRR). AFRIKAANS AGTER-OP 4

6 QUESTION 4 [20] 4.1 [14] Consider the series-shunt amplifier shown below. r in-fb V CC v s + - OUT r out-fb r out-β v f R 1 R 2 VCC VCC VCC_BAR v o I Q R 1 = 1 kω Feedback Network, β Operational amplifier parameters: A v = 5000 R i = 10 kω R o = 1 kω Transistor parameters: V f = 0.7 V h FE = 100 V A = 80 V Assume an ideal current source is available, I Q = 0.2 ma. The supply voltage, V CC = 10 V [1] Determine the feedback factor, β [1] Determine the amount of feedback: 1 + A o β [9] Determine the resistances: r in-β, r out-β, r in-fb, and r out-fb [1] Determine the closed loop gain (considering the type of feedback), A fb [3] Summarize the above results, using a unilateral model for the closed-loop amplifier. r in-β R 2 = 10 kω 4.2 [5] An integrator is shown below. C v s R - Given: R = 100 kω C = 0.01 μf Single-pole operational amplifier parameters: A o = 100 db f T = 1 MHz Determine the: [3] loop gain, and [2] phase margin. VCC VCC + 0 OUT v o AFRIKAANS AGTER-OP 5

7 QUESTION 5 [21] Consider the class AB output stage shown below. The parameters are: V + = -V - = 24 V R L = 20 Ω I Bias = 10 ma The diode and transistor parameters are I S = 2 pa. The transistor current gains are β n = 20 and β p = 5 for the npn and pnp devices, respectively. 5.1 [15] For v o = 0, determine: [3] V BB [7] Quiescent collector currents, I C1, I C2, and I C [5] Base-Emitter Voltages, V BE1, V BE2, and V EB [6] An average power of 10 W is to be delivered to the load. Determine the quiescent collector current in each transistor and the instantaneous power dissipated in Q 2 and Q 5, and R L when the output voltage is at its peak negative amplitude. QUESTION 6 [4] A BJT must dissipate 25 W of power. The maximum junction temperature is T J,max = 200 C, the ambient temperature is 25 C, and the device-to-case thermal resistance is 3 C/W. Determine the maximum permissible thermal resistance between the case and ambient. AFRIKAANS AGTER-OP 6

8 AFRIKAANS AGTER-OP 7

9 AFRIKAANS AGTER-OP 8

10 Studentenommer / Student Number Volle Voorname / Full Name VRAAG/QUESTION 1 [35] R source/bron = 50 Ω, R L = 20 kω and / en V SUP = 12 V Beoordelaar 1 (Vraag 1) Evaluator 1 (Question 1) Saurabh Sinha ( ssinha@ieee.org)

11 Beoordelaar 1 (Vraag 1) Evaluator 1 (Question 1) Saurabh Sinha ( ssinha@ieee.org) 2

12 Studentenommer / Student Number Beoordelaar 1 (Vraag 1) Evaluator 1 (Question 1) Saurabh Sinha ( ssinha@ieee.org) 3

13 Beoordelaar 1 (Vraag 1) Evaluator 1 (Question 1) Saurabh Sinha ( ssinha@ieee.org) [21] 4

14 Studentenommer / Student Number 1.2 Beoordelaar 1 (Vraag 1) Evaluator 1 (Question 1) Saurabh Sinha ( ssinha@ieee.org) [6] 5

15 1.3 [4] 1.4 <T(jω) f (Hz) [2] 1.5 Beoordelaar 1 (Vraag 1) Evaluator 1 (Question 1) Saurabh Sinha ( ssinha@ieee.org) [2] 6 Total/Totaal: [35]

16 Studentenommer / Student Number Volle Voorname / Full Name VRAAG/QUESTION 2 [10] C F R F v s R source R bron C IN VCC VCC + - OUT v o/u A v (jω) ω (rad/s) [2] 2.2 Beoordelaar 2 (Vraag 2) Evaluator 2 (Question 2) Samuel Twala ( s @tuks.co.za) [2] 7

17 2.3 <T(jω) ω (rad/s) [2] 2.4 [1] 2.5 Beoordelaar 2 (Vraag 2) Evaluator 2 (Question 2) Samuel Twala ( s @tuks.co.za) [3] 8 Total/Totaal: [10]

18 Studentenommer / Student Number Volle Voorname / Full Name VRAAG/QUESTION 3 [10] V DD I SS V DD v 1 M 1 VCC_BAR v o/u1 VCC_CIRCLE v VCC_BAR o/u v o/u - M 2 v 2 R D R D V SS Beoordelaar 3 (Vraag 3) Evaluator 3 (Question 3) Schalk Peach ( s @student.up.ac.za) 9

19 [6] [1] [1] 3.2 Beoordelaar 3 (Vraag 3) Evaluator 3 (Question 3) Schalk Peach ( s @student.up.ac.za) [2] 10 Total/Totaal: [10]

