University of Pittsburgh

Size: px
Start display at page:

Download "University of Pittsburgh"

Transcription

1 University of Pittsburgh Experiment #5 Lab Report Diode Applications and PSPICE Introduction Submission Date: 10/10/2017 Instructors: Dr. Minhee Yun John Erickson Yanhao Du Submitted By: Nick Haver & Alex Williams Station #16 ECE 1201: Electronic Measurements and Circuits Laboratory

2 Introduction This lab is an introduction to PSPICE, a tool used for simulating and analyzing circuits. In this lab we analyze some circuits from Experiment 4 and take a look at some circuits we haven t seen before. The measurements are taken using a transient analysis over 10 ms and looking at various voltages and currents within the circuits. Procedure A I. Purpose The purpose of Procedure A was to simulate the three diode circuits shown in Fig. 1, Fig. 2, and Fig. 3, analyze these circuits, and compare our simulation analysis with the real-world measurements obtained in Experiment 4. II. Procedure Using the OrCAD PSICE Schematics editor, the circuit shown in Fig. 1 was constructed using D1N4002 diodes for both D 1 and D 2. Voltages at points A and B and currents through each of the diodes were measured using a PSPICE simulation. PSPICE simulation values were compared to those measured in Experiment 4, as shown in Table 1. The process described above was repeated for the circuit shown in Fig. 2. The circuit was again constructed using D1N4002 diodes. Voltages were measured at points A, B, and C. Currents were measured through diode 1 and diodes 2 and 3. PSPICE simulation values were again compared to values measured in Experiment 4, as shown in Table 2. For the circuit shown in Fig. 3, the voltage source V was a 0 to 10 V positive pulse lasting seconds. The D1N914 diode was used for this circuit. This was implemented using the VPULSE function in PSPICE. With a pulse duration of seconds, rise and fall times were both set to 1 µs. The period of the pulsing cycle was set to 10 ms. Fig. 4 shows the source voltage and capacitor voltage over one 10ms pulsing cycle. Currents for the diode, capacitor and resistor were measured and plotted, as shown in Fig. 5. It can be noted that the current-time plot indicates that diode current equals the sum of resistor current and capacitor current. Lastly, the PSPICE Schematics editor was used to construct the circuit shown in Fig. 6. The switch was initially closed, and was opened to time 1 ms. This was simulated using the PSPICE sw_topen function. The source voltage, switch off at time 1ms, and the inductor voltage were plotted over time, as shown in Fig. 7. Inductor voltage was observed to be at its maximum when the switch was opened, or when the change in current was greatest. This is because inductor voltage is proportional to the time derivative of current. Only the switch was opened, the circuit continued to function via the diode in parallel with the voltage source. III. Summary of Results Figure 1: First Diode Circuit for Procedure A Table 1: PSPICE and Measured Value for Circuit in Fig. 1 Parameter PSPICE Simulation Experiment 4 Measured I D1 0.0 ma µa I D2 2.2 ma ma V A 2.8 V V V B 0.6 V V

3 Figure 2: Second Diode Circuit for Procedure A Table 2: PSPICE and Measured Value for Circuit in Fig. 2 Parameter PSPICE Simulation Experiment 4 Measured I D ma ma I D2 = I D µa µa V A 648 mv V V B 648 mv V V C 324 mv V Figure 3: Third Diode Circuit for Procedure A Figure 4: Voltage Source Pulse and Capacitor Voltage Over Time for the Circuit in Fig. 3 Figure 5: Diode, Resistor and Capacitor Current Over Time for the Circuit in Fig. 3

4 Figure 6: Fourth Diode Circuit for Procedure A with Switch Opened at t = 1 ms Figure 7: Voltage Source Pulse and Inductor Voltage Over Time IV. Conclusion The first two circuits simulated were also built in lab four, and the results of the simulated version followed as expected. In the first circuit, diode one is negatively biased, and so no current flows it. The second diode has all of the circuits current flowing through it instead because it is forward biased. In the second circuit, although diodes two and three were forward biased, because there were two of them there was a much higher resistance and activation voltage required so almost no current went through them, but instead through diode one which was also forward biased; this is also what happened in the measured results from lab 4. The third circuit was an rc circuit, where after the source voltage was cut the voltage across the capacitor decreased over time which is what is expected. The fourth circuit had an inductor and a source voltage that was cut by a switch after 1 ms. While the circuit was complete, the inductor was charging, and once the circuit was cut, the inductor discharged over time. Procedure B I. Purpose The purpose of Procedure B was to analysis a half wave and a full wave rectifier to see how they operated in practice. The source voltage was sinusoidal so that the circuit could be analyzed where half the time the Vs was positive, and the other half negative, to get a good look at the differences between how the two rectifiers functioned. II. Procedure The circuit shown in Fig. 8, described as a half-wave rectifier, was constructed in the PSPICE Schematics editor. A D1N914 diode was again used for the diode, and a sinusoidal voltage source with 0V offset, 5V amplitude, and 400Hz frequency was used as the power supply. This was accomplished using the PSPICE VSIN function. For this circuit, the ground was placed at the negative terminal of the voltage source. Output voltage, or the voltage across R L, was plotted with time over multiple periods, as shown in Fig. 9. Next, the circuit shown in Fig. 10, described as a full wave rectifier, was constructed, again using D1N914 diodes and a 1 kω resistor. In constructing the full wave rectifier, it was determined that the ground should be placed on either side of the resistor. This allows the output voltage to be with respect to zero volts, meaning that in applying this rectifier to another

