Sequential Logic Design (Latch & FF)

Size: px
Start display at page:

Download "Sequential Logic Design (Latch & FF)"

Transcription

1 /5/25 22: igital esign equential Logic esign (Latch & FF) A. ahu ept of omp. c. & Engg. Indian Institute of Technology Guwahati Outline ombinational Vs equential Logic esign esign a flip flop, that stores one bit latch tabilizing latch: Level ensitive locked Latch : Flip Flop Edge ensitive,, T flip flops haracterization Table and Equation,, and T Flip flop olution: Ensure, tabilize, tore Level-sensitive latch X L lock Period =2ns locks En Ensure tage Never Happens = tabilize tage When = tabilize and Use when = tore tage tore bit ns ns 2ns 3ns 4ns 5ns 6ns 7ns Time lock period: time interval between pulses lock cycle: one such time interval Freq lock frequency: /period GHz frequency = / 2 ns = 5 MHz MHz Hz = /s MHz Period ns ns ns lock ignal for latch Level-sensitive latch X lock ignals for a Latch How do we know when it s safe to set =? Most common solution make pulse up/down =: afe to change X, =: Must notchange X, locksignal Pulsing signal used to enable latches Because it ticks like a clock equential circuit whose storage components all use clock signals: synchronouscircuit X Level-sensitive latch lk lk

2 /5/25 Level ensitive Latch latch requires careful design to ensure = never occurs latch relieves designer of that burden Inserted inverter ensures always opposite of latch latch symbol Level ensitive Latches uppose FFs are arrange in linear fashion connected using a single clock signal lk Every clock we want to shift one bit to right ight shift one bit per cycle lk lk_a oes this circuit (with level sensitive latch) lk_b hift one bit per cycle? 4 Problem with Level ensitive Latch latch still has problem (as does latch) When =, through how many latches will a signal travel? epends on for how long = lk_a signal may travel through multiple latches lk_b signal may travel through fewer latches Hard to pick that is just the right length lk Problem with Level ensitive Latch We want do the work: one per clock cycle Independent of length of clock ( time) Is there any solution to this? lk_a lk_b Problem with Level ensitive Latch We want do the work: one per clock cycle Independent of length of clock ( time) anwedesignbitstoragethatonlystoresa storage that only stores a value on the rising edge of a clock signal? There is exactly one rising edge per clock cycle There is exactly one falling edge per clock cycle rising edges Make Edge ensitive Bit torage Latch : Level sensitive storage Flip Flop : Edge sensitive storage Value get changed only at edges of clock How to make a Flip Flop out of Latch? lk 2

3 /5/25 Master lave Flip Flop Two latches, output of first goes to input of second, master latch has inverted clock signal o master loaded when =, then servant when= When changes from to, master disabled, servant loaded with value that was at just before changed i.e., Value at during rising edge of Master lave Flip Flop Flip flop:stores lk m m latch Master m stores on clock edge, not level flip-flop latch s s s s ervant lk /m m m/s Master loaded when =, then servant when = When changes from to, master disabled, servant loaded with value that was at just before changed i.e., value at during rising edge of s s Flip Flop ( ising & Falling Edges) The triangle means clock input, edge triggered ymbol for rising-edge triggered flip-flop ising edges ymbol for falling-edge triggered flip-flop Internal design: ust invert servant clock rather than master Falling edges Flip Flops olves problem of not knowing through how many latches a signal travels when = ignal travels through exactly one FF, for lk_aor lk_b. Why? Because on rising edge of lk, all four flip flops are loaded simultaneously then all four no longer pay attention to their input, until the next rising edge. oesn t matter how long lkis lk lk lk lk_a lk_b Two latches inside each flip-flop Latch vs. Flip Flop Latch is level sensitive: tores when = Flip flop is edge triggered: tores when changes from to aying level sensitive latch, or edge triggered flipflop, is redundant Two types of flip flops rising or falling edge triggered. Positive Edge Triggered Flip Flop: Optimization Master P P lave GATE OUNT: 4 NO, 4 AN and 2 NOT 3

4 /5/25 emember: Latch with NAN Gates + ** (Unpredictable) Opposite to Latch with NO Gates et will do = and eset will = Positive EgdeTrigeered FF: Economical L Positive Edge Triggered FF: Economical When L=, =, + = (Independent of ) Positive Edge Triggered FF: Economical When L=, =, + = L + = L + = Positive Edge Triggered FF: Economical After that When L=, =: No changes to : + = It locked L + = L Positive EgdeTrigeered FF: Economical GATE OUNT: 6 6 NAN, ame types 4

