Mitigation of Voltage Sag and Voltage Swell by Using D-STATCOM and PWM Switched Autotransformer

Size: px
Start display at page:

Download "Mitigation of Voltage Sag and Voltage Swell by Using D-STATCOM and PWM Switched Autotransformer"

Transcription

1 Mitigation of Voltage Sag and Voltage Swell by Using D-STATCOM and PWM Switched Autotransformer M. Koteswara Rao, T.Ganeshkumar and PappuPawan Puthra Abstract This paper proposes a novel distribution-level voltage control scheme that can compensate voltage Sag and Swellconditionsin three-phase power systems. Faults occurring in power distribution systems or facilities in plants generally cause the voltage sag or swell. Sensitivity to voltage sags and swells varies within different applications. For sensitive loads, even the slightest voltage sag for short duration can cause serious problems. Normally, a voltage interruption triggersa protection device, which causes shut down the entire load.. In order to mitigate power interruptions, this paper proposes a voltage sag support based on a pulse width modulated autotransformer and D-STATCOM. The proposed devices quickly recognize the voltage sag and voltage swell conditions and correct the voltage by either boosting the input voltage during voltage sag events or reducing the voltage during swell events. Simulation analysis of these devices is performed in PSCAD/EMTDC and performance analysis of the system is presented for various levels of sag and swell. Simulation results are presented for various conditions of sag and swell disturbances in the supply voltage to show the compensation effectiveness. Index terms D-STATCOM, Pulse Width Modulation (PWM) I. INTRODUTION With an increase in the use of sensitive loads, the power quality issues have become an increasing concern. Poor distribution power quality results in power disruption for the user and huge economic losses due to the interruption of production processes. According to an Electric Power Research Institute (EPRI) report, the economic losses due to poor power quality are $400 billion dollars a year in the U.S. alone [1]. Many power quality surveys have been done, which show that voltage sags have been identified as the most serious power quality problem facing industrial customers today. Voltage sag is a momentary decrease of the voltage RMS value with the duration of half a cycle up to many cycles. Voltage sags are given a great deal of attention because of the wide usage of voltage-sensitive loads such as adjustable speed drives (ASD), process control equipment, and computers. Sag can cause serious problem to sensitive loads that use voltage-sensitive components such as adjustable speed drives, process control equipment, and computers [2], [3]. Power systems supply power for a wide variety of different user applications, and sensitivity to voltage sags and swells varies widely for different applications. Some applications such as automated manufacturing processes are more sensitive to voltage sags and swells than other applications. For sensitive loads, even voltage sag of short duration can cause serious problems in the manufacturing process. Normally, a voltage interruption triggers a protection device, which causes the entire branch of the system to shut down. Various voltage sag mitigation schemes are based on inverter systems consisting of energy storage and switches. The D- STATCOM has emerged as a promising device to provide not only for voltage sag mitigation but a host of other power quality solutions such as voltage stabilization, flicker suppression, power factor correction and harmonic control [4].The D-STATCOM has additional capability to sustain reactive current at low voltage and can be developed as a voltage and frequency support by replacing capacitors with batteries as energy storage. The D-STATCOM, which consists of a thyristor-based voltage source inverter [5], can provide fast capacitive and inductive compensation and is able to control its output current independently of the AC system voltage. This feature of the compensator makes it highly effective in improving the transient stability. In an effort to achieve the advantages of a fast response time, but at a significantly lower cost, the PWM switched autotransformer is proposed here [6]. The proposed system has only one PWM switch per phase with no energy storage, which is a very low cost solution for voltage sag mitigation. Any power electronic switch for a high voltage application is expensive, and the peripheral circuits such as gate drivers and power supplies are even more expensive than the device itself. The overall cost of power electronics-based equipment is nearly linearly dependent on the overall number of switches in the circuit topology. Hence, this paper suggests a scheme that uses only one PWM switch with no energy storage. Here the control circuit based on RMS voltage is used to identify the sag and swell disturbances. Simulation of the compensator is performed using PSCAD/EMTDC and performance results are presented.

