DC to DC Conversion: Boost Converter Design

Size: px
Start display at page:

Download "DC to DC Conversion: Boost Converter Design"

Transcription

1 DC to DC Conversion: Boost Converter Design Bryan R. Reemmer Team 5 March 30, 2007 Executive Summary This application note will outline how to implement a boost, or step-up, converter. It will explain the electro-mechanical workings of the circuit, as well as common sources for error. As there are many chips available to perform this type of DC-DC conversion, a specific example of a chip-based solution is provided. Keywords: Boost converter, step-up converter, DC-DC converter, MAX5026

2 Table of Contents Introduction 3 Objective 3 Design 3 Analysis. 4 IC Implementation... 5 Results 5 Conclusions 6 References.. 7 2

3 Introduction DC to DC converters are extremely important in battery-powered electronic devices, such as MP3 players and laptop computers. Those electronic devices often contain several subcircuits, each requiring a voltage level different than that supplied by the battery. Even worse, the voltage of a battery declines as its stored power is drained, so it does not output a constant voltage level. DC to DC converters offer a method of generating multiple controlled voltages from a single battery voltage, thereby saving space instead of using multiple batteries to supply different parts of the device. A boost converter is simply is a particular type of power converter with an output DC voltage greater than the input DC voltage. This type of circuit is used to step-up a source voltage to a higher, regulated voltage, allowing one power supply to provide different driving voltages. Objective The purpose of this document is for the reader to become familiar with the function and implementation of a boost converter. A basic design will be discussed along with a specific application of an integrated circuit (IC) solution. Design A boost converter is part of a subset of DC-DC converters called switch-mode converters. The circuits belonging to this class, including buck, flyback, buck-boost, and push-pull converters are very similar. They generally perform the conversion by applying a DC voltage across an inductor or transformer for a period of time (usually in the 100 khz to 5 MHz range) which causes current to flow through it and store energy magnetically, then switching this voltage off and causing the stored energy to be transferred to the voltage output in a controlled manner. The output voltage is regulated by adjusting the ratio of on/off time. As this subset does not use resistive components to dissipate extra power, the efficiencies are seen in the 80-95% range. This is clearly desirable, as it increases the running time of battery-operated devices. The basic boost converter circuit consists of only a switch (typically a transistor), a diode, an inductor, and a capacitor. The specific connections are shown in Figure 1. Figure 1: Standard layout of a Boost Converter. 3

4 Analysis Examining the circuit for two cases (switch open and switch closed) is fairly straightforward, assuming ideal components, and provided that there is constant current flow through the inductor. This case is referred to as continuous mode operation. Figure 2: Current flow through the converter, depending on the state of the switch Applying Kirchhoff s rules around the loops and rearranging terms yields an intuitive result: V V O IN 1 = 1! D That is to say, the gain from the boost converter is directly proportional to the duty cycle (D), or the time the switch is on each cycle. Figure 3 graphically demonstrates this. Figure 3: Inductor current and duty cycle vs. time In some cases, the amount of energy required by the load is small enough to be transferred in a time smaller than the cycle length. In this case, the current through the inductor falls to zero during part of the period. This is called discontinuous operation. 4

5 The only difference, then, is that the inductor is completely discharged at the end of the cycle. Although slight, the difference has a strong effect on the output voltage equation. Compared to the expression of the output voltage for the continuous mode, this expression is much more complicated. Furthermore, in discontinuous operation, the output voltage not only depends on the duty cycle, but also on the inductor value, the input voltage, and the output current. IC Implementation In order to implement the switching necessary for the converter to work, it is desirable to find an IC solution. The 5026 chip, from MAXIM, is one such solution. The typical circuit from the MAX5026 data sheet is shown in Figure 4. In this circuit, the output voltage, VOUT, is determined by the ratio of fixed resistors R1 and R2. These two resistors form a voltage divider that feeds a fraction of the output voltage back to the feedback (FB) pin, creating a closed-loop system. The system is at equilibrium when VOUT is generating the desired output voltage and the R1 and R2 voltage divider feeds back 1.25V to the FB pin. When VOUT is lower than the desired output voltage (the voltage fed back to FB is below 1.25V), the DC-DC converter IC attempts to deliver additional power until FB reaches 1.25V. & VOUT # R 1 = R2 $ ' 1! Equation 1 % VREF " & R1 # VOUT = VREF $ + 1! Equation 2 % R2 " Equation 1 is directly from the MAX5026 data sheet. Solving Equation 1 for VOUT yields Equation 2 where VREF, the FB Set Point, is 1.25V for the MAX5026. Figure 4: MAX5026 implementation of a boost converter. Results The output voltage obtained during this study was not a full 30V. The actual output was approximately 28V. The discrepancy is most likely due to losses in the board, as well as to non-ideal devices (most notably the inductor). 5

