LAB 1 METHODS FOR LOCATING YOUR FIELD DATA IN GEOGRAPHIC SPACE. Geog 315 / ENSP 428

Size: px
Start display at page:

Download "LAB 1 METHODS FOR LOCATING YOUR FIELD DATA IN GEOGRAPHIC SPACE. Geog 315 / ENSP 428"

Transcription

1 LAB 1 METHODS FOR LOCATING YOUR FIELD DATA IN GEOGRAPHIC SPACE Geog 315 / ENSP 428

2 Lab 1 Schedule Introduction to bio-physical field data collection (8:00-8:20am) Locating your data on the earth: NAVSTAR Global Positioning System (8:20-9:20am) min Break -- Quiz (9:35-10:00am) Measuring distance and azimuth (10:00-10:30am) --15-min Break Planning the field campaign (10:45am-11:10am) Introduction to Trimble Juno GPS units and Impulse laser rangefinder (11:10am-11:40pm)

3 Lab Objectives Understand the spatial dimension of field data, and the costs and benefits of collecting it Understand how the Global Positions System (GPS) works, its advantages, and its limitations Understand how distance between points can be surveyed with laser rangefinders, and know when this technology is appropriate to use Learn how to effectively plan for a field campaign to increase sampling efficiency and spatial and attribute data accuracy Exposure to GPS units and laser rangefinders used in Lab 2

4 Collecting bio-physical field data

5

6 La Selva Biological Field Station

7 Dipteryx panamensis # Species present / Presencia del especies Soils / Suelos Old alluvium / Aluvion viejo Recent alluvium / Aluvion reciente Residual Stream-associated / Suelo de quebradas Swamp / Pantano # ## # # ## # # ## # ## ## ## # # ## ## # ## ## ## # ## ## ## # ## # # ## ## ## # # # # # ## # # ## # ## ## ## ## # # ## # ## # # ## # ## # # # # # # ## # # # # ## # # ## # ## ## # ## ## # ## ## ## # ## # # # # ## ## # ## ## ## # # # # ## # # ## ## # ## ## ## # # # # # ## ## ## # # # # # ## # # # # # # # ## # # ## # # # # # # # ## # # # # # ## ## # ## # N Meters

8 Elephant herd home range

9 Spatial information Most spatial information of interest is geographic can be placed on the earth Spatial information links a place with a property of that place The temperature is 40 C at Latitude: 38 N, Longitude: 122 W Could also be at a specific time The temperature is 40 C at Latitude: 38 N, Longitude: 122 W at 02/13/2009, 8 am Properties are variables that we measure sensed with our body or instruments Can be quantitative or qualitative The potential number of geographic places and their properties is vast

10 Some bio-physical variables of interest Biological plants, animals, fungi, etc. Composition presence/absence, abundance of species or groups, communities Vegetation structure biomass, height, diameter, percent cover, leaf area index Physical environment variables Moisture, temperature, light Geological composition Chemistry of soil, water or air (e.g., nutrients, pollution) Geomorphology shape of the land, including slope, aspect, elevation Disturbance and threats Natural: fire, wind-throw, pest attack, species invasion Anthropogenic: deforestation, poaching, grazing

11 Sampling geographic information Type Single points Transects along a line Plots Rapid assessment visit Scale Space boundary area; geographic area or length of samples; distribution of samples Time -- return interval. Once every year? Need to come back to location? Need to leave a monument? Considerations Preliminary assessment or long-term monitoring Time Money Access

12 Locating your data on the earth Global Navigation Satellite Systems (GNSS)

13 Global Navigation Satellite Systems (GNSS) Most common approach to surveying locations is using Global Navigation Satellite Systems (GNSS) It uses range measurements based on radio signals from satellites Systems developed by USA, Russia, European community and China

14 NAVSTAR Global Positioning System ( GPS ) Developed, owned and maintained by the U.S. Department of Defense (US$400 million per year to maintain) Accurately determines horizontal location, elevation and speed Almost anywhere on earth day or night any weather Free for public use!

15 GPS segments

16 GPS satellite segment 32

17

18 GPS user segment

19 GPS General Information GPS satellites broadcast three different types of data using radio waves 1. Almanac data - system health and rough orbits of all GPS satellites; tells receiver which satellites to listen for 2. Ephemeris data for the broadcasting satellite; - allows a GPS receiver to accurately calculate the position of the broadcasting satellite - satellite health, clock corrections, etc. 3. Coded signals - Coarse Acquisition code, or C/A, and the Precise code, or P- code (C/A code used mainly in civilian applications)

20 A single satellite range measurement t 0 t 1 Range = speed of light x travel time Range = c(t 1 t 0 ) (c =299,792,458 meters per second)

21 GPS code receiver Assume that satellite and receiver are generating the same pseudo-random code at exactly the same time

22 Measurements to multiple satellites determines position

23 Positional uncertainty (1) Sources of Error Several factors can result in erroneous location determination with GNSS (or GPS) Source Range Error (m) Satellite clock error 1 Satellite position error 1 Atmospheric & Ionospheric effects 4 Receiver error 1.5 Total ~7.5

24 Positional uncertainty (2) Leads to positional uncertainty

25 Ionosphere Electrified region within the upper atmosphere Can reflect, deflect and scatter radio waves increase range

26 Multipath signal error Source:

27

28 Positional Dilution of Precision (PDOP)

29 Obstructions to satellite signals Telescoping pole

30 Adjusting PDOP thresholds Typically want PDOP < 6

31 Types of receivers (1) Many types of receivers on the market vary in price, features and performance Most now are multi-channel (12) can track up to 12 satellites Ability to average points Ability to change projection and datum Display screen for features and maps Memory to hold features and properties (attributes) Ability to download data Battery life Differential corrections (more on this coming) Antennas that reduce error

32 Types of receivers (2) Recreational receivers - $200 to $1000 Mapping grade - $ $10,000 Set PDOP, satellite elevation and signal-to-noise filters Target satellites Point averaging Differential corrections Data dictionary and data download High-end survey grade Better antennas Can achieve centimeter accuracy

