UNIT II SMALL SIGNAL AMPLIFIER

Size: px
Start display at page:

Download "UNIT II SMALL SIGNAL AMPLIFIER"

Transcription

1 UNIT II SMALL SIGNAL AMPLIFIER HYBRID MODEL OF A CIRCUIT: A linear ckt have input and output terminal which can be analyzed by 4- parameters (ie.2 -dimensionless and 2- dimension parameters), then it is called a hybrid model. Advantages of Hybrid parameters: They are real numbers at audio frequencies. They are easy to measure They can be determined from the transistor static characteristics curves. They are convenient to use in circuit analysis and design. Electronic Devices and Circuits 15

2 Hybrid Equation: Here h 11, h 12, h 21, h 22 are called the hybrid parameters or the h-parameters V 1 = h 11 i 1 +h 12 v 2 i 2 = h 21 i 1 + h 22 v 2 By the above equation and fig 2 V 2 =0 V 1 = h 11 i 1 h 11 = v 1 / i 1 (input impedance) By the above equation and fig 2 V 2 = 0 i 1 = h 12 i 1 h 21 = i 2 /i 1 (forward current gain) By the above hybrid equation and fig 3 i1 = 0 v 1 = h 11 i 1 + h 12 v 2 v 1 = 0 + h 12 v 2 h 12 = v 1 /v 2 (reverse voltage gain) By the above hybrid equation and fig 3 i 1 = 0 i 2 = h 21 i 1 + h 22 v 2 i 2 = 0+h 22 v 2 h 22 = i 2 / v 2 (output admittance) Electronic Devices and Circuits 16

3 h Input Impedance h output Admittance h Reverse Voltage gain h Forward current gain ut impedance It has moderate value of current gain &voltage gain Hybrid equivalent for CB e It has moderate value of high current gain & low voltage gain Hybrid equivalent for CC Electronic Devices and Circuits 17

4 It is mainly used for impedance matching. It has high input & low output impedance. It act has an emitter follower circuit. CALCULATING H-PARAMETERS FOR TRANSISTOR: 1. Current Gain - Io AI= Ii Applying KCL in the output side of the ckt. Io = hfii + I = hfii + Vo ( 1/ho) = hfii + Voho Io+IoRLho = hfii = hfii - IoRLho (Vo = -IoRL) Io (1+RLho) = hfii Io/Ii = hf (1+RLho) AI = - hf (1+RLho) 2.Voltage Gain Av = Vo/Vi Apply KVL in the input side of ckt Vi = hiii + hrvo = -hi {(Io+IoRLho)/hf } +hrvo Electronic Devices and Circuits 18

5 (Io+IoRLho)/hf ] = -hi { Io(1+RLho)/hf } +hrvo [ sub Ii = = -Iohi {(1+RLho)/hf } +hrvo (Vo = -IoRL) = -Io hi (1+RLho) /hf + hr Vo = -(Vo/RL) hi (1+RLho) /hf + hr Vo = Vo(hr + hi (1+RLho) /hfrl) [ sub = Vo(hrhfRL - hi(1+rlho))/hffrl Vi/Vo = (hrhfrl - hi(1+rlho))/hfrl Av = hfrl / (hrhfrl + hi (1+RLho)) 3. Input Impedance Zi = Vi / Ii Apply KVL in the input side of the ckt Vi = hiii + hrvo = hiii +n hr(-iorl) =hiii - IohrRL = hiii - (Iihf/(1+RLho))hrRL Io = (Iihf/(1+RLho)) ] = Ii(hi - (hf/(1+rlho))hrrl [ sub = Ii(hi - (hf /1+RLho))hrRL = Ii(hi - hrrlhf/(1+rlho)) Vi/Ii = hi - hrrlhf/(1+rlho) Zi = hi - hrrlhf/(1+rlho) Electronic Devices and Circuits 19

6 AI Av - hf / (1+RLho) hfrl / (hrhfrl + hi (1+RLho)) ut Impedance 4. O u t p Considering Rs resistance Zo = Vo/Io Apply KCL Io = hfii + hovo [ sub Ii = -hrvo/(rs+hi) ] Io = -hrvohf/(rs+hi) + hovo = Vo( ho- (hrhf)/(rs+hi)) = Vo( ho(rs+hi) - hrhf)/ (Rs+hi) Vo/Io = (Rs+hi)/ ( ho(rs+hi) - hrhf) Zo = (Rs+hi)/ ( ho(rs+hi) - hrhf) 5. Overall Voltage Gain Avs = (Av.Zi)/(Zi+Rs) 6. Overall Current Gain AIS = (AI*Rs)/(ZI+Rs) CONCLUSION Electronic Devices and Circuits 20

7 Zo Avs Zi hi - hrrlhf/(1+rlho) (Rs+hi)/ ( ho(rs+hi) - hrhf) (Av.Zi)/(Zi+Rs) AIS (Ai.Rs)/(Zi+Rs) Approximate conversion formulas for hybrid parameters CC hic= hie CB hib = hie /(1+hfe) hfc= - hfb = - hfe / (1+hfe) (1+hfe) hrc= 1 hrb = ((hie.hoe) / (1+hfe))- hre hoc= hoe hob = hoe/(!+hfe) Amplifier :- 1. Depending upon the type of input signal 2. Depending upon the number of stages 3. Depending upon the type of configuration whether: Depending upon the type of configuration Common Emitter configuration (CE) Common Base configuration (CB) Common Collector configuration (CC) POWER AMPLIFIER Electronic Devices and Circuits 21