5 /5/25 Transistor level optimization is out of syllabus Master lave Edge Triggered Flip Flop 2 x 8 = 6 Transistors MATE LAVE Butshowingtwoslides two slides M L L More Efficient Master lave Edge Triggered Flip Flop alled a 2 MO (locked MO) design L L MATE V GN L L LAVE V GN 8 Transistors Problem handled in esigning FF O Gate : worked just like a ringing bell O gate with Feed back : (= can never be changed) Two NO gates with cross coupled out put and input : olved to store a bit but ace condition Ensure = will not happed by adding Not and AN gate Enable ignal to put remove : delay of added kt Master lave Latches to make a FF Optimized FF (using only NAN Gates) onventions The circuit is setmeans output = The circuit is resetmeans output = Flip flops have two output and ue to time related characteristic of the flip flop: t or : present state t+ or + : next state Type of Flip Flop Flip Flop : et/eset Flip Flop Flip Flop : ata Flip Flop to store Bit Flip Flop: Unavoidable = state to Toggle (Allinput values areuseful) The Flip Flop was named to honour"ack ilby" of Texas Instrument engineer who invented the concept of I. T Flip Flop: Toggle Flip Flop 5

6 /5/25 Latches The flip flop augments the behavior of the flip flop (=et, =eset) by interpreting the = = condition as a "flip" or toggle command. FF from + t t + = + Master lave Flip Flop + = + Master lave Flip Flop + = + Flip Flop To synthesize a flip flop, simply set equal to the complement of. The flip flop is a universal flip flop Because it can be configured to work as any FF T flip flop or flip flop or flip flop. =T =T + t t = = + t t = = + t t ==, + = T Toggle Flip Flop: T FF Flip Flop T T Flip Flop + t U 4 Types of Flip Flops + t t + T + t t 6

7 /5/25 Given a FF: onstruct FF Given a FF: onstruct T FF L L T T +T + + = + = T + T Thanks 7

Mux-Based Latches. Lecture 8. Sequential Circuits 1. Mux-Based Latch. Mux-Based Latch. Negative latch (transparent when CLK= 0)

Mux-Based Latches. Lecture 8. Sequential Circuits 1. Mux-Based Latch. Mux-Based Latch. Negative latch (transparent when CLK= 0) Mux-Based Latches Lecture 8 equential Circuits Negative latch (transparent when = 0) Positive latch (transparent when = ) Peter Cheung epartment of Electrical & Electronic Engineering Imperial College

More information

ECE520 VLSI Design. Lecture 11: Combinational Static Logic. Prof. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 11: Combinational Static Logic. Prof. Payman Zarkesh-Ha EE520 VLSI esign Lecture 11: ombinational Static Logic Prof. Payman Zarkesh-Ha Office: EE ldg. 230 Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 eview of Last

More information

Module -18 Flip flops

Module -18 Flip flops 1 Module -18 Flip flops 1. Introduction 2. Comparison of latches and flip flops. 3. Clock the trigger signal 4. Flip flops 4.1. Level triggered flip flops SR, D and JK flip flops 4.2. Edge triggered flip

More information

ENGG1015: lab 3. Sequential Logic

ENGG1015: lab 3. Sequential Logic ENGG1015: lab 3 Sequential Logic 1 st Semester 2012-13 This lab explores the world of sequential logic design. By the end of this lab, you will have implemented a working prototype of a Ball ounter that

More information

EECS 150 Homework 4 Solutions Fall 2008

EECS 150 Homework 4 Solutions Fall 2008 Problem 1: You have a 100 MHz clock, and need to generate 3 separate clocks at different frequencies: 20 MHz, 1kHz, and 1Hz. How many flip flops do you need to implement each clock if you use: a) a ring

More information

Clock Signal Review Memory Elements

Clock Signal Review Memory Elements equential ystems eview ombinational etwork Output value only depends on input value equential etwork Output Value depends on input value and present state value equential network must have some way of

More information

1 Q' 3. You are given a sequential circuit that has the following circuit to compute the next state:

1 Q' 3. You are given a sequential circuit that has the following circuit to compute the next state: UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences C50 Fall 2001 Prof. Subramanian Homework #3 Due: Friday, September 28, 2001 1. Show how to implement a T flip-flop starting

More information

E2.11/ISE2.22 Digital Electronics II

E2.11/ISE2.22 Digital Electronics II E2./IE2.22 igital Electronics II roblem heet (uestion ratings: =Easy,, E=Hard. ll students should do questions rated, or as a minimum). The diagram shows three gates in which one input (OTOL) is being

More information

Serial Addition. Lecture 29 1

Serial Addition. Lecture 29 1 Serial Addition Operations in digital computers are usually done in parallel because that is a faster mode of operation. Serial operations are slower because a datapath operation takes several clock cycles,

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING SEMESTER TWO EXAMINATION 2017/2018

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING SEMESTER TWO EXAMINATION 2017/2018 UNIVERSITY OF BOLTON [EES04] SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING SEMESTER TWO EXAMINATION 2017/2018 INTERMEDIATE DIGITAL ELECTRONICS AND COMMUNICATIONS MODULE NO: EEE5002

More information

IES Digital Mock Test

IES Digital Mock Test . The circuit given below work as IES Digital Mock Test - 4 Logic A B C x y z (a) Binary to Gray code converter (c) Binary to ECESS- converter (b) Gray code to Binary converter (d) ECESS- To Gray code