33

34

35 Differential correction

36 Differential correction For each satellite, the roving (receiver) range is corrected by the observed range error at base station

37 Two common types of differential GPS Best performance if base station within 180 miles, 300 km

38 CORS - Continuously Operating Reference Stations National Geodetic Survey (NGS), an office of NOAA's National Ocean Service, coordinates a network of Continuously Operating Reference Stations (CORS) base stations Each CORS site provides carrier phase and code range measurements for differential correction GNSS - GPS and GLONASS supported CORS data are available at their original sampling rate for 30 days, after that at reduced sampling rate

39 CORS CORS/GoogleMap/

40 Measuring distance and azimuth angles

41 Distance and azimuth measurements Offset points: We can locate a fixed point with a GPS (GNSS) receiver and then calculate the horizontal position of other points relative to the GPS point with distance and azimuth (bearing) angle measurements The GPS point in this context is called a control point Azimuth: the clockwise angle from north, e.g. 45 o (northeast), 180 o (south) i.e., bearing The accuracy of this technique depends on accuracy of instruments used to measure Geographic position (e.g., GPS) Angle (e.g., analog or digital compass) Distance (e.g., tape measure, laser rangefinder)

42 Compass Measures azimuth angles 0º to 360º

43 Magnetic declination Earth has a geographic north and south pole axis upon which the planet spins Earth is like a big magnet; liquid iron-nickel core creates magnetic field Compass needles point in the direction of the magnetic field lines North on a compass, or 0º is magnetic north, not geographic north Magnetic declination - angle between the compass pointing direction and geographic north, or true north

44

45 /geomagmodels/struts/calc Declination

46 Distance Tape measures

47 Laser rangefinder Maximum Range Accuracy Inclinometer Range Inclinometer Accuracy 575 m 3-5 cm typical ± 90 degrees ± 0.1 deg. typical

48 Horizontal distance Want horizontal distance, or planimetric distance -- may need to slope correct Cos (θ) = hd/sd (adjacent/ hypotenuse) hd = sd * Cos (θ) B Θ can be measured with a inclinometer A Θ = inclination angle hd = horizontal distance or laser rangefinder inclinometer

49 Vertical height Some applications require measurement of height Same concepts apply B Tan(θ) = vh/hd (opposite/adjacent) vh 1 = hd * Tan(θ 1 ) vh total = vh 1 + vh 2 vh 1 = vertical height A θ 1 hd = horizontal distance θ 2 vh 2 = vertical height C

50 Measuring tree height, La Selva, Costa Rica

51 Using the Laser Tech Impulse

52 Mapping a point Sin (θ) = x/hd (opposite/ hypotenuse) x = Sin (θ) * hd Forest Cos (θ) = y/hd (adjacent/ hypotenuse) y= Cos (θ) * hd Trunk x = GPS x + x Trunk y = GPS y + y 0 N y θ x GPS control point & laser rangefinder

53 Mapping a polygon (1) Collecting corner x,y positions with a GPS receiver GPS positional error Field Plot

54 Mapping a polygon (2) Collecting corner x,y positions with a GPS receiver and differential corrections (DGPS) DGPS positional error Field Plot

55 Mapping a polygon (3) Collecting corner x,y positions with DGPS and laser rangefinder Control point DGPS positional error Laser rangefinder positional error Closure? Field Plot

56 Planning the field campaign

57 Project fundamentals Define research question and goals Consider a spatial perspective in questions Ask how spatial data and sampling scheme help answer this Familiarize yourself with study area Logistics of getting there What type of obstacles canopy cover, mountains Permissions for access, other cultural issues

58 Project fundamentals (cont) Resolution and accuracy needs Spatial and temporal scale Type of equipment: recreational or mapping-grade GPS? Tape measure or laser rangefinder? Data collection methodology Points, lines or areas Coordinate system and projection How data collected? Who? How data stored data dictionary, on a paper form

59 Long-term field plots

60 Field data form

61 Data dictionary A data dictionary is a "shopping list" of the features and their attributes that you want to map in the field You create the data dictionary with the GPS vendor s software (e.g., Pathfinder Office) prior to going into the field You then upload the data dictionary to your GPS receiver Once in the field, the data dictionary prompts you for information for each spatial feature (e.g., point, polygon) measured Provides a standard format for data entry Saves time! Helps prevent input errors!

62 Mission planning software GPS (GNSS) vendors generally provide mission planning software with receiver Free software is from Trimble Almanac information on satellites is available from Trimble, /gpsdataresources.shtml

63 Data dictionary

64 GPS satellites - 02/26/2010

65 Sky plot Rohnert Park, CA 02/26/2010

66 Number of satellites Santa Rosa, CA Rohnert Park, CA 02/26/2010

67 PDOP Santa Rosa, CA Rohnert Park, CA 02/26/2010

68 Sonoma State Campus June 2007

GPS: The Basics. Darrell R. Dean, Jr. Civil and Environmental Engineering West Virginia University. Expected Learning Outcomes for GPS

GPS: The Basics. Darrell R. Dean, Jr. Civil and Environmental Engineering West Virginia University. Expected Learning Outcomes for GPS GPS: The Basics Darrell R. Dean, Jr. Civil and Environmental Engineering West Virginia University Expected Learning Outcomes for GPS Explain the acronym GPS Name 3 important tdt dates in history of GPS

More information

Introduction to Geographic Information Science. Last Lecture. Today s Outline. Geography 4103 / GNSS/GPS Technology

Introduction to Geographic Information Science. Last Lecture. Today s Outline. Geography 4103 / GNSS/GPS Technology Geography 4103 / 5103 Introduction to Geographic Information Science GNSS/GPS Technology Last Lecture Geoids Ellipsoid Datum Projection Basics Today s Outline GNSS technology How satellite based navigation

More information

What is a GPS How does GPS work? GPS Segments GPS P osition Position Position Accuracy Accuracy Accuracy GPS A pplications Applications Applications

