Three Ways to Detect Light. We now establish terminology for photon detectors:

Size: px
Start display at page:

Download "Three Ways to Detect Light. We now establish terminology for photon detectors:"

Transcription

1 Three Ways to Detect Light In photon detectors, the light interacts with the detector material to produce free charge carriers photon-by-photon. The resulting miniscule electrical currents are amplified to yield a usable electronic signal. The detector material is typically some form of semiconductor, in which energies around an electron volt suffice to free charge carriers; this energy threshold can be adjusted from ~ 0.01 ev to 10eV by appropriate choice of the detector material. In thermal detectors, the light is absorbed in the detector material to produce a minute increase in its temperature. Exquisitely sensitive electronic thermometers react to this change to produce the electronic signal. Thermal detectors are in principle sensitive to photons of any energy, so long as they can be absorbed in a way that the resulting heat can be sensed by their thermometers. Thermal detectors are important for the X- ray and the far-infrared through mm-wave regimes. In coherent detectors, the electrical field of the photon interacts with a locally generated signal that downconverts its frequency to a range that is compatible with further electronic processing and amplification. Downconversion refers to a multi-step process in which the incoming photon electrical field is mixed with a local electrical field of slightly different frequency. The amplitude of the mixed signal increases and decreases at the difference frequency, termed the intermediate frequency (IF). This signal encodes the frequency of the input photon and its phase. We now establish terminology for photon detectors:

2 Photon absorption and creation of free charge carriers in semiconductors is the basic process behind photo-detection. Compare the diagram of crystal structure (above) with the band gap diagrams (below). To free an electron in intrinsic material (1) requires a certain energy indicated by the band gap. It takes less energy to free charge carriers from impurities (2) and (3).

3 The net absorption is characterized by the absorption coefficient, a. Note the difference between direct and indirect absorption (e.g., silicon vs. GaAs). (3) 1, ) ( ) ( 0 0 d a e S d a e S S ab The quantum efficiency is:

4 A decent detector will have close to linear response over some range of signal, and will completely saturate at some high level. In between, it is possible to recover information the range of signal where useful information can be obtained is the dynamic range.

5 We characterize the resolution in a number of ways, including the MTF. Although the time response can have complex behavior, we will deal mostly with simple resistance-capacitance (RC) behavior: v out v 0 t / e RC, t 0 RC The spectral response drops abruptly to zero at the band gap or excitation energy. The responsivity is the amps out per watt of signal in. It rises linearly to the cutoff wavelength for an ideal detector (assuming one charge carrier per absorbed photon). (9)

6 Detector type #1, Si:X IBC Physical structure to left, band diagram to right; structure is a thin intrinsic layer, then to right of it a heavily doped absorbing layer, then to right, a contact An absorbed photon elevates an electron to the conduction band, from which it can migrate to the contact unimpeded. Thermal charges in the impurity band are blocked at the impurity layer, so dark current is low. Detector type of choice for 5 35mm Notice the separation of zones for electrical properties and photo-response

7 Use of these detectors in an array requires some architecture changes, to allow attaching the readout (to the left in these drawings). Also, very high purity must be achieved in the silicon to allow for complete depletion of the IR-active layer, or the quantum efficiency will suffer (or the bias will have to be set too high, increasing the noise w is the width of the depleted region, t B the blocking layer thickness, N A the minority impority concentration, and V b the bias).

8 Here is a state-of-the-art Si:As IBC array (made by Raytheon for MIRI on JWST). It is 1024 X 1024 pixels and at ~ 6.7K delivers dark current < 0.1 e/s, read noise of ~ 15 e rms, and quantum efficiency > 60% from 8 to 26mm (~ 10% of maximum still at 28.3mm and > 40% at 5mm). The pixels are 25mm on a side. A special process is used for the readout circuit so it works well at such low temperatures. Similar devices but somewhat lower performance have been made by DRS Technologies for WISE.

9 Detector Type #2, Photodiodes A depletion region is created by doping to form a junction between n-type and p-type material

10 When a photon is absorbed, the freed charge carriers diffuse through the material until one of them encounters the junction, which it is driven across by the internal field to create the photocurrent. The diffusion coefficient and length are: D m kt q L, D. (17) (18) where m is the mobility (characterizes ability of charge carrier to migrate) and is the recombination time (goes as T 1/2 ). L goes as T 3/4

11 For operation with low dark current, low temperatures are needed Absorbing layer may need to be thinned to 10-20mm to collect charge carriers at these temperatures Two approaches are shown below The yields in doing this can be low, partly explaining the high prices of these arrays. Diodes on back of transparent substrate: Rockwell HgCdTe arrays, used for NICMOS and for large format Hawaii devices Diodes attached to strong substrate (readout) and then thinned: SBRC InSb arrays, used for SIRTF and large format Aladdin device

12 Here are some photodiode materials and their cutoff wavelengths. HgCdTe has a variable bandgap set by the relative amounts of Hg and Te in the crystal. AlGaAsSb behaves similarly. Indirect absorbers will have poor QE just short of the cutoff Material Si Ge InAs InSb HgCdTe GaInAs AlGaAsSb Cutoff wavelength mm) 1.1 (indirect) 1.8 (indirect) 3.4 (direct) 6.8 (direct) ~1.2 - ~ 15 (direct) 1.65 (direct) (direct)

13 The APD allows gain and even single photon counting with a solid-state device. Its structure has some characteristics of a BIB detector, with absorption in a depletion region maintained by the bias across the device. Avalanche multiplication occurs when the charge carriers are accelerated to high enough energy to free additional charge carriers and so one can produce an avalanche of many. The multiplication occurs in the junction; the noise is minimized because of the high field there and the restricted depth of the region. Avalanche Photodiode (APD)

14 An example: Teledyne HgCdTe for all the JWST instruments except MIRI. Here is the architecture of a pixel. Photons come in from the right and the contact to the readout is to the left. The cap layer has the Hg/Te ratio adjusted to increase the bandgap, so free charge carriers are repelled without actually having a discontinuity in the crystal. These arrays come with either 2.5 or 5mm cutoff. A competing technology is diodes in InSb, with a cutoff just beyond 5mm.