More information

CMOS Digital Integrated Circuits Analysis and Design

CMOS Digital Integrated Circuits Analysis and Design CMOS Digital Integrated Circuits Analysis and Design Chapter 8 Sequential MOS Logic Circuits 1 Introduction Combinational logic circuit Lack the capability of storing any previous events Non-regenerative

More information

Outline. EECS Components and Design Techniques for Digital Systems. Lec 12 - Timing. General Model of Synchronous Circuit

Outline. EECS Components and Design Techniques for Digital Systems. Lec 12 - Timing. General Model of Synchronous Circuit Outline EES 5 - omponents and esign Techniques for igital Systems Lec 2 - Timing avid uller Electrical Engineering and omputer Sciences University of alifornia, erkeley Performance Limits of Synchronous

More information

Page 1. Last time we looked at: latches. flip-flop

Page 1. Last time we looked at: latches. flip-flop Last time we looked at: latches flip flops We saw that these devices hold a value depending on their inputs. A data input value is loaded into the register on the rise of the edge. Some circuits have additional

More information

COUNTERS AND REGISTERS

COUNTERS AND REGISTERS H P T E R 7 OUNTERS N REGISTERS OUTLINE Part 7- synchronous (Ripple) ounters 7-2 Propagation elay in Ripple ounters 7-3 Synchronous (Parallel) ounters 7-4 ounters with MO Numbers 6 2 N 7-5 Synchronous

More information

CHAPTER 5 DESIGNS AND ANALYSIS OF SINGLE ELECTRON TECHNOLOGY BASED MEMORY UNITS

CHAPTER 5 DESIGNS AND ANALYSIS OF SINGLE ELECTRON TECHNOLOGY BASED MEMORY UNITS 208 CHAPTER 5 DESIGNS AND ANALYSIS OF SINGLE ELECTRON TECHNOLOGY BASED MEMORY UNITS 5.1 INTRODUCTION The objective of this chapter is to design and verify the single electron technology based memory circuits

More information

Computer Architecture (TT 2012)

Computer Architecture (TT 2012) Computer Architecture (TT 212) Laws of Attraction aniel Kroening Oxford University, Computer Science epartment Version 1., 212 . Kroening: Computer Architecture (TT 212) 2 . Kroening: Computer Architecture

More information

Classification of Digital Circuits

Classification of Digital Circuits Classification of Digital Circuits Combinational logic circuits. Output depends only on present input. Sequential circuits. Output depends on present input and present state of the circuit. Combinational

More information

HIGH LOW Astable multivibrators HIGH LOW 1:1

HIGH LOW Astable multivibrators HIGH LOW 1:1 1. Multivibrators A multivibrator circuit oscillates between a HIGH state and a LOW state producing a continuous output. Astable multivibrators generally have an even 50% duty cycle, that is that 50% of

More information

Module-20 Shift Registers

Module-20 Shift Registers 1 Module-20 Shift Registers 1. Introduction 2. Types of shift registers 2.1 Serial In Serial Out (SISO) register 2.2 Serial In Parallel Out (SIPO) register 2.3 Parallel In Parallel Out (PIPO) register

More information

We ve looked at timing issues in combinational logic Let s now examine timing issues we must deal with in sequential circuits

We ve looked at timing issues in combinational logic Let s now examine timing issues we must deal with in sequential circuits Basic Timing Issues We ve looked at timing issues in combinational logic Let s now examine timing issues we must deal with in sequential circuits The fundamental timing issues we considered then apply

More information

Operating Instructions

Operating Instructions 6 18 GHz Frequency Synthesizer PFS-618-CD-1 Operating Instructions 1) Frequency Control The Frequency Control Code is constructed of 17 bits (A0 - A16). The following equation and table describe the frequency

More information

CS/EE Homework 9 Solutions

CS/EE Homework 9 Solutions S/EE 260 - Homework 9 Solutions ue 4/6/2000 1. onsider the synchronous ripple carry counter on page 5-8 of the notes. Assume that the flip flops have a setup time requirement of 2 ns and that the gates

More information

Computer Architecture: Part II. First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University

Computer Architecture: Part II. First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University Computer Architecture: Part II First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University Outline Combinational Circuits Flips Flops Flops Sequential Circuits 204231: Computer

More information

HAZARDS AND PULSE MODE SEQUENTIAL CIRCUITS

HAZARDS AND PULSE MODE SEQUENTIAL CIRCUITS Chapter 19 HAZARDS AND PULSE MODE SEQUENTIAL CIRCUITS Ch19L5-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 1 Lesson 5 Dynamic Hazards, Essential Hazards and Pulse mode sequential

More information

PWM System. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff

PWM System. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff PWM System 1 Pulse Width Modulation (PWM) Pulses are continuously generated which have different widths but the same period between leading edges Duty cycle (% high) controls the average analog voltage

