Laser Science and Technology at LLE

Size: px
Start display at page:

Download "Laser Science and Technology at LLE"

Transcription

1 Laser Science and Technology at LLE Nd:glass High energy Electrical Yb:YAG High peak power Mechanical OPCPA High average power Eye injuries OPO Exotic wavelengths Fire J. Bromage Group Leader, Sr. Scientist University of Rochester Laboratory for Laser Energetics 12th Department of Energy Laser Safety Officer Workshop Rochester, NY 8 10 May

2 Summary Laser technology development at LLE requires careful consideration of safety LLE has long history of developing lasers for fusion and other scientific applications Diverse laser platforms present a range of safety issues eye safety thermal loads electrical and mechanical safety radiation Safety issues are complicated by having large facilities with multiple operators Development activities are often dynamic, in multi-user labs Mix of staff and students LLE develops lasers for other facilities, where laser expertise is varied G

3 LLE has a long history of developing and using laser technologies 1978: LHG-8 Nd:phosphate 1980: High-efficiency laser glass frequency tripling e 3~ ~ e Output 1:1 photon 3~ beam mix KDP type-ii KDP type-ii doubler o : THz 2-D SSD Intensity (arbitrary units) ~ 1985: Chirped-pulse amplification (CPA) o 2~ ~ Incident ~ beam 1985: OMEGA UV conversion 1989: Smoothing by spectral dispersion (SSD) 1981: 24-beam OMEGA National Laser Users Facility Radius (nm) 1999: Commercial spin-off of magnetorheological finishing (MRF) used for the National Ignition Facility (NIF) : OMEGA (EP) 1990: High-efficiency, uniform diffractive optics : 60-beam OMEGA 2000: High-fluence NIF optic coatings Target plane Random phase (Example phase) Grating phase Focusing lens : Dynamic Compression Sector (DCS) laser OPCPA pump laser F = 1.8 m 1995: Continuous distributed phase plate S599i 2005: Highly efficient OPCPA* Preamplifier LBO- LBO1A 1B 59 mj Power amplifier LBO-2 * OPCPA: optical parametric chirped-pulse amplification 3

4 The Omega Laser Facility comprises two multikiljoule Nd:glass laser systems OMEGA target chamber OMEGA EP target chamber Laser OMEGA Bay Compression chamber OMEGA Laser System Operating at LLE since 1995 Up to 1500 shots/year Fully instrumented 60 beams >30-kJ UV on target 1% to 2% irradiation nonuniformity Flexible pulse shaping Short shot cycle (1 h) More than half of OMEGA s shots are for external users. Main amplifiers 3 4 Beam 1 2 Booster amplifiers OMEGA EP Laser Bay OMEGA EP Laser System Construction completed 25 April 2008 Adds four NIF-like beamlines; 6.5-kJ UV (10 ns) G10425f 4

5 The largest amplifiers use Nd:glass pumped by water-cooled flash lamps High voltages: 10 to 13.5 kv Large stored energy in capacitor banks Many used in OMEGA and OMEGA EP also have one amplifier for our midscale facility, the Multi-Terawatt laser (MTW) OMEGA lamp assemblies OMEGA EP lamp assembly G

6 Closed-access procedures are required during laser shots for systems of this scale, as laid out in the Laser Facility Organization and Regulation Manual (LFORM) Access to the Laser Bays is carefully controlled using a combination of engineering controls and procedures Will hear more this afternoon from Jason Puth (Laser Facility Manager) G

7 The LLE laser inventory identifies almost 400 lasers Uses include beam characterization damage testing electro-optic sampling alignment optical quality control pulse shaping reflectometry laser development metrology nonlinear optics holography index measurement interferometry spectroscopy Most of these lasers have the potential to expose personnel to safety risks G

8 A variety of laser platforms are used for R&D at LLE, which pose a variety of risks Nd:glass High energy Electrical Yb:YAG High peak power Mechanical OPCPA* High average power Eye injuries OPO** Broad bandwidth Fire G11894 * OPCPA: optical parametric chirped-pulse amplification ** OPO: optical parametric oscillator 8

9 The large Nd:glass amplifier has a number of safety systems related to the high-voltage flash lamps 15-cm Nd:glass disk amplifier (four disks) Disks and flash lamps G11895 Power conditioning unit Grounding points LLE Electrical Safety Officer: Scott Householder 9

10 Ultrafast pulses require broad bandwidths Time-bandwidth product sets the minimum bandwidth for a given pulse width Bandwidth required for ultrafast pulses D x. Do = constant 2 D m = Do. m c The constant depends on the pulse shape Gaussian pulse: 0.44 sech 2 pulse: 0.31 Dm, bandwidth (FWHM) (nm) Minimum bandwidth for Gaussian pulse, centered at 800 nm (Fourier transform limited) ,000 10,000 Dx, pulse width (FWHM*) (ps) G11896 * FWHM: full width at half maximum 10

11 Noncollinear optical parametric amplifiers (NOPA s) support large bandwidths Nonlinear process in a crystal Energy conservation Signal Nonlinear crystal (2) Idler Provides great flexibility because the upper state is virtual, so it is not constrained by material spectroscopy (like traditional laser materials) Pump Amplified signal Virtual upper state Momentum conservation ( phase matching ) Noncollinear angle, a k S k P Signal bandwidth k I Energy Pump Idler Signal Signal bandwidth Real ground state G

12 Optical parametric chirped-pulse amplification (OPCPA) provides a path to multipetawatt lasers producing femtosecond-kilojoule pulses Ultra-broadband front end Pulse stretcher Optical parametric amplifiers Pulse compressor Pump lasers Chirped-pulse amplification* is key for producing intense pulses. G10918d * D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985). 12