6 In the analysis above, all components were assumed ideal. It was assumed that the power is transmitted without losses from the input voltage source to the load. However, parasitic resistances exist in all circuits, due to the resistivity of the materials they are made from. Therefore, a fraction of the power managed by the converter is dissipated by these parasitic resistances. This is why the efficiencies are not at a perfect 100%. For the sake of simplicity, the inductor is assumed the only non-ideal component, and that it is equivalent to an inductor and a resistor in series. This is reasonable because an inductor is made of one long wound piece of wire, so it is likely to exhibit a non-negligible parasitic resistance. Furthermore, current flows through the inductor both in the on and the off states, so any non-ideal effects will be more pronounced. Reworking the earlier equations with the added inductor resistance (R L ) changes the gain equation to the following: V V O IN = R R L 1 ( 1! D) + 1! D Even without the full derivation, the equation makes intuitive sense. If the inductor resistance is zero (an ideal inductor), the equation above becomes equal to the ideal case; however, as R L increases, the voltage gain of the converter decreases compared to the ideal case. Also, the effect of R L increases with the duty cycle, D. Figure 5 displays these effects graphically. As the inductor becomes less ideal, the possible gain drops off sharply from the theoretical value, especially as the duty cycle grows above 50%. Figure 5: Non-ideal inductors can rapidly degrade boost converter performance. Conclusions 6

7 DC-DC converters are an excellent way to get the most use out of a single power supply. Though the total power must remain constant, one can efficiently trade off between current strength and voltage levels to power a variety of sub-circuits without costly extra batteries. 7

8 References MAX5026 Datasheet: < DC-DC Converter Basics: < DC/converter.shtm> Simple Converter: < +30V DC-DC Converter: < DC-DC Converters: A Primer: < Breakthrough efficiency levels: < 8

BUCK-BOOST CONVERTER:

BUCK-BOOST CONVERTER: BUCK-BOOST CONVERTER: The buck boost converter is a type of DC-DC converter that has an output voltage magnitude that is either greater than or less than the input voltage magnitude. Two different topologies

More information

Minimizing Input Filter Requirements In Military Power Supply Designs

Minimizing Input Filter Requirements In Military Power Supply Designs Keywords Venable, frequency response analyzer, MIL-STD-461, input filter design, open loop gain, voltage feedback loop, AC-DC, transfer function, feedback control loop, maximize attenuation output, impedance,

More information

Getting the Most From Your Portable DC/DC Converter: How To Maximize Output Current For Buck And Boost Circuits

Getting the Most From Your Portable DC/DC Converter: How To Maximize Output Current For Buck And Boost Circuits Getting the Most From Your Portable DC/DC Converter: How To Maximize Output Current For Buck And Boost Circuits Upal Sengupta, Texas nstruments ABSTRACT Portable product design requires that power supply

More information

ADT7350. General Description. Applications. Features. Typical Application Circuit. Aug / Rev. 0.

ADT7350. General Description. Applications. Features. Typical Application Circuit.  Aug / Rev. 0. General Description The ADT7350 is a step-down converter with integrated switching MOSFET. It operates wide input supply voltage range from 4.5V to 24V with 1.2A peak output current. It includes current

More information

FEATURES. Efficiency (%)

FEATURES. Efficiency (%) GENERAL DESCRIPTION The PT4105 is a step-down DC/DC converter designed to operate as a high current LED driver. The PT4105 uses a voltage mode, fixed frequency architecture that guarantees stable operation

More information

Designing and Implementing of 72V/150V Closed loop Boost Converter for Electoral Vehicle

Designing and Implementing of 72V/150V Closed loop Boost Converter for Electoral Vehicle International Journal of Current Engineering and Technology E-ISSN 77 4106, P-ISSN 347 5161 017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Designing

More information

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter 3.1 Introduction DC/DC Converter efficiently converts unregulated DC voltage to a regulated DC voltage with better efficiency and high power density.

More information

ADT7350. General Description. Features. Applications. Typical Application Circuit. Sep / Rev. 0.

ADT7350. General Description. Features. Applications. Typical Application Circuit.   Sep / Rev. 0. General Description The ADT7350 is a step-down converter with integrated switching MOSFET. It operates wide input supply voltage range from 4.5V to 24V with 1.2A peak output current. It includes current

More information

New Current-Sense Amplifiers Aid Measurement and Control

New Current-Sense Amplifiers Aid Measurement and Control AMPLIFIER AND COMPARATOR CIRCUITS BATTERY MANAGEMENT CIRCUIT PROTECTION Mar 13, 2000 New Current-Sense Amplifiers Aid Measurement and Control This application note details the use of high-side current

More information

Buck-Boost Converters for Portable Systems Michael Day and Bill Johns

Buck-Boost Converters for Portable Systems Michael Day and Bill Johns Buck-Boost Converters for Portable Systems Michael Day and Bill Johns ABSTRACT This topic presents several solutions to a typical problem encountered by many designers of portable power how to produce

More information

BM2596 (MSP1250G) 150kHz 3A Step-down Voltage Converter

BM2596 (MSP1250G) 150kHz 3A Step-down Voltage Converter General Description The BM2596(=MSP1250G) series of regulators are integrated circuits that provide all active functions for a step-down (buck) switching regulator, capable of driving a 3A load with excellent

More information

HY2596A 3A 150kHz DC-DC BUCK REGULATOR

HY2596A 3A 150kHz DC-DC BUCK REGULATOR Description of regulators provides all the active functions for a step-down (buck) switching regulator, and drives 3A load with excellent line and load regulation. is available in fixed output voltages

More information

Doing More with Buck Regulator ICs

Doing More with Buck Regulator ICs White Paper Doing More with Buck Regulator ICs Lokesh Duraiappah, Renesas Electronics Corp. June 2018 Introduction One of the most popular switching regulator topologies is the buck or step-down converter.