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information

EE 330 Lecture 44. Digital Circuits. Ring Oscillators Sequential Logic Array Logic Memory Arrays. Final: Tuesday May 2 7:30-9:30

EE 330 Lecture 44. Digital Circuits. Ring Oscillators Sequential Logic Array Logic Memory Arrays. Final: Tuesday May 2 7:30-9:30 EE 330 Lecture 44 igital Circuits Ring Oscillators Sequential Logic Array Logic Memory Arrays Final: Tuesday May 2 7:30-9:30 Review from Last Time ynamic Logic Basic ynamic Logic Gate V F A n PN Any of

More information

CMOS Digital Integrated Circuits Lec 11 Sequential CMOS Logic Circuits

CMOS Digital Integrated Circuits Lec 11 Sequential CMOS Logic Circuits Lec Sequential CMOS Logic Circuits Sequential Logic In Combinational Logic circuit Out Memory Sequential The output is determined by Current inputs Previous inputs Output = f(in, Previous In) The regenerative

More information

ASTABLE MULTIVIBRATOR

ASTABLE MULTIVIBRATOR 555 TIMER ASTABLE MULTIIBRATOR MONOSTABLE MULTIIBRATOR 555 TIMER PHYSICS (LAB MANUAL) PHYSICS (LAB MANUAL) 555 TIMER Introduction The 555 timer is an integrated circuit (chip) implementing a variety of

More information

Chapter 4: FLIP FLOPS. (Sequential Circuits) By: Siti Sabariah Hj. Salihin ELECTRICAL ENGINEERING DEPARTMENT EE 202 : DIGITAL ELECTRONICS 1

Chapter 4: FLIP FLOPS. (Sequential Circuits) By: Siti Sabariah Hj. Salihin ELECTRICAL ENGINEERING DEPARTMENT EE 202 : DIGITAL ELECTRONICS 1 Chapter 4: FLIP FLOPS (Sequential Circuits) By: Siti Sabariah Hj. Salihin ELECTRICAL ENGINEERING DEPARTMENT 1 CHAPTER 4 : FLIP FLOPS Programme Learning Outcomes, PLO Upon completion of the programme, graduates

More information

COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC CSCD211- DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GHANA

COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC CSCD211- DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GHANA COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC LOGIC Logic is a branch of math that tries to look at problems in terms of being either true or false. It will use a set of statements to derive new true

More information

2014 Paper E2.1: Digital Electronics II

2014 Paper E2.1: Digital Electronics II 2014 Paper E2.1: Digital Electronics II Answer ALL questions. There are THREE questions on the paper. Question ONE counts for 40% of the marks, other questions 30% Time allowed: 2 hours (Not to be removed

More information

EE 42/100 Lecture 24: Latches and Flip Flops. Rev A 4/14/2010 (8:30 PM) Prof. Ali M. Niknejad

EE 42/100 Lecture 24: Latches and Flip Flops. Rev A 4/14/2010 (8:30 PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/15 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev A 4/14/2010 (8:30 PM) Prof. Ali M. Niknejad University of California,

More information

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics Sr. No. Date TITLE To From Marks Sign 1 To verify the application of op-amp as an Inverting Amplifier 2 To

More information

Design of low-power, high performance flip-flops

Design of low-power, high performance flip-flops Int. Journal of Applied Sciences and Engineering Research, Vol. 3, Issue 4, 2014 www.ijaser.com 2014 by the authors Licensee IJASER- Under Creative Commons License 3.0 editorial@ijaser.com Research article

More information

Coincidence Rates. QuarkNet. summer workshop June 24-28, 2013

Coincidence Rates. QuarkNet. summer workshop June 24-28, 2013 Coincidence Rates QuarkNet summer workshop June 24-28, 2013 1 Example Pulse input Threshold level (-10 mv) Discriminator output Once you have a digital logic pulse, you can analyze it using digital electronics

More information

EE584 Introduction to VLSI Design Final Project Document Group 9 Ring Oscillator with Frequency selector

EE584 Introduction to VLSI Design Final Project Document Group 9 Ring Oscillator with Frequency selector EE584 Introduction to VLSI Design Final Project Document Group 9 Ring Oscillator with Frequency selector Group Members Uttam Kumar Boda Rajesh Tenukuntla Mohammad M Iftakhar Srikanth Yanamanagandla 1 Table

More information

DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS

DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS Aman Chaudhary, Md. Imtiyaz Chowdhary, Rajib Kar Department of Electronics and Communication Engg. National Institute of Technology,

More information

The Non Inverting Buffer

The Non Inverting Buffer The Non Inverting Buffer We now spend some time investigating useful circuit elements that do not directly implement Boolean functions. The first element is the non inverting buffer. This is logically

More information

EC4205 Microprocessor and Microcontroller

EC4205 Microprocessor and Microcontroller EC4205 Microprocessor and Microcontroller Webcast link: https://sites.google.com/a/bitmesra.ac.in/aminulislam/home All announcement made through webpage: check back often Students are welcome outside the

More information

EE 308-Digital Electronics Laboratory EXPERIMENT 8 FLIP FLOPS AND SEQUENTIAL CIRCUITS

EE 308-Digital Electronics Laboratory EXPERIMENT 8 FLIP FLOPS AND SEQUENTIAL CIRCUITS EXPERIMENT 8 FLIP FLOPS ND SEUENTIL IRUITS I. INTRODUTION 1. Objectives The objective of this experiment is to become familiar with the basic operational principles of flip-flops and counters. II. PRELIMINRY

More information

Fan in: The number of inputs of a logic gate can handle.