8 Definition: A power amplifier is an amplifier which is capable to providing a large amount of power of the load such as loudspeaker or motor etc. *Power amplifier is a large signal amplifier *In power amplifier input signal is large (greater than 1 volt) *It will concerts DC power supply to the AC power supply. *It will generally used in the last stage of our circuit. (ie. Transmitter, receiver) *It will also used as a impedance matching circuit. Difference between voltage amplifier and power amplifier:- Voltage amplifier Power amplifier * signal level is low (mv) *signal level is high(v) *current gain is large * current gain is less (ie greater then 100) *Collector size is less *collector size is large *Emitter and base is lightly *both emitter and base are heavily doped doped *Input impedance is low than *input impedance is higher than output output impedance impedance. *Here Rc coupling for interstage *here transformer coupling is used Connection *it is called as the low or medium * it is called as the power transistor power transistor Here to determine the performance of power amplifier the following parameters are used namely circuit efficiency, distortion, and power dissipation. Classification of the power amplifier Power amplifier is classified on the basis of the transistor biasing condition and amplitude of the input signal 1. Class A (current conductor is for 360 ) it is an amplifier in which the transistor bias and amplitude of the input signal in such that the output current flows for the complete cycle (i.e., 360)of the input signal Electronic Devices and Circuits 22

9 2. Class B (current conductor is for 180 ) it is an amplifier in which the transistor bias and amplitude of the input signal in such that the output current flows for only one half cycle (i.e., 180)of the input signal 3. Class C (current conductor is for less than 180 ) it is an amplifier in which the transistor bias and amplitude of the input signal in such that the output current flows for les sthan half cycle (i.e., less than 180 )of the input signal CLASS A AMPLIFIER Class a amplifier is a common emitter amplifier as shown in the below figure The below circuits direct couple class-a power amplifier. Electronic Devices and Circuits 23

10 The only difference between the transformer coupled power amplifier and the class-a power amplifier is a input given range of volt. It is an amplifier in which the transistor bias and amplitude of the input signal in such that the output current flows for the complete cycle (i.e., 360)of the input signal The above condition achieved by locating the Q-point same where near the center of the load lines. In order obtain the max output signal the Q- point is said at the center of the load line. Electronic Devices and Circuits 24

11 In power amplifier we have to calculate 1.collector efficiency( c) 2.overall efficiency ( 0 ) c = (AC power delivered to the load)/(dc input power supplied to the transistors) 0 = (AC power delivered to thed load)/(dc input power) overall efficiency 0 = po(a.c)/pin(d.c) po(a.c) =- I^2 R L = (I Q /2)^2 R L po (a.c) = (Vp.Ip)/2 pin(d.c) = V CC I CQ 0 = (V P.I P )/(2(V CC.I CQ )) 0 = I CQ.V CEQ /(2(2*V CEQ.I CQ ) Electronic Devices and Circuits 25

12 =1/4 = 0.25 po (a.c) = (Vp.Ip)/2 0 = 25% pin(d.c) = V CEQ. I CQ collector efficiency C = (V P.I P )/(2(V CEQ.I CQ )) C = I CQ.V CEQ /(2V CEQ.I CQ ) = ½ =.50 C = 50% TRANSFORMER COUPLED AMPLIFIER:- The maximum value of overall or collector efficiency of a transformer coupled class A amplifier is 50% It is used to increase the efficiency It is used in order to match the impedance of load to the amplifier 0 = po(a.c)/pin(d.c) Electronic Devices and Circuits 26

13 = V P.I P /(2.V CC.I CQ ) = V CEQ.I CQ /(2.V CEQ.I CQ ) 0 = 50% CLASS B AMPLIFIER:- It is an amplifier in which the transistor bias and amplitude of the input signal in such that the output current flows for only one half cycle (i.e., 180)of the input signal in Class B Amplifier Q- point is operated in the cut off region since the Q- point is operated in the cut off region,so that the negative half cycle cannot be obtained only the positive half cycle is obtained. Efficiency of class B Po(a.c.) 0 = Pin (d.c) V P.I P P 0 = V CC.I P = P IN (d.c) = V CC.I dc P IN (d.c) = V CC.(I P / ) V CC.I P. 0 = V CC.I P = = 78.5% Electronic Devices and Circuits 27

14 CLASS B PUSH PULL AMPLIFIER:- As we seen in the Class B power amplifier it is operated in the cut off region,so that the negative half cycle cannot be obtained only the positive half cycle is obtained In order to avoid this contain we are using two transistors connected in the push pull amplifier in this arrangement one of the transistors conducts during one half cycle and the other conducts during the second half cycle. In transformer coupled class _B push pull amplifier It has two center tapped transformer t 1 and t 2 and two identical transistors q1,q2. Here the transformer t1 is called the input transformer or it is called the phase spliter. It is required to produce two signal voltage,which are 180 out of phase with each other Here the transformer is called the output transformer. During the positive half cycle Q2 transistor conducting and the Q1 transistor is in OFF During the negative half cycle Q1 transistor conducting and the Q2 transistor is in OFF Advantages of Class-B push pull Amplifier:- 1.It has high efficiency(i.e 78.5%) Electronic Devices and Circuits 28