What is a GPS How does GPS work? GPS Segments GPS P osition Position Position Accuracy Accuracy Accuracy GPS A pplications Applications Applications What is GPS? What is a GPS How does GPS work? GPS Segments GPS Position Accuracy GPS Applications What is GPS? The Global Positioning System (GPS) is a precise worldwide radio-navigation system, and consists

More information

NR402 GIS Applications in Natural Resources

NR402 GIS Applications in Natural Resources NR402 GIS Applications in Natural Resources Lesson 5 GPS/GIS integration Global Positioning System (GPS)..a global navigation system that everyone can use What is GPS? How does it work? How accurate is

More information

Global Positioning Systems (GPS) Trails: the achilles heel of mapping from the air / satellites

Global Positioning Systems (GPS) Trails: the achilles heel of mapping from the air / satellites Global Positioning Systems (GPS) Trails: the achilles heel of mapping from the air / satellites Google maps updated regularly by local users using GPS Also: http://openstreetmaps.org GPS applications

More information

PRINCIPLES AND FUNCTIONING OF GPS/ DGPS /ETS ER A. K. ATABUDHI, ORSAC

PRINCIPLES AND FUNCTIONING OF GPS/ DGPS /ETS ER A. K. ATABUDHI, ORSAC PRINCIPLES AND FUNCTIONING OF GPS/ DGPS /ETS ER A. K. ATABUDHI, ORSAC GPS GPS, which stands for Global Positioning System, is the only system today able to show you your exact position on the Earth anytime,

More information

GLOBAL POSITIONING SYSTEMS

GLOBAL POSITIONING SYSTEMS GLOBAL POSITIONING SYSTEMS GPS & GIS Fall 2017 Global Positioning Systems GPS is a general term for the navigation system consisting of 24-32 satellites orbiting the Earth, broadcasting data that allows

More information

Resection. We can measure direction in the real world! Lecture 10: Position Determination. Resection Example: Isola, Slovenia. Professor Keith Clarke

Resection. We can measure direction in the real world! Lecture 10: Position Determination. Resection Example: Isola, Slovenia. Professor Keith Clarke Geography 12: Maps and Spatial Reasoning Lecture 10: Position Determination We can measure direction in the real world! Professor Keith Clarke Resection Resection Example: Isola, Slovenia Back azimuth

More information

Appendix D Brief GPS Overview

Appendix D Brief GPS Overview Appendix D Brief GPS Overview Global Positioning System (GPS) Theory What is GPS? The Global Positioning System (GPS) is a satellite-based navigation system, providing position information, accurate to

More information

Line and polygon features can be created via on-screen digitizing.

Line and polygon features can be created via on-screen digitizing. This module explains how GPS works, sources of error, and error correction using real time or post processing differential correction. Cost and accuracy of different grades of GPS units are also part of

More information

Differential Global Positioning ~ System Techniques For Surveying/ Mapping within Forested Wetlands

Differential Global Positioning ~ System Techniques For Surveying/ Mapping within Forested Wetlands WRP Technical Note WG-SW-2.2 ~- Differential Global Positioning ~ System Techniques For Surveying/ Mapping within Forested Wetlands PURPOSE: This technical note describes the use of Differential Global

More information

FieldGenius Technical Notes GPS Terminology

FieldGenius Technical Notes GPS Terminology FieldGenius Technical Notes GPS Terminology Almanac A set of Keplerian orbital parameters which allow the satellite positions to be predicted into the future. Ambiguity An integer value of the number of

More information

GNSS 101 Bringing It Down To Earth

GNSS 101 Bringing It Down To Earth GNSS 101 Bringing It Down To Earth Steve Richter Frontier Precision, Inc. UTM County Coordinates NGVD 29 State Plane Datums Scale Factors Projections Session Agenda GNSS History & Basic Theory Coordinate

More information

GPS and Recent Alternatives for Localisation. Dr. Thierry Peynot Australian Centre for Field Robotics The University of Sydney

GPS and Recent Alternatives for Localisation. Dr. Thierry Peynot Australian Centre for Field Robotics The University of Sydney GPS and Recent Alternatives for Localisation Dr. Thierry Peynot Australian Centre for Field Robotics The University of Sydney Global Positioning System (GPS) All-weather and continuous signal system designed

More information

GLOBAL POSITIONING SYSTEMS. Knowing where and when

GLOBAL POSITIONING SYSTEMS. Knowing where and when GLOBAL POSITIONING SYSTEMS Knowing where and when Overview Continuous position fixes Worldwide coverage Latitude/Longitude/Height Centimeter accuracy Accurate time Feasibility studies begun in 1960 s.

More information

What is GPS? GPS Position Accuracy. GPS Applications. What is a GPS. How does GPS work? GPS Segments

What is GPS? GPS Position Accuracy. GPS Applications. What is a GPS. How does GPS work? GPS Segments What is GPS? What is a GPS How does GPS work? GPS Segments GPS Position Accuracy GPS Applications 1 What is GPS? The Global Positioning System (GPS) is a precise worldwide radio-navigation system, and

More information

The Global Positioning System

The Global Positioning System The Global Positioning System 5-1 US GPS Facts of Note DoD navigation system First launch on 22 Feb 1978, fully operational in 1994 ~$15 billion (?) invested to date 24 (+/-) Earth-orbiting satellites

More information

Sources of Geographic Information

Sources of Geographic Information Sources of Geographic Information Data properties: Spatial data, i.e. data that are associated with geographic locations Data format: digital (analog data for traditional paper maps) Data Inputs: sampled

More information

Lecture 8: GIS Data Error & GPS Technology

Lecture 8: GIS Data Error & GPS Technology Lecture 8: GIS Data Error & GPS Technology A. Introduction We have spent the beginning of this class discussing some basic information regarding GIS technology. Now that you have a grasp of the basic terminology

