DESIGN OF A RECTANGULAR SHAPE OMEGA SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN/WIMAXWIRELESS APPLICATIONS

Size: px
Start display at page:

Download "DESIGN OF A RECTANGULAR SHAPE OMEGA SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN/WIMAXWIRELESS APPLICATIONS"

Transcription

1 Rev. Roum. Sci. Techn. Électrotechn. et Énerg. Vol. 61, 1, pp , Bucarest, 2016 DESIGN OF A RECTANGULAR SHAPE OMEGA SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN/WIMAXWIRELESS APPLICATIONS MD REZWANUL AHSAN 1, MOHAMMAD TARIQUL ISLAM 1, MOHAMMAD HABIB ULLAH 2 Key words: Patch antenna, Microstrip feed, Wireless local area network/ worldwide interoperability for microwave access (WLAN/WiMAX), Inverse omega. In this article, an optimized rectangular shaped patch antenna loaded with inverse omega shape and horizontal slots, and feed by microstrip line is designed for WLAN/WiMAX applications. The expected resonant frequency mode and desired bandwidth are obtained through numerous simulation processes and utilizing the built-in optimizing tool in high frequency structural simulator (HFSS). The optimized design of the antenna gives impedance bandwidths (reflection coefficient S11<-10 db) of 440 MHz (2.32 to 2.76 GHz), 570 MHz (327 to 3.84 GHz) and 1190 MHz (4.9 to 6.09 GHz) with the main resonant frequency at 2.54, 3.63 and 5.24 GHz respectively. The proposed antenna also attained appreciable gain characteristics and almost symmetrical/stable radiation patterns which can cover 2.4/5.2/5.8 GHz WLAN bands and 3.5/5.5 GHz WiMAX bands. 1. INTRODUCTION The recent boom in technological development of wireless communications systems has demanded the utilization of low cost antenna with compact size and multiband functionalities. Microstrip antennas are widely popular for their compact size, easy manufacturing processes and ability to integrate with the existing wireless components [1]. The wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) are commonly applied to portable wireless devices like smartphones, tablets and laptops, thus necessitated to the accumulation of more than one frequency band in a single antenna module. The IEEE standard for WLAN communications are: 2.4 GHz ( GHz), 5.2 GHz ( GHz) and 5.8 GHz ( GHz) bands. The WiMAX frequency bands are: 2.5 GHz ( GHz), 3.5GHz ( GHz) and 5.5 GHz ( GHz) [2]. Various techniques are employed to achieve dual-band functionality, like slot loading [3], fractal shape [4], stub loading [5], adding parasitics [6], multilayer patch [7], electromagnetic bandgap structure [8], meandered strips [9] and so forth. For covering the WLAN and WiMAX bands simultaneously, several researchers have proposed antennas with different geometrical structures and sizes. The planar antennas such as a double C-shape strip antenna [10], rectangular and trapezoidal slotted antenna [11], circular patch with defected ground [12], S-shaped strip with notched rectangular radiating patch [13] have offered for WLAN/WiMAX frequency band operations. Although, the mentioned multiband antennas have some advantages, but still there are some performance criteria need to be improved. Moreover, the reported antennas may have a complex geometrical structure or larger in size or resonant frequency are not sufficiently tuned or have narrow bandwidth. This article presents the design and performance analysis of compact microstrip antenna with inverse-omega shape slot for WLAN/WiMAX applications. The simple design of the antenna has a symmetrical structure along y-axis and fed by 50 ohm microstrip line through coaxial cable. The effects of different slots in producing the frequency bands are numerically analyzed and the key parameters are regulated according to obtain the best performance out of the antenna. The result analysis shows that the proposed antenna is able to operate in dual frequency bands that cover 2.4/5.2/5.8 GHz WLAN bands and 3.5/5.5 GHz WiMAX bands. Fig. 1 Detail geometrical configuration of the proposed antenna: a) top view; b) bottom view. 2. ANTENNA CONFIGURATION The geometrical structure of the dual-band antenna is illustrated in Fig. 1. The antenna is designed on mm thick Rogers duroid 6010LM microwave laminate substrate of relative permittivity 10.2, loss tangent and overall dimension 40 mm 35 mm. The antenna is fed by coaxial cable which is connected to the radiating patch 1 University Kebangsaan Malaysia, Dept. of Electrical, Electronic and Systems Engineering, Bangi, Selangor, Malaysia, rezwanul.ahsan@yahoo.com. 2 University of Malaya (UM), Faculty of Engineering, Dept. of Electrical Engineering, Kuala Lumpur, Malaysia

2 64 Md Rezwanul Ahsan, Mohammad Tariqul Islam, Mohammad Habib Ullah 2 through 2 mm wide 5 mm long microstrip line having 50 ohm characteristic impedance. The antenna has got defected ground plane structure by employing U-shape slot on it to improve the performance of the patch antenna [14]. The commercially available and reliable electromagnetic simulation software Ansys high frequency structural simulator (HFSS) is used throughout the numerical analysis and design [15]. The details of the parametric dimensions for the proposed dual-band antenna are optimized and presented in Table 1. The final optimized design of the antenna has been evolved from the rectangular shape through numerous simulations. It is already revealed to the researchers that the antenna performance depends on the dimension of the radiating patch and can be determined by following the mathematical equations [16]. The length of the antenna has a dominant effect on bandwidth and resonance frequency. Table 1 Optimized parameters of the proposed antenna Fig. 2 Performance of different antenna structure and achieving proposed antenna. Parameter Value (mm) Parameter Value (mm) W 40 L 40 W L1 6 W L W3 4 L3 5 W4 19 Ls 5 Wc 18 Lc 1.5 Wd 4 Lt 1.5 Ws 2 Lg 28 Wg 32 Gt 2 Ro 12 Ri 10.5 The effect of introducing different slots on the radiating patch is plotted in Fig. 2. Here the figure shows different antenna structure and their performance in terms of reflection coefficient (Scattering parameter or S-parameter, S11) vs frequency. The design process starts with the creation of Ant-1 through horizontal slot loading at the center of the rectangular shape patch. The figure illustrates the generation of first and third resonant mode at around 2.4 and 4.94 GHz respectively. Employing the half part of the inverse-omega shape as shown in Ant-2 improves the resonance mode and assists to achieve 2 nd resonance frequency near 3.5 GHz. With the insertion of inverseomega shape slot and central slot (Ant-3), the variation of current paths become large and bandwidth becomes narrower with improved reflection coefficient. By cutting slots on the ground plane creates (Proposed antenna) unbalanced currents which allows two different resonant frequencies to merge into one and thus extends the bandwidth and overall antenna performance [17]. The inclusion of different slots and their effect are also analyzed separately through detailed parametric study. During the parametric analysis, when one parameter is set for analysis the other parameters remain as it is. Figure 3a shows the simulated reflection coefficient (S11) when the thickness of the central slot is varied. It is found that, L c = 1.5 mm gives the best performance in terms of wide bandwidth and lowest reflection coefficient. In a similar manner, the radius of the inverse-omega shape (R i ) is adjusted from 9.0 mm to 11.0 mm which gives varying thickness of the slot. It is found that R i = 10.5 mm has achieved acceptable bandwidth and reflection coefficient which is shown in Fig. 3b. Fig. 3 Effect of varying (a) thickness of central slot (Lc) on the reflection coefficient (S11) and (b) radius (Ri) on the reflection coefficient (S11). 3. RESULTS AND DISCUSSIONS Figure 4 exhibits the simulated reflection coefficient (S11) against frequency of the proposed dual band microstrip patch antenna. From the figure it can be seen that, three distinct frequency bands are obtained with impedance bandwidth for S11 < 10 db. The simulated resonant frequencies can be observed at 2.54 GHz, 3.63 GHz and 5.24 GHz which good impedance matching. The impedance bandwidth at 10 db reflection coefficient (S11) can be found ranging from 2.32 to 2.76 db, 3.27 to 3.84 db and

