Low-Power, 1%-Accurate Battery Monitors in µdfn and SC70 Packages

Size: px
Start display at page:

Download "Low-Power, 1%-Accurate Battery Monitors in µdfn and SC70 Packages"

Transcription

1 9-3774; Rev 4; 5/9 Low-Power, %-Accurate Battery General Description The low-power, %-accurate battery monitors are available in the ultra-small µdfn package (.mm x.5mm) and SC7 packages. These low-power devices are ideal for monitoring single lithium-ion (Li+) cells, or multicell alkaline/nicd/nimh power sources. These devices offer single (MAX6775/ MAX6776/MAX6777/MAX6778) or dual (MAX6779/ MAX678/MAX678) low-battery outputs and feature fixed or resistor-adjustable hysteresis. Hysteresis eliminates the output chatter sometimes associated with battery voltage monitors, usually due to input-voltage noise or battery terminal voltage recovery after load removal. These devices are available in several versions: with single- or dual-voltage monitors, and with fixed or adjustable hysteresis. The MAX6775/MAX6776 offer a single battery monitor and factory-set hysteresis of.5%, 5%, or %. The MAX6779/MAX678/MAX678 have two battery monitors in a single package and factory-set hysteresis of.5%, 5%, or %. The MAX6777/ MAX6778 offer a single battery monitor with external inputs for the rising and falling thresholds, allowing external hysteresis control. For convenient interface with system power circuitry or microprocessors, both open-drain and push-pull outputs are available. The single-channel devices are available with open-drain or push-pull outputs. The dual-channel devices are available with both outputs open-drain, both outputs push-pull, or one of each (see the Selector Guide). This family of devices is offered in small 5-pin SC7 and ultra-small 6-pin µdfn packages, and is fully specified over the -4 C to +85 C extended temperature range. Applications Battery-Powered Systems (Single-Cell Li+ or Multicell NiMH, NiCd, Alkaline) Cell Phones/Cordless Phones Pagers Portable Medical Devices PDAs Electronic Toys MP3 Players Features.%-Accurate Threshold Specified Over Temperature Single/Dual, Low-Battery Output Options Low 3µA Battery Current Open-Drain or Push-Pull Low-Battery Outputs Fixed or Adjustable Hysteresis Low-Input Leakage Current Allows Use of Large Resistors Guaranteed Valid Low-Battery-Output Logic State Down to = V Immune to Short Battery Transients Fully Specified from -4 C to +85 C Small 5-Pin SC7 or Ultra-Small 6-Pin µdfn (mm x.5mm) Package 3.6V LBI Ordering Information PART TEMP RANGE PIN-PACKAGE MAX6775XK_+T -4 C to +85 C 5 SC7 MAX6775LT_+T -4 C to +85 C 6 µdfn MAX6776XK_+T -4 C to +85 C 5 SC7 MAX6776LT_+T -4 C to +85 C 6 µdfn MAX6777XK+T -4 C to +85 C 5 SC7 MAX6777LT+T -4 C to +85 C 6 µdfn Ordering Information continued at end of data sheet. +Denotes a lead(pb)-free/rohs-compliant package. T = Tape and reel. MAX6775/MAX6776/MAX6779/MAX678/MAX678 are available with factory-trimmed hysteresis. Specify trim by replacing _ with A for.5%, B for 5%, or C for % hysteresis. Typical Operating Circuit MAX6775 IN DC-DC CONVERTER SHDN OUT Pin Configurations appear at end of data sheet. Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at , or visit Maxim s website at

2 ABSOLUTE MAXIMUM RATINGS to...-.3v to +6V LBI, LBL, LBH, LBI, LBI2 to...-.3v to minimum of (( +.3V) and +6V),, 2 to (open-drain)...-.3v to +6V,, 2 to (push-pull)...-.3v to minimum of (( +.3V) and +6V) Input Current (all pins)...2ma Output Current (all pins)...2ma Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS Continuous Power Dissipation (T A = +7 C) 5-Pin SC7 (derate 3.mW/ C above +7 C)...247mW 6-Pin µdfn (derate 2.mW C above +7 C)...68mW Junction Temperature...+5 C Storage Temperature Range C to +5 C Lead Temperature (soldering, s)...+3 C ( =.6V to 5.5V, T A = -4 C to +85 C, unless otherwise specified. Typical values are at T A = +25 C.) (Note ) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Operating Voltage Range (Note 2) T A = C to +7 C. 5.5 T A = -4 C to +85 C = 3.7V, no load 4 7 Supply Current I Q =.8V, no load V µa FIXED HYSTERESIS (MAX6775/MAX6776/MAX6779/MAX678/MAX678) LBI, LBI_ Falling Threshold (Note 3).5% hysteresis version V LBIF 5% hysteresis version % hysteresis version V LBI Rising Threshold V LBIR V LBI Input Leakage Current.2V V LBI -.2V na ADJUSTABLE HYSTERESIS (MAX6777/MAX6778) LBL, LBH Threshold =.8V to 5.5V V LBL, LBH Input Leakage Current -.2V V LBL/LBH.2V na 2

3 ELECTRICAL CHARACTERISTICS (continued) ( =.6V to 5.5V, T A = -4 C to +85 C, unless otherwise specified. Typical values are at T A = +25 C.) (Note ) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS LOW-ERY OUTPUTS (,, 2) Propagation Delay t PD V LBI_ + mv to V LBI_ - mv 9 µs Startup Time rising above.6v 3 ms Output Low (Push-Pull or Open-Drain) Output High (Push-Pull ) Output Leakage Current (Open-Drain).2V, I SINK = µa.3 V OL 2.7V, I SINK =.2mA.3 4.5V, I SINK = 3.2mA.3 V OH.6V, I SOURCE = µa 2.7V, I SOURCE = 5µA 4.5V, I SOURCE = 8µA.8 x.8 x.8 x Output not asserted, V _ = 5.5V - + na V V Note : Devices are tested at T A = +25 C and guaranteed by design for T A =T MIN to T MAX, as specified. Note 2: Operating range ensures low-battery output is in the correct state. Minimum battery voltage for electrical specification is.6v. Note 3: The rising threshold is guaranteed to be higher than the falling threshold. (T A = +25 C, unless otherwise noted.) Typical Operating Characteristics SUPPLY CURRENT (µa) = 5V = 3.6V = 3V SUPPLY CURRENT vs. TEMPERATURE = 2.4V =.6V TEMPERATURE ( C) MAX6775 toc PROPAGATION DELAY (µs) PROPAGATION DELAY vs. TEMPERATURE =.6V = 5V mv OVERDRIVE TEMPERATURE ( C) MAX6775 toc2 MAXIMUM TRANSIENT DURATION (µs) MAXIMUM TRANSIENT DURATION vs. THRESHOLD OVERDRIVE OUTPUT ASSERTED ABOVE THIS LINE THRESHOLD OVERDRIVE V TH - V CC (mv) MAX6775 toc3 3

