Midterm Test (Test 2) - PHYS102 - Solution

Size: px
Start display at page:

Download "Midterm Test (Test 2) - PHYS102 - Solution"

Transcription

1 Midterm Test (Test 2) - PHYS102 - Solution Part I: Extended Clicker Quiz Problem 1 Which of the following ideas for heating your house is the most efficient and consistent with all known laws of Physics? (Efficiency is maximum if you use the minimum amount of primary energy the kind you have to pay for! - for the same heating effect) A. I turn all electric lights and appliances on. B. I use natural gas to heat the air inside my house (either directly through forced air or using a water circuit with radiators). C. I use a electricity-operated heat pump (a type of refrigerator) that cools the air around my house and exhausts heat into my house. D. I use the temperature difference between my house and the surrounding air to run a (perfect) heat engine which in turn runs a heat pump as in C) above. Problem 2 A curious boy extends the length of the pendulum in his grandfather s clock from 1 meter to 1.2 meter. What will he observe once he sets it back in motion? A. The clock will stop working altogether. B. The clock will be ticking (and running) faster than before. C. The clock will be running slow. D. The clock will work just the same as before the length of the pendulum has no effect. Problem 3 A man and a little girl both sing a long, single-pitch note (one after the other, and at different pitches). When the man sings, a nearby window pane is vibrating quite a bit, but it is vibrating not at all when the girl sings. Why? (pick the most likely/best explanation) A. The man sings a little bit louder B. The man s sound is traveling faster than the girl s C. The man is singing at a higher frequency than the girl D. The man s frequency is in resonance with the window pane s own frequency, while the girl s frequency is far off resonance

2 Problem 4 Seismograms record earth movements on a scrolling roll of paper. Earthquakes generate three types of waves (called P-, S-, and surface waves). P waves are fastest and so arrive first at seismic stations around the world. S-waves are slower and surface waves are slowest. After an earthquake, scientists at (A) Nagpur, India; (B) Darwin, Australia; and (C) Paris, France record the interval between P- and S-waves but neglect to note actual times. Which city is closest to the source of the Earthquake? A. Nagpur B. Darwin C. Paris D. You can t tell anything about the earthquake location without knowing actual times. Problem 5 Water waves are rolling across a 90 m wide pond, with a wave velocity of 15 m/s. Every T = 2 seconds, a new wave maximum reaches the shore. How many complete wave oscillations (peak and trough) can you see on the pond at any given time? f = 1/T =0.5 Hz; λ = v wave /f = 30 m => I can see 3 complete waves (peak and trough) Problem 6 True of False: The same pond from Problem 5 can support a standing wave of a frequency as low as f = 1/12 Hz? (Assume the water is fixed in place on both shores.) Enter T or F on your clicker! T: λ = v wave /f = 180 m = 2L

3 Problem 7 Your (AM) radio is receiving the same broadcast from 2 different antennas at the same time, both emitting the same frequency radio waves. While you are walking around with your radio, the signal sometimes becomes louder, sometimes fades away completely, only to reappear again after a while. What s going on? (Pick the most likely scenario!) A. You are moving between spots where the 2 radio waves are in constructive interference and other spots where they are in destructive interference. B. Your batteries are going dead. C. This is due to the Doppler effect D. One of the 2 antennas has an intermittent connection that turns it off every now and then. Problem 8 A copper wire coil is lying directly on top of a second, identical one (with the same orientation), but without any direct electrical contact between the two. The first coil carries a rising current that produces an increasing magnetic field which also passes through the second coil. The second coil forms a closed circuit (its ends are connected to each other). Which of the following statements is NOT correct? A. The second coil will not react in any way to the field produced by the first one. B. There will be an electric field along the direction of the wire of the second coil. C. The second coil will carry a current also, at least for a while. D. The second coil will produce a magnetic field also, in the opposite direction. E. The second coil will experience a force pushing it away from the first one.

4 Part II: Word Problems Problem 9 Air at normal room temperature (293 K) and normal atmospheric pressure (101,000 Pa) is enclosed in a thermally well-insulated cylinder with an airtight piston. Describe in detail (at least 1-2 paragraphs) what happens when you quickly push the piston into the cylinder so that the same amount of air is now confined to only half its initial volume. Make sure you discuss what happens to the pressure, temperature and internal energy of the air (be as quantitative as possible). Where does any change in internal energy come from? Make sure you include enough details about what s going on and quote the relevant laws and equations of Physics to support your statements! Solution: As I compress the air, two things happen simultaneously: I reduce the volume it can occupy, and at the same time I am doing work on it, increasing its internal energy: ΔE internal = P(-ΔV) according to the Formula Sheet. (There is no heat loss since the cylinder is well insulated; so the internal energy can only increase given that -ΔV is positive the volume shrinks). According to the Formula Sheet, E internal = 3 / 2 nrt for an ideal gas (like air at normal conditions). Increasing internal energy means the temperature must increase, as well the air in the cylinder gets hot. Finally, the ideal gas equation, PV = nrt, tells us that when the temperature T goes up and the amount of air (n) stays the same, the product of pressure P and volume V must increase. However, the volume actually decreases, so the pressure must increase dramatically, more than to twice the original value!