13 At LLE, 200-nm systems are seeded using white-light continuum (WLC) generation to produce sub-13-fs pulses WLC generation was first observed in glass (1970) Widely used to produce stable, coherent source of broadband radiation from a relatively narrowband, ultrafast source 250 fs, 0.8 nj,1046 nm peak power >1.5 MW YAG (undoped) 4 mm Blue-shifted shock wave forms at back of pulse 100 nm Filament forms as a result of the balance between self-focusing (n 2 ) and plasma defocusing (multiphoton ionization) G11910 * M. Bradler, P. Baum, and E. Riedle, Appl. Phys. B 97, 561 (2009). 13

14 At LLE, 200-nm systems are seeded using white-light continuum (WLC) generation to produce sub-13-fs pulses WLC generation was first observed in glass (1970) Widely used to produce stable, coherent source of broadband radiation from a relatively narrowband, ultrafast source WLC beam G11910a 250 fs, 0.8 nj,1046 nm peak power >1.5 MW 100 nm YAG (undoped) 4 mm Blue-shifted shock wave forms at back of pulse Filament forms as a result of the balance between self-focusing (n 2 ) and plasma defocusing (multiphoton ionization) Spectrum (normalized) Spectrum (normalized) NOPA gain Short-pass filter blocks pump Wavelength (nm) * M. Bradler, P. Baum, and E. Riedle, Appl. Phys. B 97, 561 (2009). 14

15 At LLE, 200-nm systems are seeded using white-light continuum (WLC) generation to produce sub-13-fs pulses WLC generation was first observed in glass (1970) Widely used to produce stable, coherent source of broadband radiation from a relatively narrowband, ultrafast source 250 fs, 0.8 nj,1046 nm peak power >1.5 MW 100 nm YAG (undoped) 4 mm Blue-shifted shock wave forms at back of pulse Filament forms as a result of the balance between self-focusing (n 2 ) and plasma defocusing (multiphoton ionization) Spectrum (normalized) WLC beam Spectrum (normalized) NOPA gain Short-pass filter blocks pump Wavelength (nm) Spectral phase (rad) Intensity (arbitrary units) NOPA1 spectrum and phase* 0.6-nJ pulses S(~) Wavelength (nm) NOPA1 pulse after prism compressor Measured (12.8 fs) Time (fs) G11910b * M. Bradler, P. Baum, and E. Riedle, Appl. Phys. B 97, 561 (2009). 15

16 Broadband, ultrashort lasers require broadband eye protection Optical density (OD) > 7 is needed over much of the visible spectrum pump lasers broadband amplifiers Low visible-light transmission (e.g., 22%), so extra task lights are needed OD T (%) Wavelength (nm) G11898 * LLE Laser Safety Officer: Eugene Kowaluk 16

17 Multi-user labs have interlock systems and beacons to support a range of sources Switches to enable interlocks Connected to door indicators Light on beacon in lab G

18 In some cases, eyewear with pairs of filters must be used to obtain sufficient coverage 0.2 m M 1.5 M MP 1.5 M 3 HR HR BiBO M 3 OC M 2 Pump laser HR M 3 M 3 M 2 M 2 HR 2-mm OPO synchronously pumped by a 45-W Yb:YAG laser (1.0 nm) Normalized amplitude (arbitrary units) Autocorrelation fs Delay (ps) 2 Normalized amplitude (arbitrary units) Spectrum 30 nm Wavelength (nm) OPO produced ultrafast pulses (<500 fs) at 2 nm, with a 200-nm tuning range, and energies 3 higher than previously produced with an OPO. G

19 In some cases, eyewear with pairs of filters must be used to obtain sufficient coverage 0.2 m M1.5 M1.5 MP M3 HR HR BiBO M2 HR OC Autocorrelation 700 fs Delay (ps) 2 Normalized amplitude (arbitrary units) Normalized amplitude (arbitrary units) M M3 M3 M mm OPO synchronously pumped by a 45-W Yb:YAG laser (1.0 nm) M2 Pump laser Spectrum HR Filter for coverage in visible and near IR (<0.53 nm, 0.8 to 1.1 nm) nm Wavelength (nm) OPO produced ultrafast pulses (<500 fs) at 2 nm, with a 200-nm tuning range, and energies 3 higher than previously produced with an OPO. Filter for coverage in short-wave IR (1 to 3 nm) G11900a 19

20 High-average-power (HAP) lasers require cooled beam dumps and thermal barriers Laser parameters Energy Power Repetition rate Pulse width Time bandwidth product 6.1 nj 45 W 7.1 MHz 1.0 ps 0.32 SESAM* Intensity (arbitrary units) M11 Polarizer GTI7 Quarterwave plate GTI2 Active multipass cavity M10 Autocorrelation 0 Delay (ps) 3.5 M8 M9 Spectrum (arbitrary units) GTI5 GTI4 M1 1.0 GTI6** GTI3 Spectrum 1.5 ps nm Thin-disk laser head Wavelength (nm) Enclosures rated for HAP Water-cooled beam dump E24536b * SESAM: semiconductor saturable absorbing mirror **GTI: Gires Tournois interferometer 20

21 Thermal imaging cameras provide invaluable information Safety locate sources of heat Development identify cause of component failure used in conjunction with system models to evaluate laser performance G

22 Large vacuum chambers require safety systems to protect operators and contents Compressing short pulses must be done in vacuum to avoid air breakdown and nonlinearities There is a large amount of stored energy, so a window must not fail because of a laser pulse MTW grating compressor chamber Window for 75-mm 2 beam G11902 *LLE Mech. Safety Officer: Milt Shoup 22

23 At high intensities, target shots require shielding from x rays and gamma rays MTW target chamber with moveable lead shield wall Dosimeter Wall mount G11903 LLE Radiation Safety Officer: Walter Shmayda, Ph.D. 23