20 Studentenommer / Student Number Volle Voorname / Full Name VRAAG/QUESTION 4 [20] [1] [1] Beoordelaar 4 (Vraag 4) Evaluator 4 (Question 4) Wayne Maclean ( wayne.maclean@gmail.com) 11

21 [9] [1] Beoordelaar 4 (Vraag 4) Evaluator 4 (Question 4) Wayne Maclean ( wayne.maclean@gmail.com) [3] 12

22 Studentenommer / Student Number 4.2 C v s R - VCC VCC + 0 OUT v o/u Beoordelaar 4 (Vraag 4) Evaluator 4 (Question 4) Wayne Maclean ( wayne.maclean@gmail.com) [5] 13 Total/Totaal: [20]

23 Beoordelaar 4 (Vraag 4) Evaluator 4 (Question 4) Wayne Maclean ( wayne.maclean@gmail.com) 14

24 Studentenommer / Student Number Volle Voorname / Full Name VRAAG/QUESTION 5 [21] v o/u [3] Beoordelaar 5 (Vraag 5) Evaluator 5 (Question 5) Wynand Lambrechts ( wynand_lam@vodamail.co.za) 15

25 5.1.3 [7] Beoordelaar 5 (Vraag 5) Evaluator 5 (Question 5) Wynand Lambrechts ( wynand_lam@vodamail.co.za) [5] 16

26 Studentenommer / Student Number 5.2 Beoordelaar 5 (Vraag 5) Evaluator 5 (Question 5) Wynand Lambrechts ( wynand_lam@vodamail.co.za) [6] 17 Total/Totaal: [21]

27 Beoordelaar 5 (Vraag 5) Evaluator 5 (Question 5) Wynand Lambrechts ( wynand_lam@vodamail.co.za) 18

28 Studentenommer / Student Number Volle Voorname / Full Name VRAAG/QUESTION 6 [4] Beoordelaar 2 (Vraag 6) Evaluator 2 (Question 6) Samuel Twala ( s @tuks.co.za) 19 Total/Totaal: [4]

29 Beoordelaar 2 (Vraag 6) Evaluator 2 (Question 6) Samuel Twala ( s @tuks.co.za) 20

Meghan van Wouw ( Christo Janse van Rensburg ( Blessing Buthelezi (

Meghan van Wouw ( Christo Janse van Rensburg ( Blessing Buthelezi ( Departement Elektriese, Elektroniese en Rekenaar-Ingenieurswese Finale Eksamen Kopiereg voorbehou Analoogelektronika ENE310 08 Junie 2010 Toetsinligting / Test information: Department of Electrical, Electronic

More information

Final Examination Copyright reserved. Finale Eksamen Kopiereg voorbehou. Analogue Electronics ENE June 2007

Final Examination Copyright reserved. Finale Eksamen Kopiereg voorbehou. Analogue Electronics ENE June 2007 Departement Elektriese, Elektroniese en Rekenaar-Ingenieurswese Department of Electrical, Electronic and Computer Engineering Finale Eksamen Kopiereg voorbehou Analoogelektronika ENE310 15 Junie 2007 Toetsinligting:

More information

Amplifier Frequency Response, Feedback, Oscillations; Op-Amp Block Diagram and Gain-Bandwidth Product

Amplifier Frequency Response, Feedback, Oscillations; Op-Amp Block Diagram and Gain-Bandwidth Product Amplifier Frequency Response, Feedback, Oscillations; Op-Amp Block Diagram and Gain-Bandwidth Product Physics116A,12/4/06 Draft Rev. 1, 12/12/06 D. Pellett 2 Negative Feedback and Voltage Amplifier AB

More information

Laboratory 5. Transistor and Photoelectric Circuits

Laboratory 5. Transistor and Photoelectric Circuits Laboratory 5 Transistor and Photoelectric Circuits Required Components: 1 330 resistor 2 1 k resistors 1 10k resistor 1 2N3904 small signal transistor 1 TIP31C power transistor 1 1N4001 power diode 1 Radio

More information

Lab 3: BJT I-V Characteristics

Lab 3: BJT I-V Characteristics 1. Learning Outcomes Lab 3: BJT I-V Characteristics At the end of this lab, students should know how to theoretically determine the I-V (Current-Voltage) characteristics of both NPN and PNP Bipolar Junction

More information

ECE 304: Running a Net-list File in PSPICE. Objective... 2 Simple Example... 2 Example from Sedra and Smith... 3 Summary... 5

ECE 304: Running a Net-list File in PSPICE. Objective... 2 Simple Example... 2 Example from Sedra and Smith... 3 Summary... 5 ECE 34: Running a Net-list File in PSPICE Objective... 2 Simple Example... 2 Example from Sedra and Smith... 3 Summary... 5 john brews Page 1 1/23/22 ECE 34: Running a Net-list File in PSPICE Objective