15 2.use of push pull amplifier will eliminates even order harmonics in the a.c output signal. Disadvantage:- 1.It is bulky and expensive. 2.It is difficult for tapping. EFFICIENCY :- Po(a.c.) 0 = Pin (d.c) V P.I P P 0 = V CC.I P = P IN (d.c) = V CC.I dc P IN (d.c) = V CC.(2I P / ) V CC.I P. 0 = V CC.I P = = 78.5% TRANSFORMERLESS CLASS B PUSH PULL AMPLIFIER:- It is used used in order to avoid the disadvantages of of the Class-B push pull amplifier In this figure the input center tapped transformer is removed by an input driver called the phase splitter or phase inverter. It consists of an NPN transistor with equal collector and emitter resistances Since the load is directly connected to the amplifier there will not be any problem of impedance mismatch between the output impedance of the circuit and the load resistance. Electronic Devices and Circuits 29

16 COMPLEMENTARY SYMMETRY CLASS B PUSH PULL AMPLIFIER:- In this amplifier the term complementary means that the circuit uses two identical transistors i.e. one NPN and the is PNP. Electronic Devices and Circuits 30

17 Both these transistors are have identical input and output characteristics In this amplifier the term symmetry means that the biasing resistances are equal. Here r1&r2 is act as the biasing resistors During the positive half cycle Q1 transistor will conduct and Q2 will not conduct. During the negative half cycle Q2 transistor will conduct and Q1 will not conduct because it is PNP transistor In this method we do not use the phase spliter FET AMPLIFIER In fet amplifier: - * It has high input impedance * Fet amplifier is easy to fabricate * It has less noisy Difference between BJT and FET BJT:- 1. Both majority &minority carriers are present. 2. It act has a current controlling device 3. Ic Ib FET:- 1. It has only majority charge carriers. 2. It act has a voltage controlling device. 3. Io VGS SMALL SIGNAL MODEL OF FET Electronic Devices and Circuits 31

18 Common Source Amplifier (CS) 2. Ac equivalent ckt:- Input is gate terminal Output is drain termial Source is earth VDD = o; Electronic Devices and Circuits 32

19 3.Replace the fet by small signal model Av = Vgs Vo Vo = - id* rd gm Vgs *rd Id = Rd+rd -gm Vgs rdrd vo= (rd+rd) Av = Av= gm rd *Rd *Vgs (rd+rd)*vgs -gm rd *Rd (rd+rd) zo ( without source resistance) = rd zo (with source resistance) = Rd!! rd Common Source With Unbypassed Source Resistor:- Electronic Devices and Circuits 33

20 1.Ac equivalent ckt:- 2.Replace the FET by its small signal model From fig:- In loop 2 Electronic Devices and Circuits 34

21 In loop 1 idrd +(id - m Vgs)rd+id Rs = 0 Vgs = Vin idrs Thevenins equivalent circuits for above small signal model vo = - id *rd id = vi rd+rd+( +1)Rs - vi vo = *Rd rd+rd+( +1)Rs Av = vo Vi Av = Rd rd+rd+( +1)Rs Common Drain Amplifier (Source Follower) Electronic Devices and Circuits 35

22 1.Ac equivalent ckt:- 2.Replace the FET by its small signal model From fig 2:- Loop 2:- Loop 1 :- Idrd + id Rs +(id gm vgs)rd = 0 Vgs = vi id Rs Electronic Devices and Circuits 36

23 Thevenins equivalent circuits for above small signal model id = vi id = rd+rd +1 vi rd+rd+( +1)Rs Rs vi vo = *Rs rd+rd+( +1)Rs Av = Av = Av = vo Vi vi Rs Vi(rd+Rd+( +1)Rs) Rs rd+rd+( +1)Rs Electronic Devices and Circuits 37

24 general Av =1 If Rs is large Av = if the is large Av = 1 Electronic Devices and Circuits 38

Electron Devices and Circuits

Electron Devices and Circuits Electron Devices and Circuits (EC 8353) Prepared by Mr.R.Suresh, AP/EEE Ms.S.KARKUZHALI,A.P/EEE BJT small signal model Analysis of CE, CB, CC amplifiers- Gain and frequency response MOSFET small signal

More information

Part ILectures Bipolar Junction Transistors(BJTs) and Circuits

Part ILectures Bipolar Junction Transistors(BJTs) and Circuits University of missan Electronic II, Second year 2015-2016 Part ILectures Bipolar Junction Transistors(BJTs) and Circuits Assistant Lecture: 1 Bipolar Junction Transistors (BJTs) Bipolar Junction Transistors

More information

Chapter Three " BJT Small-Signal Analysis "

Chapter Three  BJT Small-Signal Analysis Chapter Three " BJT Small-Signal Analysis " We now begin to examine the small-signal ac response of the BJT amplifier by reviewing the models most frequently used to represent the transistor in the sinusoidal

More information

UNIT II MIDBAND ANALYSIS OF SMALL SIGNAL AMPLIFIERS

UNIT II MIDBAND ANALYSIS OF SMALL SIGNAL AMPLIFIERS UNIT II MIDBAND ANALYSIS OF SMALL SIGNAL AMPLIFIERS CE, CB and CC amplifiers. Method of drawing small-signal equivalent circuit. Midband analysis of various types of single stage amplifiers to obtain gain,

More information

Small signal Amplifier stages. Figure 5.2 Classification of power amplifiers

Small signal Amplifier stages. Figure 5.2 Classification of power amplifiers 5.1 Introduction When the power requirement to drive the load is in terms of several Watts rather than mili-watts the power amplifiers are used. Power amplifiers form the last stage of multistage amplifiers.