5 circuit, a common zero voltage (ground) could be easily established. Given that both the circuit and the input sinusoid are symmetric with respect to voltage, the ground can be placed on either side of the resistor. As with the half wave rectifier, a sinusoidal voltage source was used with 0V offset, 5V amplitude, and 400 Hz frequency. The output voltage was then plotted with time over several periods, as shown in Fig. 11. III. Summary of Results Figure 8: Half Wave Rectifier Constructed in Procedure B Figure 9: Sinusoidal Input Voltage (Blue) and Half-Wave Rectifier Output Voltage (Purple) Figure 10: Full Wave Rectifier Constructed in Procedure B Figure 11: Full-Wave Rectifier Output Voltage

6 IV. Conclusion As its name suggests, the half wave rectifier output results in a positive sinusoid when the voltage source is greater than zero, and zero voltage when the voltage source is less than zero, as clearly shown in Fig. 9. Based on the known basic operation of diodes, the results seen in Fig. 11 are not surprising. When the input voltage is greater than zero, current with flow through diode 1, the load resistor, and diode 3, as label in Fig. 10. When the input voltage is less than zero, current will flow through diode 4, the load resistor, and diode 2. In either case, the output voltage will be nearly equal to the input voltage, with some voltage being lost across the diodes. In both circuits, RMS voltages reflect our predictions. As mentioned earlier, output voltages across the load resistors and similar to the input voltage sinusoids, the exception being that some voltage is lost over the diodes, as detailed in Experiment 4. The full-wave rectifier produces a more DC-like output than the half-wave rectifier. While both produce positive-only sinusoids, the full-wave rectifier does so with a frequency identical to that of the input voltage, whereas the half-wave rectifier achieves this with only half the input frequency. Procedure C I. Purpose The purpose of Procedure C was to take a look at how a Zener diode can effectively regulate a voltage source, preventing higher voltages from causing problems in a circuit that is only supposed to operate at certain voltage levels. Then, this voltage regulating circuit was placed into the full wave rectifier across the load to see how it affects the rectifier. Finally, a capacitor was added into the voltage regulating full wave rectifier to observe how the capacitor can be used to smooth out the voltage across the load. II. Procedure For Procedure C, the circuit shown in Fig. 12 was constructed in the PSPICE Schematics editor. For the Zener diode, diode D1N750 was selected from the PSPICE libraries. The input voltage was a varied DC voltage, increasing with time from 5V to 10V, in 1 V intervals. This was accomplished with the PSPICE ramp voltage function. This input voltage and the circuit output voltage were plotted together with time, as shown in Fig. 13. At each input voltage, V O, I Z, and I L were measured, shown in Table 3. The regulator circuit in Fig. 12 was then placed across the output of the full wave rectifier in Fig. 10 that was examined I Procedure B, shown in Fig. 14. The sinusoidal voltage source (noted as V4 in Fig. 14) was set to have a 0V offset, 9V peak, and 400 Hz frequency. Like in Procedure B, D1N914 diodes were used for the full-wave rectifier. A 200Ω resistor (noted as R2 in Fig. 14) was used as the load resistor, with the ground placed at the bottom side of the resistor. This was done to again operate the Zener diode in the reverse bias region, as was done in the first part of Procedure C. Measuring output voltage from the other side of the load resistor enabled the output to be plotted with respect to ground. This output was plotted with time, as shown in Fig. 15. Next, a capacitor was placed in series with the 51Ω resistor of the full-wave-rectifier/regulator circuit shown in Fig. 14. The basic premise behind adding a capacitor is that a capacitor can retain and discharge over time. A true DC power supply provides a constant DC voltage. The rectified and regulated output seen in Fig. 15, while a consistently positive voltage, is far from a constant DC voltage. A capacitor can be charged when the input is at higher voltages, and then discharged when the input is at lower voltages. Under ideal conditions, capacitance and input frequency could be adjusted to provide a near-constant DC output voltage. First, a 2µF capacitor was added to the full-wave rectifier/regulator circuit. The sinusoidal voltage source was again set to have a 0V offset, 9V peak, and 400 Hz frequency. Output voltage was plotted with time, as shown in Fig. 16. The 2µF was then replaced with a 20µF capacitor and the output voltage was again plotted with time, as shown in Fig. 17.

7 III. Summary of Results Figure 12: Zener Diode Voltage Regulator Circuit Figure 13: Input DC Step Voltage (Blue) and Regulator Output Voltage (Purple) Table 3: Current and Voltage Measurements for Voltage Regulator Circuit in Fig. 12 Vs (V) Vo (V) Iz (ma) IL (ma) Figure 14: Schematic of Zener Diode Regulator Circuit on the Output of Full-Wave Rectifier

8 Figure 15: Output Voltage of Rectifier/Regulator Circuit Figure 16: Output Voltage of Rectifier/Regulator Circuit with 2µF Capacitor Added Figure 17: Output Voltage of Rectifier/Regulator Circuit with 20µF Capacitor Added IV. Conclusion As shown in Fig. 13, the Zener diode in reverse bias operation regulates the output voltage by limiting the voltage to approximately 4.8V. With an input voltage of 10 VDC, the output voltage without the Zener diode would be calculated as a voltage divider follows: V o = 200Ω (10 V) = 7.97 V (1) 200Ω + 51Ω With the reversely biased Zener diode in parallel with the load, however, the output voltage is limited to approximately 4.8V.