3 3 Microstrip patch antenna for wireless applications to 6.09 db for lower middle, and upper band respectively. Moreover, resonant modes are merged with the principle resonance frequency to make the bandwidth wide enough: 3.39 GHz is merged with 3.63 GHz and 5.81 is merged with 5.24 GHz. more or less equal to 30 db. Additionally, the proposed dual-band antenna has achieved 3 db beamwidths for E- plane is wider than that of H-plane. This phenomenon may arise from the fact that the antenna has got symmetrical geometric structure. Fig. 4 Simulated reflection coefficient (S11) vs. frequency of the proposed dual-band antenna covering WLAN/WiMAX. The simulated surface current distribution of the antenna is presented in Fig. 5, which can help to understand the working functionality of the radiating patch. The figure here shows the distribution of current on the radiating surface of the patch for 2.54, 3.63 and 5.24 GHz and the color map. It can be seen that the radiating patch holds different current density for every frequency and intensity of current is increased with the increased operating frequency. Cutting slots on the radiating patch reasonably disturb the mean current path of any base frequency and assist to provide a change of resonance characteristics. This is due to the fact that the electric and magnetic field distribution changes because of lengthening the path for surface current around the slots. For this reason, the current mainly concentrates near the edge of the slots and additional resonant frequency generated with wider bandwidth due to the increased current path. Figure 5 clearly shows that for higher frequency the surface currents are much disturbed and increased intensity can be observed on the surrounding edge of the slots. The peak gain curve and radiation efficiency curve are shown against frequency in Fig. 6. The average gains of the proposed antenna are found 2.57 dbi, 3.38 dbi and 5.2 dbi for lower, middle and upper frequency bands respectively. Whereas the maximum radiation efficiencies are seen in the figure 74.3 % at 2.4 GHz, % at 3.75 GHz and % at 5.5 GHz. Fig. 7 exhibits the simulated Smith chart of the proposed microstrip antenna. It can be observed from the figure that three resonant modes of operation are marked which are fall inside the 2:1 voltage stranding wave ration (VSWR) circle and other values like impedance and VSWR are also listed in tabular form. The simulated E-plane and H-plane radiation patterns at 2.54 GHz, 3.63 GHz and 5.24 GHz are shown in Fig. 8. The figure shows that due to the symmetrical geometry of the patch, the proposed dual-band antenna has offered nearly omnidirectional and symmetrical radiation patterns except the patterns for the higher frequency band. This may be contributed due to the higher cross-polarization effect, mutual coupling miss-match and defected ground. However, for both the E- and H-plane and three operating bands, the cross polarization values are Fig. 5 Simulated surface current distribution of the proposed antenna at: a) 2.54 GHz; b) 3.63 GHz; c) 5.24 GHz. Fig. 6 Simulated gain and radiation efficiency of the proposed dual-band antenna against frequency. Fig. 7 Simulated Smith chart of the proposed dual-band antenna.

4 66 Md Rezwanul Ahsan, Mohammad Tariqul Islam, Mohammad Habib Ullah 4 Fig. 8 Simulated radiation pattern for the proposed dual band antenna at: a) 2.54 GHz; b) 3.63 GHz; c) 5.24 GHz. 4. CONCLUSIONS A compact rectangular shaped inverse-omega slotted dual-band antenna is proposed for WLAN/WiMAX wireless communication systems in this article. The simple geometrical structure of the proposed microstrip patch antenna occupies overall are of mm 2. The design criteria of the antenna have been analyzed properly and the Rogers 6010LM ceramic-ptfe (Polytetrafluoroethylene) substrate is considered for the design. The ground plane of the antenna is slotted to create defected ground behavior which gives rise in bandwidth and antenna performance. The simulation result shows that the proposed antenna has achieved three distinct working bands, ranging from 2.32 GHz to 2.76 GHz, from 3.27 GHz to 3.84 GHz, and from 4.90 GHz to 6.09 GHz, which can satisfy the requirement for 2.4/ 5.2/5.8 GHz WLAN bands and 3.5/5.5 GHz WiMAX bands. The nearly omnidirectional radiation patterns and almost stable gain/radiation efficiency of the suggested dual-band antenna over the operating bands make it an appropriate candidate in WLAN/WiMAX communication systems. Received on June 15, 2015 REFERENCES 1. M. Samsuzzaman, M. T. Islam, M. J. Singh, Ceramic material based multiband patch antenna for satellite applications, Rev. Roum. Sci. Techn. Electrotechn. et Energ., 59, 1, pp , J. Pei, A.-G. Wang, S. Gao, W. Leng, Miniaturized triple-band antenna with a defected ground plane for WLAN/WiMAX applications, IEEE Antennas and Wireless Propagation Letters, 10, pp , M. R. Ahsan, M. T. Islam, M. H. Ullah, A compact multiband inverted a-shaped patch antenna for WiMAX and C-band, Microwave and Optical Technology Letters, 56, 7, pp , J. Malik, P. C. Kalaria, M. V. Kartikeyan, Complementary Sierpinski gasket fractal antenna for dual-band WiMAX/WLAN (3.5/5.8 GHz) applications, International Journal of Microwave and Wireless Technologies, 5, 4, pp , B. Li, Z.-H. Yan, T.-L. Zhang, C. Wang, Dual-band antenna with U- shaped open stub for WLAN/WIMAX applications, Journal of Electromagnetic Waves and Applications, 25, 17 18, pp , 2011.