4 (T A = +25 C, unless otherwise noted.) THRESHOLD VOLTAGE (mv) NORMALIZED THRESHOLD VOLTAGES vs. TEMPERATURE, MAX67 A NORMALIZED AT T A = +25 C RISING FALLING TEMPERATURE ( C) MAX6775 toc4 THRESHOLD VOLTAGE (mv) Typical Operating Characteristics (continued) NORMALIZED THRESHOLD VOLTAGES vs. TEMPERATURE, MAX67 B NORMALIZED AT T A = +25 C RISING FALLING TEMPERATURE ( C) MAX6775 toc5 THRESHOLD VOLTAGE (mv) - -2 NORMALIZED THRESHOLD VOLTAGES vs. TEMPERATURE, MAX67 C NORMALIZED AT T A = +25 C FALLING RISING TEMPERATURE ( C) MAX6775 toc6.5.4 OUTPUT VOLTAGE vs. SINK CURRENT =.8V = 3.3V MAX6775 toc OUTPUT VOLTAGE vs. SOURCE CURRENT = 5.V MAX6775 toc8 OUTPUT VOLTAGE (V).3.2 = 5.V OUTPUT VOLTAGE (V) = 3.3V. 2. =.8V SINK CURRENT (ma) SOURCE CURRENT (ma) 4

5 MAX6775/ MAX6776 MAX6777/ MAX6778 MAX6779/ MAX678/ MAX678 µdfn SC7 µdfn SC7 µdfn NAME FUNCTION Pin Description 2 Reserved. Must be connected to. Do not use as the only connection Ground 3 3 LBI Low-Battery Input. Connect to the resistive divider to set the trip level. Low-Battery Output, Active-Low. When V LBI /V LBL falls below the falling threshold, asserts. deasserts when V LBI /V LBH exceeds the rising threshold voltage. 5 5 N.C. No Connection. Not internally connected Battery Input. Power supply to the device. LBH 3 3 LBL LBI2 3 LBI Rising-Trip-Level Input. Connect to a resistive divider to set the rising trip level. Falling-Trip-Level Input. Connect to a resistive divider to set the falling trip level. Low-Battery Input 2. Connect to a resistive divider to set the trip level. Low-Battery Input. Connect to a resistive divider to set the trip level Low-Battery Output, Active-Low. When V LBI falls below the falling threshold voltage, asserts. deasserts when V LBI exceeds the rising threshold voltage. is push-pull on the MAX6779/MAX678 and open-drain for the MAX678. Low-Battery Output 2, Active-Low. When V LBI2 falls below the falling threshold voltage, 2 asserts. 2 deasserts when V LBI2 exceeds the rising threshold voltage. 2 is open-drain for the MAX678/MAX678 and push-pull for the MAX

6 Detailed Description These battery monitors have an active-low output that asserts when the input falls below a set voltage. They also offer hysteresis for noise immunity, and to remove the possibility of output chatter due to battery terminal voltage recovery after load removal. They are available with one or two monitors per package, with push-pull or open-drain outputs, and with internally set or externally adjustable hysteresis (dual-channel devices offer only internally fixed hysteresis). Figures, 2, and 3 show block diagrams and typical connections. See the Selector Guide for details. Low-Battery Output All devices are offered with either push-pull or opendrain outputs (see the Selector Guide). The MAX678 has one push-pull output and one open-drain output, configured as in Table. On all devices with open-drain outputs an external pullup resistor is required. The open-drain pullup resistor can connect to an external voltage up to +6V, regardless of the voltage at. LBI LBI2 HYSTERESIS CONTROL V REF MAX6779 MAX678 MAX678 2 Table. MAX678 Outputs DEVICE 2 MAX678 Push-Pull Open-Drain Figure 2. Dual-Channel Fixed-Hysteresis Block Diagram R H R L LBI HYSTERESIS CONTROL MAX6775 MAX6776 R H R HYST LBL LBH MAX6777 MAX6778 V REF R L V REF Figure. Single-Channel Fixed-Hysteresis Block Diagram Figure 3. Single-Channel Adjustable-Hysteresis Block Diagram 6

7 The MAX6779, MAX678, and MAX678 monitor two battery levels or two independent voltages. A common application for this type of dual-battery monitor is to use one output as an early warning signal and the other as a dead-battery indicator. Hysteresis Input hysteresis defines two thresholds, separated by a small voltage (the hysteresis voltage), configured so the output asserts when the input falls below the falling threshold, and deasserts only when the input rises above the rising threshold. Figure 4 shows this graphically. Hysteresis removes, or greatly reduces, the possibility of the output changing state in response to noise or battery terminal voltage recovery after load removal. Fixed Hysteresis The MAX6775/MAX6776/MAX6779/MAX678/MAX678 have factory-set hysteresis for ease of use, and reduce component count. For these devices, the absolute hysteresis voltage is a percentage of the internally generated reference. The amount depends on the device option. A devices have.5% hysteresis, B devices have 5% hysteresis, and C devices have % hysteresis. Table 2 presents the threshold voltages for devices with internally fixed hysteresis. MAX6775 MAX6776 Adjustable Hysteresis The MAX6777/MAX6778 offer external hysteresis control through the resistive divider that monitors battery voltage. Figure 3 shows the connections for external hysteresis. See the Calculating an External Hysteresis Resistive Divider section for more information. Applications Information Resistor-Value Selection Choosing the proper external resistors is a balance between accuracy and power use. The input to the voltage monitor, while high impedance, draws a small current, and that current travels through the resistive divider, introducing error. If extremely high resistor values are used, this current introduces significant error. With extremely low resistor values, the error becomes negligible, but the resistive divider draws more power from the battery than necessary and shortens battery life. Figure calculates the optimum value for R H using: RH = ea x V IL where e A is the maximum acceptable absolute resistive divider error (use. for %), is the battery voltage at which should activate, and I L is the worstcase LBI leakage current. For example, with.5% accuracy, a 2.8V battery minimum, and 5nA leakage, R H = 2.8MΩ. Calculate R L using: V LBIR V LBIF V HYST RL = VLBIF VLBIF x RH V t PD t PD where V LBIF is the falling threshold voltage from Table 2. Continuing the above example, select V LBIF =.998V (% hysteresis device) and R L =.8MΩ. Figure 4. Hysteresis Table 2. Typical Falling and Rising Thresholds for MAX6775/MAX6776/MAX6779/MAX678/MAX678 DEVICE OPTION PERCENT HYSTERESIS (%) FALLING THRESHOLD (V LBIF ) (V) RISING THRESHOLD (V LBIR ) (V) HYSTERESIS VOLTAGE (V HYST ) (mv) A B C