5 Problem 10 (extra credit) How are sound waves and light waves different from each other? List and describe at least 4 features that distinguish between the two. (1 Paragraph) Solution: The most fundamental difference is that in the case of sound waves, it is the medium that oscillates (in density or pressure), while in the case of light waves, the oscillations are those of the electric and magnetic field, which can exist anywhere (including a vacuum). Hence, light waves can travel through empty space, but sound waves can not. In addition, light waves ordinarily travel much faster than sound waves, and have much shorter wave lengths (and waaayyy higher frequencies) than typical sound waves. Light waves are transverse (the electric and magnetic fields oscillate perpendicular to the direction of propagation) while sound waves are longitudinal. Therefore, light waves can be polarized and sound waves cannot. Finally, we humans detect sound waves with our ears and light waves with our eyes!

Demonstrate understanding of wave systems. Demonstrate understanding of wave systems. Achievement Achievement with Merit Achievement with Excellence

Demonstrate understanding of wave systems. Demonstrate understanding of wave systems. Achievement Achievement with Merit Achievement with Excellence Demonstrate understanding of wave systems Subject Reference Physics 3.3 Title Demonstrate understanding of wave systems Level 3 Credits 4 Assessment External This achievement standard involves demonstrating

More information

Properties and Applications

Properties and Applications Properties and Applications What is a Wave? How is it Created? Waves are created by vibrations! Atoms vibrate, strings vibrate, water vibrates A wave is the moving oscillation Waves are the propagation

More information

BVHS Physics: Waves Unit - Targets

BVHS Physics: Waves Unit - Targets BVHS Physics: Waves Unit - Targets Part A: General Wave Properties: Students should be able to 1) describe waves as traveling disturbances which transport energy without the bulk motion of matter. In transverse

More information

3) For vibrational motion, the maximum displacement from the equilibrium point is called the

3) For vibrational motion, the maximum displacement from the equilibrium point is called the WAVES & SOUND Conceptual Questions 1) The time for one cycle of a periodic process is called the 2) For a periodic process, the number of cycles per unit time is called the 3) For vibrational motion, the

More information

Answer:- School bell starts vibrating when heated which creates compression and rarefaction in air and sound is produced.

Answer:- School bell starts vibrating when heated which creates compression and rarefaction in air and sound is produced. Sound How does the sound produced by a vibrating object in a medium reach your ear? - Vibrations in an object create disturbance in the medium and consequently compressions and rarefactions. Because of

More information

PHYS102 Previous Exam Problems. Sound Waves. If the speed of sound in air is not given in the problem, take it as 343 m/s.

PHYS102 Previous Exam Problems. Sound Waves. If the speed of sound in air is not given in the problem, take it as 343 m/s. PHYS102 Previous Exam Problems CHAPTER 17 Sound Waves Sound waves Interference of sound waves Intensity & level Resonance in tubes Doppler effect If the speed of sound in air is not given in the problem,

More information

Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no

Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no 1 Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no medium required to transfer wave energy 2 Mechanical

More information

Physics B Waves and Sound Name: AP Review. Show your work:

Physics B Waves and Sound Name: AP Review. Show your work: Physics B Waves and Sound Name: AP Review Mechanical Wave A disturbance that propagates through a medium with little or no net displacement of the particles of the medium. Parts of a Wave Crest: high point

More information

Interference & Superposition. Creating Complex Wave Forms

Interference & Superposition. Creating Complex Wave Forms Interference & Superposition Creating Complex Wave Forms Waves & Interference I. Definitions and Types II. Parameters and Equations III. Sound IV. Graphs of Waves V. Interference - superposition - standing

More information

Warm-Up. Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another?

Warm-Up. Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another? Warm-Up Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another? WAVES Physics Waves If you can only remember one thing Waves transmit

More information

1) The time for one cycle of a periodic process is called the A) period. B) frequency. C) wavelength. D) amplitude.