9 Fig. 15 shows the output voltage when the regulator circuit in Fig. 12 was added to the output of the full-wave rectifier, as shown in Fig. 14. This output voltage is not surprising, as it is merely a combination of the characteristics observed when these circuits were evaluated separately. First, the full-wave rectifier mirrors the negative portion of the input sinusoid, and the voltage of the entire wave is slightly decreased due the voltage lost across the diodes. This voltage is then further reduced due to the voltage regulation of the Zener diode operating in the reverse bias region. While the output voltage shown in Fig.16 may appear identical to the output without the capacitor, it should be noted that, unlike in Fig. 15, the output voltage is constantly above zero. This is further noticeable in Fig. 17, the output when a 20µF capacitor was used. As mentioned earlier, capacitance and frequency (which dictates the time between peak voltages) could be adjusted to provide a near-constant DC output voltage. Experiment Conclusion The experiments with PSPICE proved to be a quick and effective way of testing circuits. The Circuits that were done in lab 4 and then compared with the PSPICE simulations both showed the diodes acting in the same manner. The experiments from Procedures B and C also followed as expected, with the circuits acting as they would be expected to in real life. Overall, it has been demonstrated that PSPICE can be an effective tool for analyzing circuits quickly and accurately. References ECE 1201 Website:

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #11 Lab Report Inductance/Transformers Submission Date: 12/04/2017 Instructors: Dr. Minhee Yun John Erickson Yanhao Du Submitted By: Nick Haver & Alex Williams Station

More information

ECE 2274 Pre-Lab for Experiment # 4 Diode Basics and a Rectifier Completed Prior to Coming to Lab

ECE 2274 Pre-Lab for Experiment # 4 Diode Basics and a Rectifier Completed Prior to Coming to Lab Part I I-V Characteristic Curve ECE 2274 Pre-Lab for Experiment # 4 Diode Basics and a Rectifier Completed Prior to Coming to Lab 1. Construct the circuit shown in figure 4-1. Using a DC Sweep, simulate

More information

Operational Amplifiers: Part II

Operational Amplifiers: Part II 1. Introduction Operational Amplifiers: Part II The name "operational amplifier" comes from this amplifier's ability to perform mathematical operations. Three good examples of this are the summing amplifier,

More information

INC 253 Digital and electronics laboratory I

INC 253 Digital and electronics laboratory I INC 253 Digital and electronics laboratory I Laboratory 4 Wave Shaping Diode Circuits Author: ID CoAuthors: 1. ID 2. ID 3. ID Experiment Date: Report received Date: Comments For Instructor Full Marks Pre

More information

OrCAD PSpice - Tutorial. TA: 黃玉龍

OrCAD PSpice - Tutorial. TA: 黃玉龍 OrCAD PSpice - Tutorial TA: 黃玉龍 r9994320@ntu.edu.tw Outline 2 Introduction Preparation Schematic Simulation Conclusion Introduction 3 OrCAD PSpice is developed by Cadence Analog circuit simulation tool

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #4 Lab Report MOSFET Amplifiers and Current Mirrors Submission Date: 07/03/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams

More information

ENGR4300 Test 3A Fall 2002

ENGR4300 Test 3A Fall 2002 1. 555 Timer (20 points) Figure 1: 555 Timer Circuit For the 555 timer circuit in Figure 1, find the following values for R1 = 1K, R2 = 2K, C1 = 0.1uF. Show all work. a) (4 points) T1: b) (4 points) T2:

More information

SIMULATION WITH THE BOOST TOPOLOGY ECE562: Power Electronics I COLORADO STATE UNIVERSITY. Modified in Fall 2011

SIMULATION WITH THE BOOST TOPOLOGY ECE562: Power Electronics I COLORADO STATE UNIVERSITY. Modified in Fall 2011 SIMULATION WITH THE BOOST TOPOLOGY ECE562: Power Electronics I COLORADO STATE UNIVERSITY Modified in Fall 2011 ECE 562 Boost Converter (NL5 Simulation) Laboratory 2 Page 1 PURPOSE: The purpose of this

More information

ECE 2006 University of Minnesota Duluth Lab 11. AC Circuits

ECE 2006 University of Minnesota Duluth Lab 11. AC Circuits 1. Objective AC Circuits In this lab, the student will study sinusoidal voltages and currents in order to understand frequency, period, effective value, instantaneous power and average power. Also, the

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #6 Lab Report Active Filters and Oscillators Submission Date: 7/9/28 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams Station #2

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #1 Lab Report Frequency Response of Operational Amplifiers Submission Date: 05/29/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams

More information

STUDY OF RC AND RL CIRCUITS Venue: Microelectronics Laboratory in E2 L2

STUDY OF RC AND RL CIRCUITS Venue: Microelectronics Laboratory in E2 L2 EXPERIMENT #1 STUDY OF RC AND RL CIRCUITS Venue: Microelectronics Laboratory in E2 L2 I. INTRODUCTION This laboratory is about verifying the transient behavior of RC and RL circuits. You need to revise

More information

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz Department of Electrical & Computer Engineering Technology EET 3086C Circuit Analysis Laboratory Experiments Masood Ejaz Experiment # 1 DC Measurements of a Resistive Circuit and Proof of Thevenin Theorem

More information

Problem 1: Voltage Limiting 1.1. Simulate the following simple resistor-diode circuit (shown on the left in Figure 1):

Problem 1: Voltage Limiting 1.1. Simulate the following simple resistor-diode circuit (shown on the left in Figure 1): EEE 33 Electronics I (Summer 218) PSPICE: Diode Applications Diode Limiters, Rectifiers and Voltage Regulation (Due Tuesday, June 26, 218) Homework 2 Problem 1: Voltage Limiting 1.1. Simulate the following

More information

Experiment #2 Half Wave Rectifier

Experiment #2 Half Wave Rectifier PURPOSE: ELECTRONICS 224 ETR620S Experiment #2 Half Wave Rectifier This laboratory session acquaints you with the operation of a diode power supply. You will study the operation of half-wave and the effect