24 Summary/Conclusions Laser technology development at LLE requires careful consideration of safety LLE has long history of developing lasers for fusion and other scientific applications Diverse laser platforms present a range of safety issues eye safety thermal loads electrical and mechanical safety radiation Safety issues are complicated by having large facilities with multiple operators Development activities are often dynamic, in multi-user labs Mix of staff and students LLE develops lasers for other facilities, where laser expertise is varied G

Noncollinear Optical Parametric Amplifiers for Ultra-Intense Lasers

Noncollinear Optical Parametric Amplifiers for Ultra-Intense Lasers Noncollinear Optical Parametric Amplifiers for Ultra-Intense Lasers Beamline 1 Beamline 2 Beamline 3 Polarizer Polarizer KDP Type II KDP Type II Ultra-broadband front end 10 J, 1.5 ns, 160 nm DKDP Beamline

More information

ASE Suppression in a Diode-Pumped Nd:YLF Regenerative Amplifier Using a Volume Bragg Grating

ASE Suppression in a Diode-Pumped Nd:YLF Regenerative Amplifier Using a Volume Bragg Grating ASE Suppression in a Diode-Pumped Nd:YLF Regenerative Amplifier Using a Volume Bragg Grating Spectral density (db) 0 10 20 30 40 Mirror VBG 1053.0 1053.3 1053.6 Wavelength (nm) Frontiers in Optics 2007/Laser

More information

Directly Chirped Laser Source for Chirped Pulse Amplification

Directly Chirped Laser Source for Chirped Pulse Amplification Directly Chirped Laser Source for Chirped Pulse Amplification Input pulse (single frequency) AWG RF amp Output pulse (chirped) Phase modulator Normalized spectral intensity (db) 64 65 66 67 68 69 1052.4

More information

Designing for Femtosecond Pulses

Designing for Femtosecond Pulses Designing for Femtosecond Pulses White Paper PN 200-1100-00 Revision 1.1 July 2013 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

DCS laser for Thomson scattering diagnostic applications

DCS laser for Thomson scattering diagnostic applications DCS laser for Thomson scattering diagnostic applications Authors Jason Zweiback 10/6/2015 jzweiback@logostech.net 1 Summary Motivation DCS laser Laser for Thomson scattering diagnostics 2 What is the Dynamic

More information

J-KAREN-P Session 1, 10:00 10:

J-KAREN-P Session 1, 10:00 10: J-KAREN-P 2018 Session 1, 10:00 10:25 2018 5 8 Outline Introduction Capabilities of J-KAREN-P facility Optical architecture Status and implementation of J-KAREN-P facility Amplification performance Recompression

More information

OMEGA EP: High-Energy Petawatt Capability for the OMEGA Laser Facility

OMEGA EP: High-Energy Petawatt Capability for the OMEGA Laser Facility OMEGA EP: High-Energy Petawatt Capability for the OMEGA Laser Facility Complete in 2007 J. Kelly, et al. University of Rochester Laboratory for Laser Energetics Inertial Fusion Sciences and Applications

More information

High Energy Non - Collinear OPA

High Energy Non - Collinear OPA High Energy Non - Collinear OPA Basics of Operation FEATURES Pulse Duration less than 10 fs possible High Energy (> 80 microjoule) Visible Output Wavelength Tuning Computer Controlled Tuning Range 250-375,

More information

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics High Power Thin Disk Lasers Dr. Adolf Giesen German Aerospace Center Folie 1 Research Topics - Laser sources and nonlinear optics Speiser Beam control and optical diagnostics Riede Atm. propagation and

More information

Spider Pulse Characterization

Spider Pulse Characterization Spider Pulse Characterization Spectral and Temporal Characterization of Ultrashort Laser Pulses The Spider series by APE is an all-purpose and frequently used solution for complete characterization of

More information

Development of scalable laser technology for EUVL applications

Development of scalable laser technology for EUVL applications Development of scalable laser technology for EUVL applications Tomáš Mocek, Ph.D. Chief Scientist & Project Leader HiLASE Centre CZ.1.05/2.1.00/01.0027 Lasers for real-world applications Laser induced

More information

High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE*

High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE* High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE* Y. Owadano, E. Takahashi, I. Okuda, I. Matsushima, Y. Matsumoto, S. Kato, E. Miura and H.Yashiro 1), K. Kuwahara 2)

More information

Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015

Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015 Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015 Chapter 9: Optical Parametric Amplifiers and Oscillators 9.8 Noncollinear optical parametric amplifier (NOPA) 9.9 Optical parametric chirped-pulse

More information

Thin-Disc-Based Driver

Thin-Disc-Based Driver Thin-Disc-Based Driver Jochen Speiser German Aerospace Center (DLR) Institute of Technical Physics Solid State Lasers and Nonlinear Optics Folie 1 German Aerospace Center! Research Institution! Space Agency!

More information

Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania

Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania Razvan Dabu, Daniel Ursescu INFLPR, Magurele, Romania Contents GiWALAS laser facility TEWALAS laser facility CETAL project

More information

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton Progress in ultrafast Cr:ZnSe Lasers Evgueni Slobodtchikov, Peter Moulton Topics Diode-pumped Cr:ZnSe femtosecond oscillator CPA Cr:ZnSe laser system with 1 GW output This work was supported by SBIR Phase

More information

Regenerative Amplification in Alexandrite of Pulses from Specialized Oscillators

Regenerative Amplification in Alexandrite of Pulses from Specialized Oscillators Regenerative Amplification in Alexandrite of Pulses from Specialized Oscillators In a variety of laser sources capable of reaching high energy levels, the pulse generation and the pulse amplification are

More information

High-Conversion-Efficiency Optical Parametric Chirped-Pulse Amplification System Using Spatiotemporally Shaped Pump Pulses

High-Conversion-Efficiency Optical Parametric Chirped-Pulse Amplification System Using Spatiotemporally Shaped Pump Pulses High-Conversion-Efficiency Optical Parametric Chirped-Pulse Amplification System Using Spatiotemporally Shaped Pump Pulses Since its invention in the early 199s, 1 optical parametric chirped-pulse amplification