More information

SOT-23 Mark: 1S. TA = 25 C unless otherwise noted. Symbol Parameter Value Units

SOT-23 Mark: 1S. TA = 25 C unless otherwise noted. Symbol Parameter Value Units C B E PN2369A TO-92 MMBT2369A C SOT-23 Mark: S B E Discrete POWER & Signal Technologies MMPQ2369 E B E B E B E B SOIC-6 C C C C C C C C This device is designed for high speed saturation switching at collector

More information

Laboratory Experiment 8 EE348L. Spring 2005

Laboratory Experiment 8 EE348L. Spring 2005 Laboratory Experiment 8 EE348L Spring 2005 B. Madhavan Spring 2005 B. Madhavan Page 1 of 1 EE348L, Spring 2005 B. Madhavan - 2 of 2- EE348L, Spring 2005 Table of Contents 8 Experiment #8: Introduction

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment 11 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

BJT Differential Amplifiers

BJT Differential Amplifiers Instituto Tecnológico y de Estudios Superiores de Occidente (), OBJECTIVES The general objective of this experiment is to contrast the practical behavior of a real differential pair with its theoretical

More information

TO-92 SOT-23 Mark: 2A. TA = 25 C unless otherwise noted. Symbol Parameter Value Units

TO-92 SOT-23 Mark: 2A. TA = 25 C unless otherwise noted. Symbol Parameter Value Units 2N396 / MMBT396 / MMPQ396 / PZT396 N Discrete POWER & Signal Technologies 2N396 MMBT396 E B E TO-92 SOT-23 Mark: 2A B MMPQ396 PZT396 E B E B E B E B SOI-6 SOT-223 B E This device is designed for general

More information

High Frequency Amplifiers

High Frequency Amplifiers EECS 142 Laboratory #3 High Frequency Amplifiers A. M. Niknejad Berkeley Wireless Research Center University of California, Berkeley 2108 Allston Way, Suite 200 Berkeley, CA 94704-1302 October 27, 2008

More information

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier Chapter 15 Goals ac-coupled multistage amplifiers including voltage gain, input and output resistances, and small-signal limitations. dc-coupled multistage amplifiers. Darlington configuration and cascode

More information

Analog Integrated Circuit Design Exercise 1

Analog Integrated Circuit Design Exercise 1 Analog Integrated Circuit Design Exercise 1 Integrated Electronic Systems Lab Prof. Dr.-Ing. Klaus Hofmann M.Sc. Katrin Hirmer, M.Sc. Sreekesh Lakshminarayanan Status: 21.10.2015 Pre-Assignments The lecture

More information

Homework Assignment 12

Homework Assignment 12 Homework Assignment 12 Question 1 Shown the is Bode plot of the magnitude of the gain transfer function of a constant GBP amplifier. By how much will the amplifier delay a sine wave with the following

More information

Application Note No. 014

Application Note No. 014 Application Note, Rev. 2.0, Nov. 2006 Application Note No. 014 Application Considerations for the Integrated Bias Control Circuits BCR400R and BCR400W RF & Protection Devices Edition 2006-11-23 Published

More information

Homework Assignment 10

Homework Assignment 10 Homework Assignment 10 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

BGB420, Aug BGB420. Active Biased Transistor MMIC. Wireless Silicon Discretes. Never stop thinking.

BGB420, Aug BGB420. Active Biased Transistor MMIC. Wireless Silicon Discretes. Never stop thinking. , Aug. 2001 BGB420 Active Biased Transistor MMIC Wireless Silicon Discretes Never stop thinking. Edition 2001-08-10 Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München Infineon

More information

Improving Amplifier Voltage Gain

Improving Amplifier Voltage Gain 15.1 Multistage ac-coupled Amplifiers 1077 TABLE 15.3 Three-Stage Amplifier Summary HAND ANALYSIS SPICE RESULTS Voltage gain 998 1010 Input signal range 92.7 V Input resistance 1 M 1M Output resistance

More information

Chapter 4 Bipolar Junction Transistors (BJTs)

Chapter 4 Bipolar Junction Transistors (BJTs) Chapter 4 Bipolar Junction Transistors (BJTs) Introduction http://engr.calvin.edu/pribeiro_webpage/courses/engr311/311_frames.html Physical Structure and Modes of Operation A simplified structure of the

More information

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT 1. OBJECTIVES 1.1 To practice how to test NPN and PNP transistors using multimeter. 1.2 To demonstrate the relationship between collector current

More information

ECE 363 FINAL (F16) 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts)

ECE 363 FINAL (F16) 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts) ECE 363 FINAL (F16) NAME: 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts) You are asked to design a high-side switch for a remotely operated fuel pump. You decide to use the IRF9520 power

More information

ELEC 330 Electronic Circuits I Tutorial and Simulations for Micro-Cap IV by Adam Zielinski (posted at:

ELEC 330 Electronic Circuits I Tutorial and Simulations for Micro-Cap IV by Adam Zielinski (posted at: Tutorial 1.1 ELEC 330 Electronic Circuits I Tutorial and Simulations for Micro-Cap IV by Adam Zielinski (posted at: http://www.ece.uvic.ca/~adam/) This manual is written for the Micro-Cap IV Electronic

More information

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

ESD (Electrostatic discharge) sensitive device, observe handling precaution! NPN Silicon RF Transistor* For low current applications Smallest Package 1.4 x 0.8 x 0.59 mm Noise figure F = 1.25 db at 1.8 GHz outstanding G ms = 23 db at 1.8 GHz Transition frequency f T = 25 GHz Gold

More information

Lab 2: Discrete BJT Op-Amps (Part I)

Lab 2: Discrete BJT Op-Amps (Part I) Lab 2: Discrete BJT Op-Amps (Part I) This is a three-week laboratory. You are required to write only one lab report for all parts of this experiment. 1.0. INTRODUCTION In this lab, we will introduce and

More information

PRELIMINARY DATA SHEET PACKAGE OUTLINE

PRELIMINARY DATA SHEET PACKAGE OUTLINE PRELIMINARY DATA SHEET NPN SILICON EPITAXIAL TWIN TRANSISTOR FEATURES LOW NOISE: :NF = 1.7 db TYP at f = GHz,, lc = 3 ma :NF = 1.5 db TYP at f = GHz, VCE = 3 V, lc = 3 ma HIGH GAIN: : S1E = 3.5 db TYP

More information

Type Marking Pin Configuration Package BFP450 ANs 1 = B 2 = E 3 = C 4 = E SOT343

Type Marking Pin Configuration Package BFP450 ANs 1 = B 2 = E 3 = C 4 = E SOT343 NPN Silicon RF Transistor For medium power amplifiers Compression point P = +9 m at. GHz maximum available gain G ma = 5.5 at. GHz Noise figure F =.5 at. GHz Transition frequency f T = GHz Gold metallization

More information

Roll No. B.Tech. SEM I (CS-11, 12; ME-11, 12, 13, & 14) MID SEMESTER EXAMINATION, ELECTRONICS ENGINEERING (EEC-101)

Roll No. B.Tech. SEM I (CS-11, 12; ME-11, 12, 13, & 14) MID SEMESTER EXAMINATION, ELECTRONICS ENGINEERING (EEC-101) F:/Academic/22 Refer/WI/ACAD/10 SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT (Following Paper-ID and Roll No. to be filled by the student in the Answer Book) PAPER ID: 3301 Roll No. B.Tech. SEM

More information

NPN SILICON HIGH FREQUENCY TRANSISTOR

NPN SILICON HIGH FREQUENCY TRANSISTOR NPN SILICON HIGH FREQUENCY TRANSISTOR UPA806T FEATURES SMALL PACKAGE STYLE: NE685 Die in a mm x 1.5 mm package LOW NOISE FIGURE: NF = 1.5 db TYP at GHz HIGH GAIN: S1E = 8.5 db TYP at GHz HIGH GAIN BANDWIDTH:

More information

SAMPLE FINAL EXAMINATION FALL TERM

SAMPLE FINAL EXAMINATION FALL TERM ENGINEERING SCIENCES 154 ELECTRONIC DEVICES AND CIRCUITS SAMPLE FINAL EXAMINATION FALL TERM 2001-2002 NAME Some Possible Solutions a. Please answer all of the questions in the spaces provided. If you need

More information

2N5551- MMBT5551 NPN General Purpose Amplifier

2N5551- MMBT5551 NPN General Purpose Amplifier 2N5551- MMBT5551 NPN General Purpose Amplifier Features This device is designed for general purpose high voltage amplifiers and gas discharge display drivers. Suffix -C means Center Collector in 2N5551

More information

UNIVERSITY OF PENNSYLVANIA EE 206

UNIVERSITY OF PENNSYLVANIA EE 206 UNIVERSITY OF PENNSYLVANIA EE 206 TRANSISTOR BIASING CIRCUITS Introduction: One of the most critical considerations in the design of transistor amplifier stages is the ability of the circuit to maintain

More information

MMBT2222A. SOT-23 Mark: 1P. SOT-6 Mark:.1B. TA = 25 C unless otherwise noted. Symbol Parameter Value Units

MMBT2222A. SOT-23 Mark: 1P. SOT-6 Mark:.1B. TA = 25 C unless otherwise noted. Symbol Parameter Value Units PN2222A TO-92 MMPQ2222 SOI-6 MMT2222A SOT-23 Mark: P PZT2222A SOT-223 NMT2222 SOT-6 Mark:. 2 Discrete POWR & Signal Technologies 2 2 This device is for use as a medium power amplifier and switch requiring

More information

Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc. Feedback 1 Figure 8.1 General structure of the feedback amplifier. This is a signal-flow diagram, and the quantities x represent either voltage or current signals. 2 Figure E8.1 3 Figure 8.2 Illustrating

More information

Final Exam. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.1 μs. Estimate the 3 db bandwidth of the amplifier.