More information

-1- Digital cameras and MP3 Palmtop computers / PDAs Cellular phones Wireless handsets and DSL modems PC cards Portable media players

-1- Digital cameras and MP3 Palmtop computers / PDAs Cellular phones Wireless handsets and DSL modems PC cards Portable media players Synchronous Buck DC/DC Converter YF1004 Features Up to 95% Efficiency Current mode operation for excellent line and load transient response Low quiescent current: 230µA Low Switch on Resistance R DS(ON),

More information

Flyback Converter for High Voltage Capacitor Charging

Flyback Converter for High Voltage Capacitor Charging Flyback Converter for High Voltage Capacitor Charging Tony Alfrey (tonyalfrey at earthlink dot net) A Flyback Converter is a type of switching power supply that may be used to generate an output voltage

More information

EVALUATION KIT AVAILABLE 28V, PWM, Step-Up DC-DC Converter PART V IN 3V TO 28V

EVALUATION KIT AVAILABLE 28V, PWM, Step-Up DC-DC Converter PART V IN 3V TO 28V 19-1462; Rev ; 6/99 EVALUATION KIT AVAILABLE 28V, PWM, Step-Up DC-DC Converter General Description The CMOS, PWM, step-up DC-DC converter generates output voltages up to 28V and accepts inputs from +3V

More information

AN-1001 Over Current Protection (OCP) Analysis Using AT7576

AN-1001 Over Current Protection (OCP) Analysis Using AT7576 A. Resistor to Detect the Over-Current Figure-01 shows the current detecting circuit of AT7576. As the means to detect the output current, a resistor series is added between the output capacitor and load.

More information

2A 150KHZ PWM Buck DC/DC Converter. Features

2A 150KHZ PWM Buck DC/DC Converter. Features General Description The is a of easy to use adjustable step-down (buck) switch-mode voltage regulator. The device is available in an adjustable output version. It is capable of driving a 2A load with excellent

More information

EECS 473 Advanced Embedded Systems

EECS 473 Advanced Embedded Systems EECS 473 Advanced Embedded Systems Lecture 15: Power review & Switching power supplies (again) A number of slides taken from UT-Austin s EE462L power electronics class. http://users.ece.utexas.edu/~kwasinski/ee462ls14.html

More information

AT V,3A Synchronous Buck Converter

AT V,3A Synchronous Buck Converter FEATURES DESCRIPTION Wide 8V to 40V Operating Input Range Integrated 140mΩ Power MOSFET Switches Output Adjustable from 1V to 25V Up to 93% Efficiency Internal Soft-Start Stable with Low ESR Ceramic Output

More information

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. 500KHz, 18V, 2A Synchronous Step-Down Converter

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. 500KHz, 18V, 2A Synchronous Step-Down Converter DESCRIPTION The is a fully integrated, high-efficiency 2A synchronous rectified step-down converter. The operates at high efficiency over a wide output current load range. This device offers two operation

More information

PWM Controlled, Step-up DC/DC Converter in Tiny Package

PWM Controlled, Step-up DC/DC Converter in Tiny Package PWM Controlled, Step-up DC/DC Converter in Tiny Package Description The is a high efficiency PWM DC/DC step -up converter with internally compensated current mode controller. The output voltage is set

More information

Chapter 6: Converter circuits

Chapter 6: Converter circuits Chapter 6. Converter Circuits 6.1. Circuit manipulations 6.2. A short list of converters 6.3. Transformer isolation 6.4. Converter evaluation and design 6.5. Summary of key points Where do the boost, buck-boost,

More information

1A, 52KHz, Step-Down Switching Regulator LM2575

1A, 52KHz, Step-Down Switching Regulator LM2575 FEATURES 3.3V, 5.0V, 12V and Adjustable Output Versions Adjustable Version Output Voltage Range Wide Input Voltage Range Guaranteed 1A Output Current 52kHz Fixed Frequency Internal Oscillator Voltage mode

More information

AUR MHz, 1A, Step-Down DC-DC Converter. Features. Description. Applications. Package Information. Order Information

AUR MHz, 1A, Step-Down DC-DC Converter. Features. Description. Applications. Package Information. Order Information 1.5MHz, 1A, Step-Down DC-DC Converter Features High efficiency Buck Power Converter Low Quiescent Current 1A Output Current Adjustable Output Voltage from 1V to 3.3V Wide Operating Voltage Ranges : 2.5

More information

Efficiency (%) Package Temperature Part Number Transport Media SOP8-40 to 85 PT1102ESOH Tape and Reel

Efficiency (%) Package Temperature Part Number Transport Media SOP8-40 to 85 PT1102ESOH Tape and Reel GENERAL DESCRIPTION The PT112 is a CMOS-based fixed frequency step-down DC/DC converter with a built-in internal power MOSFET. It achieves 1A continuous output current over a wide input supply range with

More information

Chapter 13: Comparators

Chapter 13: Comparators Chapter 13: Comparators So far, we have used op amps in their normal, linear mode, where they follow the op amp Golden Rules (no input current to either input, no voltage difference between the inputs).

More information

23V, 3A, 340KHz Synchronous Step-Down DC/DC Converter

23V, 3A, 340KHz Synchronous Step-Down DC/DC Converter 23V, 3A, 340KHz Synchronous Step-Down DC/DC Converter Description The is a synchronous step-down DC/DC converter that provides wide 4.5V to 23V input voltage range and 3A continuous load current capability.