More information

Electric Circuit Fall 2017 Lab3 LABORATORY 3. Diode. Guide

Electric Circuit Fall 2017 Lab3 LABORATORY 3. Diode. Guide LABORATORY 3 Diode Guide Diodes Overview Diodes are mostly used in practice for emitting light (as Light Emitting Diodes, LEDs) or controlling voltages in various circuits. Typical diode packages in same

More information

PHY203: General Physics III Lab page 1 of 5 PCC-Cascade. Lab: AC Circuits

PHY203: General Physics III Lab page 1 of 5 PCC-Cascade. Lab: AC Circuits PHY203: General Physics III Lab page 1 of 5 Lab: AC Circuits OBJECTIVES: EQUIPMENT: Universal Breadboard (Archer 276-169) 2 Simpson Digital Multimeters (464) Function Generator (Global Specialties 2001)*

More information

EEE118: Electronic Devices and Circuits

EEE118: Electronic Devices and Circuits EEE118: Electronic Devices and Circuits Lecture V James E Green Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk Last Lecture: Review 1 Finished the diode conduction

More information

BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY

BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY Electronics Circuits II Laboratory (EEE 208) Simulation Experiment No. 02 Study of the Characteristics and Application of Operational Amplifier (Part B)

More information

Sheet 2 Diodes. ECE335: Electronic Engineering Fall Ain Shams University Faculty of Engineering. Problem (1) Draw the

Sheet 2 Diodes. ECE335: Electronic Engineering Fall Ain Shams University Faculty of Engineering. Problem (1) Draw the Ain Shams University Faculty of Engineering ECE335: Electronic Engineering Fall 2014 Sheet 2 Diodes Problem (1) Draw the i) Charge density distribution, ii) Electric field distribution iii) Potential distribution,

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 12 121004 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review More Diodes Lab Kits 3 Diode Voltage/Current Characteristics Forward

More information

Power Supplies. Linear Regulated Supplies Switched Regulated Supplies Batteries

Power Supplies. Linear Regulated Supplies Switched Regulated Supplies Batteries Power Supplies Linear Regulated Supplies Switched Regulated Supplies Batteries Im Alternating Current The Power -Im π/2 π 2π π t Im Idc Direct Current Supply π/2 π 2 π πt -Im ٢ http://bkaragoz.kau.edu.sa

More information

29:128 Homework Problems

29:128 Homework Problems 29:128 Homework Problems Revised 22 Feb 2012 29:128 Homework 1 (15 points) references: Sections 1.6-1.7 & 4.8, Meyer Chapter 1 of Horowitz and Hill, 2nd Edition (1) In the circuit shown below, V in = 9

More information

POWER ELECTRONICS LAB MANUAL

POWER ELECTRONICS LAB MANUAL JIS College of Engineering (An Autonomous Institution) Department of Electrical Engineering POWER ELECTRONICS LAB MANUAL Exp-1. Study of characteristics of an SCR AIM: To obtain the V-I characteristics

More information

PHYSICS 221 LAB #6: CAPACITORS AND AC CIRCUITS

PHYSICS 221 LAB #6: CAPACITORS AND AC CIRCUITS Name: Partners: PHYSICS 221 LAB #6: CAPACITORS AND AC CIRCUITS The electricity produced for use in homes and industry is made by rotating coils of wire in a magnetic field, which results in alternating

More information

ENGR4300 Fall 2005 Test 4A. Name. Section. Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points)

ENGR4300 Fall 2005 Test 4A. Name. Section. Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points) ENGR4300 Fall 2005 Test 4A Name Section Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points) Total (100 points): Please do not write on the crib sheets. On all questions:

More information

EE 210 Lab Exercise #3 Introduction to PSPICE

EE 210 Lab Exercise #3 Introduction to PSPICE EE 210 Lab Exercise #3 Introduction to PSPICE Appending 4 in your Textbook contains a short tutorial on PSPICE. Additional information, tutorials and a demo version of PSPICE can be found at the manufacturer

More information

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS EXPERIMENT : 1 TITLE : Half-Wave Rectifier & Filter OUTCOME : Upon completion of this unit, the student should be able to: i. Construct

More information

EXPERIMENT 7: DIODE CHARACTERISTICS AND CIRCUITS 10/24/10

EXPERIMENT 7: DIODE CHARACTERISTICS AND CIRCUITS 10/24/10 DIODE CHARACTERISTICS AND CIRCUITS EXPERIMENT 7: DIODE CHARACTERISTICS AND CIRCUITS 10/24/10 In this experiment we will measure the I vs V characteristics of Si, Ge, and Zener p-n junction diodes, and

More information

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 2. Diode Rectifier Circuits

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 2. Diode Rectifier Circuits Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 2 Diode Rectifier Circuits Aim: The purpose of this experiment is to become familiar with the use

More information

EXPERIMENT 3 Half-Wave and Full-Wave Rectification

EXPERIMENT 3 Half-Wave and Full-Wave Rectification Name & Surname: ID: Date: EXPERIMENT 3 Half-Wave and Full-Wave Rectification Objective To calculate, compare, draw, and measure the DC output voltages of half-wave and full-wave rectifier circuits. Tools

More information

Electronics and Instrumentation Name ENGR-4220 Fall 1998 Section Quiz 2

Electronics and Instrumentation Name ENGR-4220 Fall 1998 Section Quiz 2 Quiz 2 1. RLC Circuits You should recognize the circuits shown below from Experiment 5 and Gingrich s notes. Given below are several possible expressions for transfer functions for such circuits. Indicate