8 Calculating an External Hysteresis Resistive Divider Setting the hysteresis externally requires three external resistors, as shown in Figure 3. Select R H using the following formula: ea V _ RISING RH IL where ea is the allowable error due to input leakage current (typically.5 or less), V_RISING is the desired rising threshold, and I L is the worst-case leakage current (5nA). Then calculate R LO (which is the sum of R L and R HYST ): V R R LBI LO = H V _ FALLING VLBI where VLBI is.222v and _FALLING is the desired falling threshold. Calculate R L using: ( ) VLBI RH + RLO RL = V _ RISING and finally, calculate R HYST : RHYST = RLO RL Monitoring a Battery Voltage Higher Than the Allowable For monitoring higher voltages, supply power to that is within the specified supply range, and power the input resistive divider from the high voltage to be monitored. Do not exceed the Absolute Maximum Ratings. Adding External Capacitance to Reduce Noise and Transients If monitoring voltages in a noisy environment, add a bypass capacitor of.µf from to as close as possible to the device. For systems with large transients, additional capacitance may be required. A small capacitor (<nf) from LBI_ to may provide additional noise immunity. Selector Guide PART OUTPUT OUTPUT TYPE HYSTERESIS PIN-PACKAGE MAX6775XK_+T Single Push-Pull Fixed 5 SC7 MAX6775LT_+T Single Push-Pull Fixed 6 µdfn MAX6776XK_+T Single Open-Drain Fixed 5 SC7 MAX6776LT_+T Single Open-Drain Fixed 6 µdfn MAX6777XK+T Single Push-Pull Adjustable 5 SC7 MAX6777LT+T Single Push-Pull Adjustable 6 µdfn MAX6778XK+T Single Open-Drain Adjustable 5 SC7 MAX6778LT+T Single Open-Drain Adjustable 6 µdfn MAX6779LT_+T Dual Push-Pull Fixed 6 µdfn MAX678LT_+T Dual Open-Drain Fixed 6 µdfn MAX678LT_+T Dual Mixed Fixed 6 µdfn 8

9 PART MAX6775XKA+T MAX6775XKB+T MAX6775XKC+T MAX6775LTA+T MAX6775LTB+T MAX6775LTC+T MAX6776XKA+T MAX6776XKB+T MAX6776XKC+T MAX6776LTA+T MAX6776LTB+T MAX6776LTC+T TOP MARK ASA ASB ASC BU BW BX ASJ ASK ASL BY BZ CA PART MAX6777XK+T MAX6777LT+T MAX6778XK+T MAX6778LT+T MAX6779LTA+T MAX6779LTB+T MAX6779LTC+T MAX678LTA+T MAX678LTB+T MAX678LTC+T MAX678LTA+T MAX678LTB+T MAX678LTC+T Top Marks TOP MARK ASD CB ASI CC BL BM BN BO BP BQ BR BS BT Ordering Information (continued) PART TEMP RANGE PIN-PACKAGE MAX6778XK+T -4 C to +85 C 5 SC7 MAX6778LT+T -4 C to +85 C 6 µdfn MAX6779LT_+T -4 C to +85 C 6 µdfn MAX678LT_+T -4 C to +85 C 6 µdfn MAX678LT_+T -4 C to +85 C 6 µdfn +Denotes a lead(pb)-free/rohs-compliant package. T = Tape and reel. MAX6775/MAX6776/MAX6779/MAX678/MAX678 are available with factory-trimmed hysteresis. Specify trim by replacing _ with A for.5%, B for 5%, or C for % hysteresis. PROCESS: BICMOS Chip Information 9

10 TOP VIEW LBH 2 LBI MAX6775 MAX SC7 6 N.C N.C MAX6775 MAX6776 μdfn Pin Configurations 6 4 LBI LBL 2 MAX6777 MAX MAX6777 MAX MAX6779 MAX678 MAX SC7 LBH μdfn LBL LBI2 μdfn LBI Package Information For the latest package outline information and land patterns, go to PACKAGE TYPE PACKAGE CODE DOCUMENT NO. 5 SC7 X µdfn L6-2-47

11 REVISION NUMBER REVISION DATE DESCRIPTION Revision History PAGES CHANGED 4 5/9 Updated Calculating an External Hysteresis Resistive Divider section 8 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 2 San Gabriel Drive, Sunnyvale, CA Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc. Heaney

Low-Power, Single/Dual-Voltage μp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay

Low-Power, Single/Dual-Voltage μp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay General Description The MAX6412 MAX6420 low-power microprocessor supervisor circuits monitor system voltages from 1.6V to 5V. These devices are designed to assert a reset signal whenever the supply voltage

More information

MANUAL RESET (MR) (RESET)/ RESET RESET MAX16084 MAX16085 MAX16086 GND. Maxim Integrated Products 1

MANUAL RESET (MR) (RESET)/ RESET RESET MAX16084 MAX16085 MAX16086 GND. Maxim Integrated Products 1 19-5903; Rev 0; 6/11 General Description The family of supervisory circuits monitors voltages from +1.1V to +5V using a factory-set reset threshold. The MAX16084/MAX16085/MAX16086 offer a manual reset

More information

Dual-/Triple-/Quad-Voltage, Capacitor- Adjustable, Sequencing/Supervisory Circuits

Dual-/Triple-/Quad-Voltage, Capacitor- Adjustable, Sequencing/Supervisory Circuits 19-0525; Rev 3; 1/07 EVALUATION KIT AVAILABLE Dual-/Triple-/Quad-Voltage, Capacitor- General Description The are dual-/triple-/quad-voltage monitors and sequencers that are offered in a small TQFN package.

More information

Sequencing/Supervisory Circuits

Sequencing/Supervisory Circuits Click here for production status of specific part numbers. MAX1652/MAX1653 General Description The MAX1652/MAX1653 are a family of small, low-power, high-voltage monitoring circuits with sequencing capability.

