Book page Syllabus cgrahamphysics.com EM spectrum

Size: px
Start display at page:

Download "Book page Syllabus cgrahamphysics.com EM spectrum"

Transcription

1 Book page Syllabus EM spectrum

2 Find the odd ones out

3 What do all these waves have in common They all belong to the EM spectrum They all travel at the speed of light They are all transverse waves They can all travel through vacuum

4 Aim Be in charge of your own learning. Follow the learning map and finish all tasks Key words Electromagnetic Spectrum Gamma rays 감마선 X-rays 엑스레이 Ultra Violet 자외선 Visible ( 눈에 ) 보이는, 보일수있는 Infrared 적외선 Microwaves 전자레인지 Radio 라디오

5 How were the invisible parts of the EM spectrum discovered? The Big Picture Have you ever wondered

6 Learning Outcomes 1. Know the electromagnetic spectrum 2. Identify the order of the EM spectrum in terms of: - frequency - wavelength - speed and colour for visible light - use the equation v = λf 3. Explain uses of electromagnetic radiation 4. Understand the dangers of EM radiation and how to protect against the risks of EM radiation EM spectrum DISCOVERY LESSON TASK You need to find out the information for yourself that will help you understand the learning outcomes. After two lessons you should be confident you understand all of these. Below I have listed different tasks you need to complete to help you understand the topic. Remember that there are two types of waves: transverse and longitudinal. Investigate to which category EM waves belong. Identify the different parts of the EM spectrum Organize the waves in terms of wavelength, frequency and energy transfer. Find a n acronym to remember the order of EM waves.. Task 1: Produce a visual representation of all the information. You can chose a poster, a timeline, a model or any other representation Investigate the uses of EM waves. Task 3: Make a slide show for each type of wave. Include the source, the energy, wavelength and speed of this wave and which property makes this type unique for a specific use You must include at least two photos per slide, but you can use more. You cannot use more than 10 words on each slide and you can only make one slide for each type of wave. Keep some space to include the dangers from the next task NEUTRALISATION Now that you know the uses of EM waves, find out some information about their dangers. Add these to your slide Find some information out about how to protect yourself and others from the dangers of radiation. Add this information to your slide Now that you can recall the order of EM waves you need to find out how to calculate further information. Find out: - How to calculate the speed, frequency and wavelength of EM waves. - What all EM waves have in common - How EM waves are different from each other. - What is ionizing radiation and which parts of the EM spectrum are they found Homework: Complete past paper exam questions. Task 5: Test your knowledge by completing the quiz on edpuzzle, logging in with the code epzqr1 Use BBC bitesize and the Powerpoints on my website to help you find out the information. Create a table to show differences and similarities of EM waves. Task 2: Complete WS 1. Check your answers with the teacher

7 Uses

8 Radio waves Communication

9 Text Microwaves Communication

10 Infra Red TV remote control Burglar alarm Rescuing people

11 Visible Light Used in iris scanning

12 Text Ultraviolet

13 Text X-rays

14 Gamma rays Sterilising food Sterilising medical equipment Treating cancer

15 Dangers

16 EM Radiation: Gamma Uses: Kills harmful bacteria in food, sterilising surgical equipment, killing cancer cells. Dangers: High doses can kill cells. Lower doses can cause cells to become cancerous.

17 EM Radiation: X rays Uses: Shadow pictures of luggage and inside the human body. Dangers: High doses can kill cells. Lower doses can cause cells to become cancerous. How do hospital workers limit their exposure to Gamma and X rays? Hospital workers limit exposure to Gamma and X rays by standing behind lead shields or by leaving the room when the radiations are being used.

18 EM Radiation: Ultraviolet Uses: Sun beds, fluorescent lamps and security marking. Dangers: High doses can kill cells. Lower doses can cause cells to become cancerous. Which type of radiation is the most dangerous? The higher the frequency of the radiation, the more dangerous it is. So gamma is more dangerous than X rays or ultraviolet.

19 EM Radiation: Light Uses: Iris scanning and endoscopes Dangers: Blindness

20 EM Radiation: Infrared Uses: Remote controls (TV/VCR), radiant heaters, grills, optical fibre communication, night vision. Dangers: Skin burns

21 EM Radiation: Microwaves Uses: Satellite communication, mobile phone networks, cooking, RADAR. Dangers: Internal tissue heating.

22 Radio waves EM Radiation: Radio waves Uses: Communication and astronomy. Dangers: None

23 EM Questions 1) Match up the following parts of the electromagnetic spectrum with their uses : Gamma rays Radio waves Ultra Violet Visible Microwaves X rays Infra Red Allow us to see Remote Controls See broken bones Carry TV signals RADAR Sterilise equipment Causes sun-tans

24 EM Questions 2) Which radiations are missing from below? Gamma A Ultraviolet Light Infrared B Radio waves X rays Microwaves

Draw and label this wave: - What do waves transfer? (They do this without transferring what?) What do all electromagnetic waves have in common?