More information

The Global Positioning System II Field Experiments

The Global Positioning System II Field Experiments The Global Positioning System II Field Experiments 5-1 Mexico DGPS Field Campaign Cenotes in Tamaulipas, MX, near Aldama 5-2 Are Cenote Water Levels Related? 5-3 DGPS Static Survey of Cenote Water Levels

More information

GPS Milestones, cont. GPS Milestones. The Global Positioning Sytem, Part 1 10/10/2017. M. Helper, GEO 327G/386G, UT Austin 1. US GPS Facts of Note

GPS Milestones, cont. GPS Milestones. The Global Positioning Sytem, Part 1 10/10/2017. M. Helper, GEO 327G/386G, UT Austin 1. US GPS Facts of Note The Global Positioning System US GPS Facts of Note DoD navigation system First launch on 22 Feb 1978, fully operational in 1994 ~$15 billion (?) invested to date 24 (+/-) Earth-orbiting satellites (SVs)

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 22: Field Mapping with GPS

GEOGRAPHIC INFORMATION SYSTEMS Lecture 22: Field Mapping with GPS GEOGRAPHIC INFORMATION SYSTEMS Lecture 22: Field Mapping with GPS GPS Receivers - there are many GPS receivers on the market today - some receivers are relatively inexpensive (recreational grade receivers)

More information

GNSS & Coordinate Systems

GNSS & Coordinate Systems GNSS & Coordinate Systems Matthew McAdam, Marcelo Santos University of New Brunswick, Department of Geodesy and Geomatics Engineering, Fredericton, NB May 29, 2012 Santos, 2004 msantos@unb.ca 1 GNSS GNSS

More information

t =1 Transmitter #2 Figure 1-1 One Way Ranging Schematic

t =1 Transmitter #2 Figure 1-1 One Way Ranging Schematic 1.0 Introduction OpenSource GPS is open source software that runs a GPS receiver based on the Zarlink GP2015 / GP2021 front end and digital processing chipset. It is a fully functional GPS receiver which

More information

NJDEP GPS Data Collection Standards for GIS Data Development

NJDEP GPS Data Collection Standards for GIS Data Development NJDEP GPS Data Collection Standards for GIS Data Development Bureau of Geographic Information Systems Office of Information Resource Management April 24 th, 2017 Table of Contents 1.0 Introduction... 3

More information

The Global Positioning Sytem II 10/19/2017

The Global Positioning Sytem II 10/19/2017 The Global Positioning System II Field Experiments 10/19/2017 5-1 Mexico DGPS Field Campaign Cenotes in Tamaulipas, MX, near Aldama 10/19/2017 5-2 Are Cenote Water Levels Related? 10/19/2017 5-3 M. Helper,

More information

GPS for. Land Surveyors. Jan Van Sickle. Fourth Edition. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, an Informa business

GPS for. Land Surveyors. Jan Van Sickle. Fourth Edition. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, an Informa business GPS for Land Surveyors Fourth Edition Jan Van Sickle CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an Informa business Contents Preface

More information

Principal Investigator Co-Principal Investigator Co-Principal Investigator Prof. Talat Ahmad Vice-Chancellor Jamia Millia Islamia Delhi

Principal Investigator Co-Principal Investigator Co-Principal Investigator Prof. Talat Ahmad Vice-Chancellor Jamia Millia Islamia Delhi Subject Paper No and Title Module No and Title Module Tag Geology Remote Sensing and GIS Concepts of Global Navigation Satellite RS & GIS XXXIII Principal Investigator Co-Principal Investigator Co-Principal

More information

What is it? History. Other systems. How does it work? Trilateration GEOG 201 4/28/2010. Instructor: Pesses 1. {06} The Global Positioning System

What is it? History. Other systems. How does it work? Trilateration GEOG 201 4/28/2010. Instructor: Pesses 1. {06} The Global Positioning System What is it? {06} The Global Positioning System G.P.S. = Global Positioning System Different from G.I.S. (Geographic Information Systems) Map Interpretation & GPS Spring 2010 M. Pesses History Conceived

More information

Department of Civil and Environmental Engineering

Department of Civil and Environmental Engineering Department of Civil and Environmental Engineering CEE213L Surveying & Introduction to GIS Lab SURVEYING LABORATORY NORTH SOUTH UNIVERSITY Center of Excellence in Higher Education The First Private University

More information

Introduction to Total Station and GPS

Introduction to Total Station and GPS Introduction to Total Station and GPS Dr. P. NANJUNDASWAMY Professor of Civil Engineering J S S Science and Technology University S J College of Engineering Mysuru 570 006 Introduction History GPS Overview

More information

GPS STATIC-PPP POSITIONING ACCURACY VARIATION WITH OBSERVATION RECORDING INTERVAL FOR HYDROGRAPHIC APPLICATIONS (ASWAN, EGYPT)

GPS STATIC-PPP POSITIONING ACCURACY VARIATION WITH OBSERVATION RECORDING INTERVAL FOR HYDROGRAPHIC APPLICATIONS (ASWAN, EGYPT) GPS STATIC-PPP POSITIONING ACCURACY VARIATION WITH OBSERVATION RECORDING INTERVAL FOR HYDROGRAPHIC APPLICATIONS (ASWAN, EGYPT) Ashraf Farah Associate Professor,College of Engineering, Aswan University,

More information

Testing RTK GPS Horizontal Positioning Accuracy within an Urban Area

Testing RTK GPS Horizontal Positioning Accuracy within an Urban Area Testing RTK GPS Horizontal Positioning Accuracy within an Urban Area Ismat M Elhassan* Civil Engineering Department, King Saud University, Surveying Engineering Program, Kingdom of Saudi Arabia Research

More information

Primer on GPS Operations

Primer on GPS Operations MP Rugged Wireless Modem Primer on GPS Operations 2130313 Rev 1.0 Cover illustration by Emma Jantz-Lee (age 11). An Introduction to GPS This primer is intended to provide the foundation for understanding

More information

Introduction to the Global Positioning System

Introduction to the Global Positioning System GPS for Fire Management - 2004 Introduction to the Global Positioning System Pre-Work Pre-Work Objectives Describe at least three sources of GPS signal error, and identify ways to mitigate or reduce those

More information

GPS: What do I need to collect Application Appropriate location data?