More information

AN726. Vishay Siliconix AN726 Design High Frequency, Higher Power Converters With Si9166

AN726. Vishay Siliconix AN726 Design High Frequency, Higher Power Converters With Si9166 AN726 Design High Frequency, Higher Power Converters With Si9166 by Kin Shum INTRODUCTION The Si9166 is a controller IC designed for dc-to-dc conversion applications with 2.7- to 6- input voltage. Like

More information

MAXREFDES121# Isolated 24V to 3.3V 33W Power Supply

MAXREFDES121# Isolated 24V to 3.3V 33W Power Supply System Board 6309 MAXREFDES121# Isolated 24V to 3.3V 33W Power Supply Maxim s power-supply experts have designed and built a series of isolated, industrial power-supply reference designs. Each of these

More information

Section 4: Operational Amplifiers

Section 4: Operational Amplifiers Section 4: Operational Amplifiers Op Amps Integrated circuits Simpler to understand than transistors Get back to linear systems, but now with gain Come in various forms Comparators Full Op Amps Differential

More information

MP3115 High-Efficiency, Single-Cell Alkaline, 1.3MHz Synchronous Step-up Converter with Output Disconnect

MP3115 High-Efficiency, Single-Cell Alkaline, 1.3MHz Synchronous Step-up Converter with Output Disconnect The Future of Analog IC Technology MP3115 High-Efficiency, Single-Cell Alkaline, 1.3MHz Synchronous Step-up Converter with Output Disconnect DESCRIPTION The MP3115 is a synchronous, fixed frequency, current

More information

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications WHITE PAPER High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications Written by: C. R. Swartz Principal Engineer, Picor Semiconductor

More information

FAN5345 Series Boost LED Driver with Single-Wire Digital Interface

FAN5345 Series Boost LED Driver with Single-Wire Digital Interface September 2011 FAN5345 Series Boost LED Driver with Single-Wire Digital Interface Features Asynchronous Boost Converter Drives LEDs in Series: FAN5345S20X: 20V Output FAN5345S30X: 30V Output 2.5V to 5.5V

More information

1MHz,30V/1.5A High Performance, Boost Converter

1MHz,30V/1.5A High Performance, Boost Converter 1MHz,30V/1.A High Performance, Boost Converter General Description The is a current mode boost DC-DC converter. Its PWM circuitry with built-in 1.A current power MOSFET makes this converter highly power

More information

MT3540 Rev.V1.2. Package/Order Information. Pin Description. Absolute Maximum Ratings PIN NAME FUNCTION

MT3540 Rev.V1.2. Package/Order Information. Pin Description. Absolute Maximum Ratings PIN NAME FUNCTION 1.5A, 1.2MHz, Up to 28V Output Micropower Step-up Converter FEATURES Integrated 0.5Ω Power MOSFET 40µA Quiescent Current 2.5V to 5.5V Input Voltage 1.2MHz Fixed Switching Frequency Internal 1.5A Switch

More information

1. DEFINE THE SPECIFICATION 2. SELECT A TOPOLOGY

1. DEFINE THE SPECIFICATION 2. SELECT A TOPOLOGY How to Choose for Design This article is to present a way to choose a switching controller for design in the s Selector Guide SGD514/D from ON Semiconductor. (http://www.onsemi.com/pub/collateral/sgd514d.pdf)

More information

Experiment DC-DC converter

Experiment DC-DC converter POWER ELECTRONIC LAB Experiment-7-8-9 DC-DC converter Power Electronics Lab Ali Shafique, Ijhar Khan, Dr. Syed Abdul Rahman Kashif 10/11/2015 This manual needs to be completed before the mid-term examination.

More information

AT2596 3A Step Down Voltage Switching Regulators

AT2596 3A Step Down Voltage Switching Regulators FEATURES Standard PSOP-8/TO-220-5L /TO-263-5L Package Adjustable Output Versions Adjustable Version Output Voltage Range 1.23V to 37V V OUT Accuracy is to ± 3% Under Specified Input Voltage the Output

More information

Power Management. Introduction. Courtesy of Dr. Sanchez-Sinencio s Group. ECEN 489: Power Management Circuits and Systems

Power Management. Introduction. Courtesy of Dr. Sanchez-Sinencio s Group. ECEN 489: Power Management Circuits and Systems Power Management Introduction Courtesy of Dr. Sanchez-Sinencio s Group 1 Today What is power management? Big players Market Types of converters Pros and cons Specifications Selection of converters 2 Motivation

More information

HIGH RIPPLE-REJECTION LOW DROPOUT LOW INPUT-AND-OUTPUT CAPACITANCE CMOS VOLTAGE REGULATOR

HIGH RIPPLE-REJECTION LOW DROPOUT LOW INPUT-AND-OUTPUT CAPACITANCE CMOS VOLTAGE REGULATOR Rev.3.2_ HIGH RIPPLE-REJECTION LOW DROPOUT LOW INPUT-AND-OUTPUT CAPACITANCE CMOS VOLTAGE REGULATOR S-12 Series The S-12 Series is a positive voltage regulator with a low dropout voltage, high output voltage

More information

A7632A. AiT Semiconductor Inc. APPLICATION ORDERING INFORMATION TYPICAL APPLICATION

A7632A. AiT Semiconductor Inc.   APPLICATION ORDERING INFORMATION TYPICAL APPLICATION DESCRIPTION The is a constant frequency, current mode step-up converter intended for small, low power applications. The switches at 1.2MHz and allows the use of tiny, low cost capacitors and inductors

More information

SP3613. Order Information PIN CONFIGURATIONN PIN NAME DISCRIPTION TYPICAL APPLICATION. 1 VIN Input