15 An example: the HgCdTe arrays for NIRCam and other JWST instruments. They are 2048 X 2048 pixels in size, with 18mm pixels. Dark currents at ~ 37K are e/s for the short cutoff and 0.01 e/s for the long. The QE is > 90% from 1mm to close to the cutoff and > 70% between 0.5 and 1mm. The read noise is ~ 6-7e rms. Similar devices but somewhat lower performance have been made by Raytheon for VISTA.

16 The Array Revolution in Infrared Astronomy 1968, 5-m telescope, 3 nights, single detector ~ 2000, 1.3-m telescope, 8 seconds, 256 X 256 ~ 2006, 6.5-m telescope, 1 hour, 1024 X 1024 (4 minutes with the 2x X 2048 NIRCam mosaic)

17 Detector Type #3: Image Intensifier Vacuum photodiode - similar in physics to semiconductor photodiode Lower quantum efficiency because photoelectron has to escape from the photocathode in to the vacuum space (photoelectric effect) Operates well at room temperature (issue is thermal release of charge carriers from photocathode)

18 Some old-time image intensifiers All suffer from signal-induced backgrounds. Their outputs are an amplified version of the inputs and any leakage back to the input contaminates the signal.

19 Modern use is in the ultraviolet and with a microchannel array as the amplifier, with an electronic output.

20

21 Infrared Detector Arrays Best performance with silicon integrated circuit readout Cannot manufacture high quality electronics in other semiconductors CCD-type readout has charge transfer problems at cold temperatures Direct hybrid construction Fields of indium bumps evaporated on detector array, readout amplifiers Aligned and squeezed together - very carefully

22 The readout: a source follower simple integrating amplifier As charge accumulates on the gate capacitance of the MOSFET, it modulates the current in the channel To keep from saturating, the charge is reset from time to time

23 How should we sample the output?

24 1 2 1 C V N kt 2 2 ktc or Reset Noise The circuit below has both potential energy (charge on the capacitor) and kinetic energy (Brownian motion of electrons in the resistor) From thermodynamics, we have kt/2 of energy with each degree of freedom, leading to: 2 4kTdf I J R From the left expression we get: Q 2 N kt C S q 2. (24) For C = F and T = 40K, the noise is about 45 electrons rms. A NIRCam array has a read noise of 6-7 electrons. How is this done?

25 To avoid reset or ktc noise, we have to use readout strategy (b) or ( c) Then, if R = (say), RC 10 6 sec ( c) lets us take out some forms of slow drift by sampling with the reset switch closed. However it adds root2 more amplifier noise Modern arrays can support strategy (b) even for integrations of seconds The ktc noise is then (45e)*(exp(t/RC) - 1) = 0.1e for 2000 seconds In general, the reset noise is read noise ktc q 2 1 e t / RC with additional components from amplifier noise and other sources.

26 V out time More readout options: Fowler sampling to the left and multi-accum to the right. Both address averaging out the high frequency electronic noise (e.g., from the output amplifier). Fowler sampling has an advantage in principle for lower net read noise, multi-accum is more robust against upsets, e.g., cosmic ray hits.

27 Now consider the operation of array of readout amplifiers: This approach has random access and reads nondestructively. That is, we can read out any pixel we want, and we can read it and then leave it exactly as it was with the same signal. This allows interesting read out patterns, like Fowler sampling (multiple samples to drive down amplifier noise) or sampling up the integration ramp.

28 Charge Coupled Devices (CCDs) CCDs are actually more complex than infrared arrays, so we have saved them for last. The top shows the physical arrangement of a pixel, and (b) and ( c) the situation before and after exposure to light. The electrodes deplete the silicon near them and create potential wells where free charge carriers collect. To keep the photoelectrons from getting trapped at the back surface, special coatings are applied that bend the bands to repel them.

29 Reading out a CCD When it is time to read out the signal, it is transferred along the array by manipulating the voltages on the electrodes. This illustration is for a 3-phase CCD, but similar strategies work for 4-phase and, with a bit of a trick on the electrode design, on 2-phase.

30 The charges are brought to the output amplifier in (a) in-line transfer, (b ) interline transfer, or (c ) frame transfer architectures. Astronomers generally prefer (a), in which case the chip continues to collect signal as it is read out.

31 The charge transfer efficiency must be extremely high. If the proportion of charge lost in n transfers is, then the noise in transferring N 0 charges is N CTE ( 2 n N ) 1/ 2. 0 (25) Consider a high performance 2048 X 2048 CCD with 2 electrons read noise. If it is 3-phase, it takes about transfers to transfer the most distant charge package out. Consider a signal of 100 electrons. Then, if the CTE = , the CTE noise is 1.5 electrons! However, as we have drawn the CCD, the photo-electrons collect at the interface between the electrode and the silicon crystal, where there are lots of open crystal bonds that trap electrons and degrade the CTE. The noise achievable with such surface channel CCDs is no less than many hundreds of electrons.

32 This problem is fixed with a buried channel. A thin layer of silicon (about a micron) is doped oppositely to the rest of the detector wafer and the resulting potential minimum causes the electrons to collect in the bulk crystal, not at the electrodes. This does not work at low temperatures (< 70K), and if the wells are over-filled then the CCD has some electrons back to surface channel, i.e., serious latent images and bad CTE.

33 Another issue with overfilled wells is that charge can leak from one well to its neighbor along the charge transfer direction, leading to blooming. Some CCDs have extra thick channel stops to resist blooming, but this reduces the quantum efficiency and is not used for astronomical detectors.