2 II.DISTRIBUTIONSTATIC COMPENSATOR (DSTATCOM) In its most basic function, the DSTATCOM configuration consist of a two level voltage source converter (VSC), a dc energy storage device, a coupling transformer connected in shunt with the ac system, and associated control circuit [7, 8] as shown in Fig 1. More sophisticated configurations use multipulse and/or multilevel configurations as discussed in [9]. The VSC converts the dc voltage across the storage device into a set of three phase ac output voltages. These voltages are in phase and coupled with the ac system through the reactance of the coupling transformer. Suitable adjustment of the phase and magnitude of the DSTATCOM output voltages allows effective control of active and reactive power exchanges between the DSTATCOM and the ac system. Fig. 1.Schematic diagram of the DSTATCOM as a custom power controller The VSC connected in shunt with the ac system provides a multifunctional topology which can be used for up to three quite distinct purposes [10]: i. Voltage regulation and compensation of reactive power; ii. Correction of power factor; iii. Elimination of current harmonics. The design approach of the control system determines the priorities and functions developed in each case. In this case, DSTATCOM is used to regulate voltage at the point of connection. The control is based on sinusoidal PWM and only requires the measurement of the rms voltage at the load point. A. Basic configuration and function of D-statcom The DSTATCOM is a three phase and shunt connected power electronics based device. It is connected near the load at the distribution systems. The major components of the DSTATCOM are shown in Fig 2. It consists of a dc capacitor, three phase inverter module such as IGBT or thyristor, ac filter, coupling transformer and a control strategy. The basic electronic block of the DSTATCOM is the voltage sourced converter that converts an input dc voltage into three phase output voltage at fundamental frequency. Referring to Fig 2, the controller of the DSTATCOM is used to operate the inverter in such a way that the phase angle between the inverter voltage and the line voltage is dynamically adjusted so that the DSTATCOM generates or absorbs the desired VAR at the point of connection. Fig. 2.Building blocks of DSTATCOM The phase of the output voltage of the thyristor based converter, Vi, is controlled in the same way as the distribution system voltage, Vs. Figure 3 shows the three basic operation modes of the DSTATCOM output current, I, which varies depending upon Vi. For instance, if Vi is equal to Vs, the reactive power is zero and the DSTATCOM does not generate or absorb reactive power. When Vi is greater than Vs, the DSTATCOM sees an inductive reactance connected at its terminal. Hence, the system sees the DSTATCOM as a capacitive reactance. The current, I, flows through the transformer reactance from the DSTATCOM to the ac system, and the device generates capacitive reactive power. Furthermore, if Vs is greater than Vi, the system sees and inductive reactance connected at its terminal and the DSTATCOM sees the system as a capacitive reactance, then the current flows from the ac system to the DSTATCOM, resulting in the device absorbing inductive reactive power. Fig. 3.Operation modes of a DSTATCOM