More information

Extreme Light Infrastucture (ELI) Science and Technology at the ultra-intense Frontier. Bruno Le Garrec

Extreme Light Infrastucture (ELI) Science and Technology at the ultra-intense Frontier. Bruno Le Garrec SPIE Photonics West 2.2.2014 Extreme Light Infrastucture (ELI) Science and Technology at the ultra-intense Frontier Bruno Le Garrec bruno.legarrec@eli-beams.eu On behalf of Georg Korn, Bedrich Rus and

More information

TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES

TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES Luca Poletto CNR - Institute of Photonics and Nanotechnologies Laboratory for UV and X-Ray Optical Research Padova, Italy e-mail:

More information

High-Power Femtosecond Lasers

High-Power Femtosecond Lasers High-Power Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average power. PHAROS features a mechanical and optical design optimized

More information

Optical Parametrical Chirped Pulse Amplification

Optical Parametrical Chirped Pulse Amplification Optical Parametrical Chirped Pulse Amplification for Petawatt Lasers Efim Khazanov Institute of Applied Physics of Russian Academy of Science Introduction Physics of OPCPA Compact 0.56 PW laser system

More information

Recent Progress on the 10PW laser Project at SIOM

Recent Progress on the 10PW laser Project at SIOM Recent Progress on the 10PW laser Project at SIOM Ruxin Li, Yuxin Leng, Xiaoyan Liang, and Zhizhan Xu State Key Laboratory of High Field Laser Physics Shanghai Institute of Optics and Fine Mechanics (SIOM),

More information

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband Continuum White Light Generation WhiteLase: High Power Ultrabroadband Light Sources Technology Ultrafast Pulses + Fiber Laser + Non-linear PCF = Spectral broadening from 400nm to 2500nm Ultrafast Fiber

More information

VELA PHOTOINJECTOR LASER. E.W. Snedden, Lasers and Diagnostics Group

VELA PHOTOINJECTOR LASER. E.W. Snedden, Lasers and Diagnostics Group VELA PHOTOINJECTOR LASER E.W. Snedden, Lasers and Diagnostics Group Contents Introduction PI laser step-by-step: Ti:Sapphire oscillator Regenerative amplifier Single-pass amplifier Frequency mixing Emphasis

More information

Ultrafast amplifiers

Ultrafast amplifiers ATTOFEL summer school 2011 Ultrafast amplifiers Uwe Morgner Institute of Quantum Optics, Leibniz Universität Hannover, Germany Centre for Quantum Engineering and Space-Time Research (QUEST), Hannover,

More information

High Power and Energy Femtosecond Lasers

High Power and Energy Femtosecond Lasers High Power and Energy Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average powers. PHAROS features a mechanical and optical

More information

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual 2012 858 West Park Street, Eugene, OR 97401 www.mtinstruments.com Table of Contents Specifications and Overview... 1 General Layout...

More information

PITZ Laser Systems. Light Amplification by Stimulated Emission of Radiation. Cavity. What is a Laser? General introduction: systems, layouts

PITZ Laser Systems. Light Amplification by Stimulated Emission of Radiation. Cavity. What is a Laser? General introduction: systems, layouts PITZ Laser Systems General introduction: systems, layouts Matthias Groß PITZ Laser Systems Technisches Seminar Zeuthen, 14.11.2017 What is a Laser? > General setup Light Amplification by Stimulated Emission

More information

1.0-MJ CH-Foam Ignition Targets on the NIF Using 1-D MultiFM SSD with 0.5 THz of Bandwidth

1.0-MJ CH-Foam Ignition Targets on the NIF Using 1-D MultiFM SSD with 0.5 THz of Bandwidth -MJ CH-Foam Ignition Targets on the NIF Using 1-D MultiFM SSD with.5 THz of Bandwidth -MJ CH-foam target; end of acceleration 4 1-D SSD, 1.8 Å 1-D MultiFM, 6 Å (1/2 THz) 2-D SSD, 11 Å Density (g/cm 3 )

More information

MEC Laser Systems. Bill White LCLS Laser Group Leader April 13, Bill White. MEC Laser Systems. MEC Workshop.

MEC Laser Systems. Bill White LCLS Laser Group Leader April 13, Bill White. MEC Laser Systems. MEC Workshop. Bill White LCLS Laser Group Leader April 13, 2009 1 1 Bill White Outline Laser Requirements / Wish List Energy vs. Rep Rate Trade-offs Baseline ns laser fs laser Layout in Hutch 6 Other possibilities Helen

More information

Adaptive Optics for. High Peak Power Lasers

Adaptive Optics for. High Peak Power Lasers Adaptive Optics for High Peak Power Lasers Chris Hooker Central Laser Facility STFC Rutherford Appleton Laboratory Chilton, Oxfordshire OX11 0QX U.K. What does High-Power Laser mean nowadays? Distinguish

More information

How to build an Er:fiber femtosecond laser

How to build an Er:fiber femtosecond laser How to build an Er:fiber femtosecond laser Daniele Brida 17.02.2016 Konstanz Ultrafast laser Time domain : pulse train Frequency domain: comb 3 26.03.2016 Frequency comb laser Time domain : pulse train

More information

G. Norris* & G. McConnell

G. Norris* & G. McConnell Relaxed damage threshold intensity conditions and nonlinear increase in the conversion efficiency of an optical parametric oscillator using a bi-directional pump geometry G. Norris* & G. McConnell Centre

More information

The Realization of Ultra-Short Laser Sources. with Very High Intensity

The Realization of Ultra-Short Laser Sources. with Very High Intensity Adv. Studies Theor. Phys., Vol. 3, 2009, no. 10, 359-367 The Realization of Ultra-Short Laser Sources with Very High Intensity Arqile Done University of Gjirokastra, Department of Mathematics Computer