SP3613. Order Information PIN CONFIGURATIONN PIN NAME DISCRIPTION TYPICAL APPLICATION. 1 VIN Input 60, 3A STEP DOWN OLTAGE SWITCHING REGULATOR DESCRIPTION The SP3613 series is designed to provide all the active function for a step-down (buck) switching regulator, and drives a maximum load current as

More information

Techcode. High Efficiency 1MHz, 2A Step Up Regulator TD8208. General Description. Features. Applications. Package Types DATASHEET

Techcode. High Efficiency 1MHz, 2A Step Up Regulator TD8208. General Description. Features. Applications. Package Types DATASHEET General Description Features TD8208 is a high efficiency, current mode control Boost DC to DC regulator with an integrated 120mΩ RDS(ON) N channel MOSFET. The fixed 1MHz switching frequency and internal

More information

Synchronous, Low EMI LED Driver Features Integrated Switches and Internal PWM Dimming

Synchronous, Low EMI LED Driver Features Integrated Switches and Internal PWM Dimming Synchronous, Low EMI LED Driver Features Integrated Switches and Internal PWM Dimming By Keith Szolusha, Applications Engineering Section Leader, Power Products and Kyle Lawrence, Associate Applications

More information

DT V 1A Output 400KHz Boost DC-DC Converter FEATURES GENERAL DESCRIPTION APPLICATIONS ORDER INFORMATION

DT V 1A Output 400KHz Boost DC-DC Converter FEATURES GENERAL DESCRIPTION APPLICATIONS ORDER INFORMATION GENERAL DESCRIPTION The DT9111 is a 5V in 12V 1A Out step-up DC/DC converter The DT9111 incorporates a 30V 6A N-channel MOSFET with low 60mΩ RDSON. The externally adjustable peak inductor current limit

More information

Liteon Semiconductor Corporation LSP MHZ, 600mA Synchronous Step-Up Converter

Liteon Semiconductor Corporation LSP MHZ, 600mA Synchronous Step-Up Converter FEATURES High Efficiency: Up to 96% 1.2MHz Constant Switching Frequency 3.3V Output Voltage at Iout=100mA from a Single AA Cell; 3.3V Output Voltage at Iout=400mA from two AA cells Low Start-up Voltage:

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 6.3.5. Boost-derived isolated converters A wide variety of boost-derived isolated dc-dc converters

More information

Unscrambling the power losses in switching boost converters

Unscrambling the power losses in switching boost converters Page 1 of 7 August 18, 2006 Unscrambling the power losses in switching boost converters learn how to effectively balance your use of buck and boost converters and improve the efficiency of your power

More information

AT7450 2A-60V LED Step-Down Converter

AT7450 2A-60V LED Step-Down Converter FEATURES DESCRIPTION IN Max = 60 FB = 200m Frequency 52kHz I LED Max 2A On/Off input may be used for the Analog Dimming Thermal protection Cycle-by-cycle current limit I LOAD max =2A OUT from 0.2 to 55

More information

ZLED7000 / ZLED7020 Application Note - Buck Converter LED Driver Applications

ZLED7000 / ZLED7020 Application Note - Buck Converter LED Driver Applications ZLED7000 / ZLED7020 Application Note - Buck Converter LED Driver Applications Contents 1 Introduction... 2 2 Buck Converter Operation... 2 3 LED Current Ripple... 4 4 Switching Frequency... 4 5 Dimming

More information

A7221A DC-DC CONVERTER/BUCK (STEP-DOWN) 600KHz, 16V, 2A SYNCHRONOUS STEP-DOWN CONVERTER

A7221A DC-DC CONVERTER/BUCK (STEP-DOWN) 600KHz, 16V, 2A SYNCHRONOUS STEP-DOWN CONVERTER DESCRIPTION The is a fully integrated, high efficiency 2A synchronous rectified step-down converter. The operates at high efficiency over a wide output current load range. This device offers two operation

More information

TSTE25 Power Electronics. Lecture 6 Tomas Jonsson ISY/EKS

TSTE25 Power Electronics. Lecture 6 Tomas Jonsson ISY/EKS TSTE25 Power Electronics Lecture 6 Tomas Jonsson ISY/EKS 2016-11-15 2 Outline DC power supplies DC-DC Converter Step-down (buck) Step-up (boost) Other converter topologies (overview) Exercises 7-1, 7-2,

More information

1A Buck/Boost Charge Pump LED Driver

1A Buck/Boost Charge Pump LED Driver 1A Buck/Boost Charge Pump LED Driver Description The Buck/Boost charge pump LED driver is designed for powering high brightness white LEDs for camera flash applications. The automatically switches modes

More information

High Performance, Constant Current Switching Regulator For 8PCS White LED In Series

High Performance, Constant Current Switching Regulator For 8PCS White LED In Series High Performance, Constant Current Switching Regulator For 8PCS White LED In Series General Description The is a MHz PWM boost switching regulator designed for constant-current white LED driver applications.