3 III. APWM SWITCHED AUTOTRANSFORMER The proposed device for mitigating voltage sag and swell in the system consists of a PWM switched power electronic device connected to an autotransformer in series with the load. Fig. 4 shows the single phase circuit configuration of the mitigating device and the control circuit logic used in the system. It consists of a single PWM insulated gate bipolar transistor (IGBT) switch in a bridge configuration, a thyristorbypass switch, an autotransformer, and voltage controller. This control voltage is then compared with the triangular voltage Vtri to generate the PWM pulses VG which are applied to the IGBT to regulate the output voltage. Hence the IGBT switch operates only during voltage sag or swells condition and regulates the output voltage according to the PWM duty-cycle. To suppress the over voltage when the switches are turned off, RC snubber circuits are connected across the IGBT and thyristor. B. Voltage sag compensation The ac converter topology is employed for realizing the voltage sag compensator. This paper considers the voltage mitigation scheme that use only one shunt type PWM switch [11] for output voltage control as shown in Fig. 5. The autotransformer shown in Fig.5 is used in the proposed system to boost the input voltage instead of a two winding transformer. Switch IGBT is on the primary side of the autotransformer. Fig. 4. Block diagram of the voltage sag/swell mitigation scheme. A. Principle of operation An IGBT is used as power electronic device to inject the error voltage into the line so as to maintain the load voltage constant. Four power diodes (D1 to D4) connected to IGBT switch (SW) controls the direction of power flow and connected in ac voltage controller configuration. This combination with a suitable control circuit maintains constant rms load voltage. In this scheme sinusoidal PWM Pulse technique is used. RMS value of the load voltage VL Is calculated and compared with the reference rms voltage Vref. Under normal condition when there is no voltage disturbance the power flow is through the anti-parallel thyristors used as the ac bypass switch. Output filters containing a main capacitor filter and a notch filter are used at the output side to filter out the switching noise and reduce harmonics. During this normal condition, VL = Vref and the error voltage Verr is zero. The gate pulses are blocked to IGBT. A sag or swell occurs in the system due to sudden increase or decrease in the load, or due to faults. The supply voltage VS and hence VL decreases. When the sensing circuit detects an error voltage Verr greater than ±10% of the normal voltage the voltage controller acts immediately to switch off the thyristors. Voltage Verr applied to the pi controller gives the phase angle δ. The control voltage given in (1) is constructed at power frequency f= 50 Hz.. V control = m a * sin (wt+δ) (1) where ma is the modulation index. The phase angle δ is dependent on the percentage of disturbance and hence controls the magnitude of Vcontrol. Fig. 5. Voltage sag/swell mitigating device. The voltage and current distribution in the autotransformer is shown in Fig. 6. It does not provide electrical isolation between primary side and secondary side but has advantages of high efficiency with small volume. The compensator considered is a shunt type as the control voltage developed is injected in shunt. The relationships of the autotransformer voltage and current are expressed in (2), V I N 1 L a H, a (2) V H I L N 1 N 2 where a is the turns ratio, V L = Primary voltage V H = Secondary voltage = Load voltage I L,I H = Primary and secondary currents, respectively I S = Source current A transformer with N1:N2 = 1:1 ratio is used as an autotransformer to boost the voltage on the load side when sag is detected. With this the device can mitigate up to 50% voltage sag. As the turns ratio equals 1:2 in autotransformer mode, the magnitude of the load current IL (high voltage side) is the same as that of the primary current I L (low voltage side). From (2), it is clear that V L = 2V P and I S = 2I L. The switch is located in the autotransformer s primary side and the magnitude of the switch current equals the load current. The voltage across the switch in the off-state is equal to the magnitude of the input voltage. When sag is detected by the voltage controller, IGBT switched ON and is regulated by the PWM pulses. The primary voltage VP is such that the