Fan in: The number of inputs of a logic gate can handle. Subject Code: 17333 Model Answer Page 1/ 29 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency Jamie E. Reinhold December 15, 2011 Abstract The design, simulation and layout of a UMAINE ECE Morse code Read Only Memory and transmitter

More information

Project Board Game Counter: Digital

Project Board Game Counter: Digital Project 1.3.3 Board Game Counter: Digital Introduction Just a few short weeks ago, most of you knew little or nothing about digital electronics. Now you are about to build and simulate a complete design.

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC06 74HC/HCT/HCU/HCMOS Logic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information

Arithmetic Circuits. (Part II) Randy H. Katz University of California, Berkeley. Fall Overview BCD Circuits. Combinational Multiplier Circuit

Arithmetic Circuits. (Part II) Randy H. Katz University of California, Berkeley. Fall Overview BCD Circuits. Combinational Multiplier Circuit (art II) Randy H. Katz University of alifornia, Berkeley Fall 25 Overview BD ircuits ombinational Multiplier ircuit Design ase tudy: Bit Multiplier equential Multiplier ircuit R.H. Katz Lecture #2: -1

More information

74ABT273 Octal D-Type Flip-Flop

74ABT273 Octal D-Type Flip-Flop Octal D-Type Flip-Flop General Description The ABT273 has eight edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) and Master Reset (MR) inputs load

More information

INTEGRATED CIRCUITS. 74ABT574A Octal D-type flip-flop (3-State) Product specification 1995 May 22 IC23 Data Handbook

INTEGRATED CIRCUITS. 74ABT574A Octal D-type flip-flop (3-State) Product specification 1995 May 22 IC23 Data Handbook INTEGRATE CIRCUITS 995 May 22 IC23 ata Handbook FEATURES is flow-through pinout version of 74ABT374 Inputs and outputs on opposite side of package allow easy interface to microprocessors 3-State outputs

More information

Spec. Instructor: Center

Spec. Instructor: Center PDHonline Course E379 (5 PDH) Digital Logic Circuits Volume III Spec ial Logic Circuits Instructor: Lee Layton, P.E 2012 PDH Online PDH Center 5272 Meadow Estatess Drive Fairfax, VA 22030-6658 Phone &

More information

DIGITAL CIRCUITS AND SYSTEMS ASSIGNMENTS 1 SOLUTIONS

DIGITAL CIRCUITS AND SYSTEMS ASSIGNMENTS 1 SOLUTIONS DIGITAL CIRCUITS AND SYSTEMS ASSIGNMENTS 1 SOLUTIONS 1. Analog signal varies continuously between two amplitudes over the given interval of time. Between these limits of amplitude and time, the signal

More information

logic system Outputs The addition of feedback means that the state of the circuit may change with time; it is sequential. logic system Outputs

logic system Outputs The addition of feedback means that the state of the circuit may change with time; it is sequential. logic system Outputs Sequential Logic The combinational logic circuits we ve looked at so far, whether they be simple gates or more complex circuits have clearly separated inputs and outputs. A change in the input produces

More information

Digital Design and System Implementation. Overview of Physical Implementations

Digital Design and System Implementation. Overview of Physical Implementations Digital Design and System Implementation Overview of Physical Implementations CMOS devices CMOS transistor circuit functional behavior Basic logic gates Transmission gates Tri-state buffers Flip-flops

More information

Hardware Flags. and the RTI system. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff

Hardware Flags. and the RTI system. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff Hardware Flags and the RTI system 1 Need for hardware flag Often a microcontroller needs to test whether some event has occurred, and then take an action For example A sensor outputs a pulse when a model

More information

Model 305 Synchronous Countdown System

Model 305 Synchronous Countdown System Model 305 Synchronous Countdown System Introduction: The Model 305 pre-settable countdown electronics is a high-speed synchronous divider that generates an electronic trigger pulse, locked in time with

More information

A Flying-Adder Architecture of Frequency and Phase Synthesis With Scalability

A Flying-Adder Architecture of Frequency and Phase Synthesis With Scalability IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 5, OCTOBER 2002 637 A Flying-Adder Architecture of Frequency and Phase Synthesis With Scalability Liming Xiu, Member, IEEE,

More information

DLL Based Frequency Multiplier

DLL Based Frequency Multiplier DLL Based Frequency Multiplier Final Project Report VLSI Chip Design Project Project Group 4 Version 1.0 Status Reviewed Approved Ameya Bhide Ameya Bhide TSEK06 VLSI Design Project 1 of 29 Group 4 PROJECT

More information

Basic Logic Circuits

Basic Logic Circuits Basic Logic Circuits Required knowledge Measurement of static characteristics of nonlinear circuits. Measurement of current consumption. Measurement of dynamic properties of electrical circuits. Definitions

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 1 Memory and Advanced Digital Circuits - 2 Chapter 11 2 Figure 11.1 (a) Basic latch. (b) The latch with the feedback loop opened.