34 The buried channel CCD approach is very similar to the one using a composition change in the HdCdTe cap layer in a Teledyne array to keep the photo-electrons from getting trapped away from the junction.

35 Reading the signal out Finally, the signal gets to the output amplifier. By using a floating gate to put the matching charge (by capacitive coupling) on the MOSFET gate, we can read it out while avoiding ktc noise. Since we retain the charge after readout, we can take it to another amplifier and read it again to reduce the net noise. However, this readout is not random and the charge is eventually lost (not returned to the pixel where it originated).

36 Some other aspects of CCD performance: Pixel binning - does not degrade the noise, so is a painless way to reduce the number of effective pixels in the array. This can reduce data rates and also effective read noise.

37 Time-Delay-Integration (TDI) The CCD charge transfer process lends itself naturally to clocking charge in one direction at a set rate. This capability can be useful in applications where images drift across the detector array at a constant (relatively slow) rate the charge generated by a source can be moved across the CCD to match the motion of the source. As a result, the CCD can integrate efficiently on the moving scene of sources without physically moving anything to track their motion.

38 Time-delay integration: The CCD can be clocked at the same rate a scene is moving along its columns (careful alignment is needed to be sure the motion is purely along the columns). Then, if it is a line-transfer device, the signal builds up without blurring. Orthogonal charge transfer: It is possible to arrange 4- phase electrodes to allow transfer of charge in either direction and backwards and forwards. As shown here, transfer downward goes , to the right goes , and so forth.

39 Deep Depletion Because silicon is an indirect absorber, CCDs tend to have poor QE near 1 micron. The curves, in order of increasing absorption, are for 5, 10, 15, 30, and 50mm.

40 Just making the CCD thick reduces the free electron collection efficiency (particularly in the blue where the electrons are freed in the first microns). A deep depletion CCD solves this problem by putting a transparent contact on the back surface and placing a bias voltage on it so drive the photoelectrons into the wells.

Three Ways to Detect Light. Following: Lord Rosse image of M33 vs. Hubble image demonstrate how critical detector technology is.

Three Ways to Detect Light. Following: Lord Rosse image of M33 vs. Hubble image demonstrate how critical detector technology is. Three Ways to Detect Light In photon detectors, the light interacts with the detector material to produce free charge carriers photon-by-photon. The resulting miniscule electrical currents are amplified

More information

Chapter 3: Sensing the light: Detectors for the Optical and Infrared

Chapter 3: Sensing the light: Detectors for the Optical and Infrared Chapter 3: Sensing the light: Detectors for the Optical and Infrared 3.1 Basic Properties of Photo-detectors Modern photon detectors operate by placing a bias voltage across a semiconductor crystal, illuminating

More information

Fundamentals of CMOS Image Sensors

Fundamentals of CMOS Image Sensors CHAPTER 2 Fundamentals of CMOS Image Sensors Mixed-Signal IC Design for Image Sensor 2-1 Outline Photoelectric Effect Photodetectors CMOS Image Sensor(CIS) Array Architecture CIS Peripherals Design Considerations

More information

CCDS. Lesson I. Wednesday, August 29, 12

CCDS. Lesson I. Wednesday, August 29, 12 CCDS Lesson I CCD OPERATION The predecessor of the CCD was a device called the BUCKET BRIGADE DEVICE developed at the Phillips Research Labs The BBD was an analog delay line, made up of capacitors such

More information

Charged-Coupled Devices

Charged-Coupled Devices Charged-Coupled Devices Charged-Coupled Devices Useful texts: Handbook of CCD Astronomy Steve Howell- Chapters 2, 3, 4.4 Measuring the Universe George Rieke - 3.1-3.3, 3.6 CCDs CCDs were invented in 1969

More information

Dynamic Range. Can I look at bright and faint things at the same time?

Dynamic Range. Can I look at bright and faint things at the same time? Detector Basics The purpose of any detector is to record the light collected by the telescope. All detectors transform the incident radiation into a some other form to create a permanent record, such as

More information

IV DETECTORS. Daguerrotype of the Moon, John W. Draper. March 26, 1840 New York

IV DETECTORS. Daguerrotype of the Moon, John W. Draper. March 26, 1840 New York IV DETECTORS Lit.: C.R.Kitchin: Astrophysical Techniques, 2009 C.D.Mckay: CCD s in Astronomy, Ann.Rev. A.&A. 24, 1986 G.H.Rieke: Infrared Detector Arrays for Astronomy, Ann.Rev. A&A 45, 2007 up to 1837:

More information

Based on lectures by Bernhard Brandl

Based on lectures by Bernhard Brandl Astronomische Waarneemtechnieken (Astronomical Observing Techniques) Based on lectures by Bernhard Brandl Lecture 10: Detectors 2 1. CCD Operation 2. CCD Data Reduction 3. CMOS devices 4. IR Arrays 5.

More information

VII. IR Arrays & Readout VIII.CCDs & Readout. This lecture course follows the textbook Detection of

VII. IR Arrays & Readout VIII.CCDs & Readout. This lecture course follows the textbook Detection of Detection of Light VII. IR Arrays & Readout VIII.CCDs & Readout This lecture course follows the textbook Detection of Light 4-3-2016 by George Rieke, Detection Cambridge of Light Bernhard Brandl University

More information

Properties of a Detector

Properties of a Detector Properties of a Detector Quantum Efficiency fraction of photons detected wavelength and spatially dependent Dynamic Range difference between lowest and highest measurable flux Linearity detection rate

More information

Where detectors are used in science & technology

Where detectors are used in science & technology Lecture 9 Outline Role of detectors Photomultiplier tubes (photoemission) Modulation transfer function Photoconductive detector physics Detector architecture Where detectors are used in science & technology

More information

Optical/IR Observational Astronomy Detectors II. David Buckley, SAAO

Optical/IR Observational Astronomy Detectors II. David Buckley, SAAO David Buckley, SAAO 1 The Next Revolution: Charge Couple Device Detectors (CCDs) 2 Optical/IR Observational Astronomy CCDs Integrated semi-conductor detector From photon detection (pair production) to

More information

Detectors for Optical Communications

Detectors for Optical Communications Optical Communications: Circuits, Systems and Devices Chapter 3: Optical Devices for Optical Communications lecturer: Dr. Ali Fotowat Ahmady Sep 2012 Sharif University of Technology 1 Photo All detectors

More information

An Introduction to CCDs. The basic principles of CCD Imaging is explained.