4 load voltage on the secondary of autotransformer is the desired rms voltage. Fig. 6. Voltage and current relations in an autotransformer. C. Ripple filter design The output voltage VP is given by the IGBT is the pulse containing fundamental component of 50 Hz and harmonics at switching frequency. Hence there is a necessity to design a suitable ripple filter at the output of the IGBT to obtain the load voltage THD within the limits. A combination of notch filters to remove the harmonics and a low pass filter for the fundamental component as shown in Fig. 1 is used. Capacitor Cr1 in combination with source inductance and leakage inductance form the low pass filter. The notch filter is designed with a center frequency of PWM switching frequency by using a series LC filter. A resistor may be added to limit the current. The impedance of the filter is given by (3) = + where R, Lr and Cr2 are the notch filter resistance, inductance and capacitances respectively. The resonant frequency of the notch filter is tuned to the PWM switching frequency. The capacitor is designed by considering its kva to be 25% of the system kva. Capacitor value (Ctotal) thus obtained is divided into Cr1and Cr2 equally. The notch filter designed for switching frequency resonance condition is capacitive in nature for frequencies less than its resonance frequency. Hence at fundamental frequency it is capacitive of value Cr2 and is in parallel with Cr1 resulting to Ctotal. IV. SIMULATIONANALYSIS AND RESULTS Simulation analysis is performed on 230/11kv three phase systems in PSCAD version 4.2 to study the performance of D-STATCOM and PWM Switched autotransformer. The system data as follows TABLE I System Parameters Used For Simulation Transformer Capacitor PI controller gain Switching frequency Duty cycle 3-Phase100 MVA, 230KV, 50 Hz, 230KV / 11KV / 11KV,100MVA,50Hz R = 12.1 Ω, L = R= 0.05Ω, (A).Voltage sag/swell mitigation by using D- STATCOM: Fig. 7 shows the test system implemented in PSCAD to carry out simulations for the D-STATCOM. The test system comprises a 230 kv transmission system, represented by a Thévenin equivalent, feeding into the primary side of a 3- winding transformer. A varying load is connected to the 11 kv, secondary side of the transformer. A two-level D- STATCOM is connected to the 11 kv tertiary winding to provide instantaneous voltage support at the load point. A 750F capacitor on the dc side provides the D-STATCOM energy storage capabilities. The set of switches shown in Fig. 7 were used to assist different loading scenarios being simulated with ease. To show the effectiveness of this controller in providing continuous voltage regulation, simulations were carried out with and with no D-STATCOM connected to the system. A set of simulations was carried out for the test system shown in Fig. 7. The simulations relate to three main operating conditions. 1) In the simulation the load is increased by closing Switch BRK3. In this case, the voltage drops by almost 27% with respect to the reference value 2) The switch BRK3 is opened and remains so throughout the rest of the simulation. The load voltage is very close to the reference value, i.e., 1 pu. 3) Three phase faults also applied in the study system to study the performance of the device. 4) In the simulation Switch BRK1 is closed, connecting a capacitor bank to the high voltage side of the network. The rms voltage increases 27% with respect to the reference voltage

5 Fig. 7. Test system implemented in PSCAD for D- STATCOM simulation.

6 Fig. 8. Simulation results for load voltage during voltage sag without D-STATCOM Under normal conditions D-STATCOM continuous monitors the load voltage and generates the error voltage. The voltage sag can be created by using either load switching or by using three phase fault. The load voltage corresponding to sag is shown in Fig 8.The d-statcom can mitigate the sag as shown in Fig 9. Fig.10.Simulation results for load voltage during voltage swell Without D-STATCOM. Voltage swell created by using a capacitor bank switching during a period of 0.3s to 0.6s.under this condition voltage swell is experienced. By using D-statcom it can be eliminated. The corresponding wave forms are shown in Figs 10 and Fig 11. Fig.9.Simulation results for load voltage during voltage sag with D- STATCOM Fig.11.Simulation results for load voltage during voltage swell with D- STATCOM (B).VOLTAGE SAG/SWELL MITIGATION BY USING A PWM SWITCHED AUTOTRANSFORMER Under normal condition, the power flow is through the antiparallel SCRs and the gate pulses are inhibited to IGBT.

7 The load voltage and current are same as supply voltage and current. When a disturbance occurs, an error voltage which is the difference between the reference rms voltage and the load rms voltage is generated. The PI controller thus gives the angle δ. Control voltage at fundamental frequency (50 Hz) is generated and compared with the carrier frequency triangular wave of carrier frequency 1.5 khz. The PWM pulses now drive the IGBT switch. The simulation modeling. t of PWM switched autotransformer used as mitigating device along with its control circuit is shown in Fig. 12. The autotransformer rating in each phase is 6.35/6.35 kv (as line voltage is 11 kv) with 1:1 turns ratio. The effective voltage available at the primary of autotransformer is such that the load voltage is maintained at desired rms value (6.35 kv or 1 pu).the simulation results of load voltages are shown in fig 13-fig 16 during voltage sag and voltage swell disturbances PWM Switched autotransformer control circuit Fig. 12.Test implemented in PSCAD for simulation of PWM Switched Autotransformer

8 Fig.13.simulation result of load voltage during voltage sag without compensator Fig 15. Simulation result of load voltage during voltage swell without compensator Fig. 14. Simulation result of load voltage during voltage sag with compensator Fig. 16.Simulation result of load voltage during voltage swell with compensator