More information

High Side Driver for Buck Converter with an LDO

High Side Driver for Buck Converter with an LDO High Side Driver for Buck Converter with an LDO Hawk Chen Introduction Most boost converters have been applied to step-up voltage applications, such as the DA, N/B C, cellular phone, palmtop computer,

More information

Electronics, Sensors, and Actuators

Electronics, Sensors, and Actuators Electronics, Sensors, and Actuators 4/14/15 David Flicker BE107 Overview Basic electronics and components Sensors Actuators Electronics 101 Voltage, V, is fundamentally how much energy is gained or lost

More information

HM V 2A 500KHz Synchronous Step-Down Regulator

HM V 2A 500KHz Synchronous Step-Down Regulator Features HM8114 Wide 4V to 30V Operating Input Range 2A Continuous Output Current Fixed 500KHz Switching Frequency No Schottky Diode Required Short Protection with Hiccup-Mode Built-in Over Current Limit

More information

2015 International Future Energy Challenge Topic B: Battery Energy Storage with an Inverter That Mimics Synchronous Generators. Qualification Report

2015 International Future Energy Challenge Topic B: Battery Energy Storage with an Inverter That Mimics Synchronous Generators. Qualification Report 2015 International Future Energy Challenge Topic B: Battery Energy Storage with an Inverter That Mimics Synchronous Generators Qualification Report Team members: Sabahudin Lalic, David Hooper, Nerian Kulla,

More information

Application Note AN-1214

Application Note AN-1214 Application Note LED Buck Converter Design Using the IRS2505L By Ektoras Bakalakos Table of Contents Page 1. Introduction... 2 2. Buck Converter... 2 3. Peak Current Control... 5 4. Zero-Crossing Detection...

More information

ACT6311. White LED/OLED Step-Up Converter FEATURES

ACT6311. White LED/OLED Step-Up Converter FEATURES White LED/OLED Step-Up Converter FEATURES Adjustable Output Voltage Drives OLEDs or White LEDs 30V High Voltage Switch 1MHz Switching Frequency Tiny Inductors and Capacitors Tiny SOT23-5 Package APPLICATIONS

More information

New Techniques for Testing Power Factor Correction Circuits

New Techniques for Testing Power Factor Correction Circuits Keywords Venable, frequency response analyzer, impedance, injection transformer, oscillator, feedback loop, Bode Plot, power supply design, power factor correction circuits, current mode control, gain

More information

ACT8310/ A, PWM Step-Down DC/DCs in TDFN GENERAL DESCRIPTION FEATURES APPLICATIONS SYSTEM BLOCK DIAGRAM ACT8311. Rev 4, 08-Feb-2017

ACT8310/ A, PWM Step-Down DC/DCs in TDFN GENERAL DESCRIPTION FEATURES APPLICATIONS SYSTEM BLOCK DIAGRAM ACT8311. Rev 4, 08-Feb-2017 1.5A, PWM Step-Down DC/DCs in TDFN FEATURES Multiple Patents Pending Up to 95% High Efficiency Up to 1.5A Guaranteed Output Current (ACT8311) 1.35MHz Constant Frequency Operation Internal Synchronous Rectifier

More information

MAXREFDES116# ISOLATED 24V TO 5V 40W POWER SUPPLY

MAXREFDES116# ISOLATED 24V TO 5V 40W POWER SUPPLY System Board 6283 MAXREFDES116# ISOLATED 24V TO 5V 40W POWER SUPPLY Overview Maxim s power supply experts have designed and built a series of isolated, industrial power-supply reference designs. Each of

More information

BCT3692B Small Package, High Performance, Asynchronies Boost for 10 WLED Driver

BCT3692B Small Package, High Performance, Asynchronies Boost for 10 WLED Driver BCT3692B Small Package, High Performance, Asynchronies Boost for 10 WLED Driver Features 3.0V to 5.5V Input Voltage Range Internal Power N-MOSFET Switch Wide Range for PWM Dimming(20kHz to 60kHz) Minimize

More information

WD3122EC. Descriptions. Features. Applications. Order information. High Efficiency, 28 LEDS White LED Driver. Product specification

WD3122EC. Descriptions. Features. Applications. Order information. High Efficiency, 28 LEDS White LED Driver. Product specification High Efficiency, 28 LEDS White LED Driver Descriptions The is a constant current, high efficiency LED driver. Internal MOSFET can drive up to 10 white LEDs in series and 3S9P LEDs with minimum 1.1A current

More information

Type Ordering Code Package TDA Q67000-A5066 P-DIP-8-1

Type Ordering Code Package TDA Q67000-A5066 P-DIP-8-1 Control IC for Switched-Mode Power Supplies using MOS-Transistor TDA 4605-3 Bipolar IC Features Fold-back characteristics provides overload protection for external components Burst operation under secondary

More information

HM V 3A 500KHz Synchronous Step-Down Regulator

HM V 3A 500KHz Synchronous Step-Down Regulator Features Wide 4V to 18V Operating Input Range 3A Continuous Output Current 500KHz Switching Frequency Short Protection with Hiccup-Mode Built-in Over Current Limit Built-in Over Voltage Protection Internal

More information

600KHz, 16V/2A Synchronous Step-down Converter

600KHz, 16V/2A Synchronous Step-down Converter 600KHz, 16V/2A Synchronous Step-down Converter General Description The contains an independent 600KHz constant frequency, current mode, PWM step-down converters. The converter integrates a main switch

More information

3A 150KHZ PWM Buck DC/DC Converter. Features

3A 150KHZ PWM Buck DC/DC Converter. Features General Description The is a series of easy to use fixed and adjustable step-down (buck) switch-mode voltage regulators. These devices are available in fixed output voltage of 3.3V, 5V, and an adjustable

More information

INTEGRATED CIRCUITS. AN120 An overview of switched-mode power supplies Dec

INTEGRATED CIRCUITS. AN120 An overview of switched-mode power supplies Dec INTEGRATED CIRCUITS An overview of switched-mode power supplies 1988 Dec Conceptually, three basic approaches exist for obtaining regulated DC voltage from an AC power source. These are: Shunt regulation

