EET 273 Experiment Introduction to Loop Control

Size: px
Start display at page:

Download "EET 273 Experiment Introduction to Loop Control"

Transcription

1 Now that we have calibrated and characterized all of the pieces of our system, we are ready to begin to attempt to accurately control the motor. Our system is designed to control the speed of the motor. The goal is to maintain a set speed no matter what the load is on the motor. A closed loop control system uses feedback from the motor to the controller. This feedback informs the controller about the status of the motor. If the motor is turning at the wrong speed the controller can adjust its output to change the motor speed. With the characteristic data we created in the sensors and calibration experiments, we could theoretically obtain any desired speed without feedback. This works if the system works exactly as I have characterized it. What happens if the motor is suddenly loaded? Our information doesn't account for that. If this happens in an open loop system the controller continues to output the same information but the motor turns slower. A closed loop system will make an adjustment to keep the speed at the desired set point. In our experiment we are going to use the blue knobbed pot as a way to load the motor. We will insert it between the PLC and the PWM board. When set normally, the output of the PLC will arrive at the PWM board and the motor will turn at full speed. However, if I adjust the pot, I can reduce the voltage applied to the PWM board. This will have the desired affect of slowing the motor down. If the control system is acting properly, the controller will adjust the output of the PLC to compensate for this. In theory the PLC output will increase until the voltage on the input of the PWM board is the original desired voltage. In this lab we will investigate 3 different methods of control: Open Loop, On/OFF and PID. These three methods range from least complicated to most complicated. They all have different limitations and uses. PID will give the most accurate control, but is also the most complicated. ON/OFF is good if feedback is required but accuracy is not paramount. A home heater system is a great example of ON/OFF control. Open loop control provides no feedback. This is best for digital applications where something should be in an ON or OFF state. Turning on street lights at night is typical open loop application. Objectives Compare accuracy of motor speed for all three types of controllers Be able to describe different control responses for each controller Recognize control system blocks in a system. Equipment Motor control trainer ** You should do these tasks in order. They will make more sense that way. Task 1: Open Loop This lab requires you to hook up the schematic shown in Schematic 1. This is similar to the schematic from the previous lab. In this lab, the 5K blue knob pot that we previously used for speed control is used as a method for disturbing our system. You should connect it between the PLC and the PWM board. Turn the pot fully CW for normal operation. When turned fully CW the voltage output from the PLC is applied to the PWM board. Turning the knob CCW will reduce the voltage to the PWM board, this will slow the motor down. We will use this to mimic Farrell 1 03/13/16

2 placing a mechanical load on our motor or any other process variation that causes our motor to slow down. For open loop we will use the same code as the calibration lab. You should use your modified code. If you don't have the code from that lab you will have to reload Calibration.ckp and modify it for your system. 1. Your code should be the same as Calibration.ckp except that 0% output produces the voltage needed to spin the motor at 3rpm. 100% output should spin the motor at 24rpm. 2. Speed will be controlled by modifying the values in the Data View Window. Before starting this experiment, you should double check the calibration of the tachboard. You can do this by setting the SP to 0 and 100% and verifying the proper response from the tachboard. Make sure Disturbance Pot, the blue knob, is fully CW. 1. Once again DF8 is our Setpoint, DF1 is the speed reported by the Tachboard, DF3 is the PLC output, and C5 is our start/stop. 2. 0% in DF1 should be 3rpm and 100% should be 24rpm. *** If you do not do this, you will have very bad results that will likely result in you doing all of the work again. For measurement on this task, connect the Oscope to the Encoder A or B output. Use the DMM to monitor the PLC control output voltage. This should be measured on the output of the PLC, not the input to the PWM board. Based on the data you calculated in the previous labs, Set the SP (DF8) of the PLC to produce the voltage needed to make your motor turn at 15rpm 1. Adjust this voltage until you get 15rpm's on the motor. 2. You will need the data from the switch and sensor lab to verify that the motor is turning at 15rpm. Measure the output voltage of the PLC, the frequency of the encoder, and input reading of the PLC (0-100%). If the output voltage is not correct adjust your PLC settings until it is correct. 1. How accurate was your original speed setting? Did you have to adjust DF8 after the initial calculation? (%Error is a good way to explain this) Turn the blue knob approximately one complete revolution CCW. This should happen very quickly. It doesn't need to be accurate, but needs to happen as instantly as possible. Measure the data again. 1. What happened to the motor and your speed error? Task 2: ON/OFF This task uses the same circuit wiring. Make sure the 'disturbance pot' is fully CW. For the PLC program use ON_OFF.ckp Use CH1 of the Oscope to measure the voltage signal from the PLC to the PWM board. Use CH2 to measure the voltage/current being return from Tachboard. 1. CH1 should be the trigger voltage Farrell 2 03/13/16