Final Exam. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.1 μs. Estimate the 3 db bandwidth of the amplifier. Final Exam Name: Score /100 Question 1 Short Takes 1 point each unless noted otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.1 μs. Estimate the 3 db bandwidth

More information

BJT Circuits (MCQs of Moderate Complexity)

BJT Circuits (MCQs of Moderate Complexity) BJT Circuits (MCQs of Moderate Complexity) 1. The current ib through base of a silicon npn transistor is 1+0.1 cos (1000πt) ma. At 300K, the rπ in the small signal model of the transistor is i b B C r

More information

Alternate Class AB Amplifier Design

Alternate Class AB Amplifier Design L - Alternate Class AB Amplifier Design.., This Class AB amplifier (Figure 1) has an integral common emitter bipolar amplifier (see Q4). The CE amplifier replaces the bipolar main amplifier in the previous

More information

L - Alternate Class AB Amplifier Design.., This Class AB amplifier (Figure 1) has an integral common emitter bipolar amplifier (see Q4). The CE amplifier replaces the bipolar main amplifier in the previous

More information

5.25Chapter V Problem Set

5.25Chapter V Problem Set 5.25Chapter V Problem Set P5.1 Analyze the circuits in Fig. P5.1 and determine the base, collector, and emitter currents of the BJTs as well as the voltages at the base, collector, and emitter terminals.

More information

Laboratory Experiment 7 EE348L. Spring 2005

Laboratory Experiment 7 EE348L. Spring 2005 Laboratory Experiment 7 EE348L Spring 2005 B. Madhavan Spring 2005 B. Madhavan Page 1 of 21 EE348L, Spring 2005 B. Madhavan - 2 of 21- EE348L, Spring 2005 Table of Contents 7 Experiment #7: Introduction

More information

4.8 V NPN Common Emitter Output Power Transistor for GSM Class IV Phones. Technical Data AT-36408

4.8 V NPN Common Emitter Output Power Transistor for GSM Class IV Phones. Technical Data AT-36408 4.8 V NPN Common Emitter Output Power Transistor for GSM Class IV Phones Technical Data AT-3648 Features 4.8 Volt Pulsed Operation (pulse width = 577 µsec, duty cycle = 12.5%) +. dm P out @ 9 MHz, Typ.

More information

HOME ASSIGNMENT. Figure.Q3

HOME ASSIGNMENT. Figure.Q3 HOME ASSIGNMENT 1. For the differential amplifier circuit shown below in figure.q1, let I=1 ma, V CC =5V, v CM = -2V, R C =3kΩ and β=100. Assume that the BJTs have v BE =0.7 V at i C =1 ma. Find the voltage

More information

NPN SILICON RF TWIN TRANSISTOR

NPN SILICON RF TWIN TRANSISTOR FEATURES LOW VOLTAGE, LOW CURRENT OPERATION SMALL PACKAGE OUTLINE:. mm x.8 mm LOW HEIGHT PROFILE: Just. mm high TWO LOW NOISE OSCILLATOR TRANSISTORS: NE8 IDEAL FOR - GHz OSCILLATORS DESCRIPTION The contains

More information

A 3-STAGE 5W AUDIO AMPLIFIER

A 3-STAGE 5W AUDIO AMPLIFIER ECE 2201 PRELAB 7x BJT APPLICATIONS A 3-STAGE 5W AUDIO AMPLIFIER UTILIZING NEGATIVE FEEDBACK INTRODUCTION Figure P7-1 shows a simplified schematic of a 3-stage audio amplifier utilizing three BJT amplifier

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

BFP420. NPN Silicon RF Transistor

BFP420. NPN Silicon RF Transistor BFP NPN Silicon RF Transistor For high gain low noise amplifiers For oscillators up to GHz Noise figure F =. db at. GHz outstanding G ms = db at. GHz Transition frequency f T = 5 GHz Gold metallization

More information

BFP405. NPN Silicon RF Transistor

BFP405. NPN Silicon RF Transistor BFP5 NPN Silicon RF Transistor For low current applications For oscillators up to GHz Noise figure F =.5 db at. GHz outstanding G ms = db at. GHz Transition frequency f T = 5 GHz Gold metallization for

More information

BFP620. NPN Silicon Germanium RF Transistor

BFP620. NPN Silicon Germanium RF Transistor NPN Silicon Germanium RF Transistor High gain low noise RF transistor Provides outstanding performance for a wide range of wireless applications Ideal for CDMA and WLAN applications Outstanding noise figure

More information

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

ESD (Electrostatic discharge) sensitive device, observe handling precaution! NPN Silicon Germanium RF Transistor High gain ultra low noise RF transistor Provides outstanding performance for a wide range of wireless applications up to GHz and more Ideal for CDMA and WLAN applications