More information

Dual-/Triple-/Quad-Voltage, Capacitor- Adjustable, Sequencing/Supervisory Circuits

Dual-/Triple-/Quad-Voltage, Capacitor- Adjustable, Sequencing/Supervisory Circuits 19-0622; Rev 0; 8/06 Dual-/Triple-/Quad-Voltage, Capacitor- General Description The are dual-/triple-/ quad-voltage monitors and sequencers that are offered in a small thin QFN package. These devices offer

More information

Low-Power, Single/Dual-Voltage µp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay. Maxim Integrated Products 1

Low-Power, Single/Dual-Voltage µp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay. Maxim Integrated Products 1 19-2336; Rev 2; 12/05 Low-Power, Single/Dual-Voltage µp Reset Circuits General Description The low-power microprocessor supervisor circuits monitor system voltages from 1.6V to 5V. These devices are designed

More information

Ultra-Low-Voltage µp Reset Circuits and Voltage Detectors

Ultra-Low-Voltage µp Reset Circuits and Voltage Detectors 19-2625; Rev 2; 12/05 Ultra-Low-oltage µp Reset Circuits and General Description The microprocessor (µp) supervisory circuits monitor ultra-low-voltage power supplies in µp and digital systems. They provide

More information

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN 19-3869; Rev 1; 1/11 Low-oltage, High-Accuracy, Quad Window General Description The are adjustable quad window voltage detectors in a small thin QFN package. These devices are designed to provide a higher

More information

High-Accuracy μp Reset Circuit

High-Accuracy μp Reset Circuit General Description The MAX6394 low-power CMOS microprocessor (μp) supervisory circuit is designed to monitor power supplies in μp and digital systems. It offers excellent circuit reliability by providing

More information

Ultra-Small, Adjustable Sequencing/ Supervisory Circuits

Ultra-Small, Adjustable Sequencing/ Supervisory Circuits General Description The MAX6895 MAX6899 is a family of small, lowpower, voltage-monitoring circuits with sequencing capability. These miniature devices offer tremendous flexibility with an adjustable threshold

More information

Setup Period. General Description

Setup Period. General Description General Description The MAX6443 MAX6452 low-current microprocessor reset circuits feature single or dual manual reset inputs with an extended setup period. Because of the extended setup period, short switch

More information

Detection Circuits. General Description. Ordering Information. Typical Operating Circuit. Applications

Detection Circuits. General Description. Ordering Information. Typical Operating Circuit. Applications General Description The MAX16010 MAX16014 is a family of ultra-small, lowpower, overvoltage-protection circuits for high-voltage, high-transient systems such as those found in telecom and industrial applications.

More information

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators 9-266; Rev 2; /07 General Description The MAX987/MAX988/MAX99/MAX992/MAX995/ MAX996 single/dual/quad micropower comparators feature low-voltage operation and rail-to-rail inputs and outputs. Their operating

More information

Quad Voltage µp Supervisory Circuit in SOT Package

Quad Voltage µp Supervisory Circuit in SOT Package 19-1756; Rev 3; 12/05 Quad Voltage µp Supervisory Circuit General Description The is a precision quad voltage monitor with microprocessor (µp) supervisory reset timing. The device can monitor up to four

More information

Low-Cost, Remote Temperature Switch

Low-Cost, Remote Temperature Switch 19-1819; Rev 3; 2/11 Low-Cost, Remote Temperature Switch General Description The is a fully integrated, remote temperature switch that uses an external P-N junction (typically a diode-connected transistor)

More information

Maxim Integrated Products 1

Maxim Integrated Products 1 19-1951; Rev 3; 1/5 SOT3 Power-Supply Sequencers General Description The are power-supply sequencers for dual-voltage microprocessors (µps) and multivoltage systems. These devices monitor a primary supply

More information

Single/Dual/Quad, +1.8V/750nA, SC70, Rail-to-Rail Op Amps

Single/Dual/Quad, +1.8V/750nA, SC70, Rail-to-Rail Op Amps 9-; Rev 4; 7/ Single/Dual/Quad, +.8V/75nA, SC7, General Description The MAX4464/MAX447/MAX447/MAX447/MAX4474 family of micropower op amps operate from a single +.8V to +5.5V supply and draw only 75nA of

More information

MAX985/MAX986/MAX989/ MAX990/MAX993/MAX994 Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators

MAX985/MAX986/MAX989/ MAX990/MAX993/MAX994 Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators General Description The MAX985/MAX986/MAX989/MAX990/MAX993/ MAX994 single/dual/quad micropower comparators feature low-voltage operation and rail-to-rail inputs and outputs. Their operating voltages range

More information

+5V, Low-Power µp Supervisory Circuits with Adjustable Reset/Watchdog

+5V, Low-Power µp Supervisory Circuits with Adjustable Reset/Watchdog 19-1078; Rev 4; 9/10 +5V, Low-Power µp Supervisory Circuits General Description The * low-power microprocessor (µp) supervisory circuits provide maximum adjustability for reset and watchdog functions.

More information

140ms (min) WDO Pulse Period PART. Maxim Integrated Products 1

140ms (min) WDO Pulse Period PART. Maxim Integrated Products 1 19-2804; Rev 2; 12/05 5-Pin Watchdog Timer Circuit General Description The is a low-power watchdog circuit in a tiny 5- pin SC70 package. This device improves system reliability by monitoring the system

More information

Low-Voltage, High-Accuracy, Triple/Quad Voltage µp Supervisory Circuits in SOT Package

Low-Voltage, High-Accuracy, Triple/Quad Voltage µp Supervisory Circuits in SOT Package 19-2324; Rev 2; 12/05 Low-oltage, High-Accuracy, Triple/Quad General Description The precision triple/quad voltage microprocessor (µp) supervisory circuits monitor up to four system-supply voltages and

More information

High-Voltage, Low-Current Voltage Monitors in SOT Packages

High-Voltage, Low-Current Voltage Monitors in SOT Packages General Description The MAX6457 high supply voltage, low-power voltage monitors operate over a 4V to 28V supply voltage range. Each device includes a precision bandgap reference, one or two low-offset

More information

Ultra-Small, nanopower, Window Comparator in 4 UCSP and 5 SOT23

Ultra-Small, nanopower, Window Comparator in 4 UCSP and 5 SOT23 EVALUATION KIT AVAILABLE MAX965 General Description The MAX965 is an ultra-small, low-power, window comparator ideal for a wide variety of portable electronics applications such as cell phones, portable

More information

High-Voltage, 350mA, Adjustable Linear High-Brightness LED (HB LED) Driver

High-Voltage, 350mA, Adjustable Linear High-Brightness LED (HB LED) Driver 19-383; Rev 1; 4/9 High-Voltage, 35mA, Adjustable Linear General Description The current regulator operates from a 6.5V to 4V input voltage range and delivers up to a total of 35mA to one or more strings

More information

Low-Power, Single/Dual-Voltage µp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay

Low-Power, Single/Dual-Voltage µp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay General Description The MAX6412 MAX6420 low-power microprocessor supervisor circuits monitor system voltages from 1.6V to 5V. These devices are designed to assert a reset signal whenever the supply voltage

More information

Microprocessor Supervisory Reset Circuits with Edge-Triggered, One-Shot Manual Reset

Microprocessor Supervisory Reset Circuits with Edge-Triggered, One-Shot Manual Reset 9-2523; Rev ; /5 Microprocessor Supervisory Reset Circuits General Description The microprocessor (µp) supervisory circuits monitor single power-supply voltages from +.8 to +5. and assert a reset if the