An Introduction to CCDs. The basic principles of CCD Imaging is explained. An Introduction to CCDs. The basic principles of CCD Imaging is explained. Morning Brain Teaser What is a CCD? Charge Coupled Devices (CCDs), invented in the 1970s as memory devices. They improved the

More information

Charged Coupled Device (CCD) S.Vidhya

Charged Coupled Device (CCD) S.Vidhya Charged Coupled Device (CCD) S.Vidhya 02.04.2016 Sensor Physical phenomenon Sensor Measurement Output A sensor is a device that measures a physical quantity and converts it into a signal which can be read

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Photodetectors Introduction Most important characteristics Photodetector

More information

The Charge-Coupled Device. Many overheads courtesy of Simon Tulloch

The Charge-Coupled Device. Many overheads courtesy of Simon Tulloch The Charge-Coupled Device Astronomy 1263 Many overheads courtesy of Simon Tulloch smt@ing.iac.es Jan 24, 2013 What does a CCD Look Like? The fine surface electrode structure of a thick CCD is clearly visible

More information

Optical Fiber Communication Lecture 11 Detectors

Optical Fiber Communication Lecture 11 Detectors Optical Fiber Communication Lecture 11 Detectors Warriors of the Net Detector Technologies MSM (Metal Semiconductor Metal) PIN Layer Structure Semiinsulating GaAs Contact InGaAsP p 5x10 18 Absorption InGaAs

More information

CCD Analogy BUCKETS (PIXELS) HORIZONTAL CONVEYOR BELT (SERIAL REGISTER) VERTICAL CONVEYOR BELTS (CCD COLUMNS) RAIN (PHOTONS)

CCD Analogy BUCKETS (PIXELS) HORIZONTAL CONVEYOR BELT (SERIAL REGISTER) VERTICAL CONVEYOR BELTS (CCD COLUMNS) RAIN (PHOTONS) CCD Analogy RAIN (PHOTONS) VERTICAL CONVEYOR BELTS (CCD COLUMNS) BUCKETS (PIXELS) HORIZONTAL CONVEYOR BELT (SERIAL REGISTER) MEASURING CYLINDER (OUTPUT AMPLIFIER) Exposure finished, buckets now contain

More information

Lecture 18: Photodetectors

Lecture 18: Photodetectors Lecture 18: Photodetectors Contents 1 Introduction 1 2 Photodetector principle 2 3 Photoconductor 4 4 Photodiodes 6 4.1 Heterojunction photodiode.................... 8 4.2 Metal-semiconductor photodiode................

More information

Key Questions ECE 340 Lecture 28 : Photodiodes

Key Questions ECE 340 Lecture 28 : Photodiodes Things you should know when you leave Key Questions ECE 340 Lecture 28 : Photodiodes Class Outline: How do the I-V characteristics change with illumination? How do solar cells operate? How do photodiodes

More information

Basic principles of photon detectors used in Astronomy

Basic principles of photon detectors used in Astronomy Basic principles of photon detectors used in Astronomy Reinhold J. Dorn ESO Instrumentation Division 11 September, 2008 1 There are many ways to sense light, but.. these notes will focus on detectors used

More information

Photons and solid state detection

Photons and solid state detection Photons and solid state detection Photons represent discrete packets ( quanta ) of optical energy Energy is hc/! (h: Planck s constant, c: speed of light,! : wavelength) For solid state detection, photons

More information

OFCS OPTICAL DETECTORS 11/9/2014 LECTURES 1

OFCS OPTICAL DETECTORS 11/9/2014 LECTURES 1 OFCS OPTICAL DETECTORS 11/9/2014 LECTURES 1 1-Defintion & Mechanisms of photodetection It is a device that converts the incident light into electrical current External photoelectric effect: Electrons are

More information

Detection Beyond 100µm Photon detectors no longer work ("shallow", i.e. low excitation energy, impurities only go out to equivalent of

Detection Beyond 100µm Photon detectors no longer work (shallow, i.e. low excitation energy, impurities only go out to equivalent of Detection Beyond 100µm Photon detectors no longer work ("shallow", i.e. low excitation energy, impurities only go out to equivalent of 100µm) A few tricks let them stretch a little further (like stressing)

More information

Overview. Charge-coupled Devices. MOS capacitor. Charge-coupled devices. Charge-coupled devices:

Overview. Charge-coupled Devices. MOS capacitor. Charge-coupled devices. Charge-coupled devices: Overview Charge-coupled Devices Charge-coupled devices: MOS capacitors Charge transfer Architectures Color Limitations 1 2 Charge-coupled devices MOS capacitor The most popular image recording technology

More information

OPTOELECTRONIC and PHOTOVOLTAIC DEVICES

OPTOELECTRONIC and PHOTOVOLTAIC DEVICES OPTOELECTRONIC and PHOTOVOLTAIC DEVICES Outline 1. Introduction to the (semiconductor) physics: energy bands, charge carriers, semiconductors, p-n junction, materials, etc. 2. Light emitting diodes Light

More information

How Does One Obtain Spectral/Imaging Information! "

How Does One Obtain Spectral/Imaging Information! How Does One Obtain Spectral/Imaging Information! How do we measure the position, energy, and arrival time of! an X-ray photon?! " What we observe depends on the instruments that one observes with!" In

More information

STA1600LN x Element Image Area CCD Image Sensor

STA1600LN x Element Image Area CCD Image Sensor ST600LN 10560 x 10560 Element Image Area CCD Image Sensor FEATURES 10560 x 10560 Photosite Full Frame CCD Array 9 m x 9 m Pixel 95.04mm x 95.04mm Image Area 100% Fill Factor Readout Noise 2e- at 50kHz

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

What is the highest efficiency Solar Cell?