More information

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10 Index A absolute value, 308 additional pole, 271 analog multiplier, 190 B BiCMOS,107 Bode plot, 266 base-emitter voltage, 16, 50 base-emitter voltages, 296 bias current, 111, 124, 133, 137, 166, 185 bipolar

More information

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Faculty of Engineering ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Agenda I & V Notations BJT Devices & Symbols BJT Large Signal Model 2 I, V Notations (1) It is critical to understand

More information

NPN 7 GHz wideband transistor IMPORTANT NOTICE. use

NPN 7 GHz wideband transistor IMPORTANT NOTICE.  use Rev. 4 October 7 Product data sheet IMPORTANT NOTICE Dear customer, As from October 1st, 6 Philips Semiconductors has a new trade name - NXP Semiconductors, which will be used in future data sheets together

More information

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER Issued 10/27/2008 Report due in Lecture 11/10/2008 Introduction In this lab you will characterize a 2N3904 NPN

More information

DATASHEET HFA3102. Features. Ordering Information. Applications. Pinout/Functional Diagram. Dual Long-Tailed Pair Transistor Array

DATASHEET HFA3102. Features. Ordering Information. Applications. Pinout/Functional Diagram. Dual Long-Tailed Pair Transistor Array DATASHEET HFA312 Dual Long-Tailed Pair Transistor Array The HFA312 is an all NPN transistor array configured as dual differential amplifiers with tail transistors. Based on Intersil bonded wafer UHF-1

More information

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A 1. Why do we choose Q point at the center of the load line? 2. Name the two techniques used in the stability of the q point.explain. 3. Give the expression

More information

Microelectronic Circuits

Microelectronic Circuits SECOND EDITION ISHBWHBI \ ' -' Microelectronic Circuits Adel S. Sedra University of Toronto Kenneth С Smith University of Toronto HOLT, RINEHART AND WINSTON HOLT, RINEHART AND WINSTON, INC. New York Chicago

More information

UNISONIC TECHNOLOGIES CO., LTD LM321

UNISONIC TECHNOLOGIES CO., LTD LM321 UNISONIC TECHNOLOGIES CO., LTD LM321 LOW POWER SINGLE OP AMP DESCRIPTION The UTC LM321 s quiescent current is only 430µA (5V). The UTC LM321 brings performance and economy to low power systems, With a

More information

Chapter 12 Opertational Amplifier Circuits

Chapter 12 Opertational Amplifier Circuits 1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS op-amp architectures: the two-stage circuit and the single-stage, folded cascode circuit.

More information

SIEGET 25 BFP420. NPN Silicon RF Transistor

SIEGET 25 BFP420. NPN Silicon RF Transistor NPN Silicon RF Transistor For High Gain Low Noise Amplifiers For Oscillators up to GHz Noise Figure F = 1.05 at 1.8 GHz Outstanding G ms = 20 at 1.8 GHz Transition Frequency f T = 25 GHz Gold metalization

More information

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS WTW 218 - CALCULUS EKSAMEN / EXAM PUNTE MARKS 2013-06-13 TYD / TIME:

More information

Features. NOTE: Non-designated pins are no connects and are not electrically connected internally.

Features. NOTE: Non-designated pins are no connects and are not electrically connected internally. OBSOLETE PRODUCT NO RECOMMENDED REPLACEMENT contact our Technical Support Center at 1-888-INTERSIL or www.intersil.com/tsc Data Sheet December 1995, Rev. G EL2001 FN7020 Low Power, 70MHz Buffer Amplifier

More information

MMBT2907A. SOT-23 Mark: 2F. SOT-6 Mark:.2B. TA = 25 C unless otherwise noted. Symbol Parameter Value Units

MMBT2907A. SOT-23 Mark: 2F. SOT-6 Mark:.2B. TA = 25 C unless otherwise noted. Symbol Parameter Value Units B E PN297A TO-92 MMPQ297 E B E B E B E B SOI-6 MMBT297A This device is designed for use as a general purpose amplifier and switch requiring collector currents to 5 ma. Sourced from Process 63. SOT-23 Mark:

More information

MICROELECTRONIC CIRCUIT DESIGN Third Edition

MICROELECTRONIC CIRCUIT DESIGN Third Edition MICROELECTRONIC CIRCUIT DESIGN Third Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 1/25/08 Chapter 1 1.3 1.52 years, 5.06 years 1.5 1.95 years, 6.46 years 1.8 113

More information

Mini Project 3 Multi-Transistor Amplifiers. ELEC 301 University of British Columbia

Mini Project 3 Multi-Transistor Amplifiers. ELEC 301 University of British Columbia Mini Project 3 Multi-Transistor Amplifiers ELEC 30 University of British Columbia 4463854 November 0, 207 Contents 0 Introduction Part : Cascode Amplifier. A - DC Operating Point.......................................