Draw and label this wave: - What do waves transfer? (They do this without transferring what?) What do all electromagnetic waves have in common? What do waves transfer? Draw and label this wave: - (They do this without transferring what?) What do all electromagnetic waves have in common? Name the electromagnetic spectrum from shortest to longest

More information

Electromagnetic Waves & the Electromagnetic Spectrum

Electromagnetic Waves & the Electromagnetic Spectrum Electromagnetic Waves & the Electromagnetic Spectrum longest wavelength shortest wavelength The Electromagnetic Spectrum The name given to a group of energy waves that are mostly invisible and can travel

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum Wavelength/frequency/energy MAP TAP 2003-2004 The Electromagnetic Spectrum 1 Teacher Page Content: Physical Science The Electromagnetic Spectrum Grade Level: High School Creator:

More information

Electromagnetic Spectrum

Electromagnetic Spectrum Electromagnetic Spectrum Wave - Review Waves are oscillations that transport energy. 2 Types of waves: Mechanical waves that require a medium to travel through (sound, water, earthquakes) Electromagnetic

More information

Electromagnetic Waves

Electromagnetic Waves Chapter 13 Electromagnetic Waves 13.1 Gamma Rays Gamma rays have a very short wavelength and are very penetrating. They are produced by radioactive substances and are very dangerous to humans unless used

More information

National 3 Physics Waves and Radiation. 1. Wave Properties

National 3 Physics Waves and Radiation. 1. Wave Properties 1. Wave Properties What is a wave? Waves are a way of transporting energy from one place to another. They do this through some form of vibration. We see waves all the time, for example, ripples on a pond

More information

ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE

ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE ELECTROMAGNETIC WAVES Do not need matter to transfer energy. Made by vibrating electric charges. When an electric charge vibrates,

More information

Uses of Electromagnetic Waves

Uses of Electromagnetic Waves Uses of Electromagnetic Waves 1 of 42 Boardworks Ltd 2016 Uses of Electromagnetic Waves 2 of 42 Boardworks Ltd 2016 What are radio waves? 3 of 42 Boardworks Ltd 2016 The broadcast of every radio and television

More information

Unit 1.5 Waves. The number waves per second. 1 Hz is 1waves per second. If there are 40 waves in 10 seconds then the frequency is 4 Hz.

Unit 1.5 Waves. The number waves per second. 1 Hz is 1waves per second. If there are 40 waves in 10 seconds then the frequency is 4 Hz. Unit 1.5 Waves Basic information Transverse: The oscillations of the particles are at right angles (90 ) to the direction of travel (propagation) of the wave. Examples: All electromagnetic waves (Light,

More information

Section Electromagnetic Waves and the Electromagnetic Spectrum

Section Electromagnetic Waves and the Electromagnetic Spectrum Section 18.6 Electromagnetic Waves and the Electromagnetic Spectrum Electromagnetic Waves Electromagnetic Waves Electromagnetic waves are transverse waves produced by the motion of electrically charged

More information

DIN. A wave is traveling at 5,000 m/s. It has a wavelength of 10 centimeters. What is the wave s frequency? What is the period of the wave?

DIN. A wave is traveling at 5,000 m/s. It has a wavelength of 10 centimeters. What is the wave s frequency? What is the period of the wave? 3. Wave Speed (v=fλ) and Wave period (T=1/f) problems. DIN 1. EOC Review Problem: Two carts are moving on a horizontal frictionless surface. A 8 kilogram cart is moving to the right at 6 m/s. A second

More information

4.6.1 Waves in air, fluids and solids Transverse and longitudinal waves Properties of waves

4.6.1 Waves in air, fluids and solids Transverse and longitudinal waves Properties of waves 4.6 Waves Wave behaviour is common in both natural and man-made systems. Waves carry energy from one place to another and can also carry information. Designing comfortable and safe structures such as bridges,

More information

Waves. Electromagnetic & Mechanical Waves

Waves. Electromagnetic & Mechanical Waves Waves Electromagnetic & Mechanical Waves Wave Definition: A disturbance that transfers energy from place to place. Molecules pass energy to neighboring molecules who pass energy to neighboring molecules

More information

ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM

ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM LECTURE:2 ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM Electromagnetic waves: In an electromagnetic wave the electric and magnetic fields are mutually perpendicular. They are also both perpendicular

More information

PiXL Independence: GCSE Physics Student Booklet KS4. I. Level 1- Multiple Choice Quiz 20 credits. Level 3 - Science in The News 100 credits

PiXL Independence: GCSE Physics Student Booklet KS4. I. Level 1- Multiple Choice Quiz 20 credits. Level 3 - Science in The News 100 credits PiXL Independence: GCSE Physics Student Booklet KS4 Topic: Light and electromagnetic waves Contents: I. Level 1- Multiple Choice Quiz 20 credits II. III. IV. Level 2-5 questions, 5 sentences, 5 words 10

More information

Chapter 9: Light, Colour and Radiant Energy. Passed a beam of white light through a prism.