3 2. Set the measure function on the Oscope to measure the RMS value for both channels. 3. Make sure that you set the scale to produce several periods of the waveforms, this will place the scope in Scan mode. You will need to put the scope in normal mode, not auto mode. You cannot measure RMS in auto mode. 4. In order to get a good image in scan mode, set the scope to single trigger. When the scope triggers, the display at the top center will change from Armed or Ready to Triggered. Once this happens it takes a minute for it to collect all the data to display, be patient. 5. On the screen, set CH1 and CH2 so that the 0V indicator is at the same location for both channels and near the bottom of the screen. Use the smallest V/Div setting possible. Set the system to run at 15RPM. 1. What happens? 2. Create a screen capture of the data. 3. For each channel, record Vrms, Vmax, Vmin, and period. For the PLC output record the duty cycle. You can approximate all but the Vrms value. Vrms should use the measure function. Turn the disturbance pot approximately one turn CCW. This should happen very quickly. It doesn't need to be accurate, but needs to happen as instantly as possible. 1. Create a screen capture of the new data. 2. Record Vrms, Vmax, Vmin, and period for both channels. For the PLC output record the duty cycle. Make sure you print your screen captures and place them in your notebooks. Task 3: PID This task uses the same circuit wiring. Make sure the 'disturbance pot' is fully CW. For the PLC program use PID.ckp. Kp (DF12) should be set to 7, Ki (DF13)to 5, Kd (DF14) to 1, and Offset (DF9) to 0. If this is not the case change them in the data view. The setpoint (SP) (DF8) should be the same set point that you used for the previous labs. The controller should be set for Reverse Action (C2=0). It can be started and stopped with C5 as in the previous labs. All of these should be found in the Data View on the software. CH1 and CH2 of the Oscope should be set up the same as in the previous task. Make sure you line up the 0V marks for both channels. For each channel use the smallest V/Div that is possible. 1. Set the Oscope for Single Trigger 2. Set the trigger point of CH1 to just above the value of the current output. 3. Adjust the horizontal position so that the trigger point is near the left side of the screen. It should be about 2 divisions in from the left. Quickly turn the disturbance pot one turn CCW. You should see the scope change from Armed or Ready to Triggered 1. Once you have the waveform, make sure you see the MV change from initial value to its final value. Farrell 3 03/13/16

4 2. Record initial and final values of both the MV and PV. 3. Save the waveform for your notebook. Make sure you take your circuit apart, so that other groups don't need to do it for you. Discussion Questions Make sure you can fully explain and defend your answers. Explain where each of these variables is in our system 1. SP 2. PV 3. MV 4. Final Control Element 5. Process What SP setting did you use to achieve 15rpm? How accurate is the open loop control? What happens to the open loop control when you disturb the motor? How accurate is the ON/OFF controller? 1. Is the RMS MV and PV value correct for 15rpm? 2. What happens to the MV and PV signals when you disturb the system, turn the pot? Discuss these in terms of RMS, Vmax, Vmin, and period. What happens to the PID controller when it is disturbed? 1. What happens to the MV and PV values? 2. Do you observe any change in the PV values? (look carefully at your waveforms) Which controller has the least error at all times? Describe the differences between these three controllers. Farrell 4 03/13/16

5 Schematic 1: Control Loop Schematic Farrell 5 03/13/16

Experiment 7: PID Motor Speed Control

Experiment 7: PID Motor Speed Control Experiment 7: PID Motor Speed Control Introduction The error output, Ve, of the tachometer circuit from experiment 6 will be connected to the input of a PID controller. The output of the PID controller,

More information

Electronics Design Laboratory Lecture #6. ECEN2270 Electronics Design Laboratory

Electronics Design Laboratory Lecture #6. ECEN2270 Electronics Design Laboratory Electronics Design Laboratory Lecture #6 Electronics Design Laboratory 1 Soldering tips ECEN 227 Electronics Design Laboratory 2 Introduction to Lab 3 Part B: Closed-Loop Speed Control -1V Experiment 3A

More information

ME 461 Laboratory #5 Characterization and Control of PMDC Motors

ME 461 Laboratory #5 Characterization and Control of PMDC Motors ME 461 Laboratory #5 Characterization and Control of PMDC Motors Goals: 1. Build an op-amp circuit and use it to scale and shift an analog voltage. 2. Calibrate a tachometer and use it to determine motor

More information

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization The University of Jordan Mechatronics Engineering Department Electronics Lab.(0908322) Experiment 1: Lab Equipment Familiarization Objectives To be familiar with the main blocks of the oscilloscope and

More information

Experiment 9 : Pulse Width Modulation

Experiment 9 : Pulse Width Modulation Name/NetID: Experiment 9 : Pulse Width Modulation Laboratory Outline In experiment 5 we learned how to control the speed of a DC motor using a variable resistor. This week, we will learn an alternative

More information

ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope

ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope In this laboratory you will learn to use two additional instruments in the laboratory, namely the function/arbitrary waveform generator, which