9 TABLE II THDSOf Load Voltage For Voltage Sag Of D-Statcom Type of disturbance Vs (rms) V Load (rms) THD (%) LLLG Fault(sag) (V DC=30kv) Inductive load switching(sag) (V DC=20kv) Capacitive load switching(swell) TABLE III THDSOf Load Voltage For Voltage Sag Of Pwm Switched Type of disturbance V Load (rms) THD (%) LLLG fault(sag) Inductive load switching(sag) Capacitive load switching(swell) Autotransformer Tables II and table III summarizes the simulation results for both these devices for various sag conditions and swells V. CONCLUSION A New Voltage sag mitigation topology called PWM switched autotransformer is modeled and simulated with RMS voltage as a reference. This topology requires only one PWM switch per phase as compared to DSTATCOM requires two switches per phase. The PWM switched autotransformer does not require energy storage device for mitigation of voltage sag as compared to DSTATCOM requires energy storage elements. The voltage mitigation capability of D-STATCOM depends on energy storage device. Hence it is shows that PWM switched autotransformer is more economical than D-statacom. The PWM switched autotransformer and D-STATCOM for mitigation of voltage sag/swell could identify the disturbance and capable of mitigating the disturbance by maintaining the load voltage at desired magnitude and THD within limits. VI. REFERENCES [1] Electric Power Research Institute (EPRI), Power quality in commercial buildings, Tech. Rep. BR [2] M. F. Mc Granaghan, D. R. Muller and M. J. Samotyj, Voltage sags in industrial systems, IEEE Trans. Ind. Appl., vol. 29, no. 2, pp ,Mar./Apr [3] M. H. J. Bollen, Understanding Power Quality Problems: Voltage Sags and Interruptions. New York: IEEE Press, [4] Gareth A. Taylor, Power quality hardware solutions for distribution systems: Custom power, IEE North Eastern Centre Power Section Symposium, Durham, UK, 1995, pp. 11/1-11/9. [5] HendriMasid, Norman Moriun, Senan Mahmud, Azah Mohamed and Sallehuddin Yusuf, Design of a prototype D-Statcom for Voltage Sag Mitigation, in Proc National Power and Energy. Conf.,Kuallampur, Malaysia, Nov. 2004, pp [6] J. R. Rostron and D.-M. Lee, Voltage Sag and Over Voltage Compensation Device With Pulse Width Modulating Switch Connected in Series With Autotransformer, U.S. Patent , Jun [7] A. Hernandez, K. E. Chong, G. Gallegos, and E. Acha The implementation of a solid state voltage source in PSCAD/EMTDC, IEEE Power Eng. Rev., pp , Dec [8] L. Xu, Anaya-Lara, V. G. Agelidis, and E. Acha Development of custom power devices for power quality enhancement, in Proc. 9th ICHQP 2000, Orlando, FL, Oct. 2000, pp [9] Y. Chen and B. T. Ooi, STATCOM based on multimodules of multilevel converters under multiple regulation feedback control, IEEE Trans. Power Electron., vol. 14, pp , Sept [10] Dong-Myung Lee, Thomas G. Habetler, Ronald G. Harley, Thomas L.Keister and Joseph R. Rostran, A Voltage sag Supporter Utilizing a PWM-Switched Autotransformer, IEEE Trans. Power Electronics,Vol. 22, No. 2, Mar. 2007, pp BIBILIOGRAPHY M. Koteswara Rao was born in july 14 th 1988.He graduated in 2011 from Vignan s Lara Institute Of Technology And Science,Guntur, India in Electrical Engineering. He is currently pursing M.TECH. in GVP college of engineering, Visakhapatnam. His area of interests are Renewable Energy and Power Quality. T.Ganeshkumar was born in April 24 th 1987.He graduated in 2008 from Sri Sai Aditya institute of science and technology, Rajahmundry, India in Electrical Engineering. He is currently pursing M.Tech from GVP college of Engineering, Visakhapatnam. His area of interest is Power Quality. P. PawanPuthra was born in 15 th Nov He graduated in JNTU Hyderabad from St.Theresa Institute of Engg.& Tech., Garividi India in the year He obtained his post graduation from Vellore Institute of Technology (VIT) with Specialization Power Electronics & Drives in year Presently he is working as an Asst. professor in GVP College of Engineering. His main area of research is Power Electronics & Drives, FACTS, and HVDC Transmission Systems