More information

RA CH Segment/Common Driver For Dot Matrix LCD Specification. Version 1.1 December 29, 2009

RA CH Segment/Common Driver For Dot Matrix LCD Specification. Version 1.1 December 29, 2009 RAiO H egment/ommon river For ot Matrix L pecification Version. ecember, RAiO Technology Inc. opyright RAiO Technology Inc. 瑞佑科技 RAiO TEHNOLOGY IN. / www.raio.com.tw Version. H ommon / egment river For

More information

PC-OSCILLOSCOPE PCS500. Analog and digital circuit sections. Description of the operation

PC-OSCILLOSCOPE PCS500. Analog and digital circuit sections. Description of the operation PC-OSCILLOSCOPE PCS500 Analog and digital circuit sections Description of the operation Operation of the analog section This description concerns only channel 1 (CH1) input stages. The operation of CH2

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC0 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC0 74HC/HCT/HCU/HCMOS Logic Package Information The IC0 74HC/HCT/HCU/HCMOS

More information

DIGITAL ELECTRONICS. Methods & diagrams : 1 Graph plotting : - Tables & analysis : - Questions & discussion : 6 Performance : 3

DIGITAL ELECTRONICS. Methods & diagrams : 1 Graph plotting : - Tables & analysis : - Questions & discussion : 6 Performance : 3 DIGITAL ELECTRONICS Marking scheme : Methods & diagrams : 1 Graph plotting : - Tables & analysis : - Questions & discussion : 6 Performance : 3 Aim: This experiment will investigate the function of the

More information

Low Power CMOS Re-programmable Pulse Generator for UWB Systems

Low Power CMOS Re-programmable Pulse Generator for UWB Systems Low Power CMOS Re-programmable Pulse Generator for UWB Systems Kevin Marsden 1, Hyung-Jin Lee 1, ong Sam Ha 1, and Hyung-Soo Lee 2 1 VTVT (Virginia Tech VLSI for Telecommunications) Lab epartment of Electrical

More information

D f ref. Low V dd (~ 1.8V) f in = D f ref

D f ref. Low V dd (~ 1.8V) f in = D f ref A 5.3 GHz Programmable Divider for HiPerLAN in 0.25µm CMOS N. Krishnapura 1 & P. Kinget 2 Lucent Technologies, Bell Laboratories, USA. 1 Currently at Columbia University, New York, NY, 10027, USA. 2 Currently

More information

EECS-140/141 Introduction to Digital Logic Design Lecture 7:Sequential Logic Basics

EECS-140/141 Introduction to Digital Logic Design Lecture 7:Sequential Logic Basics EECS-140/141 Introduction to Digital Logic Design Lecture 7:Sequential Logic Basics I. OVERVIEW I.A Combinational vs. Sequential Logic Combinational Logic (everything so far): Outputs depend entirely on

More information

Lecture 7: Components of Phase Locked Loop (PLL)

Lecture 7: Components of Phase Locked Loop (PLL) Lecture 7: Components of Phase Locked Loop (PLL) CSCE 6933/5933 Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages,

More information

Additional Programs for the Electronics Module Part No

Additional Programs for the Electronics Module Part No Additional Programs for the Electronics Module Part No. 5263 Contents:. Additional programs for the Electronics Module....2 Wiring of the inputs and outputs... 2.3 Additional programs for digital technology...

More information

Lecture 02: Digital Logic Review

Lecture 02: Digital Logic Review CENG 3420 Lecture 02: Digital Logic Review Bei Yu byu@cse.cuhk.edu.hk CENG3420 L02 Digital Logic. 1 Spring 2017 Review: Major Components of a Computer CENG3420 L02 Digital Logic. 2 Spring 2017 Review:

More information

! Is it feasible? ! How do we decompose the problem? ! Vdd. ! Topology. " Gate choice, logical optimization. " Fanin, fanout, Serial vs.

! Is it feasible? ! How do we decompose the problem? ! Vdd. ! Topology.  Gate choice, logical optimization.  Fanin, fanout, Serial vs. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Design Space Exploration Lec 18: March 28, 2017 Design Space Exploration, Synchronous MOS Logic, Timing Hazards 3 Design Problem Problem Solvable!