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad - 00 0 ELECTRONICS AND COMMUNICATION ENGINEERING ASSIGNMENT Name : ELECTRONIC CIRCUIT ANALYSIS Code : A0 Class : II - B. Tech nd semester

More information

Module-1 BJT AC Analysis: The re Transistor Model. Common-Base Configuration

Module-1 BJT AC Analysis: The re Transistor Model. Common-Base Configuration Module-1 BJT AC Analysis: BJT AC Analysis: BJT AC Analysis: BJT Transistor Modeling, The re transistor model, Common emitter fixed bias, Voltage divider bias, Emitter follower configuration. Darlington

More information

EC6202-ELECTRONIC DEVICES AND CIRCUITS YEAR/SEM: II/III UNIT 1 TWO MARKS. 1. Define diffusion current.

EC6202-ELECTRONIC DEVICES AND CIRCUITS YEAR/SEM: II/III UNIT 1 TWO MARKS. 1. Define diffusion current. EC6202-ELECTRONIC DEVICES AND CIRCUITS YEAR/SEM: II/III UNIT 1 TWO MARKS 1. Define diffusion current. A movement of charge carriers due to the concentration gradient in a semiconductor is called process

More information

Small signal ac equivalent circuit of BJT

Small signal ac equivalent circuit of BJT UNIT-2 Part A 1. What is an ac load line? [N/D 16] A dc load line gives the relationship between the q-point and the transistor characteristics. When capacitors are included in a CE transistor circuit,

More information

SMALL SINGLE LOW FREQUENCY TRANSISTOR AMPLIFIERS

SMALL SINGLE LOW FREQUENCY TRANSISTOR AMPLIFIERS UNIT VI SMALL SINGLE LOW FREQUENCY TRANSISTOR 6.1 Introduction AMPLIFIERS V-I characteristics of an active device such as BJT are non-linear. The analysis of a non- linear device is complex. Thus to simplify

More information

Skyup's Media ELECTRONIC CIRCUIT ANALYSIS

Skyup's Media ELECTRONIC CIRCUIT ANALYSIS ELECTRONIC CIRCUIT ANALYSIS MALLAREDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTROINICS AND COMMUNICATION ENGINEERING Answer all the following questions: PART A: B.TECH II YEAR II SEMESTER

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK Subject with Code : Electronic Circuit Analysis (16EC407) Year & Sem: II-B.Tech & II-Sem

More information

Electronic Circuits - Tutorial 07 BJT transistor 1

Electronic Circuits - Tutorial 07 BJT transistor 1 Electronic Circuits - Tutorial 07 BJT transistor 1-1 / 20 - T & F # Question 1 A bipolar junction transistor has three terminals. T 2 For operation in the linear or active region, the base-emitter junction

More information

The Common Source JFET Amplifier

The Common Source JFET Amplifier The Common Source JFET Amplifier Small signal amplifiers can also be made using Field Effect Transistors or FET's for short. These devices have the advantage over bipolar transistors of having an extremely

More information

Shankersinh Vaghela Bapu Institute of Technology INDEX

Shankersinh Vaghela Bapu Institute of Technology INDEX Shankersinh Vaghela Bapu Institute of Technology Diploma EE Semester III 3330905: ELECTRONIC COMPONENTS AND CIRCUITS INDEX Sr. No. Title Page Date Sign Grade 1 Obtain I-V characteristic of Diode. 2 To

More information

BJT Circuits (MCQs of Moderate Complexity)

BJT Circuits (MCQs of Moderate Complexity) BJT Circuits (MCQs of Moderate Complexity) 1. The current ib through base of a silicon npn transistor is 1+0.1 cos (1000πt) ma. At 300K, the rπ in the small signal model of the transistor is i b B C r

More information

Linear electronic. Lecture No. 1

Linear electronic. Lecture No. 1 1 Lecture No. 1 2 3 4 5 Lecture No. 2 6 7 8 9 10 11 Lecture No. 3 12 13 14 Lecture No. 4 Example: find Frequency response analysis for the circuit shown in figure below. Where R S =4kR B1 =8kR B2 =4k R

More information

ELECTRONIC DEVICES AND CIRCUITS LABORATORY MANUAL FOR II / IV B.E (EEE): I - SEMESTER

ELECTRONIC DEVICES AND CIRCUITS LABORATORY MANUAL FOR II / IV B.E (EEE): I - SEMESTER ELECTRONIC DEVICES AND CIRCUITS LABORATORY MANUAL FOR II / IV B.E (EEE): I - SEMESTER DEPT. OF ELECTRICAL AND ELECTRONICS ENGINEERING SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU 534 007 ELECTRONIC DEVICES

More information

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1 BJT Bipolar Junction Transistor Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com The Bipolar Junction Transistor is a semiconductor device which

More information

So far we have dealt with only small-signal ampliers. In small-signal ampliers the main factors were amplication linearity gain