More information

Introduction to basic laboratory instruments

Introduction to basic laboratory instruments BEE 233 Laboratory-1 Introduction to basic laboratory instruments 1. Objectives To learn safety procedures in the laboratory. To learn how to use basic laboratory instruments: power supply, function generator,

More information

ENGR 1110: Introduction to Engineering Lab 7 Pulse Width Modulation (PWM)

ENGR 1110: Introduction to Engineering Lab 7 Pulse Width Modulation (PWM) ENGR 1110: Introduction to Engineering Lab 7 Pulse Width Modulation (PWM) Supplies Needed Motor control board, Transmitter (with good batteries), Receiver Equipment Used Oscilloscope, Function Generator,

More information

Specifications for DS1000CA Series

Specifications for DS1000CA Series Revised December, 2009 RIGOL Specifications for DS1000CA Series All specifications apply to the DS1000CA Series Oscilloscopes unless noted otherwise. To meet these specifications, two conditions must first

More information

6.4 Adjusting PID Manually

6.4 Adjusting PID Manually Setting Display Parameter Setting Display Operation Display > PARAMETER or PARA key for 3 seconds (to [MODE] Menu Display) > Right arrow key (to [PID] Menu Display ) > SET/ENTER key (The setting parameter

More information

CPE 310L EMBEDDED SYSTEM DESIGN LABORATORY

CPE 310L EMBEDDED SYSTEM DESIGN LABORATORY CPE 310L EMBEDDED SYSTEM DESIGN LABORATORY LABORATORY 1 LAB SAFETY & LAB EQUIPMENT USE TUTORIAL DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOALS: Introduce laboratory

More information

SINGLE SENSOR LINE FOLLOWER

SINGLE SENSOR LINE FOLLOWER SINGLE SENSOR LINE FOLLOWER One Sensor Line Following Sensor on edge of line If sensor is reading White: Robot is too far right and needs to turn left Black: Robot is too far left and needs to turn right

More information

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits Table of Contents: Pre-Lab Assignment 2 Background 2 National Instruments MyDAQ 2 Resistors 3 Capacitors

More information

EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

Experiment 9. PID Controller

Experiment 9. PID Controller Experiment 9 PID Controller Objective: - To be familiar with PID controller. - Noting how changing PID controller parameter effect on system response. Theory: The basic function of a controller is to execute

More information

Lab 5: Inverted Pendulum PID Control

Lab 5: Inverted Pendulum PID Control Lab 5: Inverted Pendulum PID Control In this lab we will be learning about PID (Proportional Integral Derivative) control and using it to keep an inverted pendulum system upright. We chose an inverted

More information

Voltage (measured on the vertical axis)

Voltage (measured on the vertical axis) Operate a Digital Storage Oscilloscope Name(s) It is important to understand these basic features of the oscilloscope. VOLTAGE measured on the vertical axis. TIME measured on the horizontal axis. TRIGGER

More information

Teaching Mechanical Students to Build and Analyze Motor Controllers

Teaching Mechanical Students to Build and Analyze Motor Controllers Teaching Mechanical Students to Build and Analyze Motor Controllers Hugh Jack, Associate Professor Padnos School of Engineering Grand Valley State University Grand Rapids, MI email: jackh@gvsu.edu Session

More information

Physics 310 Lab 6 Op Amps

Physics 310 Lab 6 Op Amps Physics 310 Lab 6 Op Amps Equipment: Op-Amp, IC test clip, IC extractor, breadboard, silver mini-power supply, two function generators, oscilloscope, two 5.1 k s, 2.7 k, three 10 k s, 1 k, 100 k, LED,

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 READING ASSIGNMENT 6.101 Introductory Analog Electronics Laboratory Laboratory

More information

Jaguar speed controllers

Jaguar speed controllers Jaguar speed controllers When used with CAN control, Jaguars are smart speed controllers. You can simply send a command to the Jaguar such as a position setpoint and it will use attached sensors to move

More information

InstrumentationTools.com

InstrumentationTools.com Author: Instrumentation Tools Categories: Control Systems Ziegler-Nichols Closed-Loop Method (Ultimate Gain) Closed-loop refers to the operation of a control system with the controlling device in automatic

More information

Active Vibration Isolation of an Unbalanced Machine Tool Spindle

Active Vibration Isolation of an Unbalanced Machine Tool Spindle Active Vibration Isolation of an Unbalanced Machine Tool Spindle David. J. Hopkins, Paul Geraghty Lawrence Livermore National Laboratory 7000 East Ave, MS/L-792, Livermore, CA. 94550 Abstract Proper configurations

More information

A logical step into basic servo solutions SMARTSTEP

A logical step into basic servo solutions SMARTSTEP A logical step into basic servo solutions SMARTSTEP easy to use, highly dynamic Advanced Industrial Automation Omron s SmartStep is a combined (motor and driver) servo system for point-to-point (PTP) positioning