1) The time for one cycle of a periodic process is called the A) period. B) frequency. C) wavelength. D) amplitude. Practice quiz for engineering students. Real test next Tuesday. Plan on an essay/show me work question as well. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers

More information

ABC Math Student Copy

ABC Math Student Copy Page 1 of 17 Physics Week 9(Sem. 2) Name Chapter Summary Waves and Sound Cont d 2 Principle of Linear Superposition Sound is a pressure wave. Often two or more sound waves are present at the same place

More information

Review. Top view of ripples on a pond. The golden rule for waves. The golden rule for waves. L 23 Vibrations and Waves [3] ripples

Review. Top view of ripples on a pond. The golden rule for waves. The golden rule for waves. L 23 Vibrations and Waves [3] ripples L 23 Vibrations and Waves [3] resonance clocks pendulum springs harmonic motion mechanical waves sound waves golden rule for waves musical instruments The Doppler effect Doppler radar radar guns Review

More information

Chapter 15 Supplement HPS. Harmonic Motion

Chapter 15 Supplement HPS. Harmonic Motion Chapter 15 Supplement HPS Harmonic Motion Motion Linear Moves from one place to another Harmonic Motion that repeats over and over again Examples time, speed, acceleration Examples Pendulum Swing Pedaling

More information

Date Period Name. Write the term that corresponds to the description. Use each term once. beat

Date Period Name. Write the term that corresponds to the description. Use each term once. beat Date Period Name CHAPTER 15 Study Guide Sound Vocabulary Review Write the term that corresponds to the description. Use each term once. beat Doppler effect closed-pipe resonator fundamental consonance

More information

1. Transverse Waves: the particles in the medium move perpendicular to the direction of the wave motion

1. Transverse Waves: the particles in the medium move perpendicular to the direction of the wave motion Mechanical Waves Represents the periodic motion of matter e.g. water, sound Energy can be transferred from one point to another by waves Waves are cyclical in nature and display simple harmonic motion

More information

Chapter PREPTEST: SHM & WAVE PROPERTIES

Chapter PREPTEST: SHM & WAVE PROPERTIES 2 4 Chapter 13-14 PREPTEST: SHM & WAVE PROPERTIES Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A load of 45 N attached to a spring that is hanging vertically

More information

Sound 05/02/2006. Lecture 10 1

Sound 05/02/2006. Lecture 10 1 What IS Sound? Sound is really tiny fluctuations of air pressure units of pressure: N/m 2 or psi (lbs/square-inch) Carried through air at 345 m/s (770 m.p.h) as compressions and rarefactions in air pressure

More information

Chapter 05: Wave Motions and Sound

Chapter 05: Wave Motions and Sound Chapter 05: Wave Motions and Sound Section 5.1: Forces and Elastic Materials Elasticity It's not just the stretch, it's the snap back An elastic material will return to its original shape when stretched

More information

GraspIT Questions AQA GCSE Physics Waves

GraspIT Questions AQA GCSE Physics Waves A Waves in air, fluids and solids 1. The diagrams below show two types of wave produced on a slinky spring. A B a. Which one is a transverse wave? (1) Wave B b. What is the name of the other type of wave?

More information

NCERT solution for Sound

NCERT solution for Sound NCERT solution for Sound 1 Question 1 How does the sound produce by a vibrating object in a medium reach your ear? When an object vibrates, it vibrates the neighboring particles of the medium. These vibrating

More information

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2 1. A small vibrating object S moves across the surface of a ripple tank producing the wave fronts shown above. The wave fronts move with speed v. The object is traveling in what direction and with what

More information

L 23 Vibrations and Waves [3]

L 23 Vibrations and Waves [3] L 23 Vibrations and Waves [3] resonance clocks pendulum springs harmonic motion mechanical waves sound waves golden rule for waves musical instruments The Doppler effect Doppler radar radar guns Review

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 2. A string is firmly attached at both ends. When a frequency of 60 Hz is applied, the string vibrates in the standing wave

More information

Waves and Sound. AP Physics 1

Waves and Sound. AP Physics 1 Waves and Sound AP Physics 1 What is a wave A WAVE is a vibration or disturbance in space. A MEDIUM is the substance that all SOUND WAVES travel through and need to have in order to move. Classes of waves

More information

Waves and Sound Practice Test 43 points total Free- response part: [27 points]

Waves and Sound Practice Test 43 points total Free- response part: [27 points] Name Waves and Sound Practice Test 43 points total Free- response part: [27 points] 1. To demonstrate standing waves, one end of a string is attached to a tuning fork with frequency 120 Hz. The other end

More information

A sound wave is introduced into a medium by the vibration of an object. Sound is a longitudinal, mechanical

A sound wave is introduced into a medium by the vibration of an object. Sound is a longitudinal, mechanical Sound Waves Dancing Liquids A sound wave is introduced into a medium by the vibration of an object. Sound is a longitudinal, mechanical wave. For example, a guitar string forces surrounding air molecules

More information

Vibrations and Waves. Properties of Vibrations

Vibrations and Waves. Properties of Vibrations Vibrations and Waves For a vibration to occur an object must repeat a movement during a time interval. A wave is a disturbance that extends from one place to another through space. Light and sound are

More information

A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium.