5 5 Microstrip patch antenna for wireless applications P. Xu, Z.-H. Yan, C. Wang, Multi-band modified fork-shaped monopole antenna with dual L-shaped parasitic plane, Electronics Letters, 47, 6, pp , K. Kamogawa, T. Tokumitsu, M. Aikawa, Multifrequency microstrip antennas using alumina-ceramic/polyimide multilayer dielectric substrate, IEEE Transactions on Microwave Theory and Techniques, 44, 12, pp , M. Salarrahimi, J. Rashed-Mohassel, M. Edalatipour, Radiation properties enhancement of a GSM/WLAN microstrip antenna using a dual band circularly symmetric EBG substrate, IEEE Transactions on Antennas and Propagation, 60, 11, pp , M. R. Ahsan, M. T. Islam, M. H. Ullah, N. Misran, Bandwidth Enhancement of a Dual Band Planar Monopole Antenna Using Meandered Microstrip Feeding, The Scientific World Journal, pp. 1 8, Y. Han, Y.-Z. Yin, Y.-Q. Wei, Y. Zhao, B. Li, X.-N. Li, A novel tripleband monopole antenna with double coupled C-shaped strips for WLAN/WiMAX applications, Journal of Electromagnetic Waves and Applications, 25, 8 9, pp , L. Dang, Z. Y. Lei, Y. J. Xie, G. L. Ning, J. Fan, A compact microstrip slot triple-band antenna for WLAN/WiMAX applications, IEEE Antennas and Wireless Propagation Letters, 9, pp , K. G. Thomas M. Sreenivasan, A novel triple band printed antenna for WLAN/WiMAX applications, Microwave and Optical Technology Letters, 51, 10, pp , H.-F. Huang, S.-F. Zhang, Compact multiband monopole antenna for WLAN/WiMAX applications, Microwave and Optical Technology Letters, 56, 8, pp , M. Antoniades, G. V. Eleftheriades, A Compact Multiband Monopole Antenna With a Defected Ground Plane, IEEE Antennas and Wireless Propagation Letters, 7, pp , ANSYS, High Frequency Structural Simulator (HFSS), ANSYS, Inc., USA. 16. C. A. Balanis, Antenna Theory: Analysis and Design, 3 rd Ed. Hoboken, John Wiley & Sons, Inc., NJ, USA, M. G. Banciu, N. Militaru, C. A. Dutu, G. Lojewski, Effects of ground-slots on the couplings of microstrip hairpin resonators, Rev. Roum. Sci. Techn. Electrotechn. et Energ., 52, 1, 61, 2007

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 23, 147 155, 2011 A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS Z.-N. Song, Y. Ding, and K. Huang National Key Laboratory of Antennas

More information

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications Progress In Electromagnetics Research Letters, Vol. 55, 1 6, 2015 Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications Yuan Xu *, Cilei Zhang, Yingzeng Yin, and

More information

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS Progress In Electromagnetics Research C, Vol. 23, 265 275, 2011 DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS J. Chen *, S. T. Fan, W. Hu, and C. H. Liang Key Laboratory of

More information

Triple Band X Shape Microstrip Patch Antenna for Ku/K Band Applications

Triple Band X Shape Microstrip Patch Antenna for Ku/K Band Applications Modern Applied Science; Vol. 7, No. 8; 2013 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education Triple Band X Shape Microstrip Patch Antenna for Ku/K Band Applications

More information

DUAL BAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

DUAL BAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS Rev. Roum. Sci. Techn. Électrotechn. et Énerg. Vol. 63, 3, pp. 283 288, Bucarest, 2018 Électronique et transmission de l information DUAL BAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS BIPLAB BAG 1,

More information

Miniature Multiband Antenna for WLAN and X-Band Satellite Communication Applications

Miniature Multiband Antenna for WLAN and X-Band Satellite Communication Applications Progress In Electromagnetics Research Letters, Vol. 75, 13 18, 2018 Miniature Multiband Antenna for WLAN and X-Band Satellite Communication Applications Ruixing Zhi, Mengqi Han, Jing Bai, Wenying Wu, and

More information

A Compact Low-Profile and Quad-Band Antenna with Three Different Shaped Slots

A Compact Low-Profile and Quad-Band Antenna with Three Different Shaped Slots Progress In Electromagnetics Research C, Vol. 70, 43 51, 2016 A Compact Low-Profile and Quad-Band Antenna with Three Different Shaped Slots WeiXue,MiXiao *, Guoliang Sun, and Fang Xu Abstract A compact

More information

COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS

COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 15, 107 116, 2010 COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS F. Li, L.-S. Ren, G. Zhao,

More information

Miniature size multiband planar patch antenna fabricated on a bioplastic substrate

Miniature size multiband planar patch antenna fabricated on a bioplastic substrate BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 63, No. 4, 2015 DOI: 10.1515/bpasts-2015-0110 Miniature size multiband planar patch antenna fabricated on a bioplastic substrate M.R.

More information

COMPACT WIDE-SLOT TRI-BAND ANTENNA FOR WLAN/WIMAX APPLICATIONS

COMPACT WIDE-SLOT TRI-BAND ANTENNA FOR WLAN/WIMAX APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 18, 9 18, 2010 COMPACT WIDE-SLOT TRI-BAND ANTENNA FOR WLAN/WIMAX APPLICATIONS Q. Zhao, S. X. Gong, W. Jiang, B. Yang, and J. Xie National Laboratory

More information

Compact Triple-Band Monopole Antenna for WLAN/WiMAX-Band USB Dongle Applications

Compact Triple-Band Monopole Antenna for WLAN/WiMAX-Band USB Dongle Applications Compact Triple-Band Monopole Antenna for WLAN/WiMAX-Band USB Dongle Applications Ya Wei Shi, Ling Xiong, and Meng Gang Chen A miniaturized triple-band antenna suitable for wireless USB dongle applications

More information

NOVEL PLANAR INVERTED CONE RING MONOPOLE ANTENNA FOR UWB APPLICATIONS

NOVEL PLANAR INVERTED CONE RING MONOPOLE ANTENNA FOR UWB APPLICATIONS NOVEL PLANAR INVERTED CONE RING MONOPOLE ANTENNA FOR UWB APPLICATIONS Su Sandar Thwin 1 1 Faculty of Engineering, Multimedia University, Cyberjaya 63, Selangor, Malaysia su.sandar@mmu.edu.my ABSTRACT This

More information

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS Progress In Electromagnetics Research C, Vol. 10, 87 99, 2009 COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS A. Danideh Department of Electrical Engineering Islamic Azad University (IAU),

More information

CIRCULAR-SLOTTED CPW ANTENNA FOR WiMAX/C BAND APPLICATIONS

CIRCULAR-SLOTTED CPW ANTENNA FOR WiMAX/C BAND APPLICATIONS CIRCULAR-SLOTTED CPW ANTENNA FOR WiMAX/C BAND APPLICATIONS M. Samsuzzaman 1, 2, M. T. Islam 2 and M. R. I. Faruque 2 1 Faculty of Engineering and Built Environment, Universiti Kebangsaan, Malaysia 2 Institute

More information

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots Progress In Electromagnetics Research C, Vol. 49, 133 139, 2014 A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots Jian Ren * and Yingzeng Yin Abstract A novel compact UWB antenna

More information

CHAPTER 4 DESIGN OF BROADBAND MICROSTRIP ANTENNA USING PARASITIC STRIPS WITH BAND-NOTCH CHARACTERISTIC

CHAPTER 4 DESIGN OF BROADBAND MICROSTRIP ANTENNA USING PARASITIC STRIPS WITH BAND-NOTCH CHARACTERISTIC CHAPTER 4 DESIGN OF BROADBAND MICROSTRIP ANTENNA USING PARASITIC STRIPS WITH BAND-NOTCH CHARACTERISTIC 4.1 INTRODUCTION Wireless communication technology has been developed very fast in the last few years.