More information

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 20 - LAB

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 20 - LAB The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 20 - LAB Components: Experiment # 1 Solid State Diodes Testing & Characterization

More information

2.0 AC CIRCUITS 2.1 AC VOLTAGE AND CURRENT CALCULATIONS. ECE 4501 Power Systems Laboratory Manual Rev OBJECTIVE

2.0 AC CIRCUITS 2.1 AC VOLTAGE AND CURRENT CALCULATIONS. ECE 4501 Power Systems Laboratory Manual Rev OBJECTIVE 2.0 AC CIRCUITS 2.1 AC VOLTAGE AND CURRENT CALCULATIONS 2.1.1 OBJECTIVE To study sinusoidal voltages and currents in order to understand frequency, period, effective value, instantaneous power and average

More information

ENGR4300 Fall 2005 Test 4A. Name solutions. Section. Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points)

ENGR4300 Fall 2005 Test 4A. Name solutions. Section. Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points) ENGR4300 Fall 2005 Test 4A Name solutions Section Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points) Total (100 points): Please do not write on the crib sheets.

More information

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers General Description The LM13600 series consists of two current controlled transconductance amplifiers each with

More information

NORTHWESTERN UNIVERSITY TECHNOLOGICAL INSTITUTE

NORTHWESTERN UNIVERSITY TECHNOLOGICAL INSTITUTE NORTHWESTERN UNIVERSITY TECHNOLOGICAL INSTITUTE ECE-270 Experiment #4 X-Y DISPLAY TECHNIQUES: DIODE CHARACTERISTICS PRELAB Use your textbook and/or the library to answer the following questions about diodes.

More information

An Introduction to Rectifier Circuits

An Introduction to Rectifier Circuits TRADEMARK OF INNOVATION An Introduction to Rectifier Circuits An important application of the diode is one that takes place in the design of the rectifier circuit. Simply put, this circuit converts alternating

More information

Diode Applications Half-Wave Rectifying

Diode Applications Half-Wave Rectifying Lab 5 Diode Applications Half-Wave ectifying Objectives: Study the half-wave rectifying and smoothing with a capacitor for a simple diode circuit. Study the use of a Zener diode in a circuit with an AC

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #7 Lab Report Analog-Digital Applications Submission Date: 08/01/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams Station #2

More information

Laboratory Report Lab I Full Wave Rectifier. Submitted by. Date of Experiment June 16, 2016

Laboratory Report Lab I Full Wave Rectifier. Submitted by. Date of Experiment June 16, 2016 UM SJTU JOINT INSTITUTE Electronic Circuits (VE311) Laboratory Report Lab I Full Wave Rectifier Submitted by Xing Hua 5127169006 Section IV Huang Junhao 5120829041 Section IV Date of Experiment June 16,

More information

EXPERIMENT 2.2 NON-LINEAR OP-AMP CIRCUITS

EXPERIMENT 2.2 NON-LINEAR OP-AMP CIRCUITS 2.16 EXPERIMENT 2.2 NONLINEAR OPAMP CIRCUITS 2.2.1 OBJECTIVE a. To study the operation of 741 opamp as comparator. b. To study the operation of active diode circuits (precisions circuits) using opamps,

More information

Homework Assignment 06

Homework Assignment 06 Question 1 (2 points each unless noted otherwise) Homework Assignment 06 1. True or false: when transforming a circuit s diagram to a diagram of its small-signal model, we replace dc constant current sources

More information

Figure 1: Diode Measuring Circuit

Figure 1: Diode Measuring Circuit Diodes, Page 1 Diodes V-I Characteristics signal diode Measure the voltage-current characteristic of a standard signal diode, the 1N914, using the circuit shown in Figure 1 below. The purpose of the back-to-back

More information

EE 2212 EXPERIMENT 3 3 October 2013 Diode I D -V D Measurements and Half Wave and Full Wave Bridge Rectifiers PURPOSE

EE 2212 EXPERIMENT 3 3 October 2013 Diode I D -V D Measurements and Half Wave and Full Wave Bridge Rectifiers PURPOSE EE 2212 EXPERIMENT 3 3 October 2013 Diode I D -V D Measurements and Half Wave and Full Wave Bridge Rectifiers PURPOSE Use laboratory measurements to extract key diode model parameters including I S,n (also

More information

Lecture (04) PN Diode applications II

Lecture (04) PN Diode applications II Lecture (04) PN Diode applications II By: Dr. Ahmed ElShafee ١ Agenda Full wave rectifier, cont.,.. Filters Voltage Regulators ٢ RMS The RMS value of a set of values (or a continuous time waveform) is

More information

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan SECOND SEMESTER ELECTRONICS - I

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan SECOND SEMESTER ELECTRONICS - I SECOND SEMESTER ELECTRONICS - I BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Yousaf Hameed Engr. M.Nasim Khan Dr.Noman Jafri Lecturer

More information

Purpose: 1) to investigate the electrical properties of a diode; and 2) to use a diode to construct an AC to DC converter.