More information

Nd: YAG Laser Energy Levels 4 level laser Optical transitions from Ground to many upper levels Strong absorber in the yellow range None radiative to

Nd: YAG Laser Energy Levels 4 level laser Optical transitions from Ground to many upper levels Strong absorber in the yellow range None radiative to Nd: YAG Lasers Dope Neodynmium (Nd) into material (~1%) Most common Yttrium Aluminum Garnet - YAG: Y 3 Al 5 O 12 Hard brittle but good heat flow for cooling Next common is Yttrium Lithium Fluoride: YLF

More information

High Energy Laser Systems

High Energy Laser Systems High Energy Laser Systems 2019 FEMTOSECOND LASERS UltraFlux Tunable Wavelength Femtosecond Laser Systems UltraFlux is a compact high energy tunable wavelength femtosecond laser system which incorporates

More information

A CW seeded femtosecond optical parametric amplifier

A CW seeded femtosecond optical parametric amplifier Science in China Ser. G Physics, Mechanics & Astronomy 2004 Vol.47 No.6 767 772 767 A CW seeded femtosecond optical parametric amplifier ZHU Heyuan, XU Guang, WANG Tao, QIAN Liejia & FAN Dianyuan State

More information

A new picosecond Laser pulse generation method.

A new picosecond Laser pulse generation method. PULSE GATING : A new picosecond Laser pulse generation method. Picosecond lasers can be found in many fields of applications from research to industry. These lasers are very common in bio-photonics, non-linear

More information

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression Optimization of supercontinuum generation in photonic crystal fibers for pulse compression Noah Chang Herbert Winful,Ted Norris Center for Ultrafast Optical Science University of Michigan What is Photonic

More information

Chapter 3. OMEGA Extended Performance (EP) Laser System

Chapter 3. OMEGA Extended Performance (EP) Laser System July 2014 Chapter 3: OMEGA Extended Performance (EP) Laser System Page 3.1 Chapter 3. OMEGA Extended Performance (EP) Laser System 3.0 Introduction The OMEGA Extended Performance (EP) Laser System was

More information

Testing with Femtosecond Pulses

Testing with Femtosecond Pulses Testing with Femtosecond Pulses White Paper PN 200-0200-00 Revision 1.3 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

TEPZZ 9 45ZZA_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

TEPZZ 9 45ZZA_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION (19) TEPZZ 9 4ZZA_T (11) EP 2 924 00 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication:.09.1 Bulletin 1/ (21) Application number: 119873.7 (1) Int Cl.: G02F 1/39 (06.01) G02F 1/37 (06.01) H01S

More information

ULTRAFAST LASER DIAGNOSTICS

ULTRAFAST LASER DIAGNOSTICS ULTRAFAST LASER DIAGNOSTICS USE OUR APP IN YOUR LAB The faster way to master nonlinear phenomena... Wavelength conversion calculator Bandwidth and pulse duration Frequency conversion Bandwidth conversion

More information

Case Study: Simplifying Access to High Energy sub-5-fs Pulses

Case Study: Simplifying Access to High Energy sub-5-fs Pulses Case Study: Simplifying Access to High Energy sub-5-fs Pulses High pulse energy and long term stability from a one-box Coherent Astrella ultrafast amplifier, together with a novel hollow fiber compressor

More information

Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation

Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation Z. Wu, H. Loos, Y. Shen, B. Sheehy, E. D. Johnson, S. Krinsky, J. B. Murphy, T. Shaftan,, X.-J. Wang, L. H. Yu,

More information

Laser systems for science instruments

Laser systems for science instruments European XFEL Users Meeting 27-20 January 2016, Main Auditorium (Bldg. 5), DESY, Hamburg Laser systems for science instruments M. J. Lederer WP78, European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg,

More information

Vitara. Automated, Hands-Free Ultrashort Pulse Ti:Sapphire Oscillator Family. Superior Reliability & Performance. Vitara Features:

Vitara. Automated, Hands-Free Ultrashort Pulse Ti:Sapphire Oscillator Family. Superior Reliability & Performance. Vitara Features: Automated, Hands-Free Ultrashort Pulse Ti:Sapphire Oscillator Family Vitara is the new industry standard for hands-free, integrated, ultra-broadband, flexible ultrafast lasers. Representing the culmination

More information

Ultrafast instrumentation (No Alignment!)

Ultrafast instrumentation (No Alignment!) Ultrafast instrumentation (No Alignment!) We offer products specialized in ultrafast metrology with strong expertise in the production and characterization of high energy ultrashort pulses. We provide

More information

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers Integrated disruptive components for 2µm fibre Lasers ISLA 2 µm Sub-Picosecond Fiber Lasers Advantages: 2 - microns wavelength offers eye-safety potentially higher pulse energy and average power in single

More information

Broadband Phase Conversion Using SSD

Broadband Phase Conversion Using SSD LLE REVIEW, Volume 37 6. R. S. Craxton, S. D. Jacobs, J. E. Rizzo and R. Boni, IEEE J. Quantum Electron. QE-17, 1782 (1981). 7. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon Press, New York,

More information

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Qiyuan Song (M2) and Aoi Nakamura (B4) Abstracts: We theoretically and experimentally

More information

Measuring 8- to 250-ps Short Pulses Using a High-Speed Streak Camera on Kilojule, Petawatt-Class Laser Systems

Measuring 8- to 250-ps Short Pulses Using a High-Speed Streak Camera on Kilojule, Petawatt-Class Laser Systems Measuring 8- to 25-ps Short Pulses Using a High-Speed Streak Camera on Kilojule, Petawatt-Class Laser Systems Measuring 8- to 25-ps Short Pulses Using a High-Speed Streak Camera on Kilojoule, Petawatt-Class