GPS: What do I need to collect Application Appropriate location data? GPS: What do I need to collect Application Appropriate location data? Bob Goodwin, GISP GIS/Remote Sensing Analyst Remote Sensing & GIS Research and Outreach Services, MSU http://www.rsgis.msu.edu 2005

More information

The Global Positioning System II Field Experiments. 10/10/2013 GEO327G/386G, UT Austin 5-1

The Global Positioning System II Field Experiments. 10/10/2013 GEO327G/386G, UT Austin 5-1 The Global Positioning System II Field Experiments 10/10/2013 GEO327G/386G, UT Austin 5-1 Mexico DGPS Field Campaign Cenotes in Tamaulipas, MX, near Aldama 10/10/2013 GEO327G/386G, UT Austin 5-2 Are Cenote

More information

UNITED NATIONS UNIVERSITY Institute for Environment & Human Security (UNU-EHS) Bonn, Germany

UNITED NATIONS UNIVERSITY Institute for Environment & Human Security (UNU-EHS) Bonn, Germany UNITED NATIONS UNIVERSITY Institute for Environment & Human Security (UNU-EHS) Bonn, Germany Introduction to GPS technology Prof. Dr. Jörg Szarzynski Education Programme Director Head of Section EduSphere

More information

2 INTRODUCTION TO GNSS REFLECTOMERY

2 INTRODUCTION TO GNSS REFLECTOMERY 2 INTRODUCTION TO GNSS REFLECTOMERY 2.1 Introduction The use of Global Navigation Satellite Systems (GNSS) signals reflected by the sea surface for altimetry applications was first suggested by Martín-Neira

More information

Introduction to GNSS Base-Station

Introduction to GNSS Base-Station Introduction to GNSS Base-Station Dinesh Manandhar Center for Spatial Information Science The University of Tokyo Contact Information: dinesh@iis.u-tokyo.ac.jp Slide : 1 Introduction GPS or GNSS observation

More information

DYNAMIC RT TECHNOLOGY

DYNAMIC RT TECHNOLOGY DYNAMIC RT TECHNOLOGY GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) POTENTIAL FUTURE DEVELOPMENTS(2005 2017?) GPS MODERNIZATION BLOCK IIF & III GLONASS ENHANCEMENTS (K & M) EUROPEAN UNION - GALILEO CHINA

More information

Introduction to NAVSTAR GPS

Introduction to NAVSTAR GPS Introduction to NAVSTAR GPS Charlie Leonard, 1999 (revised 2001, 2002) The History of GPS Feasibility studies begun in 1960 s. Pentagon appropriates funding in 1973. First satellite launched in 1978. System

More information

36. Global Positioning System

36. Global Positioning System 36. Introduction to the Global Positioning System (GPS) Why do we need GPS? Position: a basic need safe sea travel, crowed skies, resource management, legal questions Positioning: a challenging job local

More information

Utilizing A GNSS Network Solution for Utility Applications

Utilizing A GNSS Network Solution for Utility Applications Utilizing A GNSS Network Solution for Utility Applications David Newcomer, PE, PLS GPServ, Inc. newcomer@ (407) 601-5816 AGENDA Types and accuracies of data collection o Autonomous o Meter + o Sub-meter

More information

VARIATION OF STATIC-PPP POSITIONING ACCURACY USING GPS-SINGLE FREQUENCY OBSERVATIONS (ASWAN, EGYPT)

VARIATION OF STATIC-PPP POSITIONING ACCURACY USING GPS-SINGLE FREQUENCY OBSERVATIONS (ASWAN, EGYPT) ARTIFICIAL SATELLITES, Vol. 52, No. 2 2017 DOI: 10.1515/arsa-2017-0003 VARIATION OF STATIC-PPP POSITIONING ACCURACY USING GPS-SINGLE FREQUENCY OBSERVATIONS (ASWAN, EGYPT) Ashraf Farah Associate professor,

More information

Global Positioning System: what it is and how we use it for measuring the earth s movement. May 5, 2009

Global Positioning System: what it is and how we use it for measuring the earth s movement. May 5, 2009 Global Positioning System: what it is and how we use it for measuring the earth s movement. May 5, 2009 References Lectures from K. Larson s Introduction to GNSS http://www.colorado.edu/engineering/asen/

More information

Precise Point Positioning (PPP) using

Precise Point Positioning (PPP) using Precise Point Positioning (PPP) using Product Technical Notes // May 2009 OnPOZ is a product line of Effigis. EZSurv is a registered trademark of Effigis. All other trademarks are registered or recognized

More information

Fundamentals of GPS Navigation

Fundamentals of GPS Navigation Fundamentals of GPS Navigation Kiril Alexiev 1 /76 2 /76 At the traditional January media briefing in Paris (January 18, 2017), European Space Agency (ESA) General Director Jan Woerner explained the knowns

More information

TEST YOUR SATELLITE NAVIGATION PERFORMANCE ON YOUR ANDROID DEVICE GLOSSARY

TEST YOUR SATELLITE NAVIGATION PERFORMANCE ON YOUR ANDROID DEVICE GLOSSARY TEST YOUR SATELLITE NAVIGATION PERFORMANCE ON YOUR ANDROID DEVICE GLOSSARY THE GLOSSARY This glossary aims to clarify and explain the acronyms used in GNSS and satellite navigation performance testing

More information

GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) ECE 2526E Tuesday, 24 April 2018

GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) ECE 2526E Tuesday, 24 April 2018 GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) ECE 2526E Tuesday, 24 April 2018 MAJOR GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) Global Navigation Satellite System (GNSS) includes: 1. Global Position System

More information

Global Positioning Systems -GPS

Global Positioning Systems -GPS Global Positioning Systems -GPS GPS Why? What is it? How does it work? Differential GPS How can it help me? GPS Why?? Where am I? How do I get there? Where are you, and how do I get to You? WHO CARES???