What is the highest efficiency Solar Cell? What is the highest efficiency Solar Cell? GT CRC Roof-Mounted PV System Largest single PV structure at the time of it s construction for the 1996 Olympic games Produced more than 1 billion watt hrs. of

More information

UNIT 3 Transistors JFET

UNIT 3 Transistors JFET UNIT 3 Transistors JFET Mosfet Definition of BJT A bipolar junction transistor is a three terminal semiconductor device consisting of two p-n junctions which is able to amplify or magnify a signal. It

More information

Light gathering Power: Magnification with eyepiece:

Light gathering Power: Magnification with eyepiece: Telescopes Light gathering Power: The amount of light that can be gathered by a telescope in a given amount of time: t 1 /t 2 = (D 2 /D 1 ) 2 The larger the diameter the smaller the amount of time. If

More information

Charge-Coupled Device (CCD) Detectors pixel silicon chip electronics cryogenics

Charge-Coupled Device (CCD) Detectors pixel silicon chip electronics cryogenics Charge-Coupled Device (CCD) Detectors As revolutionary in astronomy as the invention of the telescope and photography semiconductor detectors a collection of miniature photodiodes, each called a picture

More information

Optical Receivers Theory and Operation

Optical Receivers Theory and Operation Optical Receivers Theory and Operation Photo Detectors Optical receivers convert optical signal (light) to electrical signal (current/voltage) Hence referred O/E Converter Photodetector is the fundamental

More information

CCD and CMOS Imaging Devices for Large (Ground Based) Telescopes. Veljko Radeka BNL SNIC April 3, 2006

CCD and CMOS Imaging Devices for Large (Ground Based) Telescopes. Veljko Radeka BNL SNIC April 3, 2006 CCD and CMOS Imaging Devices for Large (Ground Based) Telescopes Veljko Radeka BNL SNIC April 3, 2006 1 Large Telescopes Survey telescope Deep probe Primary Mirror dia.=d m, Area= A Large (~8m) Very large

More information

READOUT TECHNIQUES FOR DRIFT AND LOW FREQUENCY NOISE REJECTION IN INFRARED ARRAYS

READOUT TECHNIQUES FOR DRIFT AND LOW FREQUENCY NOISE REJECTION IN INFRARED ARRAYS READOUT TECHNIQUES FOR DRIFT AND LOW FREQUENCY NOISE REJECTION IN INFRARED ARRAYS Finger 1, G, Dorn 1, R.J 1, Hoffman, A.W. 2, Mehrgan, H. 1, Meyer, M. 1, Moorwood A.F.M. 1 and Stegmeier, J. 1 1) European

More information

UNIT IX ELECTRONIC DEVICES

UNIT IX ELECTRONIC DEVICES UNT X ELECTRONC DECES Weightage Marks : 07 Semiconductors Semiconductors diode-- characteristics in forward and reverse bias, diode as rectifier. - characteristics of LED, Photodiodes, solarcell and Zener

More information

Astronomy /6/15. In this Lecture: (Detector Technology) Nomenclature. Lecture 3: Introduction to CCD and CMOS Imaging Devices

Astronomy /6/15. In this Lecture: (Detector Technology) Nomenclature. Lecture 3: Introduction to CCD and CMOS Imaging Devices Astronomy 3310 Lecture 3: Introduction to CCD and CMOS Imaging Devices Lecture 3 Astro 3310 1 In this Lecture: (Detector Technology) Introduc/on to Solid State Detectors CCD CMOS and IRFPA Basic CCD /

More information

Introduction to CCD camera

Introduction to CCD camera Observational Astronomy 2011/2012 Introduction to CCD camera Charge Coupled Device (CCD) photo sensor coupled to shift register Jörg R. Hörandel Radboud University Nijmegen http://particle.astro.ru.nl/goto.html?astropract1-1112

More information

Optical Amplifiers. Continued. Photonic Network By Dr. M H Zaidi

Optical Amplifiers. Continued. Photonic Network By Dr. M H Zaidi Optical Amplifiers Continued EDFA Multi Stage Designs 1st Active Stage Co-pumped 2nd Active Stage Counter-pumped Input Signal Er 3+ Doped Fiber Er 3+ Doped Fiber Output Signal Optical Isolator Optical

More information

Silicon sensors for radiant signals. D.Sc. Mikko A. Juntunen

Silicon sensors for radiant signals. D.Sc. Mikko A. Juntunen Silicon sensors for radiant signals D.Sc. Mikko A. Juntunen 2017 01 16 Today s outline Introduction Basic physical principles PN junction revisited Applications Light Ionizing radiation X-Ray sensors in

More information

a simple optical imager

a simple optical imager Imagers and Imaging a simple optical imager Here s one on our 61-Inch Telescope Here s one on our 61-Inch Telescope filter wheel in here dewar preamplifier However, to get a large field we cannot afford

More information

LEDs, Photodetectors and Solar Cells

LEDs, Photodetectors and Solar Cells LEDs, Photodetectors and Solar Cells Chapter 7 (Parker) ELEC 424 John Peeples Why the Interest in Photons? Answer: Momentum and Radiation High electrical current density destroys minute polysilicon and

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

Coherent Receivers Principles Downconversion

Coherent Receivers Principles Downconversion Coherent Receivers Principles Downconversion Heterodyne receivers mix signals of different frequency; if two such signals are added together, they beat against each other. The resulting signal contains

More information

Figure Responsivity (A/W) Figure E E-09.