So far we have dealt with only small-signal ampliers. In small-signal ampliers the main factors were amplication linearity gain Contents Power Amplier Types Class A Operation Class B Operation Class AB Operation Class C Operation Class D Operation Amplier Eciency Series-Fed Class A Amplier AC-DC Load Lines Maximum Eciency Figure

More information

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

Page 1. Telecommunication Electronics ETLCE - A2 06/09/ DDC 1. Politecnico di Torino ICT School. Amplifiers

Page 1. Telecommunication Electronics ETLCE - A2 06/09/ DDC 1. Politecnico di Torino ICT School. Amplifiers Politecnico di Torino ICT School Amplifiers Telecommunication Electronics A2 Transistor amplifiers» Bias point and circuits,» Small signal models» Gain and bandwidth» Limits of linear analysis Op Amp amplifiers

More information

Unit WorkBook 4 Level 4 ENG U19 Electrical and Electronic Principles LO4 Digital & Analogue Electronics 2018 Unicourse Ltd. All Rights Reserved.

Unit WorkBook 4 Level 4 ENG U19 Electrical and Electronic Principles LO4 Digital & Analogue Electronics 2018 Unicourse Ltd. All Rights Reserved. Pearson BTEC Levels 4 Higher Nationals in Engineering (RQF) Unit 19: Electrical and Electronic Principles Unit Workbook 4 in a series of 4 for this unit Learning Outcome 4 Digital & Analogue Electronics

More information

Chapter 6. BJT Amplifiers

Chapter 6. BJT Amplifiers Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H Chapter 6 BJT Amplifiers 1 Introduction The things you learned about biasing a transistor

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics A3 BJT Amplifiers»Biasing» Output dynamic range» Small signal analysis» Voltage gain» Frequency response 12/03/2012-1 ATLCE -

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) Summer 2016 EXAMINATIONS.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) Summer 2016 EXAMINATIONS. Summer 2016 EXAMINATIONS Subject Code: 17321 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the answer scheme. 2) The

More information

(a) BJT-OPERATING MODES & CONFIGURATIONS

(a) BJT-OPERATING MODES & CONFIGURATIONS (a) BJT-OPERATING MODES & CONFIGURATIONS 1. The leakage current I CBO flows in (a) The emitter, base and collector leads (b) The emitter and base leads. (c) The emitter and collector leads. (d) The base

More information

Chapter 3 Bipolar Junction Transistors (BJT)

Chapter 3 Bipolar Junction Transistors (BJT) Chapter 3 Bipolar Junction Transistors (BJT) Transistors In analog circuits, transistors are used in amplifiers and linear regulated power supplies. In digital circuits they function as electrical switches,

More information

Bipolar junction transistors.

Bipolar junction transistors. Bipolar junction transistors. Third Semester Course code : 15EECC202 Analog electronic circuits (AEC) Team: Dr. Nalini C Iyer, R.V. Hangal, Sujata N, Prashant A, Sneha Meti AEC Team, Faculty, School of

More information

UNIT 4 BIASING AND STABILIZATION

UNIT 4 BIASING AND STABILIZATION UNIT 4 BIASING AND STABILIZATION TRANSISTOR BIASING: To operate the transistor in the desired region, we have to apply external dec voltages of correct polarity and magnitude to the two junctions of the

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Invented in 1948 at Bell Telephone laboratories Bipolar junction transistor (BJT) - one of the major three terminal devices Three terminal devices more useful than two terminal

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 4 0 Bipolar Junction Transistors (BJT) Small Signal Analysis Graphical Analysis / Biasing Amplifier, Switch and Logic

More information

Field-Effect Transistor

Field-Effect Transistor Philadelphia University Faculty of Engineering Communication and Electronics Engineering Field-Effect Transistor Introduction FETs (Field-Effect Transistors) are much like BJTs (Bipolar Junction Transistors).

More information

Electronic Circuits II - Revision

Electronic Circuits II - Revision Electronic Circuits II - Revision -1 / 16 - T & F # 1 A bypass capacitor in a CE amplifier decreases the voltage gain. 2 If RC in a CE amplifier is increased, the voltage gain is reduced. 3 4 5 The load

More information

ECE 442 Solid State Devices & Circuits. 15. Differential Amplifiers

ECE 442 Solid State Devices & Circuits. 15. Differential Amplifiers ECE 442 Solid State Devices & Circuits 15. Differential Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 442 Jose Schutt Aine 1 Background

More information

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect Diode as Clamper A clamping circuit is used to place either the positive or negative peak of a signal at a desired level. The dc component is simply added or subtracted to/from the input signal. The clamper

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK Course Name : ELECTRONIC DEVICES AND CIRCUITS Course Code : A30404

More information

R a) Draw and explain VI characteristics of Si & Ge diode. (8M) b) Explain the operation of SCR & its characteristics (8M)

R a) Draw and explain VI characteristics of Si & Ge diode. (8M) b) Explain the operation of SCR & its characteristics (8M) SET - 1 1. a) Define i) transient capacitance ii) Diffusion capacitance (4M) b) Explain Fermi level in intrinsic and extrinsic semiconductor (4M) c) Derive the expression for ripple factor of Half wave

More information

Subject Code: Model Answer Page No: / N

Subject Code: Model Answer Page No: / N Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Electronic Devices. Floyd. Chapter 7. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 7. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 7 Power Amplifiers A power amplifier is a large signal amplifier that produces a replica of the input signal on its output. In the case shown here, the output