More information

Homework Assignment 13

Homework Assignment 13 Question 1 Short Takes 2 points each. Homework Assignment 13 1. Classify the type of feedback uses in the circuit below (i.e., shunt-shunt, series-shunt, ) 2. True or false: an engineer uses series-shunt

More information

NEC's NPN SILICON TRAN SIS TOR PACKAGE OUTLINE M03

NEC's NPN SILICON TRAN SIS TOR PACKAGE OUTLINE M03 FEATURES MINIATURE M PACKAGE: Small tran sis tor outline Low profile /.9 mm package height Flat lead style for better RF performance IDEAL FOR > GHz OSCILLATORS LOW NOISE, HIGH GAIN LOW Cre UHSO GHz PROCESS

More information

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING. Volpunte: Full marks: Instruksies / Instructions

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING. Volpunte: Full marks: Instruksies / Instructions FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING Elektrotegniek 143 Electrotechniques 143 Tydsduur: Duration Eksaminatore: Prof H C Reader Prof J B de Swardt Mnr AD le Roux 1.5 h 1 Beantwoord al die vrae.

More information

Boosting output in high-voltage op-amps with a current buffer

Boosting output in high-voltage op-amps with a current buffer Boosting output in high-voltage op-amps with a current buffer Author: Joe Kyriakakis, Apex Microtechnology Date: 02/18/2014 Categories: Current, Design Tools, High Voltage, MOSFETs & Power MOSFETs, Op

More information

Unit WorkBook 4 Level 4 ENG U19 Electrical and Electronic Principles LO4 Digital & Analogue Electronics 2018 Unicourse Ltd. All Rights Reserved.

Unit WorkBook 4 Level 4 ENG U19 Electrical and Electronic Principles LO4 Digital & Analogue Electronics 2018 Unicourse Ltd. All Rights Reserved. Pearson BTEC Levels 4 Higher Nationals in Engineering (RQF) Unit 19: Electrical and Electronic Principles Unit Workbook 4 in a series of 4 for this unit Learning Outcome 4 Digital & Analogue Electronics

More information

BJT Characteristics & Common Emitter Transistor Amplifier

BJT Characteristics & Common Emitter Transistor Amplifier LAB #07 Objectives 1. To graph the collector characteristics of a transistor. 2. To measure AC and DC voltages in a common-emitter amplifier. Theory BJT A bipolar (junction) transistor (BJT) is a three-terminal

More information

LINEAR IC APPLICATIONS

LINEAR IC APPLICATIONS 1 B.Tech III Year I Semester (R09) Regular & Supplementary Examinations December/January 2013/14 1 (a) Why is R e in an emitter-coupled differential amplifier replaced by a constant current source? (b)

More information

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

More information

FMB3906. pin #1. SuperSOT -6 Mark:.2A Dot denotes pin #1 T A. = 25 C unless otherwise noted. Symbol Parameter Value Units

FMB3906. pin #1. SuperSOT -6 Mark:.2A Dot denotes pin #1 T A. = 25 C unless otherwise noted. Symbol Parameter Value Units S7-6 Mark:.2A FFB396 B2 E2 pin # 2 B E NOTE: The pinouts are symmetrical; pin and pin are interchangeable. Units inside the carrier can be of either orientation and will not affect the functionality of

More information

Multistage Amplifiers

Multistage Amplifiers Multistage Amplifiers Single-stage transistor amplifiers are inadequate for meeting most design requirements for any of the four amplifier types (voltage, current, transconductance, and transresistance.)

More information

You will be asked to make the following statement and provide your signature on the top of your solutions.

You will be asked to make the following statement and provide your signature on the top of your solutions. 1 EE 435 Name Exam 1 Spring 216 Instructions: The points allocated to each problem are as indicated. Note that the first and last problem are weighted more heavily than the rest of the problems. On those

More information

LM321 Low Power Single Op Amp

LM321 Low Power Single Op Amp Low Power Single Op Amp General Description The LM321 brings performance and economy to low power systems. With a high unity gain frequency and a guaranteed 0.4V/µs slew rate, the quiescent current is

More information

ELC224 Final Review (12/10/2009) Name:

ELC224 Final Review (12/10/2009) Name: ELC224 Final Review (12/10/2009) Name: Select the correct answer to the problems 1 through 20. 1. A common-emitter amplifier that uses direct coupling is an example of a dc amplifier. 2. The frequency

More information

Homework Assignment 05

Homework Assignment 05 Homework Assignment 05 Question (2 points each unless otherwise indicated)(20 points). Estimate the parallel parasitic capacitance of a mh inductor with an SRF of 220 khz. Answer: (2π)(220 0 3 ) = ( 0

More information

Experiment 8 Frequency Response

Experiment 8 Frequency Response Experiment 8 Frequency Response W.T. Yeung, R.A. Cortina, and R.T. Howe UC Berkeley EE 105 Spring 2005 1.0 Objective This lab will introduce the student to frequency response of circuits. The student will

More information

2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS

2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS 2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS I. Objectives and Contents The goal of this experiment is to become familiar with BJT as an amplifier and to evaluate the basic configurations