More information

3-Pin, Ultra-Low-Voltage, Low-Power µp Reset Circuits

3-Pin, Ultra-Low-Voltage, Low-Power µp Reset Circuits 19-1411; Rev 1; 6/00 3-Pin, Ultra-Low-oltage, Low-Power General Description The // microprocessor (µp) supervisory circuits monitor the power supplies in 1.8 to 3.3 µp and digital systems. They increase

More information

Overvoltage Protection Controllers with Status FLAG

Overvoltage Protection Controllers with Status FLAG 19-3044; Rev 1; 4/04 Overvoltage Protection Controllers with Status General Description The are overvoltage protection ICs that protect low-voltage systems against voltages of up to 28V. If the input voltage

More information

Precision, Micropower, Low-Dropout Voltage References MAX6190 MAX6195/MAX6198

Precision, Micropower, Low-Dropout Voltage References MAX6190 MAX6195/MAX6198 19-108; Rev 3; /10 Precision, Micropower, General Description The precision, micropower, low-dropout voltage references offer high initial accuracy and very low temperature coefficient through a proprietary

More information

High-Efficiency LCD Boost with True Shutdown MAX8570 MAX8575

High-Efficiency LCD Boost with True Shutdown MAX8570 MAX8575 19-3329; Rev 3; 3/1 EVALUATION KIT AVAILABLE High-Efficiency LCD Boost General Description The family of LCD step-up converters uses an internal n-channel switch and an internal p-channel output isolation

More information

nanopower, Tiny Supervisor with Manual Reset Input

nanopower, Tiny Supervisor with Manual Reset Input General Description The MAX16140 is an ultra-low-current, single-channel supervisory IC in a tiny, 4-bump, wafer-level package (WLP). The MAX16140 monitors the V CC voltage from 1.7V to 4.85V in 50mV increments

More information

ENABLE RESET EN RESETIN

ENABLE RESET EN RESETIN 19-4000; Rev 2; 8/09 High-Voltage Watchdog Timers with General Description The are microprocessor (µp) supervisory circuits for high-input-voltage and low-quiescent-current applications. These devices

More information

EVALUATION KIT AVAILABLE Low-Noise 500mA LDO Regulators in a 2mm x 2mm TDFN Package MAX8902AATA+ INPUT 1.7V TO 5.5V LOGIC SUPPLY. R3 100kΩ.

EVALUATION KIT AVAILABLE Low-Noise 500mA LDO Regulators in a 2mm x 2mm TDFN Package MAX8902AATA+ INPUT 1.7V TO 5.5V LOGIC SUPPLY. R3 100kΩ. 19-0990; Rev 4; 4/11 EVALUATION KIT AVAILABLE Low-Noise 500mA LDO Regulators General Description The low-noise linear regulators deliver up to 500mA of output current with only 16µV RMS of output noise

More information

V CC 2.7V TO 5.5V. Maxim Integrated Products 1

V CC 2.7V TO 5.5V. Maxim Integrated Products 1 19-3491; Rev 1; 3/07 Silicon Oscillator with Reset Output General Description The silicon oscillator replaces ceramic resonators, crystals, and crystal-oscillator modules as the clock source for microcontrollers

More information

Micropower Adjustable Overvoltage Protection Controllers

Micropower Adjustable Overvoltage Protection Controllers 19-1791; Rev ; 1/ Micropower Adjustable Overvoltage General Description The MAX187/MAX188 monitor up to five supply rails for an overvoltage condition and provide a latched output when any one of the five

More information

Low-Cost, Micropower, High-Side Current-Sense Amplifier + Comparator + Reference ICs

Low-Cost, Micropower, High-Side Current-Sense Amplifier + Comparator + Reference ICs 9-63; Rev ; /3 Low-Cost, Micropower, High-Side Current-Sense General Description The low-cost, micropower, high-side current-sense supervisors contain a highside current-sense amplifier, bandgap reference,

More information

Low-Voltage, Precision, Single/Dual/Triple/ Quad-Voltage μp Supervisors

Low-Voltage, Precision, Single/Dual/Triple/ Quad-Voltage μp Supervisors EVALUATION KIT AVAILABLE MAX16132 MAX16135 General Description The MAX16132 MAX16135 are low-voltage, ±1% accurate, single, dual, triple, and quad-volt age μp supervisors that monitor up to 4 system-supply

More information

Low-Voltage, Precision, Single/Dual/Triple/ Quad-Voltage μp Supervisors

Low-Voltage, Precision, Single/Dual/Triple/ Quad-Voltage μp Supervisors General Description The MAX16132 MAX16135 are low-voltage, ±1% accurate, single, dual, triple, and quad-volt age μp supervisors that monitor up to 4 system-supply voltages for undervoltage and overvoltage

More information

MAX6340/MAX6421 MAX6426

MAX6340/MAX6421 MAX6426 19-2440; Rev 4; 12/05 Low-Power, SC70/SOT µp Reset Circuits with General Description The low-power microprocessor supervisor circuits monitor system voltages from 1.6V to 5V. These devices perform a single

More information

Low-Voltage, 1.8kHz PWM Output Temperature Sensors

Low-Voltage, 1.8kHz PWM Output Temperature Sensors 19-266; Rev 1; 1/3 Low-Voltage, 1.8kHz PWM Output Temperature General Description The are high-accuracy, low-power temperature sensors with a single-wire output. The convert the ambient temperature into

More information

PA RT MAX3408EUK 100Ω 120Ω. Maxim Integrated Products 1

PA RT MAX3408EUK 100Ω 120Ω. Maxim Integrated Products 1 19-2141; Rev ; 8/1 75Ω/Ω/Ω Switchable Termination General Description The MAX346/MAX347/MAX348 are general-purpose line-terminating networks designed to change the termination value of a line, depending

More information

OSC2 Selector Guide appears at end of data sheet. Maxim Integrated Products 1

OSC2 Selector Guide appears at end of data sheet. Maxim Integrated Products 1 9-3697; Rev 0; 4/05 3-Pin Silicon Oscillator General Description The is a silicon oscillator intended as a low-cost improvement to ceramic resonators, crystals, and crystal oscillator modules as the clock

More information

500mA Low-Dropout Linear Regulator in UCSP

500mA Low-Dropout Linear Regulator in UCSP 19-272; Rev ; 1/2 5mA Low-Dropout Linear Regulator in UCSP General Description The low-dropout linear regulator operates from a 2.5V to 5.5V supply and delivers a guaranteed 5mA load current with low 12mV

More information

in SC70 Packages Features General Description Ordering Information Applications

in SC70 Packages Features General Description Ordering Information Applications in SC7 Packages General Description The MAX6672/MAX6673 are low-current temperature sensors with a single-wire output. These temperature sensors convert the ambient temperature into a 1.4kHz PWM output,

More information

Low-Voltage, High-Accuracy, Triple/Quad Voltage μp Supervisory Circuits in SOT Package