More information

Electronic Devices. Floyd. Chapter 6. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 6. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 6 Agenda BJT AC Analysis Linear Amplifier AC Load Line Transistor AC Model Common Emitter Amplifier Common Collector Amplifier Common Base Amplifier Special

More information

EC1203: ELECTRONICS CIRCUITS-I UNIT-I TRANSISTOR BIASING PART-A

EC1203: ELECTRONICS CIRCUITS-I UNIT-I TRANSISTOR BIASING PART-A SHRI ANGALAMMAN COLLEGE OF ENGG & TECH., TRICHY 621105 (Approved by AICTE, New Delhi and Affiliated to Anna University Chennai/Trichy) ( ISO 9001:2008 Certified Institution) DEPARTMENT OF ELECTRONICS &

More information

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. ELECTRONIC PRINCIPLES AND APPLICATIONS

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. ELECTRONIC PRINCIPLES AND APPLICATIONS R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. DEPARTMENT OF PHYSICS QUESTION BANK FOR SEMESTER V PHYSICS PAPER VI (A) ELECTRONIC PRINCIPLES AND APPLICATIONS UNIT I: SEMICONDUCTOR DEVICES

More information

Code: 9A Answer any FIVE questions All questions carry equal marks *****

Code: 9A Answer any FIVE questions All questions carry equal marks ***** II B. Tech II Semester (R09) Regular & Supplementary Examinations, April/May 2012 ELECTRONIC CIRCUIT ANALYSIS (Common to EIE, E. Con. E & ECE) Time: 3 hours Max Marks: 70 Answer any FIVE questions All

More information

Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing

Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing BJT Structure the BJT is formed by doping three semiconductor regions (emitter, base, and collector)

More information

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A 1. Why do we choose Q point at the center of the load line? 2. Name the two techniques used in the stability of the q point.explain. 3. Give the expression

More information

Lecture 18: Common Emitter Amplifier.

Lecture 18: Common Emitter Amplifier. Whites, EE 320 Lecture 18 Page 1 of 8 Lecture 18: Common Emitter Amplifier. We will now begin the analysis of the three basic types of linear BJT small-signal amplifiers: 1. Common emitter (CE) 2. Common

More information

Q1 A) Attempt any six: i) Draw the neat symbol of N-channel and P-channel FET

Q1 A) Attempt any six: i) Draw the neat symbol of N-channel and P-channel FET Subject Code:17319 Model Answer Page1 of 27 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

AE103 ELECTRONIC DEVICES & CIRCUITS DEC 2014

AE103 ELECTRONIC DEVICES & CIRCUITS DEC 2014 Q.2 a. State and explain the Reciprocity Theorem and Thevenins Theorem. a. Reciprocity Theorem: If we consider two loops A and B of network N and if an ideal voltage source E in loop A produces current

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) QUESTION BANK I YEAR B.Tech (II Semester) ELECTRONIC DEVICES (COMMON FOR EC102, EE104, IC108, BM106) UNIT-I PART-A 1. What are intrinsic and

More information

Physics of Bipolar Transistor

Physics of Bipolar Transistor Physics of Bipolar Transistor Motivations - In many electronic applications, amplifier is the most fundamental building block. Ex Audio amplifier: amplifies electric signal to drive a speaker RF Power

More information

COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections.

COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections. MOSFETS Although the base current in a transistor is usually small (< 0.1 ma), some input devices (e.g. a crystal microphone) may be limited in their output. In order to overcome this, a Field Effect Transistor

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

Power Amplifiers. Class A Amplifier

Power Amplifiers. Class A Amplifier Power Amplifiers The Power amplifiers amplify the power level of the signal. This amplification is done in the last stage in audio applications. The applications related to radio frequencies employ radio

More information

This tutorial will suit all beginners who want to learn the fundamental concepts of transistors and transistor amplifier circuits.

This tutorial will suit all beginners who want to learn the fundamental concepts of transistors and transistor amplifier circuits. About the Tutorial An electronic signal contains some information which cannot be utilized if doesn t have proper strength. The process of increasing the signal strength is called as Amplification. Almost

More information

UNIVERSITY PART-A ANSWERS Unit-1 1. What is an amplifier? An amplifier is a device which produces a large electrical output of similar characteristics to that of the input parameters. 2. What are transistors?

More information

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN Hanoi, 9/24/2012 Contents 2 Structure and operation of BJT Different configurations of BJT Characteristic curves DC biasing method and analysis

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Mosfet Review Sections of Chapter 3 &4 A. Kruger Mosfet Review, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width 1 10-6 m or less Thickness 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

Chapter 3: TRANSISTORS. Dr. Gopika Sood PG Govt. College For Girls Sector -11, Chandigarh

Chapter 3: TRANSISTORS. Dr. Gopika Sood PG Govt. College For Girls Sector -11, Chandigarh Chapter 3: TRANSISTORS Dr. Gopika Sood PG Govt. College For Girls Sector -11, Chandigarh OUTLINE Transistors Bipolar Junction Transistor (BJT) Operation of Transistor Transistor parameters Load Line Biasing

More information

EXPERIMENT #3 TRANSISTOR BIASING

EXPERIMENT #3 TRANSISTOR BIASING EXPERIMENT #3 TRANSISTOR BIASING Bias (operating point) for a transistor is established by specifying the quiescent (D.C., no signal) values of collector-emitter voltage V CEQ and collector current I CQ.