Purpose: 1) to investigate the electrical properties of a diode; and 2) to use a diode to construct an AC to DC converter. Name: Partner: Partner: Partner: Purpose: 1) to investigate the electrical properties of a diode; and 2) to use a diode to construct an AC to DC converter. The Diode A diode is an electrical device which

More information

Revised: Summer 2010

Revised: Summer 2010 EE 2274 PRE-LAB EXPERIMENT 5 DIODE OR GATE & CLIPPING CIRCUIT COMPLETE PRIOR TO COMING TO LAB Part I: 1. Design a diode, Figure 1 OR gate in which the maximum input current,, Iin is less than 5mA. Show

More information

ECE 3410 Homework 4 (C) (B) (A) (F) (E) (D) (H) (I) Solution. Utah State University 1 D1 D2. D1 v OUT. v IN D1 D2 D1 (G)

ECE 3410 Homework 4 (C) (B) (A) (F) (E) (D) (H) (I) Solution. Utah State University 1 D1 D2. D1 v OUT. v IN D1 D2 D1 (G) ECE 341 Homework 4 Problem 1. In each of the ideal-diode circuits shown below, is a 1 khz sinusoid with zero-to-peak amplitude 1 V. For each circuit, sketch the output waveform and state the values of

More information

Lab 4: Analysis of the Stereo Amplifier

Lab 4: Analysis of the Stereo Amplifier ECE 212 Spring 2010 Circuit Analysis II Names: Lab 4: Analysis of the Stereo Amplifier Objectives In this lab exercise you will use the power supply to power the stereo amplifier built in the previous

More information

EXPERIMENT 5 : DIODES AND RECTIFICATION

EXPERIMENT 5 : DIODES AND RECTIFICATION EXPERIMENT 5 : DIODES AND RECTIFICATION Component List Resistors, one of each o 2 1010W o 1 1k o 1 10k 4 1N4004 (Imax = 1A, PIV = 400V) Diodes Center tap transformer (35.6Vpp, 12.6 VRMS) 100 F Electrolytic

More information

The preferred Exercise is shown in Exercises 5B or 5C.

The preferred Exercise is shown in Exercises 5B or 5C. ECE 231 Laboratory Exercise 5A The preferred Exercise is shown in Exercises 5B or 5C. Laboratory Group (Names) OBJECTIVES Validate the Schottky diode equation. Calculate the dc and dynamic (ac) resistance

More information

Engineering 3821 Fall Pspice TUTORIAL 1. Prepared by: J. Tobin (Class of 2005) B. Jeyasurya E. Gill

Engineering 3821 Fall Pspice TUTORIAL 1. Prepared by: J. Tobin (Class of 2005) B. Jeyasurya E. Gill Engineering 3821 Fall 2003 Pspice TUTORIAL 1 Prepared by: J. Tobin (Class of 2005) B. Jeyasurya E. Gill 2 INTRODUCTION The PSpice program is a member of the SPICE (Simulation Program with Integrated Circuit

More information

5.25Chapter V Problem Set

5.25Chapter V Problem Set 5.25Chapter V Problem Set P5.1 Analyze the circuits in Fig. P5.1 and determine the base, collector, and emitter currents of the BJTs as well as the voltages at the base, collector, and emitter terminals.

More information

EXPERIMENT 9 Problem Solving: First-order Transient Circuits

EXPERIMENT 9 Problem Solving: First-order Transient Circuits EXPERIMENT 9 Problem Solving: First-order Transient Circuits I. Introduction In transient analyses, we determine voltages and currents as functions of time. Typically, the time dependence is demonstrated

More information

RECTIFIERS AND POWER SUPPLIES

RECTIFIERS AND POWER SUPPLIES UNIT V RECTIFIERS AND POWER SUPPLIES Half-wave, full-wave and bridge rectifiers with resistive load. Analysis for Vdc and ripple voltage with C,CL, L-C and C-L-C filters. Voltage multipliers Zenerdiode

More information

EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 6 Diodes: Half-Wave and Full-Wave Rectifiers Converting AC to DC

EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 6 Diodes: Half-Wave and Full-Wave Rectifiers Converting AC to DC EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 6 Diodes: Half-Wave and Full-Wave Rectifiers Converting C to DC The process of converting a sinusoidal C voltage to a

More information

SIMULATIONS WITH THE BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY. Modified February 2006

SIMULATIONS WITH THE BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY. Modified February 2006 SIMULATIONS WITH THE BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY Modified February 26 Page 1 of 24 PURPOSE: The purpose of this lab is to simulate the Boost converter using ORCAD

More information

Lab 2: Diode Characteristics and Diode Circuits

Lab 2: Diode Characteristics and Diode Circuits 1. Learning Outcomes Lab 2: Diode Characteristics and Diode Circuits At the end of this lab, the students should be able to compare the experimental data to the theoretical curve of the diodes. The students

More information

LM13700 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

LM13700 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers LM13700 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers General Description The LM13700 series consists of two current controlled transconductance amplifiers, each with

More information

ENGR-2300 Electronic Instrumentation Quiz 3 Spring 2015

ENGR-2300 Electronic Instrumentation Quiz 3 Spring 2015 ENGR-23 Electronic Instrumentation Quiz 3 Spring 215 On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES AND UNITS. No credit will be given for answers that appear without justification.

More information

NJM4151 V-F / F-V CONVERTOR

NJM4151 V-F / F-V CONVERTOR V-F / F-V CONVERTOR GENERAL DESCRIPTION PACKAGE OUTLINE The NJM4151 provide a simple low-cost method of A/D conversion. They have all the inherent advantages of the voltage-to-frequency conversion technique.

More information

EXPERIMENT 5 : THE DIODE

EXPERIMENT 5 : THE DIODE EXPERIMENT 5 : THE DIODE Component List Resistors, one of each o 1 10 10W o 1 1k o 1 10k 4 1N4004 (Imax = 1A, PIV = 400V) Diodes Center tap transformer (35.6Vpp, 12.6 VRMS) 100 F Electrolytic Capacitor

More information

Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces.

Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces. Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces. 1. Basic diode characteristics Build the circuit shown in

More information

ECE 310L : LAB 9. Fall 2012 (Hay)

ECE 310L : LAB 9. Fall 2012 (Hay) ECE 310L : LAB 9 PRELAB ASSIGNMENT: Read the lab assignment in its entirety. 1. For the circuit shown in Figure 3, compute a value for R1 that will result in a 1N5230B zener diode current of approximately

More information

Industrial Electricity. Answer questions and/or record measurements in the spaces provided.

Industrial Electricity. Answer questions and/or record measurements in the spaces provided. Industrial Electricity Lab 10: Building a Basic Power Supply ame Due Friday, 3/16/18 Answer questions and/or record measurements in the spaces provided. Measure resistance (impedance actually) on each

More information

Lab 2: Linear and Nonlinear Circuit Elements and Networks

Lab 2: Linear and Nonlinear Circuit Elements and Networks OPTI 380B Intermediate Optics Laboratory Lab 2: Linear and Nonlinear Circuit Elements and Networks Objectives: Lean how to use: Function of an oscilloscope probe. Characterization of capacitors and inductors

More information

After performing this experiment, you should be able to:

After performing this experiment, you should be able to: Objectives: After performing this experiment, you should be able to: Demonstrate the strengths and weaknesses of the two basic rectifier circuits. Draw the output waveforms for the two basic rectifier

More information

Instructions for the final examination:

Instructions for the final examination: School of Information, Computer and Communication Technology Sirindhorn International Institute of Technology Thammasat University Practice Problems for the Final Examination COURSE : ECS304 Basic Electrical

More information

SKEU 3741 BASIC ELECTRONICS LAB

SKEU 3741 BASIC ELECTRONICS LAB Faculty: Subject Subject Code : SKEU 3741 FACULTY OF ELECTRICAL ENGINEERING : 2 ND YEAR ELECTRONIC DESIGN LABORATORY Review Release Date Last Amendment Procedure Number : 1 : 2013 : 2013 : PK-UTM-FKE-(0)-10

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab University of Jordan School of Engineering Electrical Engineering Department EE 204 Electrical Engineering Lab EXPERIMENT 1 MEASUREMENT DEVICES Prepared by: Prof. Mohammed Hawa EXPERIMENT 1 MEASUREMENT

More information

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I ECE285 Electric Circuit Analysis I Spring 2014 Nathalia Peixoto Rev.2.0: 140124. Rev 2.1. 140813 1 Lab reports Background: these 9 experiments are designed as simple building blocks (like Legos) and students

More information

Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H. Chapter 2. Diodes and Applications

Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H. Chapter 2. Diodes and Applications Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H Chapter 2 Diodes and Applications 1 Diodes A diode is a semiconductor device with a single

More information

Supertex inc. AN-D30. Off-Line 5.0V Output Non-Isolated Linear Regulator. Application Note

Supertex inc. AN-D30. Off-Line 5.0V Output Non-Isolated Linear Regulator. Application Note Off-Line 5.0V Output Non-Isolated Linear Regulator Application Note Introduction There are many applications that call for a non-isolated, low current DC power supply operating directly from the AC line.

More information

EXPERIMENT 5 : THE DIODE

EXPERIMENT 5 : THE DIODE EXPERIMENT 5 : THE DIODE Component List Resistors, one of each o 1 10 10W o 1 1k o 1 10k 4 1N4004 (I max = 1A, PIV = 400V) Diodes Center tap transformer (35.6V pp, 12.6 V RMS ) 100 F Electrolytic Capacitor

More information

Lab 7 PSpice: Time Domain Analysis

Lab 7 PSpice: Time Domain Analysis Lab 7 PSpice: Time Domain Analysis OBJECTIVES 1. Use PSpice Circuit Simulator to simulate circuits containing capacitors and inductors in the time domain. 2. Practice using a switch, and a Pulse & Sinusoidal

More information

Assume availability of the following components to DESIGN and DRAW the circuits of the op. amp. applications listed below:

Assume availability of the following components to DESIGN and DRAW the circuits of the op. amp. applications listed below: ========================================================================================== UNIVERSITY OF SOUTHERN MAINE Dept. of Electrical Engineering TEST #3 Prof. M.G.Guvench ELE343/02 ==========================================================================================

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

Electronics. RC Filter, DC Supply, and 555

Electronics. RC Filter, DC Supply, and 555 Electronics RC Filter, DC Supply, and 555 0.1 Lab Ticket Each individual will write up his or her own Lab Report for this two-week experiment. You must also submit Lab Tickets individually. You are expected

More information

Experiment E7 DC Power Supply Worst-Case Design for Half-Wave Rectifier Circuit James J. Whalen Fall 2000

Experiment E7 DC Power Supply Worst-Case Design for Half-Wave Rectifier Circuit James J. Whalen Fall 2000 Experiment E7 DC Power Supply Worst-Case Design for Half-Wave Rectifier Circuit James J. Whalen Fall 2000 Experiment No. 7 DC Power Supply (Half-Wave Rectifier Circuit) provides an opportunity to perform

More information

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp PHYS 536 The Golden Rules of Op Amps Introduction The purpose of this experiment is to illustrate the golden rules of negative feedback for a variety of circuits. These concepts permit you to create and

More information

Power Electronics Laboratory-2 Uncontrolled Rectifiers

Power Electronics Laboratory-2 Uncontrolled Rectifiers Roll. No: Checked By: Date: Grade: Power Electronics Laboratory-2 and Uncontrolled Rectifiers Objectives: 1. To analyze the working and performance of a and half wave uncontrolled rectifier. 2. To analyze

More information

Introduction to SPICE. Simulator of Electronic devices

Introduction to SPICE. Simulator of Electronic devices Introduction to SPICE Simulator of Electronic devices Main steps: Download Instalation Open OrCAD capture CIS Lite Create a circuit. Place parts. Design a Simulation Profile Run PSpice F11 View simulation

More information

LABORATORY 7 v2 BOOST CONVERTER

LABORATORY 7 v2 BOOST CONVERTER University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 7 v2 BOOST CONVERTER In many situations circuits require a different

More information

Uncovering a Hidden RCL Series Circuit

Uncovering a Hidden RCL Series Circuit Purpose Uncovering a Hidden RCL Series Circuit a. To use the equipment and techniques developed in the previous experiment to uncover a hidden series RCL circuit in a box and b. To measure the values of

More information

(A) im (B) im (C)0.5 im (D) im.