More information

Fiber Laser Chirped Pulse Amplifier

Fiber Laser Chirped Pulse Amplifier Fiber Laser Chirped Pulse Amplifier White Paper PN 200-0200-00 Revision 1.2 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Fiber lasers offer advantages in maintaining stable operation over

More information

pulsecheck The Modular Autocorrelator

pulsecheck The Modular Autocorrelator pulsecheck The Modular Autocorrelator Pulse Measurement Perfection with the Multitalent from APE It is good to have plenty of options at hand. Suitable for the characterization of virtually any ultrafast

More information

Fundamental Optics ULTRAFAST THEORY ( ) = ( ) ( q) FUNDAMENTAL OPTICS. q q = ( A150 Ultrafast Theory

Fundamental Optics ULTRAFAST THEORY ( ) = ( ) ( q) FUNDAMENTAL OPTICS. q q = ( A150 Ultrafast Theory ULTRAFAST THEORY The distinguishing aspect of femtosecond laser optics design is the need to control the phase characteristic of the optical system over the requisite wide pulse bandwidth. CVI Laser Optics

More information

SCS Optical Laser Delivery

SCS Optical Laser Delivery SCS Optical Laser Delivery Robert Carley Instrument Scientist SCS Group Schenefeld, 23 January 2017 2 Overiew Pump-probe laser at European XFEL Laser system Burst mode operation Sample heating SCS optical

More information

Mira OPO-X. Fully Automated IR/Visible OPO for femtosecond and picosecond Ti:Sapphire Lasers. Superior Reliability & Performance. Mira OPO-X Features:

Mira OPO-X. Fully Automated IR/Visible OPO for femtosecond and picosecond Ti:Sapphire Lasers. Superior Reliability & Performance. Mira OPO-X Features: Fully Automated IR/Visible OPO for femtosecond and picosecond Ti:Sapphire Lasers Mira OPO-X is a synchronously pumped, widely tunable, optical parametric oscillator (OPO) accessory that dramatically extends

More information

The KrF alternative for fast ignition inertial fusion

The KrF alternative for fast ignition inertial fusion The KrF alternative for fast ignition inertial fusion IstvánB Földes 1, Sándor Szatmári 2 Students: A. Barna, R. Dajka, B. Gilicze, Zs. Kovács 1 Wigner Research Centre of the Hungarian Academy of Sciences,

More information

Power scaling of picosecond thin disc laser for LPP and FEL EUV sources

Power scaling of picosecond thin disc laser for LPP and FEL EUV sources Power scaling of picosecond thin disc laser for LPP and FEL EUV sources A. Endo 1,2, M. Smrz 1, O. Novak 1, T. Mocek 1, K.Sakaue 2 and M.Washio 2 1) HiLASE Centre, Institute of Physics AS CR, Dolní Břežany,

More information

New generation Laser amplifier system for FEL applications at DESY.

New generation Laser amplifier system for FEL applications at DESY. New generation Laser amplifier system for FEL applications at DESY. Franz Tavella Helmholtz-Institut-Jena Merging advanced solid-state Laser technology with FEL sources Helmholtz-Institut-Jena DESY F.

More information

taccor Optional features Overview Turn-key GHz femtosecond laser

taccor Optional features Overview Turn-key GHz femtosecond laser taccor Turn-key GHz femtosecond laser Self-locking and maintaining Stable and robust True hands off turn-key system Wavelength tunable Integrated pump laser Overview The taccor is a unique turn-key femtosecond

More information

UNMATCHED OUTPUT POWER AND TUNING RANGE

UNMATCHED OUTPUT POWER AND TUNING RANGE ARGOS MODEL 2400 SF SERIES TUNABLE SINGLE-FREQUENCY MID-INFRARED SPECTROSCOPIC SOURCE UNMATCHED OUTPUT POWER AND TUNING RANGE One of Lockheed Martin s innovative laser solutions, Argos TM Model 2400 is

More information

Solid-State Laser Engineering

Solid-State Laser Engineering Walter Koechner Solid-State Laser Engineering Fourth Extensively Revised and Updated Edition With 449 Figures Springer Contents 1. Introduction 1 1.1 Optical Amplification 1 1.2 Interaction of Radiation

More information

Far field intensity distributions of an OMEGA laser beam were measured with

Far field intensity distributions of an OMEGA laser beam were measured with Experimental Investigation of the Far Field on OMEGA with an Annular Apertured Near Field Uyen Tran Advisor: Sean P. Regan Laboratory for Laser Energetics Summer High School Research Program 200 1 Abstract

More information

dnx/dt = -9.3x10-6 / C dny/dt = -13.6x10-6 / C dnz/dt = ( λ)x10-6 / C

dnx/dt = -9.3x10-6 / C dny/dt = -13.6x10-6 / C dnz/dt = ( λ)x10-6 / C Lithium Triborate Crystal LBO Lithium triborate (LiB3O5 or LBO) is an excellent nonlinear optical crystal for many applications. It is grown by an improved flux method. AOTK s LBO is Featured by High damage

More information

REVIEW ARTICLE. High power ultrafast lasers

REVIEW ARTICLE. High power ultrafast lasers REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 69, NUMBER 3 MARCH 1998 REVIEW ARTICLE High power ultrafast lasers Sterling Backus, Charles G. Durfee III, Margaret M. Murnane, a) and Henry C. Kapteyn Center for

More information

Direct-Drive Implosions Using Cryogenic D2 Fuel

Direct-Drive Implosions Using Cryogenic D2 Fuel Direct-Drive Implosions Using Cryogenic D2 Fuel Distance (μm) 200 View from H11 +zω 0.0 2.6 0.5 400 600 1.0 800 1.5 1000 1200 2.4 2.2 Time (ms) 0 2.0 1.8 1.6 1.4 1.2 1.0 Y-TED 0.8 2.0 0.6 200 400 600 800