More information

First Optional Homework Problem Set for Engineering 1630, Fall 2014

First Optional Homework Problem Set for Engineering 1630, Fall 2014 First Optional Homework Problem Set for Engineering 1630, Fall 014 1. Using a K-map, minimize the expression: OUT CD CD CD CD CD CD How many non-essential primes are there in the K-map? How many included

More information

Brought to you by. Priti Srinivas Sajja. PS01CMCA02 Course Content. Tutorial Practice Material. Acknowldgement References. Website pritisajja.

Brought to you by. Priti Srinivas Sajja. PS01CMCA02 Course Content. Tutorial Practice Material. Acknowldgement References. Website pritisajja. Brought to you by Priti Srinivas Sajja PS01CMCA02 Course Content Tutorial Practice Material Acknowldgement References Website pritisajja.info Multiplexer Means many into one, also called data selector

More information

Memory, Latches, & Registers

Memory, Latches, & Registers Memory, Latches, & Registers 1) Structured Logic Arrays 2) Memory Arrays 3) Transparent Latches 4) Saving a few bucks at toll booths 5) Edge-triggered Registers 1 General Table Lookup Synthesis A B 00

More information

SIMMAT A Metastability Analysis Tool

SIMMAT A Metastability Analysis Tool SIMMAT A Metastability Analysis Tool Simulation waveforms voltage d q Ian W. Jones and Suwen Yang, Oracle Labs, Mark Greenstreet, University of British Columbia clk time (ns) 1 November 2012 1 Outline

More information

DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N

DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic CONTENTS PART I: THE FABRICS Chapter 1: Introduction (32 pages) 1.1 A Historical

More information

74ACTQ821 Quiet Series 10-Bit D-Type Flip-Flop with 3-STATE Outputs

74ACTQ821 Quiet Series 10-Bit D-Type Flip-Flop with 3-STATE Outputs Quiet Series 10-Bit D-Type Flip-Flop with 3-STATE Outputs General Description The ACTQ821 is a 10-bit D-type flip-flop with non-inverting 3-STATE outputs arranged in a broadside pinout. The ACTQ821 utilizes

More information

DATA SHEET. HEF4059B LSI Programmable divide-by-n counter. For a complete data sheet, please also download: INTEGRATED CIRCUITS

DATA SHEET. HEF4059B LSI Programmable divide-by-n counter. For a complete data sheet, please also download: INTEGRATED CIRCUITS INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF,

More information

74LVT LVTH16374 Low Voltage 16-Bit D-Type Flip-Flop with 3-STATE Outputs

74LVT LVTH16374 Low Voltage 16-Bit D-Type Flip-Flop with 3-STATE Outputs 74LVT16374 74LVTH16374 Low Voltage 16-Bit D-Type Flip-Flop with 3-STATE Outputs General Description The LVT16374 and LVTH16374 contain sixteen non-inverting D-type flip-flops with 3-STATE outputs and is

More information

GATE Online Free Material

GATE Online Free Material Subject : Digital ircuits GATE Online Free Material 1. The output, Y, of the circuit shown below is (a) AB (b) AB (c) AB (d) AB 2. The output, Y, of the circuit shown below is (a) 0 (b) 1 (c) B (d) A 3.

More information

ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and Computer Engineering ENGIN 112 Intro to Electrical and Computer Engineering Lecture 28 Timing Analysis Overview Circuits do not respond instantaneously to input changes Predictable delay in transferring inputs to outputs Propagation

More information

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/21 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,

More information

Lecture 20: Several Commercial Counters & Shift Register

Lecture 20: Several Commercial Counters & Shift Register EE2: Switching Systems Lecture 2: Several Commercial Counters & Shift Register Prof. YingLi Tian Nov. 27, 27 Department of Electrical Engineering The City College of New York The City University of New

More information

Linear Integrated Circuits

Linear Integrated Circuits Linear Integrated Circuits Single Slope ADC Comparator checks input voltage with integrated reference voltage, V REF At the same time the number of clock cycles is being counted. When the integrator output

More information

SN54AHCT74, SN74AHCT74 DUAL POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH CLEAR AND PRESET

SN54AHCT74, SN74AHCT74 DUAL POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH CLEAR AND PRESET Inputs Are TTL-Voltage ompatible Latch-Up Performance Exceeds 20 ma Per JESD 17 SN4AHT74, SN74AHT74 WITH LEAR AND PRESET SLS263N DEEMBER 199 REVISED JULY 2003 ESD Protection Exceeds JESD 22 2000-V Human-Body

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC06 74HC/HCT/HCU/HCMOS Logic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information

TC74ACT574P,TC74ACT574F,TC74ACT574FT

TC74ACT574P,TC74ACT574F,TC74ACT574FT TOSHIBA CMOS igital Integrated Circuit Silicon Monolithic TC74ACT574P,TC74ACT574F,TC74ACT574FT Octal -Type Flip-Flop with 3-State Output TC74ACT574P/F/FT The TC74ACT574 is an advanced high speed CMOS OCTAL