Chapter 9: Light, Colour and Radiant Energy. Passed a beam of white light through a prism. Chapter 9: Light, Colour and Radiant Energy Where is the colour in sunlight? In the 17 th century (1600 s), Sir Isaac Newton conducted a famous experiment. Passed a beam of white light through a prism.

More information

GraspIT Questions AQA GCSE Physics Waves

GraspIT Questions AQA GCSE Physics Waves A Waves in air, fluids and solids 1. The diagrams below show two types of wave produced on a slinky spring. A B a. Which one is a transverse wave? (1) Wave B b. What is the name of the other type of wave?

More information

4.6 Waves Waves in air, fluids and solids Transverse and longitudinal waves

4.6 Waves Waves in air, fluids and solids Transverse and longitudinal waves 4.6 Waves Wave behaviour is common in both natural and man-made systems. Waves carry energy from one place to another and can also carry information. Designing comfortable and safe structures such as bridges,

More information

Section Electromagnetic Waves and the Electromagnetic Spectrum

Section Electromagnetic Waves and the Electromagnetic Spectrum Section 17.6 Electromagnetic Waves and the Electromagnetic Spectrum Electromagnetic Waves Can you name all the colors of the rainbow? Red, Orange, Yellow, Green, Blue, Indigo, Violet Electromagnetic Waves

More information

Page 2. Q1.The figure below shows an incomplete electromagnetic spectrum. A microwaves B C ultraviolet D gamma

Page 2. Q1.The figure below shows an incomplete electromagnetic spectrum. A microwaves B C ultraviolet D gamma Q1.The figure below shows an incomplete electromagnetic spectrum. A microwaves B C ultraviolet D gamma (a) What name is given to the group of waves at the position labelled A in the figure above? Tick

More information

Term Info Picture. A wave that has both electric and magnetic fields. They travel through empty space (a vacuum).

Term Info Picture. A wave that has both electric and magnetic fields. They travel through empty space (a vacuum). Waves S8P4. Obtain, evaluate, and communicate information to support the claim that electromagnetic (light) waves behave differently than mechanical (sound) waves. A. Ask questions to develop explanations

More information

Electromagnetic Radiation Worksheets

Electromagnetic Radiation Worksheets Electromagnetic Radiation Worksheets Jean Brainard, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other

More information

Name: Date: Block: Light Unit Study Guide Matching Match the correct definition to each term. 1. Waves

Name: Date: Block: Light Unit Study Guide Matching Match the correct definition to each term. 1. Waves Name: Date: Block: Light Unit Study Guide Matching Match the correct definition to each term. 1. Waves 2. Medium 3. Mechanical waves 4. Longitudinal waves 5. Transverse waves 6. Frequency 7. Reflection

More information

The topics in this unit are:

The topics in this unit are: The topics in this unit are: 1 Types of waves 2 Describing waves 3 Wave equation 4 Reflection of waves 5 Refraction 6 Diffraction 7 Light waves (reflection) 8 Total internal reflection 9 - Optical fibres

More information

Holy Cross High School. Medical Physics Homework

Holy Cross High School. Medical Physics Homework Holy Cross High School Medical Physics Homework Homework 1: Refraction 1. A pupil shone light through a rectangular block as shown 75 222 15 40 50 a) The light changes direction as it passes from air to

More information

Waves. A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter

Waves. A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter Waves and Optics Waves A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter Waves Some waves do not need a medium

More information

Longitudinal No, Mechanical wave ~340 m/s (in air) 1,100 feet per second More elastic/denser medium = Greater speed of sound

Longitudinal No, Mechanical wave ~340 m/s (in air) 1,100 feet per second More elastic/denser medium = Greater speed of sound Type of wave Travel in Vacuum? Speed Speed vs. Medium Light Sound vs. Sound Longitudinal No, Mechanical wave ~340 m/s (in air) 1,100 feet per second More elastic/denser medium = Greater speed of sound

More information

National 4. Waves and Radiation. Summary Notes. Name:

National 4. Waves and Radiation. Summary Notes. Name: National 4 Waves and Radiation Summary Notes Name: Mr Downie 2014 1 Sound Waves To produce a sound the particles in an object must vibrate. This means that sound can travel through solids, liquids and

More information

$100 $400 $400 $400 $500

$100 $400 $400 $400 $500 $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $300 $300 $300 $300 $300 $400 $400 $400 $400 $400 $500 $500 $500 $500 $500 MOVING IN WAVES PURE ENERGY! WHAT S THE FREQUENCY, KENNETH? USE IT OR LOSE IT

More information

travel (at same speed) through a vacuum / space do not accept air for vacuum travel in straight lines 2

travel (at same speed) through a vacuum / space do not accept air for vacuum travel in straight lines 2 M. (a) any two from: travel (at same speed) through a vacuum / space do not accept air f vacuum transverse transfer energy can be reflected can be refracted can be diffracted can be absbed travel in straight