COMPARITIVE STUDY ON VOLTAGE SAG COMPENSATION UTILIZING PWM SWITCHED AUTOTRANSFORMER BY HVC

COMPARITIVE STUDY ON VOLTAGE SAG COMPENSATION UTILIZING PWM SWITCHED AUTOTRANSFORMER BY HVC COMPARITIVE STUDY ON VOLTAGE SAG COMPENSATION UTILIZING PWM SWITCHED AUTOTRANSFORMER BY HVC T. DEVARAJU 1, DR.M.VIJAYA KUMAR 2, DR.V.C.VEERA REDDY 3 1 Research Scholar, JNTUCEA, 2 Registrar, JNTUCEA, 3

More information

Mitigation of voltage sag by using AC-AC PWM converter Shalini Bajpai Jabalpur Engineering College, M.P., India

Mitigation of voltage sag by using AC-AC PWM converter Shalini Bajpai Jabalpur Engineering College, M.P., India Mitigation of voltage sag by using AC-AC PWM converter Shalini Bajpai Jabalpur Engineering College, M.P., India Abstract: The objective of this research is to develop a novel voltage control scheme that

More information

Improvement of Power Quality in Distribution System using D-STATCOM With PI and PID Controller

Improvement of Power Quality in Distribution System using D-STATCOM With PI and PID Controller Improvement of Power Quality in Distribution System using D-STATCOM With PI and PID Controller Phanikumar.Ch, M.Tech Dept of Electrical and Electronics Engineering Bapatla Engineering College, Bapatla,

More information

Enhancement of Power Quality in Distribution System Using D-Statcom for Different Faults

Enhancement of Power Quality in Distribution System Using D-Statcom for Different Faults Enhancement of Power Quality in Distribution System Using D-Statcom for Different s Dr. B. Sure Kumar 1, B. Shravanya 2 1 Assistant Professor, CBIT, HYD 2 M.E (P.S & P.E), CBIT, HYD Abstract: The main

More information

SIMULATION OF D-STATCOM AND DVR IN POWER SYSTEMS

SIMULATION OF D-STATCOM AND DVR IN POWER SYSTEMS SIMUATION OF D-STATCOM AND DVR IN POWER SYSTEMS S.V Ravi Kumar 1 and S. Siva Nagaraju 1 1 J.N.T.U. College of Engineering, KAKINADA, A.P, India E-mail: ravijntu@gmail.com ABSTRACT A Power quality problem

More information

Implementation of D-STACTOM for Improvement of Power Quality in Radial Distribution System

Implementation of D-STACTOM for Improvement of Power Quality in Radial Distribution System Implementation of D-STACTOM for Improvement of Power Quality in Radial Distribution System Kolli Nageswar Rao 1, C. Hari Krishna 2, Kiran Kumar Kuthadi 3 ABSTRACT: D-STATCOM (Distribution Static Compensator)

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013 A Statcom-Control Scheme for Power Quality Improvement of Grid Connected Wind Energy System B.T.RAMAKRISHNARAO*, B.ESWARARAO**, L.NARENDRA**, K.PRAVALLIKA** * Associate.Professor, Dept.of EEE, Lendi Inst.Of

More information

Mitigation of Fault in the Distribution System by using Flexible Distributed Static Compensator (FD-STATCOM)

Mitigation of Fault in the Distribution System by using Flexible Distributed Static Compensator (FD-STATCOM) Vol. 3, Issue. 4, Jul. - Aug. 2013 pp-2367-2373 ISSN: 2249-6645 Mitigation of Fault in the Distribution System by using Flexible Distributed Static Compensator (FD-STATCOM) B. Giri Prasad Reddy 1, V. Obul

More information

Mitigation of Voltage Sag and Swell using Distribution Static Synchronous Compensator (DSTATCOM)

Mitigation of Voltage Sag and Swell using Distribution Static Synchronous Compensator (DSTATCOM) ABHIYANTRIKI Mitigation of Voltage Sag and Swell using Distribution Static Synchronous Compensator (DSTATCOM) An International Journal of Engineering & Technology (A Peer Reviewed & Indexed Journal) Vol.