More information

A Compact Dual-Band CPW-Fed Planar Monopole Antenna for GHz Frequency Band, WiMAX and WLAN Applications

A Compact Dual-Band CPW-Fed Planar Monopole Antenna for GHz Frequency Band, WiMAX and WLAN Applications 564 A Compact Dual-Band CPW-Fed Planar Monopole Antenna for 2.62-2.73 GHz Frequency Band, WiMAX and WLAN Applications Ahmed Zakaria Manouare 1, Saida Ibnyaich 2, Abdelaziz EL Idrissi 1, Abdelilah Ghammaz

More information

Microstrip Patch Antenna with Fractal Defected Ground Structure for Emergency Management

Microstrip Patch Antenna with Fractal Defected Ground Structure for Emergency Management Microstrip Patch Antenna with Fractal Defected Ground Structure for Emergency Management Sushil Kakkar 1, T. S. Kamal 2, A. P. Singh 3 ¹Research Scholar, Electronics Engineering, IKGPTU, Jalandhar, Punjab,

More information

Isolation Improvement of Dual Feed Patch Antenna by Assimilating Metasurface Ground

Isolation Improvement of Dual Feed Patch Antenna by Assimilating Metasurface Ground Isolation Improvement of Dual Feed Patch Antenna by Assimilating Metasurface Ground M. Habib Ullah 1, M. R. Ahsan 2, W. N. L. Mahadi 1, T. A. Latef 1, M. J. Uddin 3 1 Department of Electrical Engineering,

More information

Chapter 7 Design of the UWB Fractal Antenna

Chapter 7 Design of the UWB Fractal Antenna Chapter 7 Design of the UWB Fractal Antenna 7.1 Introduction F ractal antennas are recognized as a good option to obtain miniaturization and multiband characteristics. These characteristics are achieved

More information

Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines

Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines Hindawi International Journal of Antennas and Propagation Volume 217, Article ID 48278, 1 pages https://doi.org/1.1155/217/48278 Research Article Bandwidth Extension of a Printed Square Monopole Antenna

More information

Design of a modified circular-cut multiband fractal antenna

Design of a modified circular-cut multiband fractal antenna December 2016, 23(6): 68 75 www.sciencedirect.com/science/journal/10058885 The Journal of China Universities of Posts and Telecommunications http://jcupt.bupt.edu.cn Design of a modified circular-cut multiband

More information

CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND APPLICATIONS

CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND APPLICATIONS Journal of Engineering Science and Technology Vol. 11, No. 2 (2016) 267-277 School of Engineering, Taylor s University CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND

More information

DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS. Microwaves, Xidian University, Xi an, Shaanxi, China

DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS. Microwaves, Xidian University, Xi an, Shaanxi, China Progress In Electromagnetics Research Letters, Vol. 37, 47 54, 2013 DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS Shoutao Fan 1, *, Shufeng Zheng 1, Yuanming Cai 1, Yingzeng Yin 1,

More information

UWB ANTENNA WITH DUAL BAND REJECTION FOR WLAN/WIMAX BANDS USING CSRRs

UWB ANTENNA WITH DUAL BAND REJECTION FOR WLAN/WIMAX BANDS USING CSRRs Progress In Electromagnetics Research Letters, Vol. 26, 69 78, 2011 UWB ANTENNA WITH DUAL BAND REJECTION FOR WLAN/WIMAX BANDS USING CSRRs H.-Y. Lai *, Z.-Y. Lei, Y.-J. Xie, G.-L. Ning, and K. Yang Science

More information

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications Antennas and Propagation Volume 215, Article ID 14678, 5 pages http://dx.doi.org/1.1155/215/14678 Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications Yingsong Li

More information

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 13, 75 81, 2010 DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS S. Gai, Y.-C. Jiao, Y.-B. Yang, C.-Y. Li, and J.-G. Gong

More information

Compact UWB Planar Antenna with Triple Band EMI Reduction Characteristics for WiMAX/WLAN/X-Band Satellite Downlink Frequency

Compact UWB Planar Antenna with Triple Band EMI Reduction Characteristics for WiMAX/WLAN/X-Band Satellite Downlink Frequency Progress In Electromagnetics Research M, Vol. 1, 13 131, 17 Compact UWB Planar Antenna with Triple Band EMI Reduction Characteristics for WiMAX/WLAN/X-Band Satellite Downlink Frequency Priyanka Usha *

More information

A Compact Triple Band Antenna for Bluetooth, WLAN and WiMAX Applications

A Compact Triple Band Antenna for Bluetooth, WLAN and WiMAX Applications ACES JOURNAL, Vol. 32, No. 5, May 2017 424 A Compact Triple Band Antenna for Bluetooth, WLAN and WiMAX Applications Kai Yu 1, Yingsong Li 1,*, and Wenhua Yu 2 1 College of Information and Communications

More information

A compact CPW-Fed Tri-Band antenna for WLAN/WiMAX applications

A compact CPW-Fed Tri-Band antenna for WLAN/WiMAX applications Open Science Journal of Electrical and Electronic Engineering 2014; 1(4): 21-25 Published online December 10, 2014 (http://www.openscienceonline.com/journal/j3e) A compact CPW-Fed Tri-Band antenna for

More information

A COMPACT DUAL INVERTED C-SHAPED SLOTS ANTENNA FOR WLAN APPLICATIONS

A COMPACT DUAL INVERTED C-SHAPED SLOTS ANTENNA FOR WLAN APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 17, 115 123, 2010 A COMPACT DUAL INVERTED C-SHAPED SLOTS ANTENNA FOR WLAN APPLICATIONS D. Xi, L. H. Wen, Y. Z. Yin, Z. Zhang, and Y. N. Mo National Laboratory

More information

A COMPACT CPW-FED MONOPOLE ANTENNA WITH A U-SHAPED STRIP AND A PAIR OF L-SLITS GROUND FOR WLAN AND WIMAX APPLICATIONS

A COMPACT CPW-FED MONOPOLE ANTENNA WITH A U-SHAPED STRIP AND A PAIR OF L-SLITS GROUND FOR WLAN AND WIMAX APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 16, 11 19, 21 A COMPACT CPW-FED MONOPOLE ANTENNA WITH A U-SHAPED STRIP AND A PAIR OF L-SLITS GROUND FOR WLAN AND WIMAX APPLICATIONS Z.-Y. Liu, Y.-Z.