More information

ELECTROMAGNETIC WAVES AND LIGHT. Physics 5 th Six Weeks

ELECTROMAGNETIC WAVES AND LIGHT. Physics 5 th Six Weeks ELECTROMAGNETIC WAVES AND LIGHT Physics 5 th Six Weeks What are Electromagnetic Waves Electromagnetic Waves Sound and water waves are examples of waves resulting from energy being transferred from particle

More information

17-1 Electromagnetic Waves

17-1 Electromagnetic Waves 17-1 Electromagnetic Waves transfers energy called electromagnetic radiation no medium needed transverse some electrical, some magnetic properties speed is 300,000,000 m/s; nothing is faster; at this speed

More information

INTRODUCTION. 5. Electromagnetic Waves

INTRODUCTION. 5. Electromagnetic Waves INTRODUCTION An electric current produces a magnetic field, and a changing magnetic field produces an electric field Because of such a connection, we refer to the phenomena of electricity and magnetism

More information

MODULE P6: THE WAVE MODEL OF RADIATION OVERVIEW

MODULE P6: THE WAVE MODEL OF RADIATION OVERVIEW OVERVIEW Wave behaviour explains a great many phenomena, both natural and artificial, for all waves have properties in common. The first topic introduces a basic vocabulary for describing waves. Reflections

More information

Physics, P1 Energy for the Home

Physics, P1 Energy for the Home Radiotherapy uses gamma rays to kill cancer cells All waves move energy from place to place. Physics, P1 Energy for the Home Transverse Waves These are caused by shaking. Examples are (1) Waves in a string,

More information

Optics looks at the properties and behaviour of light!

Optics looks at the properties and behaviour of light! Optics looks at the properties and behaviour of light! Chapter 4: Wave Model of Light Past Theories Pythagoras believed that light consisted of beams made up of tiny particles that carried information

More information

6-6 Waves Trilogy. 1.0 Figure 1 shows an incomplete electromagnetic spectrum. Figure 1. A microwaves B C ultraviolet D gamma

6-6 Waves Trilogy. 1.0 Figure 1 shows an incomplete electromagnetic spectrum. Figure 1. A microwaves B C ultraviolet D gamma 6-6 Waves Trilogy.0 Figure shows an incomplete electromagnetic spectrum. Figure A microwaves B C ultraviolet D gamma. Which position are X-rays found in? Tick one box. [ mark] A B C D.2 Which three waves

More information

CHAPTER 17 AND 18 CHARACTERISTICS OF EM WAVES LEARNING OBJECTIVES CHARACTERISTICS OF EM WAVES 11/10/2014

CHAPTER 17 AND 18 CHARACTERISTICS OF EM WAVES LEARNING OBJECTIVES CHARACTERISTICS OF EM WAVES 11/10/2014 STUDENT LEARNING GOALS PHYSICAL SCIENCE ELECTROMAGNETISM SC.912.P.10.18 CHAPTER 17 AND 18 Electromagnetic Spectrum, Light, and Sound Goal: Explore the theory of electromagnetism by comparting and contrasting

More information

Note 2 Electromagnetic waves N2/EMWAVES/PHY/XII/CHS2012

Note 2 Electromagnetic waves N2/EMWAVES/PHY/XII/CHS2012 ELECTROMAGNETIC SPECTRUM Electromagnetic waves include visible light waves, X-rays, gamma rays, radio waves, microwaves, ultraviolet and infrared waves. The classification of em waves according to frequency

More information

California State University, Bakersfield. Signals and Systems. Luis Medina,

California State University, Bakersfield. Signals and Systems. Luis Medina, Luis Medina, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 9 (Intro, History and Background) July 29 th, 2013 1 Electric Fields An electric field surrounds

More information

Lesson 24 Electromagnetic Waves

Lesson 24 Electromagnetic Waves Physics 30 Lesson 24 Electromagnetic Waves On April 11, 1846, Michael Faraday was scheduled to introduce Sir Charles Wheatstone at a meeting of the Royal Society of London. Unfortunately, Wheatstone had

More information

Chapter 18 The Electromagnetic Spectrum and Light

Chapter 18 The Electromagnetic Spectrum and Light Chapter 18 Sections 18.1 Electromagnetic Waves 18.2 The 18.3 Behavior of Light 18.4 Color 18.5 Sources of Light Chapter 18 The and Light Section 18.1 Electromagnetic Waves To review: mechanical waves require

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves What is an Electromagnetic Wave? An EM Wave is a disturbance that transfers energy through a field. A field is a area around an object where the object can apply a force on another

More information

Chapter 13 Electromagnetic Waves

Chapter 13 Electromagnetic Waves Chapter 3 Electromagnetic Waves Name: Class: Date: Time: 40 minutes Marks: 40 marks Comments: Page of 5 Diagram shows four of the seven types of wave in the electromagnetic spectrum. Diagram J K L Visible