(A) im (B) im (C)0.5 im (D) im. Dr. Mahalingam College of Engineering and Technology, Pollachi. (An Autonomous Institution affiliated to Anna University) Regulation 2014 Fourth Semester Electrical and Electronics Engineering 141EE0404

More information

Figure 1: Diode Measuring Circuit

Figure 1: Diode Measuring Circuit Diodes, Page 1 Diodes V-I Characteristics signal diode Measure the voltage-current characteristic of a standard signal diode, the 1N914, using the circuit shown in Figure 1 below. The purpose of the back-to-back

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 2 - Semiconductor Diodes Overview: In this lab session students will investigate I-V characteristics

More information

Physics 310 Lab 4 Transformers, Diodes, & Power Supplies

Physics 310 Lab 4 Transformers, Diodes, & Power Supplies Physics 310 Lab 4 Transformers, Diodes, & Power Supplies Equipment: O scope, W02G Bridge Rectifier, 110 6.3V transformer, four 1N4004 diodes, 1k, 10µF, 100µF, 1N5231 Zeener diode, ½ - Watt 100 Ω, 270Ω,

More information

Theory: The idea of this oscillator comes from the idea of positive feedback, which is described by Figure 6.1. Figure 6.1: Positive Feedback

Theory: The idea of this oscillator comes from the idea of positive feedback, which is described by Figure 6.1. Figure 6.1: Positive Feedback Name1 Name2 12/2/10 ESE 319 Lab 6: Colpitts Oscillator Introduction: This lab introduced the concept of feedback in combination with bipolar junction transistors. The goal of this lab was to first create

More information

1.2Vdc 1N4002. Anode V+

1.2Vdc 1N4002. Anode V+ ECE 2274 Pre-Lab for MOSFET Night Light and Voltmeter 1. Night Light The purpose of this part of experiment is to use the switching characteristics of the MOSFET to design a Night Light using a LED, MOSFET,

More information

LABORATORY 3: Transient circuits, RC, RL step responses, 2 nd Order Circuits

LABORATORY 3: Transient circuits, RC, RL step responses, 2 nd Order Circuits LABORATORY 3: Transient circuits, RC, RL step responses, nd Order Circuits Note: If your partner is no longer in the class, please talk to the instructor. Material covered: RC circuits Integrators Differentiators

More information

Class #8: Experiment Diodes Part I

Class #8: Experiment Diodes Part I Class #8: Experiment Diodes Part I Purpose: The objective of this experiment is to become familiar with the properties and uses of diodes. We used a 1N914 diode in two previous experiments, but now we

More information

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment:

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment: RUTGERS UNIVERSITY The State University of New Jersey School of Engineering Department Of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title:

More information

Paper-1 (Circuit Analysis) UNIT-I

Paper-1 (Circuit Analysis) UNIT-I Paper-1 (Circuit Analysis) UNIT-I AC Fundamentals & Kirchhoff s Current and Voltage Laws 1. Explain how a sinusoidal signal can be generated and give the significance of each term in the equation? 2. Define

More information

SIMULATION WITH THE CUK TOPOLOGY ECE562: Power Electronics I COLORADO STATE UNIVERSITY. Modified in Fall 2011

SIMULATION WITH THE CUK TOPOLOGY ECE562: Power Electronics I COLORADO STATE UNIVERSITY. Modified in Fall 2011 SIMULATION WITH THE CUK TOPOLOGY ECE562: Power Electronics I COLORADO STATE UNIVERSITY Modified in Fall 2011 ECE 562 Cuk Converter (NL5 Simulation) Laboratory Page 1 PURPOSE: The purpose of this lab is

More information

Lab 6: Building a Function Generator

Lab 6: Building a Function Generator ECE 212 Spring 2010 Circuit Analysis II Names: Lab 6: Building a Function Generator Objectives In this lab exercise you will build a function generator capable of generating square, triangle, and sine

More information

SIMULATIONS WITH THE BUCK-BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY. Modified February 2006

SIMULATIONS WITH THE BUCK-BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY. Modified February 2006 SIMULATIONS WITH THE BUCK-BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY Modified February 2006 Page 1 of 13 PURPOSE: The purpose of this lab is to simulate the Buck-Boost converter

More information

R 1 R 2. (3) Suppose you have two ac signals, which we ll call signals A and B, which have peak-to-peak amplitudes of 30 mv and 600 mv, respectively.

R 1 R 2. (3) Suppose you have two ac signals, which we ll call signals A and B, which have peak-to-peak amplitudes of 30 mv and 600 mv, respectively. 29:128 Homework Problems 29:128 Homework 0 reference: Chapter 1 of Horowitz and Hill (1) In the circuit shown below, V in = 9 V, R 1 = 1.5 kω, R 2 = 5.6 kω, (a) Calculate V out (b) Calculate the power

More information