Figure Responsivity (A/W) Figure E E-09. OSI Optoelectronics, is a leading manufacturer of fiber optic components for communication systems. The products offer range for Silicon, GaAs and InGaAs to full turnkey solutions. Photodiodes are semiconductor

More information

Chap14. Photodiode Detectors

Chap14. Photodiode Detectors Chap14. Photodiode Detectors Mohammad Ali Mansouri-Birjandi mansouri@ece.usb.ac.ir mamansouri@yahoo.com Faculty of Electrical and Computer Engineering University of Sistan and Baluchestan (USB) Design

More information

UNIT VIII-SPECIAL PURPOSE ELECTRONIC DEVICES. 1. Explain tunnel Diode operation with the help of energy band diagrams.

UNIT VIII-SPECIAL PURPOSE ELECTRONIC DEVICES. 1. Explain tunnel Diode operation with the help of energy band diagrams. UNIT III-SPECIAL PURPOSE ELECTRONIC DEICES 1. Explain tunnel Diode operation with the help of energy band diagrams. TUNNEL DIODE: A tunnel diode or Esaki diode is a type of semiconductor diode which is

More information

Photodiode: LECTURE-5

Photodiode: LECTURE-5 LECTURE-5 Photodiode: Photodiode consists of an intrinsic semiconductor sandwiched between two heavily doped p-type and n-type semiconductors as shown in Fig. 3.2.2. Sufficient reverse voltage is applied

More information

Detectors for microscopy - CCDs, APDs and PMTs. Antonia Göhler. Nov 2014

Detectors for microscopy - CCDs, APDs and PMTs. Antonia Göhler. Nov 2014 Detectors for microscopy - CCDs, APDs and PMTs Antonia Göhler Nov 2014 Detectors/Sensors in general are devices that detect events or changes in quantities (intensities) and provide a corresponding output,

More information

Diodes Rectifiers, Zener diodes light emitting diodes, laser diodes photodiodes, optocouplers

Diodes Rectifiers, Zener diodes light emitting diodes, laser diodes photodiodes, optocouplers Diodes Rectifiers, Zener diodes light emitting diodes, laser diodes photodiodes, optocouplers Prepared by Scott Robertson Fall 2007 Physics 3330 1 Impurity-doped semiconductors Semiconductors (Ge, Si)

More information

EC T34 ELECTRONIC DEVICES AND CIRCUITS

EC T34 ELECTRONIC DEVICES AND CIRCUITS RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY PONDY-CUDDALORE MAIN ROAD, KIRUMAMPAKKAM-PUDUCHERRY DEPARTMENT OF ECE EC T34 ELECTRONIC DEVICES AND CIRCUITS II YEAR Mr.L.ARUNJEEVA., AP/ECE 1 PN JUNCTION

More information

Figure Figure E E-09. Dark Current (A) 1.

Figure Figure E E-09. Dark Current (A) 1. OSI Optoelectronics, is a leading manufacturer of fiber optic components for communication systems. The products offer range for Silicon, GaAs and InGaAs to full turnkey solutions. Photodiodes are semiconductor

More information

An Introduction to Scientific Imaging C h a r g e - C o u p l e d D e v i c e s

An Introduction to Scientific Imaging C h a r g e - C o u p l e d D e v i c e s p a g e 2 S C I E N T I F I C I M A G I N G T E C H N O L O G I E S, I N C. Introduction to the CCD F u n d a m e n t a l s The CCD Imaging A r r a y An Introduction to Scientific Imaging C h a r g e -

More information

CCD Characteristics Lab

CCD Characteristics Lab CCD Characteristics Lab Observational Astronomy 6/6/07 1 Introduction In this laboratory exercise, you will be using the Hirsch Observatory s CCD camera, a Santa Barbara Instruments Group (SBIG) ST-8E.

More information

Detectors that cover a dynamic range of more than 1 million in several dimensions

Detectors that cover a dynamic range of more than 1 million in several dimensions Detectors that cover a dynamic range of more than 1 million in several dimensions Detectors for Astronomy Workshop Garching, Germany 10 October 2009 James W. Beletic Teledyne Providing the best images

More information

Astro-photography. Daguerreotype: on a copper plate

Astro-photography. Daguerreotype: on a copper plate AST 1022L Astro-photography 1840-1980s: Photographic plates were astronomers' main imaging tool At right: first ever picture of the full moon, by John William Draper (1840) Daguerreotype: exposure using

More information

Charge coupled CMOS and hybrid detector arrays

Charge coupled CMOS and hybrid detector arrays Charge coupled CMOS and hybrid detector arrays James Janesick Sarnoff Corporation, 4952 Warner Ave., Suite 300, Huntington Beach, CA. 92649 Headquarters: CN5300, 201 Washington Road Princeton, NJ 08543-5300

More information

Stability of IR-arrays for robotized observations at dome C

Stability of IR-arrays for robotized observations at dome C Stability of IR-arrays for robotized observations at dome C 27.3.2007, Tenerife Page Nr. 1 IR wide field imaging MPIA IR projects and studies OMEGA2000: NIR WFI Calar Alto NACO: NIR AO-supported Imager

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica Analogue Electronics Paolo Colantonio A.A. 2015-16 Introduction: materials Conductors e.g. copper or aluminum have a cloud

More information

Detectors. RIT Course Number Lecture Noise

Detectors. RIT Course Number Lecture Noise Detectors RIT Course Number 1051-465 Lecture Noise 1 Aims for this lecture learn to calculate signal-to-noise ratio describe processes that add noise to a detector signal give examples of how to combat