More information

AMS Tips, Tricks & FAQ s

AMS Tips, Tricks & FAQ s AMS Tips, Tricks & FAQ s Ed Fortner, Bill Brooks, John Jayne AMS User s Meeting 2012 10/15/12 Leak Checking Tips 1 Normal Leak If the Airbeam (m/z 28,32,40) has a diff/closed ratio of < 2 you probably

More information

Specifications. Specifications and Characteristics Specifications

Specifications. Specifications and Characteristics Specifications Specifications and Specifications Specifications All specifications are warranted. Specifications are valid after a 30-minute warm-up period and ±5 C from last calibration temperature. Bandwidth (-3dB)

More information

Chapter 5 : Specifications

Chapter 5 : Specifications Chapter 5 : Specifications All specifications apply to the DS1000B Series Oscilloscopes and a probe with the Attenuation switch set to 10X unless noted otherwise. To meet these specifications, two conditions

More information

PID. What is PID and how does it work? Auto tuning PID with the 5400 Controller. Visit our website at:

PID. What is PID and how does it work? Auto tuning PID with the 5400 Controller. Visit our website at: PID What is PID and how does it work? Auto tuning PID with the 5400 Controller What is PID? PID control (pronounced P-eye-Dee) stands for Proportional-Integral-Derivative, and is a mathematical method

More information

University of Utah Electrical & Computer Engineering Department ECE 1250 Lab 4 Pulse Width Modulation Circuit

University of Utah Electrical & Computer Engineering Department ECE 1250 Lab 4 Pulse Width Modulation Circuit University of Utah Electrical & Computer Engineering Department ECE 1250 Lab 4 Pulse Width Modulation Circuit Note: Bring textbook & parts used last time to lab. A. Stolp, 1/8/12 rev, Objective Build a

More information

EE/CPE LABORATORY 1 LAB SAFETY & LAB EQUIPMENT USE TUTORIAL. by Ming Zhu UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE 2. COMPONENTS & EQUIPMENT

EE/CPE LABORATORY 1 LAB SAFETY & LAB EQUIPMENT USE TUTORIAL. by Ming Zhu UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE 2. COMPONENTS & EQUIPMENT EE/CPE LABORATORY 1 LAB SAFETY & LAB EQUIPMENT USE TUTORIAL by Ming Zhu DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE Introduce laboratory safety procedures

More information

Notes on Experiment #2

Notes on Experiment #2 Notes on Experiment #2 The purpose of this experiment is to get some practice measuring voltage using the oscilloscope. You will be practicing direct and differential measuring techniques. You will also

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 13.11.2014

More information

Experiment 1: Instrument Familiarization (8/28/06)

Experiment 1: Instrument Familiarization (8/28/06) Electrical Measurement Issues Experiment 1: Instrument Familiarization (8/28/06) Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab University of Jordan School of Engineering Electrical Engineering Department EE 204 Electrical Engineering Lab EXPERIMENT 1 MEASUREMENT DEVICES Prepared by: Prof. Mohammed Hawa EXPERIMENT 1 MEASUREMENT

More information

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page! ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Non-inverting Gain Configurations Gain-Bandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors

More information

Notes on Experiment #1

Notes on Experiment #1 Notes on Experiment #1 Bring graph paper (cm cm is best) From this week on, be sure to print a copy of each experiment and bring it with you to lab. There will not be any experiment copies available in

More information

Embedded Control Project -Iterative learning control for

Embedded Control Project -Iterative learning control for Embedded Control Project -Iterative learning control for Author : Axel Andersson Hariprasad Govindharajan Shahrzad Khodayari Project Guide : Alexander Medvedev Program : Embedded Systems and Engineering

More information

LAB I. INTRODUCTION TO LAB EQUIPMENT

LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB I. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Agilent MSO6032A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G P R O F. S L A C K L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G G B S E E E @ R I T. E D U B L D I N G 9, O F F I C E 0 9-3 1 8 9 ( 5 8 5 ) 4 7 5-5 1 0

More information

ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 433 CONTROL SYSTEMS ANALYSIS AND DESIGN LABORATORY EXPERIENCES

ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 433 CONTROL SYSTEMS ANALYSIS AND DESIGN LABORATORY EXPERIENCES ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 433 CONTROL SYSTEMS ANALYSIS AND DESIGN LABORATORY EXPERIENCES EXPERIMENT 4: ERROR SIGNAL CHARACTERIZATION In this laboratory experience we will use the two

More information

PID Control Technical Notes

PID Control Technical Notes PID Control Technical Notes General PID (Proportional-Integral-Derivative) control action allows the process control to accurately maintain setpoint by adjusting the control outputs. In this technical

More information

SxWEB PID algorithm experimental tuning

SxWEB PID algorithm experimental tuning SxWEB PID algorithm experimental tuning rev. 0.3, 13 July 2017 Index 1. PID ALGORITHM SX2WEB24 SYSTEM... 2 2. PID EXPERIMENTAL TUNING IN THE SX2WEB24... 3 2.1 OPEN LOOP TUNING PROCEDURE... 3 2.1.1 How

More information

Observer-based Engine Cooling Control System (OBCOOL) Project Proposal. Students: Andrew Fouts & Kurtis Liggett. Advisor: Dr.