More information

ECE 255, MOSFET Basic Configurations

ECE 255, MOSFET Basic Configurations ECE 255, MOSFET Basic Configurations 8 March 2018 In this lecture, we will go back to Section 7.3, and the basic configurations of MOSFET amplifiers will be studied similar to that of BJT. Previously,

More information

CHAPTER FORMULAS & NOTES

CHAPTER FORMULAS & NOTES Formulae For u SEMICONDUCTORS By Mir Mohammed Abbas II PCMB 'A' 1 Important Terms, Definitions & Formulae CHAPTER FORMULAS & NOTES 1 Intrinsic Semiconductor: The pure semiconductors in which the electrical

More information

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 9 The Common-Source Amplifier In a CS amplifier, the input signal is applied to the gate and the output signal is taken from the drain. The amplifier has

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS UNIT-I - PN DIODEAND ITSAPPLICATIONS 1. What is depletion region in PN junction?

More information

Lecture #3 BJT Transistors & DC Biasing

Lecture #3 BJT Transistors & DC Biasing November 2014 Ahmad El-Banna Integrated Technical Education Cluster At AlAmeeria J-601-1448 Electronic Principals Lecture #3 BJT Transistors & DC Biasing Instructor: Dr. Ahmad El-Banna Agenda Transistor

More information

Chapter 6: Transistors and Gain

Chapter 6: Transistors and Gain I. Introduction Chapter 6: Transistors and Gain This week we introduce the transistor. Transistors are three-terminal devices that can amplify a signal and increase the signal s power. The price is that

More information

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Saqib Riaz Engr. M.Nasim Khan Dr.Noman Jafri Lecturer

More information

By: Dr. Ahmed ElShafee

By: Dr. Ahmed ElShafee Lecture (04) Transistor Bias Circuit 3 BJT Amplifiers 1 By: Dr. Ahmed ElShafee ١ Emitter Feedback Bias If an emitter resistor is added to the base bias circuit in Figure, the result is emitter feedback

More information

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press UNIT-1 Bipolar Junction Transistors Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press Figure 6.1 A simplified structure of the npn transistor. Microelectronic Circuits, Sixth

More information

Emitter base bias. Collector base bias Active Forward Reverse Saturation forward Forward Cut off Reverse Reverse Inverse Reverse Forward

Emitter base bias. Collector base bias Active Forward Reverse Saturation forward Forward Cut off Reverse Reverse Inverse Reverse Forward SEMICONDUCTOR PHYSICS-2 [Transistor, constructional characteristics, biasing of transistors, transistor configuration, transistor as an amplifier, transistor as a switch, transistor as an oscillator] Transistor

More information

Shankersinh Vaghela Bapu Institute of Technology

Shankersinh Vaghela Bapu Institute of Technology Shankersinh Vaghela Bapu Institute of Technology B.E. Semester III (EC) 131101: Basic Electronics INDEX Sr. No. Title Page Date Sign Grade 1 [A] To Study the V-I characteristic of PN junction diode. [B]

More information

BJT Amplifier Power Amp Overview(H.21)

BJT Amplifier Power Amp Overview(H.21) BJT Amplifier Power Amp Overview(H.21) 20170616-2 Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

More information

EXPERIMENT NO -9 TRANSITOR COMMON -BASE CONFIGURATION CHARACTERISTICS

EXPERIMENT NO -9 TRANSITOR COMMON -BASE CONFIGURATION CHARACTERISTICS Contents EXPERIMENT NO -9 TRANSITOR COMMON -BASE CONFIGURATION CHARACTERISTICS... 3 EXPERIMENT NO -10. FET CHARACTERISTICS... 8 Experiment # 11 Non-inverting amplifier... 13 Experiment #11(B) Inverting

More information

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER III EXAMINATION SUMMER 2013

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER III EXAMINATION SUMMER 2013 Seat No.: Enrolment No. GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER III EXAMINATION SUMMER 2013 Subject Code: 131101 Date: 31-05-2013 Subject Name: Basic Electronics Time: 02.30 pm - 05.00 pm Total

More information

ATLCE - A3 01/03/2016. Analog and Telecommunication Electronics 2016 DDC 1. Politecnico di Torino - ICT School. Lesson A3: BJT Amplifiers

ATLCE - A3 01/03/2016. Analog and Telecommunication Electronics 2016 DDC 1. Politecnico di Torino - ICT School. Lesson A3: BJT Amplifiers Politecnico di Torino - ICT School Analog and Telecommunication Electronics A3 BJT Amplifiers»Biasing» Output dynamic range» Small signal analysis» ltage gain» Frequency response AY 2015-16 Biasing Output

More information

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION JULY-2012 SCHEME OF VALUATION

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION JULY-2012 SCHEME OF VALUATION GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION JULY-0 SCHEME OF VALUATION Subject Code: 40 Subject: PART - A 0. Which region of the transistor

More information

II/IV B. TECH. DEGREE EXAMINATIONS, NOVEMBER Second Semester EC/EE ELECTRONIC CIRCUIT ANALYSIS. Time : Three Hours Max.