More information

EECS 473 Advanced Embedded Systems

EECS 473 Advanced Embedded Systems EECS 473 Advanced Embedded Systems Lecture 11ish: Power review & Switching power supplies A number of slides taken from UT-Austin s EE462L power electronics class. http://users.ece.utexas.edu/~kwasinski/ee462ls14.html

More information

DT V 400KHz Boost DC-DC Controller FEATURES GENERAL DESCRIPTION APPLICATIONS ORDER INFORMATION

DT V 400KHz Boost DC-DC Controller FEATURES GENERAL DESCRIPTION APPLICATIONS ORDER INFORMATION GENERAL DESCRIPTION The DT9150 is a 5V step-up DC/DC controller designed capable of deliver over 50V Output with proper external N-MOSFET devices. The DT9150 can work with most Power N-MOSFET devices,

More information

1.0MHz,24V/2.0A High Performance, Boost Converter

1.0MHz,24V/2.0A High Performance, Boost Converter 1.0MHz,24V/2.0A High Performance, Boost Converter General Description The LP6320C is a 1MHz PWM boost switching regulator designed for constant-voltage boost applications. The can drive a string of up

More information

1.5 MHz, 600mA Synchronous Step-Down Converter

1.5 MHz, 600mA Synchronous Step-Down Converter GENERAL DESCRIPTION is a 1.5Mhz constant frequency, slope compensated current mode PWM step-down converter. The device integrates a main switch and a synchronous rectifier for high efficiency without an

More information

HM2259D. 2A, 4.5V-20V Input,1MHz Synchronous Step-Down Converter. General Description. Features. Applications. Package. Typical Application Circuit

HM2259D. 2A, 4.5V-20V Input,1MHz Synchronous Step-Down Converter. General Description. Features. Applications. Package. Typical Application Circuit HM2259D 2A, 4.5V-20V Input,1MHz Synchronous Step-Down Converter General Description Features HM2259D is a fully integrated, high efficiency 2A synchronous rectified step-down converter. The HM2259D operates

More information

MP6004 Primary-Side Regulated Flyback/Buck 80V DCDC Converter

MP6004 Primary-Side Regulated Flyback/Buck 80V DCDC Converter The Future of Analog IC Technology MP6004 Primary-Side Regulated Flyback/Buck 80V DCDC Converter DESCRIPTION The MP6004 is a monolithic flyback dc-dc converter with a 180 V power switch that targets isolated

More information

3A, 52kHz, Step-down Switching Regulator LM2576HV

3A, 52kHz, Step-down Switching Regulator LM2576HV 3A, 52kHz, Step-down Switching Regulator LM2576H FEATURES Step-down Switching Regulator Adjustable ersion Output oltage Range, 1.23 to 52 ± 4% Max over Line and Load conditions Guaranteed Output Current

More information

UC Berkeley, EECS Department

UC Berkeley, EECS Department UC Berkeley, EECS Department B. Boser EECS 4 Lab LAB5: Boost Voltage Supply UID: Boost Converters We have tried to use resistors (voltage dividers) to transform voltages but found that these solutions

More information

Positive to Negative Buck-Boost Converter Using LM267X SIMPLE SWITCHER Regulators

Positive to Negative Buck-Boost Converter Using LM267X SIMPLE SWITCHER Regulators Positive to Negative Buck-Boost Converter Using LM267X SIMPLE SWITCHER Regulators Abstract The 3rd generation Simple Switcher LM267X series of regulators are monolithic integrated circuits with an internal

More information

AT MHz 2A Step Up DC-DC Converter

AT MHz 2A Step Up DC-DC Converter FEATURES DESCRIPTION up to 93% Efficiency Integrated 80mΩ Power MOSFET 2.3V to 24V Input Voltage 1.2MHz Fixed Switching Frequency Internal 4A Switch Current Limit Adjustable Output Voltage up to 28V Internal

More information

MAXREFDES112#: ISOLATED 24V TO 12V 10W FLYBACK POWER SUPPLY

MAXREFDES112#: ISOLATED 24V TO 12V 10W FLYBACK POWER SUPPLY System Board 6261 MAXREFDES112#: ISOLATED 24V TO 12V 10W FLYBACK POWER SUPPLY Maxim's power supply experts have designed and built a series of isolated, industrial power-supply reference designs. Each

More information

Chapter 1: Introduction

Chapter 1: Introduction 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course 2 1.1 Introduction to Power Processing Power input Switching converter

More information

Datasheet. 2A 380KHZ 20V PWM Buck DC/DC Converter. Features

Datasheet. 2A 380KHZ 20V PWM Buck DC/DC Converter. Features General Description Features The is a 380 KHz fixed frequency monolithic step down switch mode regulator with a built in internal Power MOSFET. It achieves 2A continuous output current over a wide input

More information

eorex (Preliminary) EP3101

eorex (Preliminary) EP3101 (Preliminary) 150 KHz, 3A Asynchronous Step-down Converter Features Output oltage: 3.3, 5, 12 and Adjustable Output ersion Adjustable ersion Output oltage Range, 1.23 to 37 ±4% 150KHz±15% Fixed Switching

More information

Voltage Fed DC-DC Converters with Voltage Doubler

Voltage Fed DC-DC Converters with Voltage Doubler Chapter 3 Voltage Fed DC-DC Converters with Voltage Doubler 3.1 INTRODUCTION The primary objective of the research pursuit is to propose and implement a suitable topology for fuel cell application. The