More information

Power Quality Improvement in Distribution System Using D-STATCOM

Power Quality Improvement in Distribution System Using D-STATCOM Power Quality Improvement in Distribution System Using D-STATCOM 1 K.L.Sireesha, 2 K.Bhushana Kumar 1 K L University, AP, India 2 Sasi Institute of Technology, Tadepalligudem, AP, India Abstract This paper

More information

IJESR/Nov 2012/ Volume-2/Issue-11/Article No-21/ ISSN International Journal of Engineering & Science Research

IJESR/Nov 2012/ Volume-2/Issue-11/Article No-21/ ISSN International Journal of Engineering & Science Research International Journal of Engineering & Science Research POWER QUALITY IMPROVEMENT BY USING DSTATCOM DURING FAULT AND NONLINEAR CONDITIONS T. Srinivas* 1, V.Ramakrishna 2, Eedara Aswani Kumar 3 1 M-Tech

More information

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY POWER QUALITY IMPROVEMENT OF GRID CONNECTED WIND ENERGY SYSTEM BY USING STATCOM Mr.Mukund S. Mahagaonkar*, Prof.D.S.Chavan * M.Tech

More information

SIMULATION OF D-STATCOM IN POWER SYSTEM

SIMULATION OF D-STATCOM IN POWER SYSTEM IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) SIMULATION OF D-STATCOM IN POWER SYSTEM Akil Ahemad 1, Sayyad Naimuddin 2 1 (Assistant Prof. Electrical Engineering Dept., Anjuman college

More information

PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality

PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality P.Padmavathi, M.L.Dwarakanath, N.Sharief, K.Jyothi Abstract This paper presents an investigation

More information

Improvement of Voltage Profile using D- STATCOM Simulation under sag and swell condition

Improvement of Voltage Profile using D- STATCOM Simulation under sag and swell condition ISSN (Online) 232 24 ISSN (Print) 232 5526 Vol. 2, Issue 7, July 24 Improvement of Voltage Profile using D- STATCOM Simulation under sag and swell condition Brijesh Parmar, Prof. Shivani Johri 2, Chetan

More information

Power Control Scheme of D-Statcom

Power Control Scheme of D-Statcom ISSN : 48-96, Vol. 4, Issue 6( Version 3), June 04, pp.37-4 RESEARCH ARTICLE OPEN ACCESS Power Control Scheme of D-Statcom A. Sai Krishna, Y. Suri Babu (M. Tech (PS)) Dept of EEE, R.V.R. & J.C. College

More information

Design Strategy for Optimum Rating Selection of Interline D-STATCOM

Design Strategy for Optimum Rating Selection of Interline D-STATCOM International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 3 ǁ March. 2013 ǁ PP.12-17 Design Strategy for Optimum Rating Selection of Interline

More information

Mitigation of Faults in the Distribution System by Distributed Static Compensator (DSTATCOM)

Mitigation of Faults in the Distribution System by Distributed Static Compensator (DSTATCOM) Vol.2, Issue.2, Mar-Apr 2012 pp-506-511 ISSN: 2249-6645 Mitigation of Faults in the Distribution System by Distributed Static Compensator (DSTATCOM) P. RAMESH 1, C. SURYA CHANDRA REDDY 2, D. PRASAD 3,