Low-Voltage, High-Accuracy, Triple/Quad Voltage μp Supervisory Circuits in SOT Package General Description The MAX6700/MAX6710 precision triple/quad voltage microprocessor (μp) supervisory circuits monitor up to four system-supply voltages and assert a single reset if any supply voltage

More information

Precision, Low-Power, 6-Pin SOT23 Temperature Sensors and Voltage References

Precision, Low-Power, 6-Pin SOT23 Temperature Sensors and Voltage References 19-2457; Rev 2; 11/03 Precision, Low-Power, 6-Pin SOT23 General Description The are precise, low-power analog temperature sensors combined with a precision voltage reference. They are ideal for applications

More information

EVALUATION KIT AVAILABLE GPS/GNSS Low-Noise Amplifier. Pin Configuration/Functional Diagram/Typical Application Circuit MAX2659 BIAS

EVALUATION KIT AVAILABLE GPS/GNSS Low-Noise Amplifier. Pin Configuration/Functional Diagram/Typical Application Circuit MAX2659 BIAS 19-797; Rev 4; 8/11 EVALUATION KIT AVAILABLE GPS/GNSS Low-Noise Amplifier General Description The high-gain, low-noise amplifier (LNA) is designed for GPS, Galileo, and GLONASS applications. Designed in

More information

MAX4914B/MAX4915A/B/ 100mA/200mA/300mA Current-Limit Switches MAX4917A/B with Low Shutdown Reverse Current General Description Benefits and Features

MAX4914B/MAX4915A/B/ 100mA/200mA/300mA Current-Limit Switches MAX4917A/B with Low Shutdown Reverse Current General Description Benefits and Features General Description The MAX4914B/MAX4915A/B/ family of switches feature internal current limiting to prevent damage to host devices due to faulty load conditions. These analog switches have a low 0.2Ω

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-3474; Rev 2; 8/07 Silicon Oscillator with Low-Power General Description The dual-speed silicon oscillator with reset is a replacement for ceramic resonators, crystals, crystal oscillator modules, and

More information

MAX9647/MAX9648 General-Purpose, Low-Voltage, Tiny Pack Comparators

MAX9647/MAX9648 General-Purpose, Low-Voltage, Tiny Pack Comparators EVALUATION KIT AVAILABLE MAX9647/MAX9648 General Description The MAX9647/MAX9648 comparators are drop-in, pin-forpin compatible replacements for the LMX331/LMX331H. The MAX9648 has the added benefit of

More information

45V, 400mA, Low-Quiescent-Current Linear Regulator with Adjustable Reset Delay

45V, 400mA, Low-Quiescent-Current Linear Regulator with Adjustable Reset Delay EVALUATION KIT AVAILABLE MAX587 45V, 4mA, Low-Quiescent-Current General Description The MAX587 high-voltage linear regulator operates from an input voltage of 6.5V to 45V and delivers up to 4mA of output

More information

μp Supervisors Benefits and Features General Description Typical Operating Circuit Applications

μp Supervisors Benefits and Features General Description Typical Operating Circuit Applications Click here for production status of specific part numbers. MAX16000 MAX16007 General Description The MAX16000 MAX16007 are low-voltage, quad/hex/ octal-voltage μp supervisors in small TQFN and TSSOP packages.

More information

Precision, Micropower, 1.8V Supply, Low-Dropout, SOT23 Voltage Reference

Precision, Micropower, 1.8V Supply, Low-Dropout, SOT23 Voltage Reference 19-2211; Rev 2; 12/2 Precision, Micropower, 1.8V Supply, General Description The is a precision, low-voltage, low-dropout, micropower voltage reference in a SOT23 package. This three-terminal reference

More information

3-Pin Microprocessor Reset Circuits

3-Pin Microprocessor Reset Circuits 19-0344; Rev 4; 12/99 3-Pin Microprocessor Reset Circuits General Description The MAX803/MAX809/MAX810 are microprocessor (µp) supervisory circuits used to monitor the power supplies in µp and digital

More information

Low-Dropout, 300mA Linear Regulators in SOT23

Low-Dropout, 300mA Linear Regulators in SOT23 19-1859; Rev 4; 7/9 Low-Dropout, 3mA Linear Regulators in SOT23 General Description The low-dropout linear regulators operate from a 2.5V to 5.5V input and deliver up to 3mA continuous (5mA pulsed) current.

More information

MAX6711L/M/R/S/T/Z, MAX6712L/M/R/S/T/Z, MAX6713L/M/R/S/T/Z. 4-Pin SC70 Microprocessor Reset Circuits with Manual Reset Input

MAX6711L/M/R/S/T/Z, MAX6712L/M/R/S/T/Z, MAX6713L/M/R/S/T/Z. 4-Pin SC70 Microprocessor Reset Circuits with Manual Reset Input General Description The MAX6711/MAX6712/MAX6713 are microprocessor (µp) supervisory circuits used to monitor the power supplies in µp and digital systems. They provide excellent circuit reliability and

More information

Dual SPDT Negative Rail Analog Switches with ±VCC Capability

Dual SPDT Negative Rail Analog Switches with ±VCC Capability 19-4244; Rev 1; 12/8 EVALUATION KIT AVAILABLE Dual SPDT Negative Rail Analog Switches General Description The MAX1454/MAX1455/MAX1455A/MAX1456 dual single-pole/double-throw (SPDT) audio switches feature

More information

High-Accuracy, 76V, High-Side Current Monitors in SOT23 MAX4007/MAX4008. Features

High-Accuracy, 76V, High-Side Current Monitors in SOT23 MAX4007/MAX4008. Features 19-2743; Rev 3; 4/07 High-Accuracy, 76V, High-Side General Description The precision, high-side, high-voltage current monitors are specifically designed for monitoring photodiode current in fiber applications.

More information

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References 19-38; Rev 3; 6/7 Low-Power, Low-Drift, +2.5V/+5V/+1V General Description The precision 2.5V, 5V, and 1V references offer excellent accuracy and very low power consumption. Extremely low temperature drift

More information

76V, APD, Dual Output Current Monitor

76V, APD, Dual Output Current Monitor 9-4994; Rev ; 9/ EVALUATION KIT AVAILABLE 76V, APD, Dual Output Current Monitor General Description The integrates the discrete high-voltage components necessary for avalanche photodiode (APD) bias and

More information

Current-Limited Switch for Single USB Port

Current-Limited Switch for Single USB Port 9-57; Rev ; / Current-Limited Switch for Single USB Port General Description The is a current-limited, 6mΩ switch with built-in fault blanking. Its accurate preset current limit of.6a to.6a makes it ideally

More information

EVALUATION KIT AVAILABLE GPS/GNSS Low-Noise Amplifiers

EVALUATION KIT AVAILABLE GPS/GNSS Low-Noise Amplifiers 19456; Rev ; 8/1 EVALUATION KIT AVAILABLE GPS/GNSS Low-Noise Amplifiers General Description The / low-noise amplifiers (LNAs) are designed for GPS L1, Galileo, and GLONASS applications. Designed in Maxim