A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium. Waves and Sound Mechanical Wave A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium. Water Waves Wave Pulse People Wave

More information

Intext Exercise 1 Question 1: How does the sound produced by a vibrating object in a medium reach your ear?

Intext Exercise 1 Question 1: How does the sound produced by a vibrating object in a medium reach your ear? Intext Exercise 1 How does the sound produced by a vibrating object in a medium reach your ear? When an vibrating object vibrates, it forces the neighbouring particles of the medium to vibrate. These vibrating

More information

Chapter 25. Electromagnetic Waves

Chapter 25. Electromagnetic Waves Chapter 25 Electromagnetic Waves EXAM # 3 Nov. 20-21 Chapter 23 Chapter 25 Powerpoint Nov. 4 Problems from previous exams Physics in Perspective (pg. 836 837) Chapter 25 Electromagnetic Waves Units of

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 1. Which of the following statements about the speed of waves on a string are true? I. The speed depends on the tension in

More information

PHYSICS 102N Spring Week 6 Oscillations, Waves, Sound and Music

PHYSICS 102N Spring Week 6 Oscillations, Waves, Sound and Music PHYSICS 102N Spring 2009 Week 6 Oscillations, Waves, Sound and Music Oscillations Any process that repeats itself after fixed time period T Examples: Pendulum, spring and weight, orbits, vibrations (musical

More information

Today: Finish Chapter 15 (Temp, Heat, Expansion) Chapter 19 (Vibrations and Waves)

Today: Finish Chapter 15 (Temp, Heat, Expansion) Chapter 19 (Vibrations and Waves) Today: Finish Chapter 15 (Temp, Heat, Expansion) Chapter 19 (Vibrations and Waves) Vibrations Some Preliminaries Vibration = oscillation = anything that has a back-and-forth to it Eg. Draw a pen back and

More information

Ans: A wave is periodic disturbance produced by vibration of the vibrating. 2. What is the amount of sound energy passing per second through unit area

Ans: A wave is periodic disturbance produced by vibration of the vibrating. 2. What is the amount of sound energy passing per second through unit area One mark questions 1. What do you understand by sound waves? Ans: A wave is periodic disturbance produced by vibration of the vibrating body. 2. What is the amount of sound energy passing per second through

More information

HOW FAR AWAY ARE THE SATELLITES?

HOW FAR AWAY ARE THE SATELLITES? HOW FAR AWAY ARE THE SATELLITES? Concepts A signal is a wave Wave characteristics can be used to measure properties such as velocity, distance, and time Every measurement has units Units are interchangeable

More information

AP Physics B (Princeton 15 & Giancoli 11 & 12) Waves and Sound

AP Physics B (Princeton 15 & Giancoli 11 & 12) Waves and Sound AP Physics B (Princeton 15 & Giancoli 11 & 12) Waves and Sound Preview What are the two categories of waves with regard to mode of travel? Mechanical Electromagnetic Which type of wave requires a medium?

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS 4.1 Describe the measurable properties of waves (velocity, frequency, wavelength, amplitude, period)

More information

Waves & Interference

Waves & Interference Waves & Interference I. Definitions and Types II. Parameters and Equations III. Sound IV. Graphs of Waves V. Interference - superposition - standing waves The student will be able to: HW: 1 Define, apply,

More information

Chapter 3. Experiment 1: Sound. 3.1 Introduction

Chapter 3. Experiment 1: Sound. 3.1 Introduction Chapter 3 Experiment 1: Sound 3.1 Introduction Sound is classified under the topic of mechanical waves. A mechanical wave is a term which refers to a displacement of elements in a medium from their equilibrium

More information

Copyright 2010 Pearson Education, Inc.

Copyright 2010 Pearson Education, Inc. 14-7 Superposition and Interference Waves of small amplitude traveling through the same medium combine, or superpose, by simple addition. 14-7 Superposition and Interference If two pulses combine to give

More information

Waves Transferring Energy

Waves Transferring Energy Chapter 7 Waves Transferring Energy Practice Problems Student Textbook page 331 1. Frame the Problem - A metronome is undergoing periodic motion. - The frequency is the number of cycles per second. - The

More information

SUMMARY. ) f s Shock wave Sonic boom UNIT. Waves transmit energy. Sound is a longitudinal mechanical wave. KEY CONCEPTS CHAPTER SUMMARY

SUMMARY. ) f s Shock wave Sonic boom UNIT. Waves transmit energy. Sound is a longitudinal mechanical wave. KEY CONCEPTS CHAPTER SUMMARY UNIT D SUMMARY KEY CONCEPTS CHAPTER SUMMARY 9 Waves transmit energy. Crest, trough, amplitude, wavelength Longitudinal and transverse waves Cycle Period, frequency f 1_ T Universal wave equation v fλ Wave

More information

Sound All sound begins with a vibrating object Ex. Vibrating tuning fork Vibrating prong sets molecules near it in motion

Sound All sound begins with a vibrating object Ex. Vibrating tuning fork Vibrating prong sets molecules near it in motion Sound All sound begins with a vibrating object Ex. Vibrating tuning fork Vibrating prong sets molecules near it in motion As prong swings right, air molecules in front of the movement are forced closer

More information

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one 5.1.1 Oscillating Systems Waves Review hecklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown

More information

Chapter 16 Sound. Copyright 2009 Pearson Education, Inc.