More information

Wallace Hall Academy Physics Department. Waves. Pupil Notes Name:

Wallace Hall Academy Physics Department. Waves. Pupil Notes Name: Wallace Hall Academy Physics Department Waves Pupil Notes Name: Learning intentions for this unit? Be able to state that waves transfer energy. Be able to describe the difference between longitudinal and

More information

P6 Quick Revision Questions

P6 Quick Revision Questions P6 Quick Revision Questions H = Higher tier only SS = Separate science only Question 1... of 50 Define wavelength Answer 1... of 50 The distance from a point on one wave to the equivalent point on the

More information

PHYSICS. Speed of Sound. Mr R Gopie

PHYSICS. Speed of Sound. Mr R Gopie Speed of Sound Mr R Gopie a) Reciprocal firing Methods of determining the speed of sound in air include: Diag. 20 The time interval, t, between the flash and the sound represents the time taken for sound

More information

Physics. Waves and Radiation Homework Exercises. National 4 & 5. Clackmannanshire Physics Network 0914

Physics. Waves and Radiation Homework Exercises. National 4 & 5. Clackmannanshire Physics Network 0914 Physics National 4 & 5 Waves and Radiation ----- 0914 Summary Homework 1: Homework 2: Homework 3: Homework 4: Homework 5: Homework 6: Homework 7: Waves I -Wave definitions - Speed, distance, time calculations

More information

Wave Behavior and The electromagnetic Spectrum

Wave Behavior and The electromagnetic Spectrum Wave Behavior and The electromagnetic Spectrum What is Light? We call light Electromagnetic Radiation. Or EM for short It s composed of both an electrical wave and a magnetic wave. Wave or particle? Just

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS 4.1 Describe the measurable properties of waves (velocity, frequency, wavelength, amplitude, period)

More information

Wave & Electromagnetic Spectrum Notes

Wave & Electromagnetic Spectrum Notes Wave & Electromagnetic Spectrum Notes December 17, 2011 I.) Properties of Waves A) Wave: A periodic disturbance in a solid, liquid or gas as energy is transmitted through a medium ( Waves carry energy

More information

RADIATIONS BEYOND THE VISIBLE. Radio UV IR Micro Gamma X-Rays

RADIATIONS BEYOND THE VISIBLE. Radio UV IR Micro Gamma X-Rays Lesson 1 Introduction 1. What name do we give the following set of waves; Radio UV IR Micro Gamma X-Rays 2. Copy the waves shown above in order of wavelength with the shortest at the top. 3. What speed

More information

Longitudinal and transverse waves Waves transfer energy from one place to another. There are two types of wave.

Longitudinal and transverse waves Waves transfer energy from one place to another. There are two types of wave. Wave Characteristics Longitudinal and transverse waves Waves transfer energy from one place to another. There are two types of wave. Transverse wave. Examples of a transverse wave are water waves and light.

More information

Optics & Light. See What I m Talking About. Grade 8 - Science OPTICS - GRADE 8 SCIENCE 1

Optics & Light. See What I m Talking About. Grade 8 - Science OPTICS - GRADE 8 SCIENCE 1 Optics & Light See What I m Talking About Grade 8 - Science OPTICS - GRADE 8 SCIENCE 1 Overview In this cluster, students broaden their understanding of how light is produced, transmitted, and detected.

More information

Chapter 18 The Electromagnetic Spectrum

Chapter 18 The Electromagnetic Spectrum Pearson Prentice Hall Physical Science: Concepts in Action Chapter 18 The Electromagnetic Spectrum 18.1 Electromagnetic Waves Objectives: 1. Describe the characteristics of electromagnetic waves in a vacuum

More information

Topic P2 Radiation and Life Homework booklet Graph paper needed for homework three

Topic P2 Radiation and Life Homework booklet Graph paper needed for homework three Name Key terms and spellings on back page Topic P Radiation and Life Homework booklet Graph paper needed for homework three Due Date Teacher Comment Homework 1 Homework Homework 3 Homework 4 Homework One:

More information

Lesson Objectives: The electromagnetic spectrum: To know the parts of To know their properties, uses, dangers

Lesson Objectives: The electromagnetic spectrum: To know the parts of To know their properties, uses, dangers 03/02/2014 Electromagnetic Spectrum Review Using Waves Lesson Objectives: The electromagnetic spectrum: To know the parts of To know their properties, uses, dangers To compare and contrast analogue and

More information

Science 8 Unit 2 Pack:

Science 8 Unit 2 Pack: Science 8 Unit 2 Pack: Name Page 0 Section 4.1 : The Properties of Waves Pages By the end of section 4.1 you should be able to understand the following: Waves are disturbances that transmit energy from

More information

Digital Image Processing CS-340. Lecture 1 Introduction

Digital Image Processing CS-340. Lecture 1 Introduction Digital Image Processing CS-340 Lecture 1 Introduction Books Gonzalez, R. C. and Woods, R. E., Digital Image Processing, Third Edition, Pearson- Prentice Hall, Inc., 2008. Gonzalez, R. C., Woods, R. E.,