More information

EVALUATION KIT AVAILABLE 1µA, 4-Bump UCSP/SOT23, Precision Current-Sense Amplifier

EVALUATION KIT AVAILABLE 1µA, 4-Bump UCSP/SOT23, Precision Current-Sense Amplifier 19-521; Rev 2; 8/1 EVALUATION KIT AVAILABLE 1µA, 4-Bump UCSP/SOT23, General Description The high-side current-sense amplifier offers precision accuracy specifications of V OS less than 25µV (max) and gain

More information

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators 9-266; Rev 2; /07 High-Speed, Micropower, Low-Voltage, General Description The MAX987/MAX988/MAX99/MAX992/MAX995/ MAX996 single/dual/quad micropower comparators feature low-voltage operation and rail-to-rail

More information

Precision, Low-Power and Low-Noise Op Amp with RRIO

Precision, Low-Power and Low-Noise Op Amp with RRIO MAX41 General Description The MAX41 is a low-power, zero-drift operational amplifier available in a space-saving, 6-bump, wafer-level package (WLP). Designed for use in portable consumer, medical, and

More information

Low-Cost, SOT23, Voltage-Output, High-Side Current-Sense Amplifier MAX4173T/F/H

Low-Cost, SOT23, Voltage-Output, High-Side Current-Sense Amplifier MAX4173T/F/H 19-13; Rev 5; /11 Low-Cost, SOT23, Voltage-Output, General Description The MAX173 low-cost, precision, high-side currentsense amplifier is available in a tiny SOT23-6 package. It features a voltage output

More information

TOP VIEW. OUTPUT 1.5V TO 3.3V AT 200mA MAX8532 MAX8532EBT

TOP VIEW. OUTPUT 1.5V TO 3.3V AT 200mA MAX8532 MAX8532EBT 19-2733; Rev 1; 2/12 EVALUATION KIT AVAILABLE General Description The offers the benefits of low-dropout voltage and ultra-low power regulation in a subminiaturized UCSP, making it ideal for space-restricted

More information

Spread-Spectrum Clock Generators

Spread-Spectrum Clock Generators 19-5214; Rev 0; 4/10 Spread-Spectrum Clock Generators General Description The are spread-spectrum clock generators that contain a phase-locked loop (PLL) that generates a 2MHz to 134MHz clock from an input

More information

Overvoltage-Protection Controllers with Status FLAG

Overvoltage-Protection Controllers with Status FLAG 19-3979; Rev 0; 2/06 Overvoltage-Protection Controllers with Status General Description The // are overvoltageprotection ICs that protect low-voltage systems against voltages of up to +28V. If the input

More information

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP 19-579; Rev ; 12/1 EVALUATION KIT AVAILABLE Rail-to-Rail, 2kHz Op Amp General Description The op amp features a maximized ratio of gain bandwidth (GBW) to supply current and is ideal for battery-powered

More information

V OUT. +Denotes lead(pb)-free/rohs-compliant package. PART

V OUT. +Denotes lead(pb)-free/rohs-compliant package. PART 9-346; Rev 2; / 2kHz, 4µA, Rail-to-Rail General Description The single MAX99/MAX99 and dual MAX992/ MAX993 operational amplifiers (op amps) feature a maximized ratio of gain bandwidth (GBW) to supply current

More information

±80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceiver

±80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceiver 19-2425; Rev 0; 4/02 General Description The interfaces between the control area network (CAN) protocol controller and the physical wires of the bus lines in a CAN. It is primarily intended for industrial

More information

±50V Isolated, 3.0V to 5.5V, 250kbps, 2 Tx/2 Rx, RS-232 Transceiver MAX3250

±50V Isolated, 3.0V to 5.5V, 250kbps, 2 Tx/2 Rx, RS-232 Transceiver MAX3250 EVALUATION KIT AVAILABLE MAX325 General Description The MAX325 is a 3.V to 5.5V powered, ±5V isolated EIA/TIA-232 and V.28/V.24 communications interface with high data-rate capabilities. The MAX325 is

More information

MAX9812/MAX9813 Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with Integrated Bias

MAX9812/MAX9813 Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with Integrated Bias General Description The MAX982/MAX983 are single/dual-input, 20dB fixed-gain microphone amplifiers. They offer tiny packaging and a low-noise, integrated microphone bias, making them ideal for portable

More information

Voltage Detectors in 4-Bump (2 X 2) Chip-Scale Package

Voltage Detectors in 4-Bump (2 X 2) Chip-Scale Package 19-2041; Rev 1; 8/01 oltage Detectors in 4-Bump (2 X 2) General Description The is a family of ultra-low power circuits used for monitoring battery, power-supply, and regulated system voltages. Each detector

More information

PART* MAX6509HAUK-T MAX6510CAUT-T** MAX6510HAUT-T** TOP VIEW INT GND GND OUT. Maxim Integrated Products 1

PART* MAX6509HAUK-T MAX6510CAUT-T** MAX6510HAUT-T** TOP VIEW INT GND GND OUT. Maxim Integrated Products 1 19-1617; Rev 2; 11/03 Resistor-Programmable General Description The are fully integrated, resistorprogrammable temperature switches with thresholds set by an external resistor. They require only one external

More information

Nanopower Op Amp in Ultra-Tiny WLP and SOT23 Packages

Nanopower Op Amp in Ultra-Tiny WLP and SOT23 Packages EVALUATION KIT AVAILABLE MAX47 General Description The MAX47 is a single operational amplifier that provides a maximized ratio of gain bandwidth (GBW) to supply current and is ideal for battery-powered

More information

PART TOP VIEW. OUT 3.3V AT 100mA POK. Maxim Integrated Products 1

PART TOP VIEW. OUT 3.3V AT 100mA POK. Maxim Integrated Products 1 9-600; Rev ; 6/00 General Description The is a buck/boost regulating charge pump that generates a regulated output voltage from a single lithium-ion (Li+) cell, or two or three NiMH or alkaline cells for

More information

EVALUATION KIT AVAILABLE Dual 300mA Pin-Programmable LDO Linear Regulators. MAX8634ELA+ -40 C to +85 C INPUT 2.7V TO 5.5V

EVALUATION KIT AVAILABLE Dual 300mA Pin-Programmable LDO Linear Regulators. MAX8634ELA+ -40 C to +85 C INPUT 2.7V TO 5.5V 19-516; Rev 1; 9/8 EVALUATION KIT AVAILABLE Dual 3mA Pin-Programmable LDO General Description The offer low-dropout (LDO) voltage and ultra-low-power regulation in a subminiaturized 2mm x 2mm µdfn package.