Chapter 16 Sound. Copyright 2009 Pearson Education, Inc. Chapter 16 Sound 16-6 Interference of Sound Waves; Beats Sound waves interfere in the same way that other waves do in space. 16-6 Interference of Sound Waves; Beats Example 16-12: Loudspeakers interference.

More information

Chapter 12. Preview. Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect. Section 1 Sound Waves

Chapter 12. Preview. Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect. Section 1 Sound Waves Section 1 Sound Waves Preview Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect Section 1 Sound Waves Objectives Explain how sound waves are produced. Relate frequency

More information

(1) 294 N (2) 98 N (3) 30 N (4) 348 N (5) None of these.

(1) 294 N (2) 98 N (3) 30 N (4) 348 N (5) None of these. Instructor(s): C. Parks PHYSICS DEPARTMENT PHY2053, Summer 2015 EXAM 3 July 31, 2015 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

More information

PHY1 Review for Exam 9. Equations. V = 2πr / T a c = V 2 /r. W = Fdcosθ PE = mgh KE = ½ mv 2 E = PE + KE

PHY1 Review for Exam 9. Equations. V = 2πr / T a c = V 2 /r. W = Fdcosθ PE = mgh KE = ½ mv 2 E = PE + KE Topics Simple Harmonic Motion Springs Pendulums Waves Transverse Longitudinal Pulse Continuous Interference Refraction Diffraction Equations V = 2πr / T a c = V 2 /r F = ma F F = µf N W = Fdcosθ PE = mgh

More information

CHAPTER 11 TEST REVIEW -- MARKSCHEME

CHAPTER 11 TEST REVIEW -- MARKSCHEME AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response MULTIPLE CHOICE DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM

More information

Wave Review Questions Updated

Wave Review Questions Updated Name: Date: 1. Which type of wave requires a material medium through which to travel? 5. Which characteristic is the same for every color of light in a vacuum? A. radio wave B. microwave C. light wave

More information

THE PRINCIPLE OF LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA

THE PRINCIPLE OF LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA THE PRINCIPLE OF LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA PREVIEW When two waves meet in the same medium they combine to form a new wave by the principle of superposition. The result of superposition

More information

Waves-Wave Behaviors

Waves-Wave Behaviors 1. While playing, two children create a standing wave in a rope, as shown in the diagram below. A third child participates by jumping the rope. What is the wavelength of this standing wave? 1. 2.15 m 2.

More information

PHYSICS. Sound & Music

PHYSICS. Sound & Music PHYSICS Sound & Music 20.1 The Origin of Sound The source of all sound waves is vibration. 20.1 The Origin of Sound The original vibration stimulates the vibration of something larger or more massive.

More information

4.6 Waves Waves in air, fluids and solids Transverse and longitudinal waves

4.6 Waves Waves in air, fluids and solids Transverse and longitudinal waves 4.6 Waves Wave behaviour is common in both natural and man-made systems. Waves carry energy from one place to another and can also carry information. Designing comfortable and safe structures such as bridges,

More information

Topic 4: Waves 4.2 Traveling waves

Topic 4: Waves 4.2 Traveling waves Crests and troughs Compare the waves traveling through the mediums of rope and spring. CREST TROUGH TRANSVERSE WAVE COMPRESSION RAREFACTION LONGITUDINAL WAVE Wave speed and frequency The speed at which

More information

EM waves do not need a medium to travel through EM waves are transverse waves All EM waves travel at the speed of light = 3.

EM waves do not need a medium to travel through EM waves are transverse waves All EM waves travel at the speed of light = 3. EM waves do not need a medium to travel through EM waves are transverse waves All EM waves travel at the speed of light = 3.00 x 10 8 m/s So, if they all travel at the same speed, how are they different?

More information

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics Sound Section 1 Preview Section 1 Sound Waves Section 2 Sound Intensity and Resonance Section 3 Harmonics Sound Section 1 TEKS The student is expected to: 7A examine and describe oscillatory motion and

More information

Ch 26: Sound Review 2 Short Answers 1. What is the source of all sound?