More information

A New UWB Antenna with Band-Notched Characteristic

A New UWB Antenna with Band-Notched Characteristic Progress In Electromagnetics Research M, Vol. 74, 201 209, 2018 A New UWB Antenna with Band-Notched Characteristic Meixia Shi, Lingzhi Cui, Hui Liu, Mingming Lv, and Xubao Sun Abstract A new coplanar waveguide

More information

A New Compact Printed Triple Band-Notched UWB Antenna

A New Compact Printed Triple Band-Notched UWB Antenna Progress In Electromagnetics Research etters, Vol. 58, 67 7, 016 A New Compact Printed Triple Band-Notched UWB Antenna Shicheng Wang * Abstract A novel planar ultra-wideband (UWB) antenna with triple-notched

More information

DUAL WIDEBAND SPLIT-RING MONOPOLE ANTENNA DESIGN FOR WIRELESS APPLICATIONS

DUAL WIDEBAND SPLIT-RING MONOPOLE ANTENNA DESIGN FOR WIRELESS APPLICATIONS S.C. Basaran / IU-JEEE Vol. 11(1), (2011), 1287-1291 DUAL WIDEBAND SPLIT-RING MONOPOLE ANTENNA DESIGN FOR WIRELESS APPLICATIONS S. Cumhur Basaran Akdeniz University, Electrical and Electronics Eng. Dept,.

More information

Design and Analysis of Wideband Patch Antenna for Dual band 2.4/5.8 GHz WLAN and WiMAX Application

Design and Analysis of Wideband Patch Antenna for Dual band 2.4/5.8 GHz WLAN and WiMAX Application IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 4, Ver. IV (Jul.-Aug. 2017), PP 59-65 www.iosrjournals.org Design and Analysis

More information

DESIGN OF A MODIFIED W-SHAPED PATCH ANTENNA ON AL 2 O 3 CERAMIC MATERIAL SUBSTRATE FOR KU-BAND

DESIGN OF A MODIFIED W-SHAPED PATCH ANTENNA ON AL 2 O 3 CERAMIC MATERIAL SUBSTRATE FOR KU-BAND Chalcogenide Letters Vol. 9, No. 2, February 2012, p. 61-66 DESIGN OF A MODIFIED W-SHAPED PATCH ANTENNA ON AL 2 O 3 CERAMIC MATERIAL SUBSTRATE FOR KU-BAND M. HABIB ULLAH a,b, M. T. ISLAM b a Dept. of Electrical,

More information

Design Of Multi-band Double I-shaped slot Microstrip Patch Antenna With Defected Ground Structure for Wireless Application

Design Of Multi-band Double I-shaped slot Microstrip Patch Antenna With Defected Ground Structure for Wireless Application IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 13, Issue 1, Ver. I (Jan.- Feb. 2018), PP 25-31 www.iosrjournals.org Design Of Multi-band

More information

E-SHAPED STACKED BROADBAND PATCH ANTENNA

E-SHAPED STACKED BROADBAND PATCH ANTENNA International Journal of Electronics and Computer Science Engineering 278 Available Online at www.ijecse.org ISSN- 2277-1956 E-SHAPED STACKED BROADBAND PATCH ANTENNA Bharat Rochani 1, Rajesh Kumar Raj

More information

Small-Size Monopole Antenna with Dual Band-Stop Function for Ultra-Wideband Wireless Communications

Small-Size Monopole Antenna with Dual Band-Stop Function for Ultra-Wideband Wireless Communications Engineering Science 2016; 1(1): 15-21 http://www.sciencepublishinggroup.com/j/es doi: 10.11648/j.es.20160101.13 Small-Size Monopole Antenna with Dual Band-Stop Naser Ojaroudi Parchin *, Mehdi Salimitorkamani

More information

Conclusion and Future Scope

Conclusion and Future Scope Chapter 8 8.1 Conclusions The study of planar Monopole, Slot, Defected Ground, and Fractal antennas has been carried out to achieve the research objectives. These UWB antenna designs are characterised

More information

A CPW-fed Microstrip Fork-shaped Antenna with Dual-band Circular Polarization

A CPW-fed Microstrip Fork-shaped Antenna with Dual-band Circular Polarization Machine Copy for Proofreading, Vol. x, y z, 2016 A CPW-fed Microstrip Fork-shaped Antenna with Dual-band Circular Polarization Chien-Jen Wang and Yu-Wei Cheng * Abstract This paper presents a microstrip

More information

METAMATERIAL INSPIRED PATCH ANTENNA WITH L-SHAPE SLOT LOADED GROUND PLANE FOR DUAL BAND (WIMAX/WLAN) APPLICATIONS

METAMATERIAL INSPIRED PATCH ANTENNA WITH L-SHAPE SLOT LOADED GROUND PLANE FOR DUAL BAND (WIMAX/WLAN) APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 31, 35 43, 2012 METAMATERIAL INSPIRED PATCH ANTENNA WITH L-SHAPE SLOT LOADED GROUND PLANE FOR DUAL BAND (WIMAX/WLAN) APPLICATIONS J. Malik and M. V.

More information

DUAL BAND L-SHAPED MICROSTRIP PATCH ANTENNA FOR 5/9 GHZ

DUAL BAND L-SHAPED MICROSTRIP PATCH ANTENNA FOR 5/9 GHZ http:// DUAL BAND L-SHAPED MICROSTRIP PATCH ANTENNA FOR 5/9 GHZ Meenaxi 1, Pavan Kumar Shukla 2 1 Department of Electronics and Communication Engineering, Shri Venkateshwara University, Gajrola, U.P. (India)

More information

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications Antennas and Propagation, Article ID 19579, pages http://dx.doi.org/1.1155/21/19579 Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications Chung-Hsiu Chiu, 1 Chun-Cheng

More information

Design of Fractal Antenna for RFID Applications

Design of Fractal Antenna for RFID Applications Design of Fractal Antenna for RFID Applications 1 Manpreet Kaur 1, Er. Amandeep Singh 2 M.Tech, 2 Assistant Professor, Electronics and Communication, University College of Engineering/ Punjabi University,

More information

A Frequency Reconfigurable Antenna loaded with H-shaped Radiators for WLAN/WiMAX Applications

A Frequency Reconfigurable Antenna loaded with H-shaped Radiators for WLAN/WiMAX Applications A Frequency Reconfigurable Antenna loaded with H-shaped Radiators for WLAN/WiMAX Applications 1 Imran Khan, 1 Geetha D, 2 Sudhindra K.R, 1,* Tanweer Ali and 1 R.C. Biradar 1 School of ECE, REVA University,

More information

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION Progress In Electromagnetics Research, PIER 76, 477 484, 2007 TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION Y.-J. Wu, B.-H. Sun, J.-F. Li, and Q.-Z. Liu National Key Laboratory of Antennas

More information

A Compact Coupled-Line Multiband Microstrip Antenna

A Compact Coupled-Line Multiband Microstrip Antenna 29 A Compact Coupled-Line Multiband Microstrip Antenna Md. Rokunuzzaman 1, M. T. Islam 1, Baharudin Yatim 1 and Mhd Fairos Asillam 2 1 Institute of Space Science (ANGKASA),Universiti Kebangsaan Malaysia,