More information

MBI5051/MBI5052/MBI5053 Application Note

MBI5051/MBI5052/MBI5053 Application Note MBI5051/MBI5052/MBI5053 Application Note Forward MBI5051/52/53 uses the embedded Pulse Width Modulation (PWM) to control D current. In contrast to the traditional D driver uses an external PWM signal to

More information

Exercise 1: AND/NAND Logic Functions

Exercise 1: AND/NAND Logic Functions Exercise 1: AND/NAND Logic Functions EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the operation of an AND and a NAND logic gate. You will verify your results

More information

Chemistry Hour Exam 1

Chemistry Hour Exam 1 Chemistry 838 - Hour Exam 1 Fall 23 Department of Chemistry Michigan State University East Lansing, MI 48824 Name Student Number Question Points Score 1 15 2 15 3 15 4 15 5 15 6 15 7 15 8 15 9 15 Total

More information

A Fast Locking Digital Phase-Locked Loop using Frequency Difference Stage

A Fast Locking Digital Phase-Locked Loop using Frequency Difference Stage International Journal of Engineering & Technology IJET-IJENS Vol:14 No:04 75 A Fast Locking Digital Phase-Locked Loop using Frequency Difference Stage Mohamed A. Ahmed, Heba A. Shawkey, Hamed A. Elsemary,

More information

TAPR TICC Timestamping Counter Operation Manual. Introduction

TAPR TICC Timestamping Counter Operation Manual. Introduction TAPR TICC Timestamping Counter Operation Manual Revised: 23 November 2016 2016 Tucson Amateur Packet Radio Corporation Introduction The TAPR TICC is a two-channel timestamping counter ("TSC") implemented

More information

UNIT II: Clocked Synchronous Sequential Circuits. CpE 411 Advanced Logic Circuits Design 1

UNIT II: Clocked Synchronous Sequential Circuits. CpE 411 Advanced Logic Circuits Design 1 UNIT II: Clocked Synchronous Sequential Circuits CpE 411 Advanced Logic Circuits Design 1 Unit Outline Analysis of Sequential Circuits State Tables State Diagrams Flip-flop Excitation Tables Basic Design

More information

2 Logic Gates THE INVERTER. A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs.

2 Logic Gates THE INVERTER. A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs. 2 Logic Gates A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs. THE INVERTER The inverter (NOT circuit) performs the operation called inversion

More information

80CH COMMON / SEGMENT DRIVER FOR DOT MATRIX LCD

80CH COMMON / SEGMENT DRIVER FOR DOT MATRIX LCD K006 0H OMMON / EGMENT RIVER FOR OT MATRIX L INTROUTION The K006 is an L driver LI which is fabricated by low power MO high voltage process technology. In segment driver mode, it can be interfaced in -bit

More information

Digital Electronics Electronics Technology

Digital Electronics Electronics Technology Digital Electronics Electronics Technology Landon ohnson hift egisters DIGITAL INTEGATED CICUIT MALL CALE INTEGATION LE THAN 12 GATE MEDIUM CALE INTEGATION 12 TO 99 GATE LAGE CALE INTEGATION 100 TO 9999

More information

SN54ALS190, SN54ALS191, SN74ALS190, SN74ALS191 SYNCHRONOUS 4-BIT UP/DOWN DECADE AND BINARY COUNTERS

SN54ALS190, SN54ALS191, SN74ALS190, SN74ALS191 SYNCHRONOUS 4-BIT UP/DOWN DECADE AND BINARY COUNTERS N5L0, N5L, NL0, NL YNHONOU -IT UP/OWN EE N INY OUNTE ingle own/up ount ontrol Line Look-head ircuitry Enhances peed of ascaded ounters Fully ynchronous in ount Modes synchronously Presettable With Load

More information

For the op amp circuit above, how is the output voltage related to the input voltage? = 20 k R 2

For the op amp circuit above, how is the output voltage related to the input voltage? = 20 k R 2 Golden Rules for Ideal Op Amps with negative feedback: 1. The output will adjust in any way possible to make the inverting input and the noninverting input terminals equal in voltage. 2. The inputs draw

More information

74VHC4046 CMOS Phase Lock Loop

74VHC4046 CMOS Phase Lock Loop 74VHC4046 CMOS Phase Lock Loop General Description The 74VHC4046 is a low power phase lock loop utilizing advanced silicon-gate CMOS technology to obtain high frequency operation both in the phase comparator

More information

EXPERIMENT #5 COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

EXPERIMENT #5 COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 La Rosa EXPERIMENT #5 COMINTIONL and SEUENTIL LOGIC CIRCUITS Hardware implementation and software design I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational

More information

Digital Circuits Laboratory LAB no. 12. REGISTERS

Digital Circuits Laboratory LAB no. 12. REGISTERS REGISTERS are sequential logic circuits that store and/or shift binary sequences. can be classified in: memory registers (with parallel load) - latch shift registers (with serial load) combined registers

More information