Observer-based Engine Cooling Control System (OBCOOL) Project Proposal. Students: Andrew Fouts & Kurtis Liggett. Advisor: Dr. Observer-based Engine Cooling Control System (OBCOOL) Project Proposal Students: Andrew Fouts & Kurtis Liggett Advisor: Dr. Gary Dempsey Date: December 09, 2010 1 Introduction Control systems exist in

More information

6.270 Lecture. Control Systems

6.270 Lecture. Control Systems 6.270 Lecture Control Systems Steven Jorgensen Massachusetts Institute of Technology January 2014 Overview of Lecture Feed Forward Open Loop Controller Pros and Cons Bang-Bang Closed Loop Controller Intro

More information

LAB II. INTRODUCTION TO LAB EQUIPMENT

LAB II. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB II. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Keysight DSOX1102A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

Figure 1: Unity Feedback System. The transfer function of the PID controller looks like the following:

Figure 1: Unity Feedback System. The transfer function of the PID controller looks like the following: Islamic University of Gaza Faculty of Engineering Electrical Engineering department Control Systems Design Lab Eng. Mohammed S. Jouda Eng. Ola M. Skeik Experiment 3 PID Controller Overview This experiment

More information

TF Electronics Throttle Controller

TF Electronics Throttle Controller TF Electronics Throttle Controller Software Installation: Double click on TFEsetup.exe file to start installation. After installation there will be a shortcut on your desktop. Connecting the USB cable

More information

Controlling an AC Motor

Controlling an AC Motor Controlling an AC Motor Elias Badillo Ibarra James Smith December 7, 2010 EE 554 Embedded Control Systems Abstract The goal of this project was to implement a PID motor controller to control velocity in

More information

Exercise 2: Demodulation (Quadrature Detector)

Exercise 2: Demodulation (Quadrature Detector) Analog Communications Angle Modulation and Demodulation Exercise 2: Demodulation (Quadrature Detector) EXERCISE OBJECTIVE When you have completed this exercise, you will be able to explain demodulation

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 039 READING ASSIGNMENT Spring Term 007 6.0 Introductory Analog Electronics Laboratory

More information

MSK4310 Demonstration

MSK4310 Demonstration MSK4310 Demonstration The MSK4310 3 Phase DC Brushless Speed Controller hybrid is a complete closed loop velocity mode controller for driving a brushless motor. It requires no external velocity feedback

More information

Procidia Control Solutions Dead Time Compensation

Procidia Control Solutions Dead Time Compensation APPLICATION DATA Procidia Control Solutions Dead Time Compensation AD353-127 Rev 2 April 2012 This application data sheet describes dead time compensation methods. A configuration can be developed within

More information

NI 951x C Series Modules Object Dictionary

NI 951x C Series Modules Object Dictionary NI 951x C Series Modules Object Dictionary Contents This document contains the NI 951x C Series drive interface modules vendor extensions to the object dictionary. Input/Output & Feedback Objects... 3

More information

Variable Gm Calibration Procedure

Variable Gm Calibration Procedure Variable Gm Calibration Procedure REV. 3 Sept. 16, 2018. Warm-up Power on the unit and let it warm for about 20-30 minutes, so that all circuitries stabilize. A.C. Check With a DMM (Digital Multi Meter)

More information

Electronics Design Laboratory Lecture #1, Fall 2014

Electronics Design Laboratory Lecture #1, Fall 2014 Electronics Design Laboratory Lecture #1, Fall 2014 Dr. Daniel Seltzer Teaching Assistants: Fenglong Lu & Ali Sepahvand Electronics Design Laboratory 1 Daniel Seltzer seltzer@colorado.edu Fenglong Lu Fenglong.Lu@colorado.edu

More information

Physics 310 Lab 2 Circuit Transients and Oscilloscopes

Physics 310 Lab 2 Circuit Transients and Oscilloscopes Physics 310 Lab 2 Circuit Transients and Oscilloscopes Equipment: function generator, oscilloscope, two BNC cables, BNC T connector, BNC banana adapter, breadboards, wire packs, some banana cables, three

More information

Parts to be supplied by the student: Breadboard and wires IRLZ34N N-channel enhancement-mode power MOSFET transistor

Parts to be supplied by the student: Breadboard and wires IRLZ34N N-channel enhancement-mode power MOSFET transistor University of Utah Electrical & Computer Engineering Department ECE 1250 Lab 3 Electronic Speed Control and Pulse Width Modulation A. Stolp, 12/31/12 Rev. Objectives 1 Introduce the Oscilloscope and learn