More information

Triple-Band CPW-Fed Monopole Antenna for WLAN/WiMAX Applications

Triple-Band CPW-Fed Monopole Antenna for WLAN/WiMAX Applications Progress In Electromagnetics Research Letters, Vol. 69, 1 7, 2017 Triple-Band CPW-Fed Monopole Antenna for WLAN/WiMAX Applications Leila Chouti 1, 2, *, Idris Messaoudene 3, Tayeb A. Denidni 1, and Abdelmadjid

More information

Ultra-Wideband Patch Antenna for K-Band Applications

Ultra-Wideband Patch Antenna for K-Band Applications TELKOMNIKA Indonesian Journal of Electrical Engineering Vol. x, No. x, July 214, pp. 1 5 DOI: 1.11591/telkomnika.vXiY.abcd 1 Ultra-Wideband Patch Antenna for K-Band Applications Umair Rafique * and Syed

More information

ISSN: [Sherke* et al., 5(12): December, 2016] Impact Factor: 4.116

ISSN: [Sherke* et al., 5(12): December, 2016] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY COMPACT ULTRA WIDE BAND ANTENNA WITH BAND NOTCHED CHARACTERISTICS. Raksha Sherke *, Ms. Prachi C. Kamble, Dr. Lakshmappa K Ragha

More information

COMPACT FRACTAL MONOPOLE ANTENNA WITH DEFECTED GROUND STRUCTURE FOR WIDE BAND APPLICATIONS

COMPACT FRACTAL MONOPOLE ANTENNA WITH DEFECTED GROUND STRUCTURE FOR WIDE BAND APPLICATIONS COMPACT FRACTAL MONOPOLE ANTENNA WITH DEFECTED GROUND STRUCTURE FOR WIDE BAND APPLICATIONS 1 M V GIRIDHAR, 2 T V RAMAKRISHNA, 2 B T P MADHAV, 3 K V L BHAVANI 1 M V REDDIAH BABU, 1 V SAI KRISHNA, 1 G V

More information

Design and Analysis of Planar Inverted-F Antenna for Wireless Applications

Design and Analysis of Planar Inverted-F Antenna for Wireless Applications IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 8 January 2015 ISSN (online): 2349-6010 Design and Analysis of Planar Inverted-F Antenna for Wireless Applications

More information

Wide Slot Antenna with Y Shape Tuning Element for Wireless Applications

Wide Slot Antenna with Y Shape Tuning Element for Wireless Applications Progress In Electromagnetics Research M, Vol. 59, 45 54, 2017 Wide Slot Antenna with Y Shape Tuning Element for Wireless Applications Bhupendra K. Shukla *, Nitesh Kashyap, and Rajendra K. Baghel Abstract

More information

Design of Coplanar Dipole Antenna with Inverted-H Slot for 0.9/1.575/2.0/2.4/2.45/5.0 GHz Applications

Design of Coplanar Dipole Antenna with Inverted-H Slot for 0.9/1.575/2.0/2.4/2.45/5.0 GHz Applications Journal of Electrical and Electronic Engineering 2017; 5(2): 38-47 http://www.sciencepublishinggroup.com/j/jeee doi: 10.11648/j.jeee.20170502.13 ISSN: 2329-1613 (Print); ISSN: 2329-1605 (Online) Design

More information

Design of a Compact ACS-Fed Dual Band Antenna for Bluetooth/WLAN and WiMAX Applications

Design of a Compact ACS-Fed Dual Band Antenna for Bluetooth/WLAN and WiMAX Applications Progress In Electromagnetics Research C, Vol. 55, 63 72, 2014 Design of a Compact ACS-Fed Dual Band Antenna for Bluetooth/WLAN and WiMAX Applications Praveen V. Naidu 1 and Raj Kumar 2, * Abstract In this

More information

A Compact Slots Loaded Disc Patch Antenna For Multiband Application

A Compact Slots Loaded Disc Patch Antenna For Multiband Application IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 08, Issue 01 (January. 2018), V2 PP 01-06 www.iosrjen.org A Compact Slots Loaded Disc Patch Antenna For Multiband Application

More information

A Compact Wideband Slot Antenna for Universal UHF RFID Reader

A Compact Wideband Slot Antenna for Universal UHF RFID Reader Progress In Electromagnetics Research Letters, Vol. 7, 7, 8 A Compact Wideband Slot Antenna for Universal UHF RFID Reader Waleed Abdelrahim and Quanyuan Feng * Abstract A compact wideband circularly polarized

More information

Small Planar Antenna for WLAN Applications

Small Planar Antenna for WLAN Applications Small Planar Antenna for WLAN Applications # M. M. Yunus 1,2, N. Misran 2,3 and M. T. Islam 3 1 Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka 2 Faculty of Engineering,

More information

A Compact Quad-Band Microstrip Slot Antenna for WLAN/WIMAX Applications

A Compact Quad-Band Microstrip Slot Antenna for WLAN/WIMAX Applications A Compact Quad-Band Microstrip Slot Antenna for WLAN/WIMAX Applications Sandeep K. Shukla Department of Electronics and Communication engineering, RKDF Institute of Science &Technology, Bhopal, M.P., India

More information

A Comparative Analysis of Two Different Directional Antennas for WLAN Applications

A Comparative Analysis of Two Different Directional Antennas for WLAN Applications A Comparative Analysis of Two Different Directional Antennas for WLAN Applications C.Hamsalakshmi 1, K.Shanthalakshmi 2 PG Scholar, Department of ECE, Adhiyamaan College of Engineering, Hosur, Tamilnadu,

More information

Design and Analysis of Dual Band Star Shape Slotted Patch Antenna

Design and Analysis of Dual Band Star Shape Slotted Patch Antenna Design and Analysis of Dual Band Star Shape Slotted Patch Antenna Souheyla S. Ferouani 1, Zhor Z. Bendahmane 1, Abdelmalik A. Taleb Ahmed 2 Abstract This article proposes a new dual-band patch antenna

More information

Design of CPW-Fed Slot Antenna with Rhombus Patch for IoT Applications

Design of CPW-Fed Slot Antenna with Rhombus Patch for IoT Applications International Journal of Wireless Communications and Mobile Computing 2017; 5(2): 6-14 http://www.sciencepublishinggroup.com/j/wcmc doi: 10.11648/j.wcmc.20170502.11 ISSN: 2330-1007 (Print); ISSN: 2330-1015

More information

A Compact Multiband Antenna for GSM and WiMAX Applications

A Compact Multiband Antenna for GSM and WiMAX Applications A Compact Multiband Antenna for GSM and WiMAX Applications M. Ali Babar Abbasi, M. Rizwan, Saleem Shahid, Sabaina Rafique, Haroon Tariq Awan, S. Muzahir Abbas Department of Electrical Engineering, COMSATS

More information

Design of Compact Multiband Antenna for Wwan/Lte Mobile Phone Applications

Design of Compact Multiband Antenna for Wwan/Lte Mobile Phone Applications IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735. PP 44-48 www.iosrjournals.org Design of Compact Multiband Antenna for Wwan/Lte Mobile Phone Applications