More information

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1 Spectral phase shaping for high resolution CARS spectroscopy around 3 cm A.C.W. van Rhijn, S. Postma, J.P. Korterik, J.L. Herek, and H.L. Offerhaus Mesa + Research Institute for Nanotechnology, University

More information

atom physics seminar ultra short laser pulses

atom physics seminar ultra short laser pulses atom physics seminar ultra short laser pulses creation and application ultra short laser pulses overview what? - why? - how? creation and optimisation typical experimental setup properties of existing

More information

Chirped Pulse Amplification

Chirped Pulse Amplification Chirped Pulse Amplification Short pulse oscillator t Dispersive delay line t Solid state amplifiers t Pulse compressor t Higher laser peak powers (laser intensity) reduce pulse duration increase pulse

More information

1.2. Optical parametric chirped pulse

1.2. Optical parametric chirped pulse OPCPA and new amplification techniques Hugo Filipe de Almeida Pires Recent developments in high intensity lasers have allowed increasingly higher powers, up to the Petawatt (10 15 W) level. This redefinition

More information

Precision Cold Ablation Material Processing using High-Power Picosecond Lasers

Precision Cold Ablation Material Processing using High-Power Picosecond Lasers Annual meeting Burgdorf Precision Cold Ablation Material Processing using High-Power Picosecond Lasers Dr. Kurt Weingarten kw@time-bandwidth.com 26 November 2009 Background of Time-Bandwidth Products First

More information

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Shun-ichi Matsushita*, * 2, Taizo Miyato*, * 2, Hiroshi Hashimoto*, * 2, Eisuke Otani* 2, Tatsuji Uchino* 2, Akira Fujisaki*,

More information

Fast Raman Spectral Imaging Using Chirped Femtosecond Lasers

Fast Raman Spectral Imaging Using Chirped Femtosecond Lasers Fast Raman Spectral Imaging Using Chirped Femtosecond Lasers Dan Fu 1, Gary Holtom 1, Christian Freudiger 1, Xu Zhang 2, Xiaoliang Sunney Xie 1 1. Department of Chemistry and Chemical Biology, Harvard

More information

APE Autocorrelator Product Family

APE Autocorrelator Product Family APE Autocorrelator Product Family APE Autocorrelators The autocorrelator product family by APE includes a variety of impressive features and properties, designed to cater for a wide range of ultrafast

More information

Infrared Single Shot Diagnostics for the Longitudinal. Profile of the Electron Bunches at FLASH. Disputation

Infrared Single Shot Diagnostics for the Longitudinal. Profile of the Electron Bunches at FLASH. Disputation Infrared Single Shot Diagnostics for the Longitudinal Profile of the Electron Bunches at FLASH Disputation Hossein Delsim-Hashemi Tuesday 22 July 2008 7/23/2008 2/ 35 Introduction m eb c 2 3 2 γ ω = +

More information

Laser Induced Damage Threshold of Optical Coatings

Laser Induced Damage Threshold of Optical Coatings White Paper Laser Induced Damage Threshold of Optical Coatings An IDEX Optics & Photonics White Paper Ronian Siew, PhD Craig Hanson Turan Erdogan, PhD INTRODUCTION Optical components are used in many applications

More information

Passive mode-locking performance with a mixed Nd:Lu 0.5 Gd 0.5 VO 4 crystal

Passive mode-locking performance with a mixed Nd:Lu 0.5 Gd 0.5 VO 4 crystal Passive mode-locking performance with a mixed Nd:Lu 0.5 Gd 0.5 VO 4 crystal Haohai Yu, 1 Huaijin Zhang, 1* Zhengping Wang, 1 Jiyang Wang, 1 Yonggui Yu, 1 Dingyuan Tang, 2* Guoqiang Xie, 2 Hang Luo, 2 and

More information

Overview of Project Orion

Overview of Project Orion Overview of Project Orion Nicholas W. Hopps, Thomas H. Bett, Nicholas Cann, Colin N. Danson, Stuart J. Duffield, David A. Egan, Stephen P. Elsmere, Mark T. Girling, Ewan J. Harvey, David I. Hillier, David

More information

Outline of the proposed JLAMP VUV/soft X-ray FEL and the challenges for the photon beamlines and optics

Outline of the proposed JLAMP VUV/soft X-ray FEL and the challenges for the photon beamlines and optics Outline of the proposed JLAMP VUV/soft X-ray FEL and the challenges for the photon beamlines and optics J. Michael Klopf Jefferson Lab - Free Electron Laser Division Workshop on Future Light Sources SLAC

More information

Femtosecond pulse generation

Femtosecond pulse generation Femtosecond pulse generation Marc Hanna Laboratoire Charles Fabry Institut d Optique, CNRS, Université Paris-Saclay Outline Introduction 1 Fundamentals of modelocking 2 Femtosecond oscillator technology

More information

3.6 An Ultra-Stable Nd:YAG-Based Laser Source. 8. Jayatna Venkataraman (private communication). ACKNOWLEDGMENT

3.6 An Ultra-Stable Nd:YAG-Based Laser Source. 8. Jayatna Venkataraman (private communication). ACKNOWLEDGMENT ADVANCED TECHNOLOGY DEVELOPMENTS ACKNOWLEDGMENT This work was supported by the following sponsors of the Laser Fusion Feasibil~ty Project at the Laboratory for Laser Energetics-Empire State Electric Energy

More information

Development of near and mid-ir ultrashort pulse laser systems at Q-Peak. Evgueni Slobodtchikov Q-Peak, Inc.