More information

MITOS VT6 AIR USER MANUAL. 02/10/2015 Manual_MITOS_VT6_AIR_ver3p3_eng

MITOS VT6 AIR USER MANUAL. 02/10/2015 Manual_MITOS_VT6_AIR_ver3p3_eng MITOS VT6 AIR USER MANUAL 02/10/2015 Manual_MITOS_VT6_AIR_ver3p3_eng Summary: GENERAL DESCRIPTION... 3 GENERAL FEATURES... 3 FUNCTIONING PARAMETERS... 4 FUNCTIONING MODE OF THE MITOS VT6 AIR... 7 FUNCTIONING

More information

SRV02-Series Rotary Experiment # 3. Ball & Beam. Student Handout

SRV02-Series Rotary Experiment # 3. Ball & Beam. Student Handout SRV02-Series Rotary Experiment # 3 Ball & Beam Student Handout SRV02-Series Rotary Experiment # 3 Ball & Beam Student Handout 1. Objectives The objective in this experiment is to design a controller for

More information

Experiment 1: Instrument Familiarization

Experiment 1: Instrument Familiarization Electrical Measurement Issues Experiment 1: Instrument Familiarization Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied to the

More information

ME 333 Assignment 7 and 8 PI Control of LED/Phototransistor Pair. Overview

ME 333 Assignment 7 and 8 PI Control of LED/Phototransistor Pair. Overview ME 333 Assignment 7 and 8 PI Control of LED/Phototransistor Pair Overview For this assignment, you will be controlling the light emitted from and received by an LED/phototransistor pair. There are many

More information

GE 320: Introduction to Control Systems

GE 320: Introduction to Control Systems GE 320: Introduction to Control Systems Laboratory Section Manual 1 Welcome to GE 320.. 1 www.softbankrobotics.com 1 1 Introduction This section summarizes the course content and outlines the general procedure

More information

ECE 53A: Fundamentals of Electrical Engineering I

ECE 53A: Fundamentals of Electrical Engineering I ECE 53A: Fundamentals of Electrical Engineering I Laboratory Assignment #1: Instrument Operation, Basic Resistor Measurements and Kirchhoff s Laws Fall 2007 General Guidelines: - Record data and observations

More information

CHAPTER 6. Motor Driver

CHAPTER 6. Motor Driver CHAPTER 6 Motor Driver In this lab, we will construct the circuitry that your robot uses to drive its motors. However, before testing the motor circuit we will begin by making sure that you are able to

More information

EE 308 Spring Preparation for Final Lab Project Simple Motor Control. Motor Control

EE 308 Spring Preparation for Final Lab Project Simple Motor Control. Motor Control Preparation for Final Lab Project Simple Motor Control Motor Control A proportional integral derivative controller (PID controller) is a generic control loop feedback mechanism (controller) widely used

More information

3 - Using the Telecoms-Trainer 101 to model equations

3 - Using the Telecoms-Trainer 101 to model equations Name: Class: 3 - Using the Telecoms-Trainer 101 to model equations Experiment 3 Using the Telecoms-Trainer 101 to model equations Preliminary discussion This may surprise you, but mathematics is an important

More information

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 4 Alternating Current Measurement Equipment: Supplies: Oscilloscope, Function Generator. Filament Transformer. A sine wave A.C. signal has three basic properties:

More information

FT201 PRODUCT MANUAL PART NUMBER: SG REVISION: A

FT201 PRODUCT MANUAL PART NUMBER: SG REVISION: A FT201 PRODUCT MANUAL PART NUMBER: SG072310005 REVISION: A FT201 PRODUCT MANUAL General The FT201 is designed to be both a tester and demo unit for spreader controls. Using the proper interface cable the

More information

Speed Feedback and Current Control in PWM DC Motor Drives

Speed Feedback and Current Control in PWM DC Motor Drives Exercise 3 Speed Feedback and Current Control in PWM DC Motor Drives EXERCISE OBJECTIVE When you have completed this exercise, you will know how to improve the regulation of speed in PWM dc motor drives.

More information

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION Objectives: ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION The primary goal of this laboratory is to study the operation and limitations of several commonly used pieces of instrumentation:

More information

Basic Tuning for the SERVOSTAR 400/600

Basic Tuning for the SERVOSTAR 400/600 Basic Tuning for the SERVOSTAR 400/600 Welcome to Kollmorgen s interactive tuning chart. The first three sheets of this document provide a flow chart to describe tuning the servo gains of a SERVOSTAR 400/600.

More information

Independent Technology Service Inc Independence Ave. Chatsworth, California Toll Free:

Independent Technology Service Inc Independence Ave. Chatsworth, California Toll Free: Independent Technology Service Inc. 9182 Independence Ave. Chatsworth, California 91311 www.itscnc.com Toll Free: 1.800.342.3475 NEW Brush Amplifiers For Fadal Machines AMP-0006N-ITS AMP-0021N-ITS NEW

More information

InstaSPIN-BLDC Lab. DRV8312 Setup Jumpers and switches must be setup properly or the kit will not function correctly!