Ch 26: Sound Review 2 Short Answers 1. What is the source of all sound? Ch 26: Sound Review 2 Short Answers 1. What is the source of all sound? 2. How does a sound wave travel through air? 3. What media transmit sound? 4. What determines the speed of sound in a medium? 5.

More information

Physics I Notes: Chapter 13 Sound

Physics I Notes: Chapter 13 Sound Physics I Notes: Chapter 13 Sound I. Properties of Sound A. Sound is the only thing that one can hear! Where do sounds come from?? Sounds are produced by VIBRATING or OSCILLATING OBJECTS! Sound is a longitudinal

More information

3/23/2015. Chapter 11 Oscillations and Waves. Contents of Chapter 11. Contents of Chapter Simple Harmonic Motion Spring Oscillations

3/23/2015. Chapter 11 Oscillations and Waves. Contents of Chapter 11. Contents of Chapter Simple Harmonic Motion Spring Oscillations Lecture PowerPoints Chapter 11 Physics: Principles with Applications, 7 th edition Giancoli Chapter 11 and Waves This work is protected by United States copyright laws and is provided solely for the use

More information

SPH 3U0: Exam Review: Sound, Waves and Projectile Motion

SPH 3U0: Exam Review: Sound, Waves and Projectile Motion SPH 3U0: Exam Review: Sound, Waves and Projectile Motion True/False Indicate whether the sentence or statement is true or false. 1. A trough is a negative pulse which occurs in a longitudinal wave. 2.

More information

Chapter 7. Waves and Sound

Chapter 7. Waves and Sound Chapter 7 Waves and Sound What is wave? A wave is a disturbance that propagates from one place to another. Or simply, it carries energy from place to place. The easiest type of wave to visualize is a transverse

More information

Bike Generator Project

Bike Generator Project Bike Generator Project Each lab section will build 1 bike generator Each lab group will build 1 energy board Connect and test energy board and bike generator Create curriculum materials and demos to teach

More information

Unit 10 Simple Harmonic Waves and Sound Holt Chapter 12 Student Outline

Unit 10 Simple Harmonic Waves and Sound Holt Chapter 12 Student Outline Unit 10 Simple Harmonic Waves and Sound Holt Chapter 12 Student Outline Variables introduced or used in chapter: Quantity Symbol Units Vector or Scalar? Spring Force Spring Constant Displacement Period

More information

Unit 6 Electromagnetic Radiation:

Unit 6 Electromagnetic Radiation: Unit 6 Electromagnetic Radiation: Electromagnetic Radiation is a wave. Electromagnetic Radiation is not a mechanical wave. Does not need a medium. Can travel through empty space Examples of Electromagnetic

More information

Waves-Wave Behaviors

Waves-Wave Behaviors 1. While playing, two children create a standing wave in a rope, as shown in the diagram below. A third child participates by jumping the rope. What is the wavelength of this standing wave? 1. 2.15 m 2.

More information

P6 Quick Revision Questions

P6 Quick Revision Questions P6 Quick Revision Questions H = Higher tier only SS = Separate science only Question 1... of 50 Define wavelength Answer 1... of 50 The distance from a point on one wave to the equivalent point on the

More information

the mechanical wave model can be used to explain phenomena related to reflection and refraction, including echoes and seismic phenomena.

the mechanical wave model can be used to explain phenomena related to reflection and refraction, including echoes and seismic phenomena. WAVES 5 Syllabus Checklist SCIENCE UNDERSTANDING WAVES waves are periodic oscillations that transfer energy from one point to another. mechanical waves transfer energy through a medium; longitudinal and

More information

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air Resonance Tube Equipment Capstone, complete resonance tube (tube, piston assembly, speaker stand, piston stand, mike with adapters, channel), voltage sensor, 1.5 m leads (2), (room) thermometer, flat rubber

More information

Chapter 17 Waves in Two and Three Dimensions

Chapter 17 Waves in Two and Three Dimensions Chapter 17 Waves in Two and Three Dimensions Slide 17-1 Chapter 17: Waves in Two and Three Dimensions Concepts Slide 17-2 Section 17.1: Wavefronts The figure shows cutaway views of a periodic surface wave

More information

Electromagnetism and Light

Electromagnetism and Light Electromagnetism and Light Monday Properties of waves (sound and light) interference, diffraction [Hewitt 12] Tuesday Light waves, diffraction, refraction, Snell's Law. [Hewitt 13, 14] Wednesday Lenses,

More information

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air Resonance Tube Equipment Capstone, complete resonance tube (tube, piston assembly, speaker stand, piston stand, mike with adaptors, channel), voltage sensor, 1.5 m leads (2), (room) thermometer, flat rubber

More information

Standing Waves + Reflection

Standing Waves + Reflection Standing Waves + Reflection Announcements: Will discuss reflections of transverse waves, standing waves and speed of sound. We will be covering material in Chap. 16. Plan to review material on Wednesday

More information

Physical Science Test Form A Test 5: Waves. Matching. 1. diffraction

Physical Science Test Form A Test 5: Waves. Matching. 1. diffraction Physical Science Test Form A Test 5: Waves Matching. 1. diffraction 2. intensity 3. interference 4. mechanical wave 5. medium 6. pitch 7. reflection 8. refraction 9. translucent 10. transverse wave A.