Development of near and mid-ir ultrashort pulse laser systems at Q-Peak. Evgueni Slobodtchikov Q-Peak, Inc. Development of near and mid-ir ultrashort pulse laser systems at Q-Peak Evgueni Slobodtchikov Q-Peak, Inc. Outline Motivation In search of Ti:Sapphire of infrared Yb:doped laser crystals Mid-IR laser crystals

More information

LCLS-II-HE Instrumentation

LCLS-II-HE Instrumentation LCLS-II-HE Instrumentation Average Brightness (ph/s/mm 2 /mrad 2 /0.1%BW) LCLS-II-HE: Enabling New Experimental Capabilities Structural Dynamics at the Atomic Scale Expand the photon energy reach of LCLS-II

More information

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices Dr. Rüdiger Paschotta RP Photonics Consulting GmbH Competence Area: Fiber Devices Topics in this Area Fiber lasers, including exotic types Fiber amplifiers, including telecom-type devices and high power

More information

combustion diagnostics

combustion diagnostics 3. Instrumentation t ti for optical combustion diagnostics Equipment for combustion laser diagnostics 1) Laser/Laser system 2) Optics Lenses Polarizer Filters Mirrors Etc. 3) Detector CCD-camera Spectrometer

More information

Bioimaging of cells and tissues using accelerator-based sources

Bioimaging of cells and tissues using accelerator-based sources Analytical and Bioanalytical Chemistry Electronic Supplementary Material Bioimaging of cells and tissues using accelerator-based sources Cyril Petibois, Mariangela Cestelli Guidi Main features of Free

More information

THz Pump Beam for LCLS. Henrik Loos. LCLS Hard X-Ray Upgrade Workshop July 29-31, 2009

THz Pump Beam for LCLS. Henrik Loos. LCLS Hard X-Ray Upgrade Workshop July 29-31, 2009 Beam for LCLS Henrik Loos Workshop July 29-31, 29 1 1 Henrik Loos Overview Coherent Radiation Sources Timing THz Source Performance 2 2 Henrik Loos LCLS Layout 6 MeV 135 MeV 25 MeV 4.3 GeV 13.6 GeV σ z.83

More information

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator Utah State University DigitalCommons@USU Space Dynamics Lab Publications Space Dynamics Lab 1-1-2011 A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator Robert J. Foltynowicz

More information

IMPRS: Ultrafast Source Technologies

IMPRS: Ultrafast Source Technologies IMPRS: Ultrafast Source Technologies Lecture III: Feb. 21, 2017: Ultrafast Optical Sources Franz X. Kärtner ms µs Is there a time during galloping, when all feet are off the ground? (1872) Leland Stanford

More information

Femtosecond to millisecond transient absorption spectroscopy: two lasers one experiment

Femtosecond to millisecond transient absorption spectroscopy: two lasers one experiment 7 Femtosecond to millisecond transient absorption spectroscopy: two lasers one experiment 7.1 INTRODUCTION The essential processes of any solar fuel cell are light absorption, electron hole separation

More information

Yb-doped Mode-locked fiber laser based on NLPR Yan YOU

Yb-doped Mode-locked fiber laser based on NLPR Yan YOU Yb-doped Mode-locked fiber laser based on NLPR 20120124 Yan YOU Mode locking method-nlpr Nonlinear polarization rotation(nlpr) : A power-dependent polarization change is converted into a power-dependent

More information

NDFG Non-collinear difference frequency generator

NDFG Non-collinear difference frequency generator NDFG Non-collinear difference frequency generator Last Rev. 2011.09.21 PREFACE This manual contains user information for the non-collinear deference frequency generator (NDFG). Please, read this part of

More information

TIGER Femtosecond and Picosecond Ti:Sapphire Lasers. Customized systems with SESAM technology*

TIGER Femtosecond and Picosecond Ti:Sapphire Lasers. Customized systems with SESAM technology* TIGER Femtosecond and Picosecond Ti:Sapphire Lasers Customized systems with SESAM technology* www.lumentum.com Data Sheet The TIGER femtosecond and picosecond lasers combine soliton mode-locking, a balance

More information

STUDIES OF INTERACTION OF PARTIALLY COHERENT LASER RADIATION WITH PLASMA

STUDIES OF INTERACTION OF PARTIALLY COHERENT LASER RADIATION WITH PLASMA STUDIES OF INTERACTION OF PARTIALLY COHERENT LASER RADIATION WITH PLASMA Alexander N. Starodub Deputy Director N.G.Basov Institute of Quantum Radiophysics of P.N.Lebedev Physical Institute of the RAS Leninsky

More information

1. INTRODUCTION 2. LASER ABSTRACT

1. INTRODUCTION 2. LASER ABSTRACT Compact solid-state laser to generate 5 mj at 532 nm Bhabana Pati*, James Burgess, Michael Rayno and Kenneth Stebbins Q-Peak, Inc., 135 South Road, Bedford, Massachusetts 01730 ABSTRACT A compact and simple

More information

NIF Neutron Bang Time Detector Development on OMEGA

NIF Neutron Bang Time Detector Development on OMEGA NIF Neutron Bang Time Detector Development on OMEGA 2400 2200 NBT2 scintillator bang time (ps) 2000 1800 1600 1400 1200 rms = 54 ps 1000 1000 1200 1400 1600 1800 2000 2200 2400 V. Yu. Glebov University

More information

Characterization of Chirped volume bragg grating (CVBG)

Characterization of Chirped volume bragg grating (CVBG) Characterization of Chirped volume bragg grating (CVBG) Sobhy Kholaif September 7, 017 1 Laser pulses Ultrashort laser pulses have extremely short pulse duration. When the pulse duration is less than picoseconds

More information

3.C High-Repetition-Rate Amplification of Su bpicosecond Pulses

3.C High-Repetition-Rate Amplification of Su bpicosecond Pulses 5. P. R. Smith, D. H. Auston, A. M. Johnson, and W. M. Augustyniak, Appl. Phys. Lett. 38, 47-50 (1 981). 6. F. J. Leonburger and P. F. Moulton, Appl. Phys. Lett. 35, 712-714 (1 979). 7. A. P. Defonzo,

More information