InstaSPIN-BLDC Lab. DRV8312 Setup Jumpers and switches must be setup properly or the kit will not function correctly! InstaSPIN-BLDC Lab Introduction For this lab we are using the DRV8312 Low Voltage, Low Current Power Stage (the DRV8301/2 Kit can also be used) with Piccolo F28035 controlcard to run the sensorless InstaSPIN-BLDC

More information

EE152 Final Project Report

EE152 Final Project Report LPMC (Low Power Motor Controller) EE152 Final Project Report Summary: For my final project, I designed a brushless motor controller that operates with 6-step commutation with a PI speed loop. There are

More information

Chapter 5. Tracking system with MEMS mirror

Chapter 5. Tracking system with MEMS mirror Chapter 5 Tracking system with MEMS mirror Up to now, this project has dealt with the theoretical optimization of the tracking servo with MEMS mirror through the use of simulation models. For these models

More information

UTD1000 User Manual. Table of Contents

UTD1000 User Manual. Table of Contents Table of Contents Introduction : UTD1000 Series Digital Storage Oscilloscope Chapter 1 User Guide 1. Getting to know your UTD1000 Digital Storage Oscilloscope 2. General Inspection 3. Functional Check

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 05.11.2015

More information

Press Cursors and use the appropriate X and Y functions to measure period and peak-peak voltage of the square wave.

Press Cursors and use the appropriate X and Y functions to measure period and peak-peak voltage of the square wave. Equipment Review To assure that everyone is up to speed for the hurdles ahead, the first lab of the semester is traditionally an easy review of electrical laboratory fundamentals. There will, however,

More information

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS 6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS Laboratory based hardware prototype is developed for the z-source inverter based conversion set up in line with control system designed, simulated and discussed

More information

Laboratory Design Project: PWM DC Motor Speed Control

Laboratory Design Project: PWM DC Motor Speed Control EE-331 Devices and Circuits I Summer 2013 Due dates: Laboratory Design Project: PWM DC Motor Speed Control Instructor: Tai-Chang Chen 1. Operation of the circuit should be verified by your lab TA by Friday,

More information

Lab 1: Basic Lab Equipment and Measurements

Lab 1: Basic Lab Equipment and Measurements Abstract: Lab 1: Basic Lab Equipment and Measurements This lab exercise introduces the basic measurement instruments that will be used throughout the course. These instruments include multimeters, oscilloscopes,

More information

Experiment Of Speed Control for an Electric Trishaw Based on PID Control Algorithm

Experiment Of Speed Control for an Electric Trishaw Based on PID Control Algorithm International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:17 No:02 38 Experiment Of Speed Control for an Electric Trishaw Based on PID Control Algorithm Shahrizal Saat 1 *, Mohd Nabil

More information

1.0 Introduction to VirtualBench

1.0 Introduction to VirtualBench Table of Contents 1.0 Introduction to VirtualBench... 3 1. 1 VirtualBench in the Laboratory... 3 1.2 VirtualBench Specifications... 4 1.3 Introduction to VirtualBench Getting Started Guide Lab Exercises...

More information

Laboratory Project 1B: Electromyogram Circuit

Laboratory Project 1B: Electromyogram Circuit 2240 Laboratory Project 1B: Electromyogram Circuit N. E. Cotter, D. Christensen, and K. Furse Electrical and Computer Engineering Department University of Utah Salt Lake City, UT 84112 Abstract-You will

More information

Faculty of Engineering, Thammasat University

Faculty of Engineering, Thammasat University Faculty of Engineering, Thammasat University Experiment 6: Oscilloscope (For room 506) Objectives: 1. To familiarize you with the Oscilloscope and Function Generator User Manual: Oscilloscope 1 5 9 4 7

More information

MEHRAN UNIVERSITY OF ENGINEERING & TECHNOLOGY, JAMSHORO

MEHRAN UNIVERSITY OF ENGINEERING & TECHNOLOGY, JAMSHORO DEPARTMENT OF MEHRAN UNIVERSITY OF ENGINEERING & TECHNOLOGY, JAMSHORO Name Roll No. Subject Teacher MEHRAN UNIVERSITY OF ENGINEERING & TECHNOLOGY, JAMSHORO 1 Name:. Roll No: Score: Signature of Lab Tutor:

More information

Mercury technical manual

Mercury technical manual v.1 Mercury technical manual September 2017 1 Mercury technical manual v.1 Mercury technical manual 1. Introduction 2. Connection details 2.1 Pin assignments 2.2 Connecting multiple units 2.3 Mercury Link

More information

PROCESS DYNAMICS AND CONTROL

PROCESS DYNAMICS AND CONTROL Objectives of the Class PROCESS DYNAMICS AND CONTROL CHBE320, Spring 2018 Professor Dae Ryook Yang Dept. of Chemical & Biological Engineering What is process control? Basics of process control Basic hardware