More information

Asian Journal of Science and Technology Vol. 08, Issue, 11, pp , November, 2017 RESEARCH ARTICLE

Asian Journal of Science and Technology Vol. 08, Issue, 11, pp , November, 2017 RESEARCH ARTICLE Available Online at http://www.journalajst.com ASIAN JOURNAL OF SCIENCE AND TECHNOLOGY ISSN: 0976-3376 Asian Journal of Science and Technology Vol. 08, Issue, 11, pp.6697-6703, November, 2017 ARTICLE INFO

More information

GPS for GIS Data Collection - 101

GPS for GIS Data Collection - 101 GPS for GIS Data Collection - 101 Speaker: Eric Gakstatter, Editor of GPS World s Survey Scene Newsletter & Geospatial Solutions Guest Commentator: Craig Greenwald, Technical Director, GeoMobile Innovations,

More information

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 3: GPS and Data Logging. September 28, 2009 Dr. Harrison H. Chin

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 3: GPS and Data Logging. September 28, 2009 Dr. Harrison H. Chin 2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 3: GPS and Data Logging September 28, 2009 Dr. Harrison H. Chin Formal Labs 1. Microcontrollers Introduction to microcontrollers Arduino

More information

Introduction. Global Positioning System. GPS - Intro. Space Segment. GPS - Intro. Space Segment - Contd..

Introduction. Global Positioning System. GPS - Intro. Space Segment. GPS - Intro. Space Segment - Contd.. Introduction Global Positioning System Prof. D. Nagesh Kumar Dept. of Civil Engg., IISc, Bangalore 560 012, India URL: http://www.civil.iisc.ernet.in/~nagesh GPS is funded and controlled by U. S. Department

More information

Introduction to the Global Positioning System

Introduction to the Global Positioning System GPS for ICS - 2003 Introduction to the Global Positioning System Pre-Work Pre-Work Objectives Describe at least three sources of GPS signal error, and ways to mitigate or reduce those errors. Identify

More information

ENGI 3703 Surveying and Geomatics

ENGI 3703 Surveying and Geomatics Satellite Geometry: Satellites well spread out in the sky have a much stronger solution to the resection type problem (aka trilateration) then satellite that are grouped together. Since the position of

More information

High Precision GNSS for Mapping & GIS Professionals

High Precision GNSS for Mapping & GIS Professionals High Precision GNSS for Mapping & GIS Professionals Agenda Address your needs for GNSS knowledge. GNSS Basics Satellite Ranging Fundamentals (Code $ Carrier) Differential Corrections (Post Processed $

More information

GEO 428: DEMs from GPS, Imagery, & Lidar Tuesday, September 11

GEO 428: DEMs from GPS, Imagery, & Lidar Tuesday, September 11 GEO 428: DEMs from GPS, Imagery, & Lidar Tuesday, September 11 Global Positioning Systems GPS is a technology that provides Location coordinates Elevation For any location with a decent view of the sky

More information

Suveying Lectures for CE 498

Suveying Lectures for CE 498 Suveying Lectures for CE 498 SURVEYING CLASSIFICATIONS Surveying work can be classified as follows: 1- Preliminary Surveying In this surveying the detailed data are collected by determining its locations

More information

ENGRG Introduction to GIS

ENGRG Introduction to GIS ENGRG 59910 Introduction to GIS Michael Piasecki December 01, 2017 Lecture 12: GPS Systems Lecture 7: Introduction To GPS November 27, 2017 ENGRG 59910 Intro to GIS 2 November 27, 2017 ENGRG 59910 Intro

More information

Global Positioning Systems - GPS

Global Positioning Systems - GPS Global Positioning Systems - GPS GPS Why? What is it? How does it work? Differential GPS How can it help me? GPS Why?? Where am I? How do I get there? Where are you, and how do I get to You? WHO CARES???

More information

Introduction to Datums James R. Clynch February 2006

Introduction to Datums James R. Clynch February 2006 Introduction to Datums James R. Clynch February 2006 I. What Are Datums in Geodesy and Mapping? A datum is the traditional answer to the practical problem of making an accurate map. If you do not have

More information

CARRIER PHASE VS. CODE PHASE

CARRIER PHASE VS. CODE PHASE DIFFERENTIAL CORRECTION Code phase processing- GPS measurements based on the pseudo random code (C/A or P) as opposed to the carrier of that code. (1-5 meter accuracy) Carrier phase processing- GPS measurements

More information

Monitoring the Earth Surface from space

Monitoring the Earth Surface from space Monitoring the Earth Surface from space Picture of the surface from optical Imagery, i.e. obtained by telescopes or cameras operating in visual bandwith. Shape of the surface from radar imagery Surface

More information

Assessing the Accuracy of GPS Control Point, Using Post-Processed and Absolute Positioning Data

Assessing the Accuracy of GPS Control Point, Using Post-Processed and Absolute Positioning Data American Journal of Environmental Engineering and Science 2017; 4(5): 42-47 http://www.aascit.org/journal/ajees ISSN: 2381-1153 (Print); ISSN: 2381-1161 (Online) Assessing the Accuracy of GPS Control Point,

More information

High Precision Positioning Unit 1: Accuracy, Precision, and Error Student Exercise

High Precision Positioning Unit 1: Accuracy, Precision, and Error Student Exercise High Precision Positioning Unit 1: Accuracy, Precision, and Error Student Exercise Ian Lauer and Ben Crosby (Idaho State University) This assignment follows the Unit 1 introductory presentation and lecture.

More information

Lecture-1 CHAPTER 2 INTRODUCTION TO GPS

Lecture-1 CHAPTER 2 INTRODUCTION TO GPS Lecture-1 CHAPTER 2 INTRODUCTION TO GPS 2.1 History of GPS GPS is a global navigation satellite system (GNSS). It is the commonly used acronym of NAVSTAR (NAVigation System with Time And Ranging) GPS (Global

More information

Mapping The Study Area

Mapping The Study Area While on the beach you will need to take some measurements to show where the study area is relative to the rest of the world and to show what is inside the study area. Once the measurements have been taken,

More information

Best field practices for GIS Data collection: Presented by, Jacob Wittenberg Frontier Precision, Inc.