More information

WAVES & EM SPECTRUM. Chapters 10 & 15

WAVES & EM SPECTRUM. Chapters 10 & 15 WAVES & EM SPECTRUM Chapters 10 & 15 What s a wave? repeating disturbance transfers energy through matter or space Oscillation back & forth movement carries energy w/o transporting matter can travel through

More information

Waves and Radiation. National 4 Summary Notes

Waves and Radiation. National 4 Summary Notes Waves and Radiation National 4 Summary Notes Wave characteristics, parameters and behaviours Types of wave Compare longitudinal and transverse waves Discuss what sound is and how it travels There are two

More information

NATIONAL 4 PHYSICS. Unit 2 Waves and Radiation

NATIONAL 4 PHYSICS. Unit 2 Waves and Radiation Farr High School NATIONAL 4 PHYSICS Unit 2 Waves and Radiation Revision Notes Wave characteristics, parameters and behaviours Types of wave There are two different types of waves you will meet in this

More information

Waves, Sound and Light. Grade 10 physics Robyn Basson

Waves, Sound and Light. Grade 10 physics Robyn Basson Waves, Sound and Light Grade 10 physics Robyn Basson Heartbeat Flick in hose pipe What is a pulse? A single disturbance that moves through a medium. Stone in water Other? moving Transverse pulse: A pulse

More information

1. Draw the Ray Diagram, name lens or mirror shown and determine the SALT for each picture

1. Draw the Ray Diagram, name lens or mirror shown and determine the SALT for each picture Honors Physics Chapter 22 and 23 Test Name: 1. Draw the Ray Diagram, name lens or mirror shown and determine the SALT for each picture 2. Type of Mirror above: i. SALT of image: S: A: L: T: b. Type of

More information

High frequency sounds, beyond the range of human hearing, are called ultrasound.

High frequency sounds, beyond the range of human hearing, are called ultrasound. Mr Downie 2014 1 Sound Waves To produce a sound the particles in an object must vibrate. This means that sound can travel through solids, liquids and gases. Sound cannot travel through a vacuum as it contains

More information

Wallace Hall Academy Physics Department NATIONAL 5 PHYSICS. Waves and Radiation. Exam Questions

Wallace Hall Academy Physics Department NATIONAL 5 PHYSICS. Waves and Radiation. Exam Questions Wallace Hall Academy Physics Department NATIONAL 5 PHYSICS Waves and Radiation Exam Questions 1 Wave Parameters and Behaviour 1. The following diagram gives information about a wave. 2011 Int2 12 MC Which

More information

Physics Unit 5 Waves Light & Sound

Physics Unit 5 Waves Light & Sound Physics Unit 5 Waves Light & Sound Wave A rhythmic disturbance that transfers energy through matter and/or a vacuum Material a wave travels through is called the medium 2 types of waves: 1. Transverse

More information

Globe Academy Science Department P1 GCSE Core Science Homework Booklet Summer 1 Contents: Feedback/ Marking. Date Set. Due. 1 Electrical Energy

Globe Academy Science Department P1 GCSE Core Science Homework Booklet Summer 1 Contents: Feedback/ Marking. Date Set. Due. 1 Electrical Energy Globe Academy Science Department P1 GCSE Core Science Homework Booklet Summer 1 Contents: Topic 1 Electrical Energy Date Set Date Due Feedback/ Marking 2 Renewable Energy Resources MID-TERM ASSESSMENT

More information

ELECTROMAGNETIC WAVES MARKS WEIGHTAGE 3 marks

ELECTROMAGNETIC WAVES MARKS WEIGHTAGE 3 marks ELECTROMAGNETIC WAVES MARKS WEIGHTAGE 3 marks QUICK REVISION (Important Concepts & Formulas) Electromagnetic radiation is the radiation in which associated electric and magnetic field oscillations are

More information

Dalkeith High School. Waves and Radiation. N4 Summary Notes

Dalkeith High School. Waves and Radiation. N4 Summary Notes Dalkeith High School Waves and Radiation N4 Summary Notes Wave characteristics, parameters and behaviours Types of wave Compare longitudinal and transverse waves Discuss what sound is and how it travels

More information

SCI-PS Light and Optics Pre Assessment Exam not valid for Paper Pencil Test Sessions

SCI-PS Light and Optics Pre Assessment Exam not valid for Paper Pencil Test Sessions SCI-PS Light and Optics Pre Assessment Exam not valid for Paper Pencil Test Sessions [Exam ID:1TL2E1 1 If the angle of incidence is 45, what is the angle of reflection? A 120 B 50 C 90 D 45 2 The wave

More information

Physical Science Test Form A Test 5: Waves. Matching. 1. diffraction

Physical Science Test Form A Test 5: Waves. Matching. 1. diffraction Physical Science Test Form A Test 5: Waves Matching. 1. diffraction 2. intensity 3. interference 4. mechanical wave 5. medium 6. pitch 7. reflection 8. refraction 9. translucent 10. transverse wave A.