More information

ECE 2274 Lab 1 (Intro)

ECE 2274 Lab 1 (Intro) ECE 2274 Lab 1 (Intro) Richard Dumene: Spring 2018 Revised: Richard Cooper: Spring 2018 Forward (DO NOT TURN IN) The purpose of this lab course is to familiarize you with high-end lab equipment, and train

More information

Chapter 10 Digital PID

Chapter 10 Digital PID Chapter 10 Digital PID Chapter 10 Digital PID control Goals To show how PID control can be implemented in a digital computer program To deliver a template for a PID controller that you can implement yourself

More information

EE EXPERIMENT 2 ANALOG AND DIGITAL MULTIMETERS INTRODUCTION. Figure 1: Internal resistance of a non-ideal ammeter.

EE EXPERIMENT 2 ANALOG AND DIGITAL MULTIMETERS INTRODUCTION. Figure 1: Internal resistance of a non-ideal ammeter. Consider the two circuits shown in Figure 1 below. EE 2101 - EXPERIMENT 2 ANALOG AND DIGITAL MULTIMETERS INTRODUCTION Figure 1: Internal resistance of a non-ideal ammeter. The circuit on the left contains

More information

INC

INC JAA76551-R.3460.A Preparation for adjusting Main FPC In case of replacing the main FPC, SWM unit or MR encoder unit, be sure to make the below adjustments which will be required. 1. Adjustments Pulse adjustment

More information

EE EXPERIMENT 1 (2 DAYS) BASIC OSCILLOSCOPE OPERATIONS INTRODUCTION DAY 1

EE EXPERIMENT 1 (2 DAYS) BASIC OSCILLOSCOPE OPERATIONS INTRODUCTION DAY 1 EE 2101 - EXPERIMENT 1 (2 DAYS) BASIC OSCILLOSCOPE OPERATIONS INTRODUCTION The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer

More information

Product Channels Bandwidth Sampling Rate Memory Resolution

Product Channels Bandwidth Sampling Rate Memory Resolution Nov@tek Oscilloscope and Spectrum Analyzer Introduction The 4-channel digital storage oscilloscope at an outstanding price! When connected to PC with USB2.0 interface, you get a fully-featured storage

More information

Engine Control Workstation Using Simulink / DSP. Platform. Mark Bright, Mike Donaldson. Advisor: Dr. Dempsey

Engine Control Workstation Using Simulink / DSP. Platform. Mark Bright, Mike Donaldson. Advisor: Dr. Dempsey Engine Control Workstation Using Simulink / DSP Platform By Mark Bright, Mike Donaldson Advisor: Dr. Dempsey An Engine Control Workstation was designed to simulate the thermal environments found in liquid-based

More information

REMOVE REAR OF TX-2S TO INSERT THE 9 VOLT BATTERY.

REMOVE REAR OF TX-2S TO INSERT THE 9 VOLT BATTERY. P.O Box 578 Casino, NSW, 2470 Australia Phone: International ++614 2902 9083 Australia (04) 2902 9083 Website: http://rcs-rc.com E mail: Info@rcs-rc.com TX-2s Digital Proportional R/C TABLE OF CONTENTS

More information

Lab 0: Introduction to basic laboratory instruments. Revised by Dan Hoang & Tai-Chang Chen 03/30/2009

Lab 0: Introduction to basic laboratory instruments. Revised by Dan Hoang & Tai-Chang Chen 03/30/2009 Lab 0: Introduction to basic laboratory instruments Revised by Dan Hoang & Tai-Chang Chen 03/30/2009 1. Objectives 1. To learn safety procedures in the laboratory. 2. To learn how to use basic laboratory

More information

Module 9C: The Voltage Comparator (Application: PWM Control via a Reference Voltage)

Module 9C: The Voltage Comparator (Application: PWM Control via a Reference Voltage) Explore More! Points awarded: Module 9C: The Voltage Comparator (Application: PWM Control via a Reference Voltage) Name: Net ID: Laboratory Outline A voltage comparator considers two voltage waveforms,

More information

Bulletin 1402 Line Synchronization Module (LSM)

Bulletin 1402 Line Synchronization Module (LSM) Bulletin 1402 (LSM) Application Notes Table of Contents What is Synchronization?...................................... 2 Synchronization............................................. 3 1771 Modules and

More information

RIGOL Data Sheet. DS1000E, DS1000D Series Digital Oscilloscopes DS1102E, DS1052E, DS1102D, DS1052D. Product Overview. Easy to Use Design.

RIGOL Data Sheet. DS1000E, DS1000D Series Digital Oscilloscopes DS1102E, DS1052E, DS1102D, DS1052D. Product Overview. Easy to Use Design. RIGOL Data Sheet DS1000E, DS1000D Series Digital Oscilloscopes DS1102E, DS1052E, DS1102D, DS1052D Product Overview The DS1000E, DS1000D series instruments are economical, high-performance digital oscilloscopes.

More information