More information

DEFECTIVE GROUND STRUCTURE MICROSTRIP FED MONOPOLE ANTENNA FOR WIRELESS APPLICATIONS

DEFECTIVE GROUND STRUCTURE MICROSTRIP FED MONOPOLE ANTENNA FOR WIRELESS APPLICATIONS DEFECTIVE GROUND STRUCTURE MICROSTRIP FED MONOPOLE ANTENNA FOR WIRELESS APPLICATIONS N.K.L. Pravallika 1, P. Shivaji 2, R. Rambabu 3, R. Vijaya Durga 4 1,2,3,4 Department of Electronics and Communication

More information

ACS Feed Compact Multiband Antenna for Mobile Communication Applications

ACS Feed Compact Multiband Antenna for Mobile Communication Applications ACS Feed Compact Multiband Antenna for Mobile Communication Applications Onkar Musmade 1, A.S.Deshpande 2 1 PG Student, Department of Electronics and Telecommunication, Imperial College of Engineering

More information

A Compact Design of multiband antenna for wireless application

A Compact Design of multiband antenna for wireless application Volume 119 No. 7 2018, 1133-1138 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu A Compact Design of multiband antenna for wireless application S.Priyanka

More information

PRINTED UWB ANTENNA FOR WIMAX /WLAN

PRINTED UWB ANTENNA FOR WIMAX /WLAN http:// PRINTED UWB ANTENNA FOR WIMAX /WLAN Shilpa Verma 1, Shalini Shah 2 and Paurush Bhulania 3 1 PG student. Amity School of Engg & Technology, Amity University, Noida, India 2,3 Department of Electronics

More information

High gain W-shaped microstrip patch antenna

High gain W-shaped microstrip patch antenna High gain W-shaped microstrip patch antenna M. N. Shakib 1a),M.TariqulIslam 2, and N. Misran 1 1 Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia (UKM), UKM

More information

NOVEL DESIGN BROADBAND CPW-FED MONOPOLE ANTENNA WITH TRAPEZIUM SHAPED-STUB FOR COMMUNICATION SYSTEM

NOVEL DESIGN BROADBAND CPW-FED MONOPOLE ANTENNA WITH TRAPEZIUM SHAPED-STUB FOR COMMUNICATION SYSTEM NOVEL DESIGN BROADBAND CPW-FED MONOPOLE ANTENNA WITH TRAPEZIUM SHAPED-STUB FOR COMMUNICATION SYSTEM Karim A. Hamad Department of Electronic and Communication, College of Engineering, AL-Nahrain University,

More information

Research Article Design of a Compact Quad-Band Slot Antenna for Integrated Mobile Devices

Research Article Design of a Compact Quad-Band Slot Antenna for Integrated Mobile Devices Antennas and Propagation Volume 216, Article ID 3717681, 9 pages http://dx.doi.org/1.1155/216/3717681 Research Article Design of a Compact Quad-Band Slot Antenna for Integrated Mobile Devices Jian Dong,

More information

Offset-fed UWB antenna with multi-slotted ground plane. Sun, YY; Islam, MT; Cheung, SW; Yuk, TI; Azim, R; Misran, N

Offset-fed UWB antenna with multi-slotted ground plane. Sun, YY; Islam, MT; Cheung, SW; Yuk, TI; Azim, R; Misran, N Title Offset-fed UWB antenna with multi-slotted ground plane Author(s) Sun, YY; Islam, MT; Cheung, SW; Yuk, TI; Azim, R; Misran, N Citation The 2011 International Workshop on Antenna Technology (iwat),

More information

Hexagonal Boundary Fractal Antenna with WLAN Band Rejection

Hexagonal Boundary Fractal Antenna with WLAN Band Rejection Hexagonal Boundary Fractal Antenna with WLAN Band Rejection Sreerag M Department of Electronics and Communication NSS College of Engineering, Palakkad, Kerala-678008, India. E-mail: sreeragm09@gmail.com

More information

Dual Band Fractal Antenna Design For Wireless Application

Dual Band Fractal Antenna Design For Wireless Application Computer Engineering and Applications Vol. 5, No. 3, October 2016 O.S Zakariyya 1, B.O Sadiq 2, A.A Olaniyan 3 and A.F Salami 4 Department of Electrical and Electronics Engineering, University of Ilorin,

More information

L-slotted Microstrip Patch Antenna for WiMAX and WLAN Applications

L-slotted Microstrip Patch Antenna for WiMAX and WLAN Applications L-slotted Microstrip Patch Antenna for WiMAX and WLAN Applications Danish Hayat Bhagwant University, Ajmer, India Abstract: This paper is based on design and simulation of rectangular Microstrip Patch

More information

Parametric Analysis of Multiple U Slot Microstrip Patch Antenna for Wireless Applications

Parametric Analysis of Multiple U Slot Microstrip Patch Antenna for Wireless Applications Parametric Analysis of Multiple U Slot Microstrip Patch Antenna for Wireless Applications Vikram Thakur 1, Sanjeev Kashyap 2 M.Tech Student, Department of ECE, Green Hills College of Engineering, Solan,

More information

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS Progress In Electromagnetics Research Letters, Vol. 31, 159 168, 2012 A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS S-M. Zhang *, F.-S. Zhang, W.-Z. Li, T. Quan, and H.-Y. Wu National

More information

A Compact Rupee Shaped Dual Band Antenna for WiMAX and WLAN Applications

A Compact Rupee Shaped Dual Band Antenna for WiMAX and WLAN Applications A Compact Rupee Shaped Dual Band Antenna for WiMAX and WLAN Applications Praveen Naidu V Department of E&TC SIU (Deemed University) Lavale,Pune-412115 Raj Kumar Department of AE A.R.D.E Pashan, Pune -

More information

A Broadband Omnidirectional Antenna Array for Base Station

A Broadband Omnidirectional Antenna Array for Base Station Progress In Electromagnetics Research C, Vol. 54, 95 101, 2014 A Broadband Omnidirectional Antenna Array for Base Station Bo Wang 1, *, Fushun Zhang 1,LiJiang 1, Qichang Li 2, and Jian Ren 1 Abstract A

More information

Design and Application of Triple-Band Planar Dipole Antennas

Design and Application of Triple-Band Planar Dipole Antennas Journal of Information Hiding and Multimedia Signal Processing c 2015 ISSN 2073-4212 Ubiquitous International Volume 6, Number 4, July 2015 Design and Application of Triple-Band Planar Dipole Antennas

More information

Penta-Band Dielectric Loaded Folded Loop Antenna for Mobile Handset

Penta-Band Dielectric Loaded Folded Loop Antenna for Mobile Handset IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 05 (May. 2014), V6 PP 10-16 www.iosrjen.org Penta-Band Dielectric Loaded Folded Loop Antenna for Mobile Handset