More information

ID: A. Optics Review Package Answer Section TRUE/FALSE

ID: A. Optics Review Package Answer Section TRUE/FALSE Optics Review Package Answer Section TRUE/FALSE 1. T 2. F Reflection occurs when light bounces off a surface Refraction is the bending of light as it travels from one medium to another. 3. T 4. F 5. T

More information

Duncanrig Secondary School East Kilbride. S2 Physics. Electromagnetic Spectrum. Activity Booklet

Duncanrig Secondary School East Kilbride. S2 Physics. Electromagnetic Spectrum. Activity Booklet Duncanrig Secondary School East Kilbride Electromagnetic Spectrum Activity Booklet INSTRUCTIONS: Always put today s date and copy carefully each HEADING. Symbols used in this booklet: Copy The little pencil

More information

Nelkin & Cooke Physics Notes Vers 1.0. Waves

Nelkin & Cooke Physics Notes Vers 1.0. Waves Waves Properties of Waves... 1 Longitudinal Waves... 1 Transverse Waves... 2 Calculations... 3 Sound - General... 4 Loudness and Pitch... 4 Sound - Human Hearing... 6 Ultrasound... 7 Sound - Ultrasound

More information

II. Types of Waves A. Transverse waves 1. Can travel with or without matter (medium)

II. Types of Waves A. Transverse waves 1. Can travel with or without matter (medium) SOL: PS. 8 & 9 I. Waves A. Definitionà a disturbance that transfers energy through matter or space II. Types of Waves A. Transverse waves 1. Can travel with or without matter (medium) 2. Moves at rt. angles

More information

Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light

Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light Grade 8 Unit 1 Test Student Class Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light 2. Light-producing technologies, such as

More information

60 minute physics. Light. Nine hands-on activities: with GCSE Physics curriculum links. Light. Electric circuits. Machines & electromagnets

60 minute physics. Light. Nine hands-on activities: with GCSE Physics curriculum links. Light. Electric circuits. Machines & electromagnets 60 minute physics Nine hands-on activities: with GCSE Physics curriculum links Mapping data Digital Electric circuits Machines & electromagnets Flight & movement Storing energy Forces & motion Changing

More information

Lecture Outlines Chapter 25. Physics, 3 rd Edition James S. Walker

Lecture Outlines Chapter 25. Physics, 3 rd Edition James S. Walker Lecture Outlines Chapter 25 Physics, 3 rd Edition James S. Walker 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in

More information

If you forgot about the homework due today: textbook page 542 data analysis questions, I'll collect them tomorrow along with binder pages

If you forgot about the homework due today: textbook page 542 data analysis questions, I'll collect them tomorrow along with binder pages Light & the Electromagnetic Spectrum Electromagnetic Waves Electromagnetic waves > transverse waves consisting of changing electric & magnetic fields; carry energy from place to place; differ from mechanical

More information

Marr College Physics S3 Physics Waves and Radiation Homework Exercises

Marr College Physics S3 Physics Waves and Radiation Homework Exercises Marr College Physics S3 Physics Waves and Radiation Homework Exercises Page 1 Exercise 1 wave characteristics 1. Copy and complete the following: With a _ wave, the particles vibrate at 90 to the direction

More information

Physics in Entertainment and the Arts

Physics in Entertainment and the Arts Physics in Entertainment and the Arts Chapter IV The Fine Arts Spectra; Some Second Looks at Waves Spectra of Continuous Waves A wave s spectrum is the range of frequencies the waves cover For sound the

More information

Light. In this unit: 1) Electromagnetic Spectrum 2) Properties of Light 3) Reflection 4) Colors 5) Refraction

Light. In this unit: 1) Electromagnetic Spectrum 2) Properties of Light 3) Reflection 4) Colors 5) Refraction Light In this unit: 1) Electromagnetic Spectrum 2) Properties of Light 3) Reflection 4) Colors 5) Refraction Part 1 Electromagnetic Spectrum and Visible Light Remember radio waves are long and gamma rays

More information

Physics 1C. Lecture 24A. Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves. Average Quiz score = 6.8 out of 10.