Best field practices for GIS Data collection: Presented by, Jacob Wittenberg Frontier Precision, Inc. Best field practices for GIS Data collection: Presented by, Jacob Wittenberg Frontier Precision, Inc. Agenda What is GNSS Code and Carrier Data H-Star Processing Best Practices Code and Carrier Solutions

More information

What makes the positioning infrastructure work. Simon Kwok Chairman, Land Surveying Division Hong Kong Institute of Surveyors

What makes the positioning infrastructure work. Simon Kwok Chairman, Land Surveying Division Hong Kong Institute of Surveyors What makes the positioning infrastructure work The experience of the Hong Kong Satellite Positioning Reference Station Network Simon Kwok Chairman, Land Surveying Division Hong Kong Institute of Surveyors

More information

GPS Global Positioning System

GPS Global Positioning System GPS Global Positioning System 10.04.2012 1 Agenda What is GPS? Basic consept History GPS receivers How they work Comunication Message format Satellite frequencies Sources of GPS signal errors 10.04.2012

More information

Proceedings of Al-Azhar Engineering 7 th International Conference Cairo, April 7-10, 2003.

Proceedings of Al-Azhar Engineering 7 th International Conference Cairo, April 7-10, 2003. Proceedings of Al-Azhar Engineering 7 th International Conference Cairo, April 7-10, 2003. MODERNIZATION PLAN OF GPS IN 21 st CENTURY AND ITS IMPACTS ON SURVEYING APPLICATIONS G. M. Dawod Survey Research

More information

1

1 1 2 3 4 City of Golden 5 TerraSync ideally suited for new asset data collection, bullet proof because it pretty basic ArcPad Best for GIS professionals to take their GIS out to the field for decision making,

More information

METIS Second Master Training & Seminar. Augmentation Systems Available in Egypt

METIS Second Master Training & Seminar. Augmentation Systems Available in Egypt METIS Second Master Training & Seminar Augmentation Systems Available in Egypt By Eng. Ramadan Salem M. Sc. Surveying and Geodesy Email: ramadan_salem@link.net Page 1 Augmentation Systems Available in

More information

The last 25 years - GPS to multi-gnss: from a military tool to the most widely used civilian positioning solution

The last 25 years - GPS to multi-gnss: from a military tool to the most widely used civilian positioning solution 1 The last 25 years - GPS to multi-gnss: from a military tool to the most widely used civilian positioning solution B. Hofmann-Wellenhof Institute of Geodesy / Navigation, Graz University of Technology

More information

GPS Errors. Figure 1. Four satellites are required to determine a GPS position.

GPS Errors. Figure 1. Four satellites are required to determine a GPS position. Expl ai ni nggps:thegl obalposi t i oni ngsyst em since a minimum of four satellites is required to calculate a position (Fig 1). However, many newer GPS receivers are equipped to receive up to 12 satellite

More information

The Role of F.I.G. in Leading the Development of International Real-Time Positioning Guidelines

The Role of F.I.G. in Leading the Development of International Real-Time Positioning Guidelines The Role of F.I.G. in Leading the Development of International Real-Time Positioning Guidelines, USA Key Words: RTN, real-time, GNSS, Guidelines SUMMARY The rapid growth of real-time reference station

More information

Space Weather and the Ionosphere

Space Weather and the Ionosphere Dynamic Positioning Conference October 17-18, 2000 Sensors Space Weather and the Ionosphere Grant Marshall Trimble Navigation, Inc. Note: Use the Page Down key to view this presentation correctly Space

More information

DYNAMIC POSITIONING CONFERENCE October 7-8, Sensors II. Redundancy in Dynamic Positioning Systems Based on Satellite Navigation

DYNAMIC POSITIONING CONFERENCE October 7-8, Sensors II. Redundancy in Dynamic Positioning Systems Based on Satellite Navigation Return to Session Directory DYNAMIC POSITIONING CONFERENCE October 7-8, 2008 Sensors II Redundancy in Dynamic Positioning Systems Based on Satellite Navigation Ole Ørpen, Tor Egil Melgård, Arne Norum Fugro

More information

TDS Survey Pro CE Version Setup RTK Base on known NAD83/WGS84 Point: Mapping Plane Geoid99 Modeling.

TDS Survey Pro CE Version Setup RTK Base on known NAD83/WGS84 Point: Mapping Plane Geoid99 Modeling. TDS Survey Pro CE Version 2.1.8 Setup RTK Base on known NAD83/WGS84 Point: Mapping Plane Geoid99 Modeling. Pre-load known NAD83 State Plane Coordinates and appropriate NGS Geoid 99/96 data files into the

More information

Phase Center Calibration and Multipath Test Results of a Digital Beam-Steered Antenna Array

Phase Center Calibration and Multipath Test Results of a Digital Beam-Steered Antenna Array Phase Center Calibration and Multipath Test Results of a Digital Beam-Steered Antenna Array Kees Stolk and Alison Brown, NAVSYS Corporation BIOGRAPHY Kees Stolk is an engineer at NAVSYS Corporation working

More information

ACCURACIES OF VARIOUS GPS ANTENNAS UNDER FORESTED CONDITIONS

ACCURACIES OF VARIOUS GPS ANTENNAS UNDER FORESTED CONDITIONS ACCURACIES OF VARIOUS GPS ANTENNAS UNDER FORESTED CONDITIONS Brian H. Holley and Michael D. Yawn LandMark Systems, 122 Byrd Way Warner Robins, GA 31088 ABSTRACT GPS accuracy is much more variable in forested

More information

ANALYSIS OF THE INFLUENCE OF SATELLITES CONSTELLATION IN GNSS POSITIONING ACCURACY 1. University of Novi Sad, Faculty of Technical Sciences,