II/IV B. TECH. DEGREE EXAMINATIONS, NOVEMBER Second Semester EC/EE ELECTRONIC CIRCUIT ANALYSIS. Time : Three Hours Max. Total No. of Questions : 9] [Total No. of Pages : 02 B.Tech. II/ IV YEAR DEGREE EXAMINATION, APRIL/MAY - 2014 (Second Semester) EC/EE/EI Electronic Circuit Analysis Time : 03 Hours Maximum Marks : 70 Q1)

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRICAL AND ELECTRONICS ENGINEERING BANK Course Title Course Code Regulation Course Structure Course Coordinator Team

More information

Paper-1 (Circuit Analysis) UNIT-I

Paper-1 (Circuit Analysis) UNIT-I Paper-1 (Circuit Analysis) UNIT-I AC Fundamentals & Kirchhoff s Current and Voltage Laws 1. Explain how a sinusoidal signal can be generated and give the significance of each term in the equation? 2. Define

More information

PartIIILectures. Multistage Amplifiers

PartIIILectures. Multistage Amplifiers University of missan Electronic II, Second year 2015-2016 PartIIILectures Assistant Lecture: 1 Multistage and Compound Amplifiers Basic Definitions: 1- Gain of Multistage Amplifier: Fig.(1-1) A general

More information

Fluorescent display tube level meter driver, 16-point 2 channel, VU scale, bar display

Fluorescent display tube level meter driver, 16-point 2 channel, VU scale, bar display Fluorescent display tube level meter driver, 16-point 2 channel, VU scale, bar display The is a two-channel, 16-point fluorescent display tube driver for VU-scale bar-level meters. It uses a dynamic-drive

More information

PESIT BANGALORE SOUTH CAMPUS BASIC ELECTRONICS

PESIT BANGALORE SOUTH CAMPUS BASIC ELECTRONICS PESIT BANGALORE SOUTH CAMPUS QUESTION BANK BASIC ELECTRONICS Sub Code: 17ELN15 / 17ELN25 IA Marks: 20 Hrs/ Week: 04 Exam Marks: 80 Total Hours: 50 Exam Hours: 03 Name of Faculty: Mr. Udoshi Basavaraj Module

More information

MODULE-2: Field Effect Transistors (FET)

MODULE-2: Field Effect Transistors (FET) FORMAT-1B Definition: MODULE-2: Field Effect Transistors (FET) FET is a three terminal electronic device used for variety of applications that match with BJT. In FET, an electric field is established by

More information

IFB270 Advanced Electronic Circuits

IFB270 Advanced Electronic Circuits IFB270 Advanced Electronic Circuits Chapter 9: FET amplifiers and switching circuits Prof. Manar Mohaisen Department of EEC Engineering Review of the Precedent Lecture Review of basic electronic devices

More information

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror.

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. Current Mirrors Basic BJT Current Mirror Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. For its analysis, we assume identical transistors and neglect

More information

ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS

ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS AV18-AFC ANALOG FUNDAMENTALS C Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS 1 ANALOG FUNDAMENTALS C AV18-AFC Overview This topic identifies the basic FET amplifier configurations and their principles of

More information

BJT h-parameter (H.16)

BJT h-parameter (H.16) BJT h-parameter (H.16) 20170518 Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR 60320 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK Academic Year: 2018 2019 Odd Semester Subject: EC8353 - ELECTRON DEVICES

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

UNIT I PN JUNCTION DEVICES

UNIT I PN JUNCTION DEVICES UNIT I PN JUNCTION DEVICES 1. Define Semiconductor. 2. Classify Semiconductors. 3. Define Hole Current. 4. Define Knee voltage of a Diode. 5. What is Peak Inverse Voltage? 6. Define Depletion Region in

More information

WINTER 14 EXAMINATION. Model Answer. 1) The answers should be examined by key words and not as word-to-word as given in the

WINTER 14 EXAMINATION. Model Answer. 1) The answers should be examined by key words and not as word-to-word as given in the WINTER 14 EXAMINATION Subject Code: 17213 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2)

More information

An Introduction to Bipolar Junction Transistors. Prepared by Dr Yonas M Gebremichael, 2005

An Introduction to Bipolar Junction Transistors. Prepared by Dr Yonas M Gebremichael, 2005 An Introduction to Bipolar Junction Transistors Transistors Transistors are three port devices used in most integrated circuits such as amplifiers. Non amplifying components we have seen so far, such as

More information

Transistors and Applications

Transistors and Applications Chapter 17 Transistors and Applications DC Operation of Bipolar Junction Transistors (BJTs) The bipolar junction transistor (BJT) is constructed with three doped semiconductor regions separated by two

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 7 BJT AMPLIFIER CONFIGURATIONS AND INPUT/OUTPUT IMPEDANCE OBJECTIVES The purpose of this experiment

More information

Experiment (1) Principles of Switching

Experiment (1) Principles of Switching Experiment (1) Principles of Switching Introduction When you use microcontrollers, sometimes you need to control devices that requires more electrical current than a microcontroller can supply; for this,

More information

Pg: 1 VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 Department of Electronics & Communication Engineering Regulation: 2013 Acadamic Year : 2015 2016 EC6304 Electronic Circuits I Question

More information

I C I E =I B = I C 1 V BE 0.7 V

I C I E =I B = I C 1 V BE 0.7 V Guide to NPN Amplifier Analysis Jason Woytowich 1. Transistor characteristics A BJT has three operating modes cutoff, active, and saturation. For applications, like amplifiers, where linear characteristics

More information