More information

BCT3756 Small Package, High Performance, Asynchronies Boost for 8 Series WLED Driver

BCT3756 Small Package, High Performance, Asynchronies Boost for 8 Series WLED Driver BCT3756 Small Package, High Performance, Asynchronies Boost for 8 Series WLED Driver Features 3.0V to 5.5V Input Voltage Range Internal Power N-MOSFET Switch Wide Range for PWM Dimming(10kHz to 100kHz)

More information

Features MIC2193BM. Si9803 ( 2) 6.3V ( 2) VDD OUTP COMP OUTN. Si9804 ( 2) Adjustable Output Synchronous Buck Converter

Features MIC2193BM. Si9803 ( 2) 6.3V ( 2) VDD OUTP COMP OUTN. Si9804 ( 2) Adjustable Output Synchronous Buck Converter MIC2193 4kHz SO-8 Synchronous Buck Control IC General Description s MIC2193 is a high efficiency, PWM synchronous buck control IC housed in the SO-8 package. Its 2.9V to 14V input voltage range allows

More information

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS CHAPTER 3. SINGLE-STAGE PFC TOPOLOG GENERALIATION AND VARIATIONS 3.1. INTRODUCTION The original DCM S 2 PFC topology offers a simple integration of the DCM boost rectifier and the PWM DC/DC converter.

More information

UM mA, 600kHz Step-Up DC-DC Converter UM3433 SOT23-6. General Description. Rev.05 Dec /9

UM mA, 600kHz Step-Up DC-DC Converter UM3433 SOT23-6. General Description.  Rev.05 Dec /9 General Description UM3433 600mA, 600kHz Step-Up DC-DC Converter UM3433 SOT23-6 The UM3433 is synchronous rectified, fixed frequency, step-up DC/DC converter series delivering high efficiency in a low

More information

SGM mA Buck/Boost Charge Pump LED Driver

SGM mA Buck/Boost Charge Pump LED Driver GENERAL DESCRIPTION The SGM3140 is a current-regulated charge pump ideal for powering high brightness LEDs for camera flash applications. The charge pump can be set to regulate two current levels for Flash

More information

Design of an Integrated OLED Driver for a Modular Large-Area Lighting System

Design of an Integrated OLED Driver for a Modular Large-Area Lighting System Design of an Integrated OLED Driver for a Modular Large-Area Lighting System JAN DOUTRELOIGNE, ANN MONTÉ, JINDRICH WINDELS Center for Microsystems Technology (CMST) Ghent University IMEC Technologiepark

More information

GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. High Efficiency 1.2MHz 2A Step Up Converter. Efficiency

GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. High Efficiency 1.2MHz 2A Step Up Converter. Efficiency High Efficiency 1.2MHz 2A Step Up Converter FEATURES Integrated 80mΩ Power MOSFET 2V to 24V Input Voltage 1.2MHz Fixed Switching Frequency Internal 4A Switch Current Limit Adjustable Output Voltage Internal

More information

Experiment 5 Gate Drivers

Experiment 5 Gate Drivers Experiment 5 Gate Drivers High-Side and Low-Side Switches A low-side switch is a MOSFET or an IGBT that is connected to the ground-referenced and is not floating. In a boost converter, the source terminal

More information

ECE 556 Power Electronics: DC-DC Converters Lab 6 Procedure

ECE 556 Power Electronics: DC-DC Converters Lab 6 Procedure EE 6 Power Electronics: - onverters Lab 6 Procedure In this lab we will choose the components for the SG PWM control I. Prelab We will be building a buck-boost supply with the following specifications:

More information

Techcode. 3A 150KHz PWM Buck DC/DC Converter TD1501H. General Description. Features. Applications. Package Types DATASHEET

Techcode. 3A 150KHz PWM Buck DC/DC Converter TD1501H. General Description. Features. Applications. Package Types DATASHEET General Description Features The TD1501H is a series of easy to use fixed and adjustable step-down (buck) switch-mode voltage regulators. These devices are available in fixed output voltage of 5V, and

More information

AN Analog Power USA Applications Department

AN Analog Power USA Applications Department Using MOSFETs for Synchronous Rectification The use of MOSFETs to replace diodes to reduce the voltage drop and hence increase efficiency in DC DC conversion circuits is a concept that is widely used due

More information

SGM V Step-Up LED Driver

SGM V Step-Up LED Driver GENERAL DESCRIPTION The SGM3725 is a versatile constant current LED driver with a high efficiency step-up converter architecture. Unique technology and high 1.35A current limit allow SGM3725 to drive up

More information

A8160A. AiT Semiconductor Inc. APPLICATION ORDERING INFORMATION TYPICAL APPLICATION

A8160A. AiT Semiconductor Inc.   APPLICATION ORDERING INFORMATION TYPICAL APPLICATION DESCRIPTION The is a step-up DC-DC converter specifically designed for driving white LEDs with a constant current. The internal MOSFET can support up to 10 White LEDs for backlighting and OLED power application,

More information

Techcode TD8215. Step-up DC/DC Controller. General Description. Features. Applications. Pin Configurations DATASHEET TD8215 INV SCP VDD CTL

Techcode TD8215. Step-up DC/DC Controller. General Description. Features. Applications. Pin Configurations DATASHEET TD8215 INV SCP VDD CTL General Description Features The is a single PWM, step up DC DC controller with low operating voltage application integrating softstart and short circuit detection function. The oscillator switching frequency

More information