More information

CHAPTER 17 AND 18 CHARACTERISTICS OF EM WAVES LEARNING OBJECTIVES CHARACTERISTICS OF EM WAVES 11/10/2014

CHAPTER 17 AND 18 CHARACTERISTICS OF EM WAVES LEARNING OBJECTIVES CHARACTERISTICS OF EM WAVES 11/10/2014 STUDENT LEARNING GOALS PHYSICAL SCIENCE ELECTROMAGNETISM SC.912.P.10.18 CHAPTER 17 AND 18 Electromagnetic Spectrum, Light, and Sound Goal: Explore the theory of electromagnetism by comparting and contrasting

More information

From Last Time Wave Properties. Description of a Wave. Question. Examples. More types of waves. Seismic waves

From Last Time Wave Properties. Description of a Wave. Question. Examples. More types of waves. Seismic waves From Last Time Wave Properties Amplitude is the maximum displacement of string above the equilibrium position Wavelength, λ, is the distance between two successive points that behave identically Period:

More information

WAVES & EM SPECTRUM. Chapters 10 & 15

WAVES & EM SPECTRUM. Chapters 10 & 15 WAVES & EM SPECTRUM Chapters 10 & 15 What s a wave? repeating disturbance transfers energy through matter or space Oscillation back & forth movement carries energy w/o transporting matter can travel through

More information

3A: PROPERTIES OF WAVES

3A: PROPERTIES OF WAVES 3A: PROPERTIES OF WAVES Int roduct ion Your ear is complicated device that is designed to detect variations in the pressure of the air at your eardrum. The reason this is so useful is that disturbances

More information

CHAPTER 12 SOUND. Sound: Sound is a form of energy which produces a sensation of hearing in our ears.

CHAPTER 12 SOUND. Sound: Sound is a form of energy which produces a sensation of hearing in our ears. CHAPTER 12 SOUND Sound: Sound is a form of energy which produces a sensation of hearing in our ears. Production of Sound Sound is produced due to the vibration of objects. Vibration is the rapid to and

More information

Sound & Waves Review. Physics - Mr. Jones

Sound & Waves Review. Physics - Mr. Jones Sound & Waves Review Physics - Mr. Jones Waves Types Transverse, longitudinal (compression) Characteristics Frequency, period, wavelength, amplitude, crest, trough v = f! Review: What is sound? Sound is

More information

Chapter 21. Alternating Current Circuits and Electromagnetic Waves

Chapter 21. Alternating Current Circuits and Electromagnetic Waves Chapter 21 Alternating Current Circuits and Electromagnetic Waves AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source The output of an AC generator is sinusoidal

More information

From Last Time Wave Properties. Description of a Wave. Water waves? Water waves occur on the surface. They are a kind of transverse wave.

From Last Time Wave Properties. Description of a Wave. Water waves? Water waves occur on the surface. They are a kind of transverse wave. From Last Time Wave Properties Amplitude is the maximum displacement from the equilibrium position Wavelength,, is the distance between two successive points that behave identically Period: time required

More information

Waves Mechanical vs. Electromagnetic Mechanical Electromagnetic Transverse vs. Longitudinal Behavior of Light

Waves Mechanical vs. Electromagnetic Mechanical Electromagnetic Transverse vs. Longitudinal Behavior of Light PSC1341 Chapter 4 Waves Chapter 4: Wave Motion A.. The Behavior of Light B. The E-M spectrum C. Equations D. Reflection, Refraction, Lenses and Diffraction E. Constructive Interference, Destructive Interference

More information

Resonance Tube Lab 9

Resonance Tube Lab 9 HB 03-30-01 Resonance Tube Lab 9 1 Resonance Tube Lab 9 Equipment SWS, complete resonance tube (tube, piston assembly, speaker stand, piston stand, mike with adaptors, channel), voltage sensor, 1.5 m leads

More information

Copyright 2009 Pearson Education, Inc.