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-1812; Rev ; 1/1 5mA, Low-Dropout, General Description The low-dropout linear regulator operates from a +2.5V to +5.5V supply and delivers a guaranteed 5mA load current with low 12mV dropout. The high-accuracy

More information

DS600. ±0.5 Accurate Analog-Output Temperature Sensor

DS600. ±0.5 Accurate Analog-Output Temperature Sensor www.maxim-ic.com GENERAL DESCRIPTION The is a ±0.5 C accurate analog-output temperature sensor. This accuracy is valid over its entire operating voltage range of and the wide temperature range of -20 C

More information

High-Voltage, Low-Power Linear Regulators for

High-Voltage, Low-Power Linear Regulators for 19-3495; Rev ; 11/4 High-oltage, Low-Power Linear Regulators for General Description The are micropower, 8-pin TDFN linear regulators that supply always-on, keep-alive power to CMOS RAM, real-time clocks

More information

Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT23

Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT23 19-1803; Rev 3; 3/09 Single/Dual LVDS Line Receivers with General Description The single/dual low-voltage differential signaling (LVDS) receivers are designed for highspeed applications requiring minimum

More information

5- to 10-Cell Li+ Protector with Cell Balancing

5- to 10-Cell Li+ Protector with Cell Balancing Rev 0; 4/08 5- to 10-Cell Li+ Protector with Cell Balancing General Description The provides full charge and discharge protection for 5- to 10-cell lithium-ion (Li+) battery packs. The protection circuit

More information

50Ω, Low-Voltage, Quad SPST/Dual SPDT Analog Switches in WLP

50Ω, Low-Voltage, Quad SPST/Dual SPDT Analog Switches in WLP 9-266; Rev 3; /2 5Ω, Low-Voltage, Quad SPST/Dual SPDT Analog General Description The low-voltage, quad single-pole single-throw (SPST)/dual single-pole/double-throw (SPDT) analog switches operate from

More information

High-Voltage Switch for Wireless Power

High-Voltage Switch for Wireless Power General Description The MAX20304 is a DPST switch intended for wirelesspower-circuit applications. The new application for the portable device is the magnetic card reader. There has been a method to use

More information

Not Recommended for New Designs

Not Recommended for New Designs Not Recommended for New Designs The MAX99 was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. A Maxim replacement

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-267; Rev ; 7/1 Low-Dropout, Constant-Current General Description The low-dropout bias supply for white LEDs is a high-performance alternative to the simple ballast resistors used in conventional white

More information

±15kV ESD-Protected, 1Mbps, 1µA RS-232 Transmitters in SOT23-6

±15kV ESD-Protected, 1Mbps, 1µA RS-232 Transmitters in SOT23-6 19-164; Rev 1; 3/ ±15k ESD-Protected, bps, 1 General Description The / single RS-3 transmitters in a SOT3-6 package are for space- and cost-constrained applications requiring minimal RS-3 communications.

More information

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators 9-; Rev ; / Single/Dual/Quad, Micropower, General Description The MAX9 MAX9 single/dual/quad micropower comparators feature rail-to-rail inputs and outputs, and fully specified single-supply operation

More information

2MHz High-Brightness LED Drivers with High-Side Current Sense and 5000:1 Dimming

2MHz High-Brightness LED Drivers with High-Side Current Sense and 5000:1 Dimming EVALUATION KIT AVAILABLE MAX16819/MAX16820 General Description The MAX16819/MAX16820, step-down constantcurrent high-brightness LED (HB LED) drivers provide a cost-effective solution for architectural

More information

G692/G693 4-Pin µp Voltage Monitors with Manual Reset Input

G692/G693 4-Pin µp Voltage Monitors with Manual Reset Input 4-Pin µp Voltage Monitors with Manual Reset Input Features Precision Monitoring of +3V, +3.3V, and +5V Power-Supply Voltages Fully Specified Over Temperature Available in Three Output Configurations Push-Pull

More information

±15kV ESD-Protected 52Mbps, 3V to 5.5V, SOT23 RS-485/RS-422 True Fail-Safe Receivers

±15kV ESD-Protected 52Mbps, 3V to 5.5V, SOT23 RS-485/RS-422 True Fail-Safe Receivers 19-3; Rev 1; 3/11 ±1kV ESD-Protected Mbps, 3V to.v, SOT3 General Description The MAX38E/MAX381E/MAX383E/MAX384E are single receivers designed for RS-48 and RS-4 communication. These devices guarantee data

More information

High-Voltage, 350mA LED Driver with Analog and PWM Dimming Control

High-Voltage, 350mA LED Driver with Analog and PWM Dimming Control 19-589; Rev ; 7/6 General Description The current regulator operates from a 5.5V to 4V input voltage range and delivers 35mA to 35mA to one or more strings of high-brightness (HB ). The output current

More information

Current-Limited Switch for Two USB Ports

Current-Limited Switch for Two USB Ports 9-2385; Rev 2; /2 Current-Limited Switch for Two USB Ports General escription The MAX93 current-limited 7mΩ switch with built-in fault blanking provides an accurate, preset.2a to 2.3A current limit, making

More information

EVALUATION KIT AVAILABLE Precision, High-Bandwidth Op Amp

EVALUATION KIT AVAILABLE Precision, High-Bandwidth Op Amp 19-227; Rev ; 9/1 EVALUATION KIT AVAILABLE Precision, High-Bandwidth Op Amp General Description The op amp features rail-to-rail output and MHz GBW at just 1mA supply current. At power-up, this device

More information

Low-Voltage, Dual SPDT, Audio Clickless Switches With Negative Rail Capability

Low-Voltage, Dual SPDT, Audio Clickless Switches With Negative Rail Capability 19-563; Rev ; 5/6 Low-Voltage, Dual SPDT, Audio Clickless General Description The dual SPDT (single pole/double throw) audio switches feature negative signal capability that allows signals as low as -

More information

Precision, High-Bandwidth Op Amp

Precision, High-Bandwidth Op Amp EVALUATION KIT AVAILABLE MAX9622 General Description The MAX9622 op amp features rail-to-rail output and MHz GBW at just 1mA supply current. At power-up, this device autocalibrates its input offset voltage

More information

Dual-Output Step-Down and LCD Step-Up Power Supply for PDAs

Dual-Output Step-Down and LCD Step-Up Power Supply for PDAs 19-2248; Rev 2; 5/11 EVALUATI KIT AVAILABLE Dual-Output Step-Down and LCD Step-Up General Description The dual power supply contains a step-down and step-up DC-DC converter in a small 12-pin TQFN package

More information

I/O Op Amps with Shutdown

I/O Op Amps with Shutdown MHz, μa, Rail-to-Rail General Description The single MAX994/MAX995 and dual MAX996/ MAX997 operational amplifiers feature maximized ratio of gain bandwidth to supply current and are ideal for battery-powered

More information