More information

Design of a Compact Dual Band Patch Antenna with Enhanced Bandwidth on Modified Ground Plane

Design of a Compact Dual Band Patch Antenna with Enhanced Bandwidth on Modified Ground Plane Design of a Compact Dual Band Patch Antenna with Enhanced Bandwidth on Modified Ground Plane Anitha P 1 Research Scholar, Department of Electronics and Communication Engineering, Jawaharlal Nehru Technological

More information

PRINTED BLUETOOTH AND UWB ANTENNA WITH DUAL BAND-NOTCHED FUNCTIONS

PRINTED BLUETOOTH AND UWB ANTENNA WITH DUAL BAND-NOTCHED FUNCTIONS Progress In Electromagnetics Research Letters, Vol. 26, 39 48, 2011 PRINTED BLUETOOTH AND UWB ANTENNA WITH DUAL BAND-NOTCHED FUNCTIONS F.-C. Ren *, F.-S. Zhang, J.-H. Bao, Y.-C. Jiao, and L. Zhou National

More information

A dual-band antenna for wireless USB dongle applications

A dual-band antenna for wireless USB dongle applications Title A dual-band antenna for wireless USB dongle applications Author(s) Sun, X; Cheung, SW; Yuk, TI Citation The 2013 International Workshop on Antenna Technology (iwat 2013), Karlsruhe, Germany, 4-6

More information

DESIGN OF DUAL BAND NOTCHED ULTRA WIDEBAND ANTENNA USING (U-W) SHAPED SLOTS

DESIGN OF DUAL BAND NOTCHED ULTRA WIDEBAND ANTENNA USING (U-W) SHAPED SLOTS DESIGN OF DUAL BAND NOTCHED ULTRA WIDEBAND ANTENNA USING (U-W) SHAPED SLOTS Mohammed Shihab Ahmed, Md Rafiqul Islam, and Sheroz Khan Department of Electrical and Computer Engineering, International Islamic

More information

Ultra Wide Band Compact Antenna with Dual U- Shape Slots for Notch-Band Application

Ultra Wide Band Compact Antenna with Dual U- Shape Slots for Notch-Band Application Signal Processing and Renewable Energy June 2018, (pp.45-49) ISSN: Ultra Wide Band Compact Antenna with Dual U- Shape Slots for Notch-Band Application Ferdows B. Zarrabi 1* 1 Faculty of Engineering, Science

More information

A fractal-based printed slot antenna for multiband wireless applications

A fractal-based printed slot antenna for multiband wireless applications University of Technology, Iraq From the SelectedWorks of Professor Jawad K. Ali August 12, 2013 A fractal-based printed slot antenna for multiband wireless applications Jawad K. Ali, Department of Electrical

More information

A Dual-Band Two Order Filtering Antenna

A Dual-Band Two Order Filtering Antenna Progress In Electromagnetics Research Letters, Vol. 63, 99 105, 2016 A Dual-Band Two Order Filtering Antenna Jingli Guo, Haisheng Liu *, Bin Chen, and Baohua Sun Abstract A dual-band two order filtering

More information

A Pattern Reconfigurable Antenna for WLAN and WiMAX Systems

A Pattern Reconfigurable Antenna for WLAN and WiMAX Systems Progress In Electromagnetics Research C, Vol. 66, 183 190, 2016 A Pattern Reconfigurable Antenna for WLAN and WiMAX Systems Santasri Koley, Lakhindar Murmu, and Biswajit Pal Abstract A novel tri-band pattern

More information

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications International Journal of Electronics Engineering, 2(1), 2010, pp. 69-73 New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications A.C.Shagar 1 & R.S.D.Wahidabanu 2 1 Department of

More information

Microstrip Antenna Design with Parallel Rectangular Open Slots Structure for Multiband Operation

Microstrip Antenna Design with Parallel Rectangular Open Slots Structure for Multiband Operation Microstrip Antenna Design with Parallel Rectangular Open Slots Structure for Multiband Operation Hazel Thomas M.Tech in Communication Engineering SCMS School of Engineering and Technology Ernakulam, Kerala,

More information

Bandwidth Enhancement in Microstrip Rectangular Patch Antenna using Defected Ground plane

Bandwidth Enhancement in Microstrip Rectangular Patch Antenna using Defected Ground plane Bandwidth Enhancement in Microstrip Rectangular Patch Antenna using Defected Ground plane Sudarshan Kumar Jain Assistant Professor (Electronics & Communication) Jagannath University, Jaipur Abstract A

More information

A Compact Broadband Printed Circular Slot Antenna with Stair Shaped Ground Plane

A Compact Broadband Printed Circular Slot Antenna with Stair Shaped Ground Plane Progress In Electromagnetics Research Letters, Vol. 74, 9 16, 2018 A Compact Broadband Printed Circular Slot Antenna with Stair Shaped Ground Plane Baudha Sudeep 1, * and Kumar V. Dinesh 2 Abstract This

More information

DESIGN OF A PLANAR MONOPOLE ULTRA WIDE BAND PATCH ANTENNA

DESIGN OF A PLANAR MONOPOLE ULTRA WIDE BAND PATCH ANTENNA International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN(P): 2250-155X; ISSN(E): 2278-943X Vol. 4, Issue 1, Feb 2014, 47-52 TJPRC Pvt. Ltd. DESIGN OF A PLANAR MONOPOLE ULTRA

More information

Single, Dual and Tri-Band-Notched Ultrawideband (UWB) Antenna Using Metallic Strips

Single, Dual and Tri-Band-Notched Ultrawideband (UWB) Antenna Using Metallic Strips Single, Dual and Tri-Band-Notched Ultrawideband (UWB) Antenna Using Metallic Strips Vivek M. Nangare 1, Krushna A. Munde 2 M.E. Students, MBES College of Engineering, Ambajogai, India 1, 2 ABSTRACT: In

More information

Design and Optimization of Multiple U- slot Microstrip Patch Antenna for Wireless Applications

Design and Optimization of Multiple U- slot Microstrip Patch Antenna for Wireless Applications Design and Optimization of Multiple U- slot Microstrip Patch Antenna for Wireless Applications 1 Gulshan Rana 2 Er.Saranjeet Singh 1 Student (M.Tech, ECE) 2 Assistant Prof., ECE Department Galaxy Global

More information

Available online at ScienceDirect. M. Samsuzzaman *, M. T. Islam, N. Misran, M.A. Mohd Ali

Available online at   ScienceDirect. M. Samsuzzaman *, M. T. Islam, N. Misran, M.A. Mohd Ali Available online at www.sciencedirect.com ScienceDirect Procedia Technology 11 ( 2013 ) 1223 1228 The 4th International Conference on Electrical Engineering and Informatics (ICEEI 2013) Dual band X shape

More information

Antenna Theory and Design

Antenna Theory and Design Antenna Theory and Design Antenna Theory and Design Associate Professor: WANG Junjun 王珺珺 School of Electronic and Information Engineering, Beihang University F1025, New Main Building wangjunjun@buaa.edu.cn

More information