Copyright 2009 Pearson Education, Inc. Chapter 16 Sound 16-1 Characteristics of Sound Sound can travel through h any kind of matter, but not through a vacuum. The speed of sound is different in different materials; in general, it is slowest

More information

Name Block Date Ch 26 Sound Notes

Name Block Date Ch 26 Sound Notes Name Block Date Ch 26 Sound Notes Mrs. Peck Objectives: 1. Relate the pitch of a sound to its frequency 26.1 2. Describe the movement of sound through air 26.2 3. Compare the transmission of sound through

More information

Waves Homework. Assignment #1. Assignment #2

Waves Homework. Assignment #1. Assignment #2 Waves Homework Assignment #1 Textbook: Read Section 11-7 and 11-8 Online: Waves Lesson 1a, 1b, 1c http://www.physicsclassroom.com/class/waves * problems are for all students ** problems are for honors

More information

Physics 102: Lecture 14 Electromagnetic Waves

Physics 102: Lecture 14 Electromagnetic Waves Physics 102: Lecture 14 Electromagnetic Waves Physics 102: Lecture 14, Slide 1 Review: Phasors & Resonance At resonance Z is minimum (=R) I max is maximum (=V gen,max /R) V gen is in phase with I X L =

More information

Chapter 16. Waves and Sound

Chapter 16. Waves and Sound Chapter 16 Waves and Sound 16.1 The Nature of Waves 1. A wave is a traveling disturbance. 2. A wave carries energy from place to place. 1 16.1 The Nature of Waves Transverse Wave 16.1 The Nature of Waves

More information

ISSUED BY KENDRIYA VIDYALAYA - DOWNLOADED FROM CHAPTER 12 Sound

ISSUED BY KENDRIYA VIDYALAYA - DOWNLOADED FROM  CHAPTER 12 Sound 1. Production of Sound CHAPTER 12 Sound KEY CONCEPTS [ *rating as per the significance of concept] 1 Production of Sound **** 2 Propagation of Sound ***** 3 Reflection of Sound ***** 4 Echo **** 5 Uses

More information

Exam 3--PHYS 151--Chapter 4--S14

Exam 3--PHYS 151--Chapter 4--S14 Class: Date: Exam 3--PHYS 151--Chapter 4--S14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of these statements is not true for a longitudinal

More information

Waves.notebook. April 15, 2019

Waves.notebook. April 15, 2019 Waves You will need a protractor! What is a wave? A wave is a vibratory disturbance that propagates through a medium(body of matter) or field. Every wave has, as its source, a particle vibrating or oscillating.

More information

Tuning Forks TEACHER NOTES. Sound Laboratory Investigation. Teaching Tips. Key Concept. Skills Focus. Time. Materials (per group)

Tuning Forks TEACHER NOTES. Sound Laboratory Investigation. Teaching Tips. Key Concept. Skills Focus. Time. Materials (per group) Laboratory Investigation TEACHER NOTES Tuning Forks Key Concept Sound is a disturbance that travels through a medium as a longitudinal wave. Skills Focus observing, inferring, predicting Time 40 minutes

More information

Frequency f determined by the source of vibration; related to pitch of sound. Period T time taken for one complete vibrational cycle

Frequency f determined by the source of vibration; related to pitch of sound. Period T time taken for one complete vibrational cycle Unit 1: Waves Lesson: Sound Sound is a mechanical wave, a longitudinal wave, a pressure wave Periodic sound waves have: Frequency f determined by the source of vibration; related to pitch of sound Period

More information

WAVES. Chapter Fifteen MCQ I

WAVES. Chapter Fifteen MCQ I Chapter Fifteen WAVES MCQ I 15.1 Water waves produced by a motor boat sailing in water are (a) neither longitudinal nor transverse. (b) both longitudinal and transverse. (c) only longitudinal. (d) only

More information

(3) A traveling wave transfers, but it does not transfer.

(3) A traveling wave transfers, but it does not transfer. AP PHYSICS TEST 9 Waves and Sound (1) Give a good physics definition of a wave. (2) Any wave has as its source. (3) A traveling wave transfers, but it does not transfer. (4) What is a mechanical wave?

More information

Waves. September 30, 2010

Waves. September 30, 2010 Waves September 30, 2010 1.1 Characteristics of waves A wave is a travelling disturbance that carries energy from one point to another. Some waves are mechanical: they need a medium like air or water in

More information

CHAPTER 12 SOUND ass/sound/soundtoc. html. Characteristics of Sound

CHAPTER 12 SOUND  ass/sound/soundtoc. html. Characteristics of Sound CHAPTER 12 SOUND http://www.physicsclassroom.com/cl ass/sound/soundtoc. html Characteristics of Sound Intensity of Sound: Decibels The Ear and Its Response; Loudness Sources of Sound: Vibrating Strings

More information

Level 2 Physics: Waves Waves Behaviour - Answers

Level 2 Physics: Waves Waves Behaviour - Answers Level 2 Physics: Waves Waves Behaviour - Answers The Mess that is NCEA Assessment Schedules. Level 2 Physics: AS 970 replaced AS 90254. In 90254, from 2004 to 20, there was an Evidence column with the

More information