More information

Analog Electronic Circuits

Analog Electronic Circuits Analog Electronic Circuits Chapter 1: Semiconductor Diodes Objectives: To become familiar with the working principles of semiconductor diode To become familiar with the design and analysis of diode circuits

More information

10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional)

10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional) EE40 Lec 17 PN Junctions Prof. Nathan Cheung 10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional) Slide 1 PN Junctions Semiconductor Physics of pn junctions (for reference

More information

Intrinsic Semiconductor

Intrinsic Semiconductor Semiconductors Crystalline solid materials whose resistivities are values between those of conductors and insulators. Good electrical characteristics and feasible fabrication technology are some reasons

More information

CCD1600A Full Frame CCD Image Sensor x Element Image Area

CCD1600A Full Frame CCD Image Sensor x Element Image Area - 1 - General Description CCD1600A Full Frame CCD Image Sensor 10560 x 10560 Element Image Area General Description The CCD1600 is a 10560 x 10560 image element solid state Charge Coupled Device (CCD)

More information

Introduction. Chapter 1

Introduction. Chapter 1 1 Chapter 1 Introduction During the last decade, imaging with semiconductor devices has been continuously replacing conventional photography in many areas. Among all the image sensors, the charge-coupled-device

More information

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc.

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc. Optodevice Data Book ODE-408-001I Rev.9 Mar. 2003 Opnext Japan, Inc. Section 1 Operating Principles 1.1 Operating Principles of Laser Diodes (LDs) and Infrared Emitting Diodes (IREDs) 1.1.1 Emitting Principles

More information

Semiconductor Devices Lecture 5, pn-junction Diode

Semiconductor Devices Lecture 5, pn-junction Diode Semiconductor Devices Lecture 5, pn-junction Diode Content Contact potential Space charge region, Electric Field, depletion depth Current-Voltage characteristic Depletion layer capacitance Diffusion capacitance

More information

Electronic devices-i. Difference between conductors, insulators and semiconductors

Electronic devices-i. Difference between conductors, insulators and semiconductors Electronic devices-i Semiconductor Devices is one of the important and easy units in class XII CBSE Physics syllabus. It is easy to understand and learn. Generally the questions asked are simple. The unit

More information

Lecture 8 Optical Sensing. ECE 5900/6900 Fundamentals of Sensor Design

Lecture 8 Optical Sensing. ECE 5900/6900 Fundamentals of Sensor Design ECE 5900/6900: Fundamentals of Sensor Design Lecture 8 Optical Sensing 1 Optical Sensing Q: What are we measuring? A: Electromagnetic radiation labeled as Ultraviolet (UV), visible, or near,mid-, far-infrared

More information

Application of CMOS sensors in radiation detection

Application of CMOS sensors in radiation detection Application of CMOS sensors in radiation detection S. Ashrafi Physics Faculty University of Tabriz 1 CMOS is a technology for making low power integrated circuits. CMOS Complementary Metal Oxide Semiconductor

More information

EDC Lecture Notes UNIT-1

EDC Lecture Notes UNIT-1 P-N Junction Diode EDC Lecture Notes Diode: A pure silicon crystal or germanium crystal is known as an intrinsic semiconductor. There are not enough free electrons and holes in an intrinsic semi-conductor

More information

Week 9: Chap.13 Other Semiconductor Material

Week 9: Chap.13 Other Semiconductor Material Week 9: Chap.13 Other Semiconductor Material Exam Other Semiconductors and Geometries -- Why --- CZT properties -- Silicon Structures --- CCD s Gamma ray Backgrounds The MIT Semiconductor Subway (of links

More information

Simulation of High Resistivity (CMOS) Pixels

Simulation of High Resistivity (CMOS) Pixels Simulation of High Resistivity (CMOS) Pixels Stefan Lauxtermann, Kadri Vural Sensor Creations Inc. AIDA-2020 CMOS Simulation Workshop May 13 th 2016 OUTLINE 1. Definition of High Resistivity Pixel Also

More information

Lecture 9 External Modulators and Detectors

Lecture 9 External Modulators and Detectors Optical Fibres and Telecommunications Lecture 9 External Modulators and Detectors Introduction Where are we? A look at some real laser diodes. External modulators Mach-Zender Electro-absorption modulators

More information

Charge Coupled Devices. C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution.

Charge Coupled Devices. C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution. Charge Coupled Devices C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution. 1 1. Introduction While telescopes are able to gather more light from a distance source than does the naked eye,

More information

Detailed Characterisation of a New Large Area CCD Manufactured on High Resistivity Silicon

Detailed Characterisation of a New Large Area CCD Manufactured on High Resistivity Silicon Detailed Characterisation of a New Large Area CCD Manufactured on High Resistivity Silicon Mark S. Robbins *, Pritesh Mistry, Paul R. Jorden e2v technologies Ltd, 106 Waterhouse Lane, Chelmsford, Essex

More information

Solid State Devices- Part- II. Module- IV

Solid State Devices- Part- II. Module- IV Solid State Devices- Part- II Module- IV MOS Capacitor Two terminal MOS device MOS = Metal- Oxide- Semiconductor MOS capacitor - the heart of the MOSFET The MOS capacitor is used to induce charge at the

More information

EE70 - Intro. Electronics

EE70 - Intro. Electronics EE70 - Intro. Electronics Course website: ~/classes/ee70/fall05 Today s class agenda (November 28, 2005) review Serial/parallel resonant circuits Diode Field Effect Transistor (FET) f 0 = Qs = Qs = 1 2π

More information

ECE 340 Lecture 29 : LEDs and Lasers Class Outline:

ECE 340 Lecture 29 : LEDs and Lasers Class Outline: ECE 340 Lecture 29 : LEDs and Lasers Class Outline: Light Emitting Diodes Lasers Semiconductor Lasers Things you should know when you leave Key Questions What is an LED and how does it work? How does a

More information

Key Questions. What is an LED and how does it work? How does a laser work? How does a semiconductor laser work? ECE 340 Lecture 29 : LEDs and Lasers

Key Questions. What is an LED and how does it work? How does a laser work? How does a semiconductor laser work? ECE 340 Lecture 29 : LEDs and Lasers Things you should know when you leave Key Questions ECE 340 Lecture 29 : LEDs and Class Outline: What is an LED and how does it How does a laser How does a semiconductor laser How do light emitting diodes

More information

MOSFET short channel effects

MOSFET short channel effects MOSFET short channel effects overview Five different short channel effects can be distinguished: velocity saturation drain induced barrier lowering (DIBL) impact ionization surface scattering hot electrons

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 20

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 20 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 20 Photo-Detectors and Detector Noise Fiber Optics, Prof. R.K. Shevgaonkar, Dept.

More information

Abstract. Preface. Acknowledgments

Abstract. Preface. Acknowledgments Contents Abstract Preface Acknowledgments iv v vii 1 Introduction 1 1.1 A Very Brief History of Visible Detectors in Astronomy................ 1 1.2 The CCD: Astronomy s Champion Workhorse......................

More information

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors Lecture 2 Part 1 (Electronics) Signal formation Readout electronics Noise Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction Strip/pixel detectors Drift detectors

More information

Effect of Dislocations on Dark Current in LWIR HgCdTe Photodiodes

Effect of Dislocations on Dark Current in LWIR HgCdTe Photodiodes Effect of Dislocations on Dark Current in LWIR HgCdTe Photodiodes Candice M. Bacon a,b,craigw.mcmurtry a, Judith L. Pipher a, Amanda Mainzer c, William Forrest a a University of Rochester, Rochester, NY,

More information

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector)

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Valeri Saveliev University of Obninsk, Russia Vienna Conference on Instrumentation Vienna, 20 February

More information

Two-phase full-frame CCD with double ITO gate structure for increased sensitivity

Two-phase full-frame CCD with double ITO gate structure for increased sensitivity Two-phase full-frame CCD with double ITO gate structure for increased sensitivity William Des Jardin, Steve Kosman, Neal Kurfiss, James Johnson, David Losee, Gloria Putnam *, Anthony Tanbakuchi (Eastman

More information

3/5/17. Detector Basics. Quantum Efficiency (QE) and Spectral Response. Quantum Efficiency (QE) and Spectral Response

3/5/17. Detector Basics. Quantum Efficiency (QE) and Spectral Response. Quantum Efficiency (QE) and Spectral Response 3/5/17 Detector Basics The purpose of any detector is to record the light collected by the telescope. All detectors transform the incident radiation into a some other form to create a permanent record,

More information

Engineering Medical Optics BME136/251 Winter 2018

Engineering Medical Optics BME136/251 Winter 2018 Engineering Medical Optics BME136/251 Winter 2018 Monday/Wednesday 2:00-3:20 p.m. Beckman Laser Institute Library, MSTB 214 (lab) *1/17 UPDATE Wednesday, 1/17 Optics and Photonic Devices III: homework

More information

Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias

Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias 13 September 2017 Konstantin Stefanov Contents Background Goals and objectives Overview of the work carried

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 1 (CONT D) DIODES

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 1 (CONT D) DIODES KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 1 (CONT D) DIODES Most of the content is from the textbook: Electronic devices and circuit theory, Robert L.

More information

Figure 2d. Optical Through-the-Air Communications Handbook -David A. Johnson,

Figure 2d. Optical Through-the-Air Communications Handbook -David A. Johnson, onto the detector. The stray light competes with the modulated light from the distant transmitter. If the environmental light is sufficiently strong it can interfere with light from the light transmitter.

More information

Resonant Tunneling Device. Kalpesh Raval

Resonant Tunneling Device. Kalpesh Raval Resonant Tunneling Device Kalpesh Raval Outline Diode basics History of Tunnel diode RTD Characteristics & Operation Tunneling Requirements Various Heterostructures Fabrication Technique Challenges Application

More information

LAB V. LIGHT EMITTING DIODES

LAB V. LIGHT EMITTING DIODES LAB V. LIGHT EMITTING DIODES 1. OBJECTIVE In this lab you are to measure I-V characteristics of Infrared (IR), Red and Blue light emitting diodes (LEDs). The emission intensity as a function of the diode

More information

Introduction to Photovoltaics

Introduction to Photovoltaics Introduction to Photovoltaics PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo February 24, 2015 Only solar energy Of all the possible sources

More information

FUTURE PROSPECTS FOR CMOS ACTIVE PIXEL SENSORS

FUTURE PROSPECTS FOR CMOS ACTIVE PIXEL SENSORS FUTURE PROSPECTS FOR CMOS ACTIVE PIXEL SENSORS Dr. Eric R. Fossum Jet Propulsion Laboratory Dr. Philip H-S. Wong IBM Research 1995 IEEE Workshop on CCDs and Advanced Image Sensors April 21, 1995 CMOS APS

More information

Electronic Devices 1. Current flowing in each of the following circuits A and respectively are: (Circuit 1) (Circuit 2) 1) 1A, 2A 2) 2A, 1A 3) 4A, 2A 4) 2A, 4A 2. Among the following one statement is not

More information

Chapter 4 OPTICAL DETECTORS

Chapter 4 OPTICAL DETECTORS Chapter 4 OPTICAL DETECTORS (Reference: Optical Electronics in Modern Communications, A. Yariv, Oxford, 1977, Ch. 11.) Photomultiplier Tube (PMT) Highly sensitive detector for light from near infrared

More information