ANALYSIS OF THE INFLUENCE OF SATELLITES CONSTELLATION IN GNSS POSITIONING ACCURACY 1. University of Novi Sad, Faculty of Technical Sciences, ANNALS of Faculty Engineering Hunedoara International Journal of Engineering Tome XV [201] Fascicule 2 [May] ISSN: 154-25 [print; online] ISSN: 154-23 [CD-Rom; online] a free-access multidisciplinary publication

More information

GPS Performance in Southern Hardwood Forests

GPS Performance in Southern Hardwood Forests GPS Performance in Southern Hardwood Forests Pete Bettinger Warnell School of Forestry and Natural Resources University of Georgia In forests, vegetation plays a significant role in obstructing signals

More information

Applications, Products and Services of GPS Technology

Applications, Products and Services of GPS Technology Applications, Products and Services of GPS Technology Enrico C. Paringit. Dr. Eng. University of the Philippines Training Center for Applied Geodesy and Photogrammetry 1 Outline of this Presentation GPS

More information

GROUND CONTROL SURVEY REPORT

GROUND CONTROL SURVEY REPORT GROUND CONTROL SURVEY REPORT Services provided by: 3001, INC. a Northrop Grumman company 10300 Eaton Place Suite 340 Fairfax, VA 22030 Ground Control Survey in Support of Topographic LIDAR, RGB Imagery

More information

GPS Accuracy Comparison. Tom Biernacki Florida Department of Environmental Protection

GPS Accuracy Comparison. Tom Biernacki Florida Department of Environmental Protection GPS Accuracy Comparison Tom Biernacki Florida Department of Environmental Protection What Effects the accuracy of GPS? Atmospheric delay Multipath bounce Weak receiver algorithms Atmospheric Delay Signal

More information

GPS Performance in Southern Hardwood Forests Pete Bettinger Warnell School of Forestry and Natural Resources University of Georgia

GPS Performance in Southern Hardwood Forests Pete Bettinger Warnell School of Forestry and Natural Resources University of Georgia GPS Performance in Southern Hardwood Forests Pete Bettinger Warnell School of Forestry and Natural Resources University of Georgia Introduction In forests, vegetation plays a significant role in obstructing

More information

Field DGPS Report AT

Field DGPS Report AT Field DGPS Report AT-329 2005 Ellen M. Sundlisæter Lene Kristensen Sigrid K. Dahl Ulli Neumann 1 Table of contents Table of contents...2 Introduction...2 Methods...3 Equipment...3 Availability...3 Setup...3

More information

Trimble Business Center:

Trimble Business Center: Trimble Business Center: Modernized Approaches for GNSS Baseline Processing Trimble s industry-leading software includes a new dedicated processor for static baselines. The software features dynamic selection

More information

Effect of Quasi Zenith Satellite (QZS) on GPS Positioning

Effect of Quasi Zenith Satellite (QZS) on GPS Positioning Effect of Quasi Zenith Satellite (QZS) on GPS ing Tomoji Takasu 1, Takuji Ebinuma 2, and Akio Yasuda 3 Laboratory of Satellite Navigation, Tokyo University of Marine Science and Technology 1 (Tel: +81-5245-7365,

More information

King AbdulAziz University. Faculty of Environmental Design. Geomatics Department. Mobile GIS GEOM 427. Lecture 3

King AbdulAziz University. Faculty of Environmental Design. Geomatics Department. Mobile GIS GEOM 427. Lecture 3 King AbdulAziz University Faculty of Environmental Design Geomatics Department Mobile GIS GEOM 427 Lecture 3 Ahmed Baik, Ph.D. Email: abaik@kau.edu.sa Eng. Fisal Basheeh Email: fbasaheeh@kau.edu.sa GNSS

More information

Application of GPS and Remote Sensing Image Technology in Construction Monitoring of Road and Bridge

Application of GPS and Remote Sensing Image Technology in Construction Monitoring of Road and Bridge 2017 3rd International Conference on Social Science, Management and Economics (SSME 2017) ISBN: 978-1-60595-462-2 Application of GPS and Remote Sensing Image Technology in Construction Monitoring of Road

More information

GPS Glossary Written by Carl Carter SiRF Technology 2005

GPS Glossary Written by Carl Carter SiRF Technology 2005 GPS Glossary Written by Carl Carter SiRF Technology 2005 This glossary provides supplementary information for students of GPS Fundamentals. While many of the terms can have other definitions from those

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 683 Assessment Accuracy of Static Relative Positioning Using Single Frequency GPS Receivers Mahmoud I. El-Mewafi

More information

9/26/2016. Accuracy with GNSS What are you getting? Presented By Tom Bryant PLS Kelly Harris PLS Seiler Instrument

9/26/2016. Accuracy with GNSS What are you getting? Presented By Tom Bryant PLS Kelly Harris PLS Seiler Instrument Accuracy with GNSS What are you getting? Presented By Tom Bryant PLS Kelly Harris PLS Seiler Instrument 1 What We Will Talk About Today What coordinate system should I use in my data collector Site Calibrations-what

More information

Where in the world are my field plots? Using GPS effectively in environmental field studies

Where in the world are my field plots? Using GPS effectively in environmental field studies REVIEWS REVIEWS REVIEWS Where in the world are my field plots? Using GPS effectively in environmental field studies 475 Chris E Johnson 1 and Christopher C Barton 2 Global positioning system (GPS) technology

More information

Visualizing a Pixel. Simulate a Sensor s View from Space. In this activity, you will:

Visualizing a Pixel. Simulate a Sensor s View from Space. In this activity, you will: Simulate a Sensor s View from Space In this activity, you will: Measure and mark pixel boundaries Learn about spatial resolution, pixels, and satellite imagery Classify land cover types Gain exposure to

More information

Biological Inventories

Biological Inventories Field Lab 1 Urban Ecology Center Biological Inventories Introduction In order to begin work on our semester research project, this week we will be conducting biological inventories at a moderately disturbed

More information