More information

Solid State Devices & Circuits. 18. Advanced Techniques

Solid State Devices & Circuits. 18. Advanced Techniques ECE 442 Solid State Devices & Circuits 18. Advanced Techniques Jose E. Schutt-Aine Electrical l&c Computer Engineering i University of Illinois jschutt@emlab.uiuc.edu 1 Darlington Configuration - Popular

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point. Exam 3 Name: Score /65 Question 1 Unless stated otherwise, each question below is 1 point. 1. An engineer designs a class-ab amplifier to deliver 2 W (sinusoidal) signal power to an resistive load. Ignoring

More information

Page 1 of 7. Power_AmpFal17 11/7/ :14

Page 1 of 7. Power_AmpFal17 11/7/ :14 ECE 3274 Power Amplifier Project (Push Pull) Richard Cooper 1. Objective This project will introduce two common power amplifier topologies, and also illustrate the difference between a Class-B and a Class-AB

More information

START499ETR. NPN RF silicon transistor. Features. Applications. Description

START499ETR. NPN RF silicon transistor. Features. Applications. Description NPN RF silicon transistor Features High efficiency High gain Linear and non linear operation Transition frequency 42 GHz Ultra miniature SOT-343 (SC70) lead free package SOT-343 Applications PA for dect

More information

EE 482 Electronics II

EE 482 Electronics II EE 482 Electronics II Lab #4: BJT Differential Pair with Resistive Load Overview The objectives of this lab are (1) to design and analyze the performance of a differential amplifier, and (2) to measure

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs Integrated Circuit Amplifiers Comparison of MOSFETs and BJTs 17 Typical CMOS Device Parameters 0.8 µm 0.25 µm 0.13 µm Parameter NMOS PMOS NMOS PMOS NMOS PMOS t ox (nm) 15 15 6 6 2.7 2.7 C ox (ff/µm 2 )

More information

LF155/LF156/LF355/LF356/LF357 JFET Input Operational Amplifiers

LF155/LF156/LF355/LF356/LF357 JFET Input Operational Amplifiers JFET Input Operational Amplifiers General Description These are the first monolithic JFET input operational amplifiers to incorporate well matched, high voltage JFETs on the same chip with standard bipolar

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK Subject with Code : Electronic Circuit Analysis (16EC407) Year & Sem: II-B.Tech & II-Sem

More information

BFP520. NPN Silicon RF Transistor

BFP520. NPN Silicon RF Transistor NPN Silicon RF Transistor For highest gain low noise amplifier at. GHz and ma / V Outstanding Gms =.5 Noise Figure F =.95 For oscillators up to 5 GHz Transition frequency f T = 5 GHz Gold metallisation

More information

OP07C PRECISION OPERATIONAL AMPLIFIERS

OP07C PRECISION OPERATIONAL AMPLIFIERS OP0C PRECISION OPERATIONAL AMPLIFIERS Low Noise No External Components Required Replace Chopper Amplifiers at a Lower Cost Wide Input-Voltage Range...0 to ± V Typ Wide Supply-Voltage Range...± V to ± V

More information

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 20 496 Power BJTs Collector currents in the multi-ampere range Multi-watt power dissipation Achieved by: High temperature

More information

Linear IC s and applications

Linear IC s and applications Questions and Solutions PART-A Unit-1 INTRODUCTION TO OP-AMPS 1. Explain data acquisition system Jan13 DATA ACQUISITION SYSYTEM BLOCK DIAGRAM: Input stage Intermediate stage Level shifting stage Output

More information

QUESTION BANK for Analog Electronics 4EC111 *

QUESTION BANK for Analog Electronics 4EC111 * OpenStax-CNX module: m54983 1 QUESTION BANK for Analog Electronics 4EC111 * Bijay_Kumar Sharma This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract

More information

Input/Output Models for Maxim Fiber Components

Input/Output Models for Maxim Fiber Components Application Note: HFAN-06.1 Rev 1, 11/07 Input/Output Models for Maxim Fiber Components Maxim High-Frequency/Fiber Communications Group AVAILABLE 9hfan61_old_63.doc 11/13/07 Input/Output Models for Maxim

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 18 488 Class C operation 4 2 h( t) 0 2 4 0 0.2 0.4 0.6 0.8 t 0 ( ) 20 log A j 20 40 60 0 10 20 30 Cconduction_angle

More information

Dual operational amplifier

Dual operational amplifier DESCRIPTION The 77 is a pair of high-performance monolithic operational amplifiers constructed on a single silicon chip. High common-mode voltage range and absence of latch-up make the 77 ideal for use

More information

GATE SOLVED PAPER - IN

GATE SOLVED PAPER - IN YEAR 202 ONE MARK Q. The i-v characteristics of the diode in the circuit given below are : v -. A v 0.7 V i 500 07 $ = * 0 A, v < 0.7 V The current in the circuit is (A) 0 ma (C) 6.67 ma (B) 9.3 ma (D)

More information