Physics 1C. Lecture 24A. Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves. Average Quiz score = 6.8 out of 10. Physics 1C Lecture 24A Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves Average Quiz score = 6.8 out of 10 This is a B- Diffraction of X-rays by Crystals! X-rays are electromagnetic radiation

More information

Make a Refractor Telescope

Make a Refractor Telescope Make a Refractor Telescope In this activity students will build, and observe with, simple refractory telescope providing an interactive introduction to light, lenses and refraction. LEARNING OBJECTIVES

More information

Waves And Electromagnetic Spectrum Answer Key

Waves And Electromagnetic Spectrum Answer Key We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with waves and electromagnetic

More information

Answers to Chapter 11

Answers to Chapter 11 Answers to Chapter 11 11.1 What is Light? #1 Radiation (light) does NOT need a medium to travel through. Conduction needs a solid medium and convection needs liquid or gas medium to travel through. #2

More information

Topic 4: Waves 4.2 Traveling waves

Topic 4: Waves 4.2 Traveling waves Crests and troughs Compare the waves traveling through the mediums of rope and spring. CREST TROUGH TRANSVERSE WAVE COMPRESSION RAREFACTION LONGITUDINAL WAVE Wave speed and frequency The speed at which

More information

December 12 Set up a New Notes Page for Ch 17 We are starting with 17.2 All Ch 17 Vocabulary Due Tomorrow

December 12 Set up a New Notes Page for Ch 17 We are starting with 17.2 All Ch 17 Vocabulary Due Tomorrow December 12 Set up a New Notes Page for Ch 17 We are starting with 17.2 All Ch 17 Vocabulary Due Tomorrow Missing school this week? See Mrs. Bowen to get assignments before you leave Chapter 17 Section

More information

Unit 6 Electromagnetic Radiation:

Unit 6 Electromagnetic Radiation: Unit 6 Electromagnetic Radiation: Electromagnetic Radiation is a wave. Electromagnetic Radiation is not a mechanical wave. Does not need a medium. Can travel through empty space Examples of Electromagnetic

More information

Light has some interesting properties, many of which are used in medicine:

Light has some interesting properties, many of which are used in medicine: LIGHT IN MEDICINE Light has some interesting properties, many of which are used in medicine: 1- The speed of light changes when it goes from one material into another. The ratio of the speed of light in

More information

Name: Date Due: Waves. Physical Science Chapter 6

Name: Date Due: Waves. Physical Science Chapter 6 Date Due: Waves Physical Science Chapter 6 Waves 1. Define the following terms: a. periodic motion = b. cycle= c. period= d. mechanical wave= e. medium = f. transverse wave = g. longitudinal wave= h. surface

More information

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points WRITE ON SCANTRON WITH NUMBER 2 PENCIL DO NOT WRITE ON THIS TEST LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points Multiple Choice Identify the choice that best completes the statement or

More information

Q1. The diagram shows the oscilloscope traces of two different sounds P and Q. The oscilloscope setting is exactly the same in both cases.

Q1. The diagram shows the oscilloscope traces of two different sounds P and Q. The oscilloscope setting is exactly the same in both cases. Q1. The diagram shows the oscilloscope traces of two different sounds P and Q. The oscilloscope setting is exactly the same in both cases. P and Q sound different. Write down two differences in the way

More information

Science Focus 8. Light and Optical Systems. Pop Quiz Master (5 questions) for each Topic A C B D C C B C C A D B C A B B C C A C A C D B A C B B C D

Science Focus 8. Light and Optical Systems. Pop Quiz Master (5 questions) for each Topic A C B D C C B C C A D B C A B B C C A C A C D B A C B B C D Science Focus 8 Pop Quiz Master (5 questions) for each Topic Light and Optical Systems Answer Key Science Focus 8 Questions Topics 1. 2. 3. 4. 5. Topic 1 - What is Light? A C B D C Topic 2 Reflection C

More information

Green Team Science - Mrs. Ferdinand

Green Team Science - Mrs. Ferdinand Date: Homework: May 15, 2018 Waves Study Guide: start reviewing NOW Reminders: Unit Test: Friday, May 18 Unit Test Review: Thursday Turn In Activity 9: Wave Refraction Challenge Question None Agenda /

More information

Figure 1. Relative intensity of solar energy of different wavelength at the earth's surface.

Figure 1. Relative intensity of solar energy of different wavelength at the earth's surface. Spectrum of light from the sun: Fig.1 Figure 1. Relative intensity of solar energy of different wavelength at the earth's surface. Properties of light 1-The speed of light changes when it goes from one

More information

G1 THE NATURE OF EM WAVES AND LIGHT SOURCES

G1 THE NATURE OF EM WAVES AND LIGHT SOURCES G1 THE NATURE OF EM WAVES AND LIGHT SOURCES G2 OPTICAL INSTRUMENTS HW/Study Packet Required: READ Tsokos, pp 598-620 SL/HL Supplemental: Hamper, pp 411-450 DO Questions p 605 #1,3 pp 621-623 #6,8,15,18,19,24,26

More information

Electromagnetic (Light) Waves Electromagnetic Waves

Electromagnetic (Light) Waves Electromagnetic Waves Physics R Date: Review Questions 1. An ocean wave traveling at 3 m/s has a wavelength of 1.6 meters. a. What is the frequency of the wave? b. What is the period of the wave? Electromagnetic (Light) Waves

More information

Electromagnetic Radiation

Electromagnetic Radiation Electromagnetic Radiation EMR Light: Interference and Optics I. Light as a Wave - wave basics review - electromagnetic radiation II. Diffraction and Interference - diffraction, Huygen s principle - superposition,

More information