More information

DESIGN A D STATCOM FOR VOLTAGE HARMONIC SUPPRESSION IN DISTRIBUTION SYSTEM

DESIGN A D STATCOM FOR VOLTAGE HARMONIC SUPPRESSION IN DISTRIBUTION SYSTEM DESIGN A D STATCOM FOR VOLTAGE HARMONIC SUPPRESSION IN DISTRIBUTION SYSTEM A. JYOTEESH REDDY 1, A. ROHITH REDDY 2, P. VASUDEVANAIDU 3, M. BINDU PRIYA 4 1, 2, 3, 4 Department of Electrical & Electronics

More information

Power Quality enhancement of a distribution line with DSTATCOM

Power Quality enhancement of a distribution line with DSTATCOM ower Quality enhancement of a distribution line with DSTATCOM Divya arashar 1 Department of Electrical Engineering BSACET Mathura INDIA Aseem Chandel 2 SMIEEE,Deepak arashar 3 Department of Electrical

More information

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION International Journal of Electrical, Electronics and Data Communication, ISSN: 23284 Volume, Issue-4, April14 INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION 1 V.S.VENKATESAN, 2 P.CHANDHRA

More information

Performance of DVR & Distribution STATCOM in Power Systems

Performance of DVR & Distribution STATCOM in Power Systems International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 232-869 Volume: 3 Issue: 2 83 89 Performance of DVR & Distribution STATCOM in Power Systems Akil Ahemad Electrical

More information

A Review on Improvement of Power Quality using D-STATCOM

A Review on Improvement of Power Quality using D-STATCOM A Review on Improvement of Power Quality using D-STATCOM Abhishek S. Thaknaik Electrical (electronics & power)engg, SGBAU/DES s COET, DhamangaonRly, Maharastra,India Kishor P. Deshmukh Electrical (electronics

More information

Power Quality and the Need for Compensation

Power Quality and the Need for Compensation Power Quality and the Need for Compensation Risha Dastagir 1, Prof. Manish Khemariya 2, Prof. Vivek Rai 3 1 Research Scholar, 2,3 Asst. Professor, Lakshmi Narain College of Technology Bhopal, India Abstract

More information

Application of Distribution Static Synchronous Compensator in Electrical Distribution System

Application of Distribution Static Synchronous Compensator in Electrical Distribution System Application of Distribution Static Synchronous Compensator in Electrical Distribution System Smriti Dey Assistant Professor, Department of Electrical and Electronics Engineering, School of Technology,

More information

CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS

CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS 84 CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS 4.1 INTRODUCTION Now a days, the growth of digital economy implies a widespread use of electronic equipment not only in the industrial

More information

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION 1 Arsha.S.Chandran, 2 Priya Lenin 1 PG Scholar, 2 Assistant Professor 1 Electrical & Electronics Engineering 1 Mohandas College of Engineering

More information

Investigation of D-Statcom Operation in Electric Distribution System

Investigation of D-Statcom Operation in Electric Distribution System J. Basic. Appl. Sci. Res., (2)29-297, 2 2, TextRoad Publication ISSN 29-434 Journal of Basic and Applied Scientific Research www.textroad.com Investigation of D-Statcom Operation in Electric Distribution

More information

MODELLING AND SIMULATION OF DIODE CLAMP MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR FOR CMV ANALYSIS USING FILTER

MODELLING AND SIMULATION OF DIODE CLAMP MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR FOR CMV ANALYSIS USING FILTER MODELLING AND SIMULATION OF DIODE CLAMP MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR FOR CMV ANALYSIS USING FILTER Akash A. Chandekar 1, R.K.Dhatrak 2 Dr.Z.J..Khan 3 M.Tech Student, Department of

More information

Multi-Pulse Voltage Source Converter Statcom For Voltage Flicker Mitigation

Multi-Pulse Voltage Source Converter Statcom For Voltage Flicker Mitigation RESEARCH ARTICLE OPEN ACCESS Multi-Pulse Voltage Source Converter Statcom For Voltage Flicker Mitigation * G.Ravinder Reddy Assistant Professor,**M.Thirupathaiah * Assistant Professor. (Deparment of Electrical

More information

Cascaded H-Bridge Five Level Inverter for Harmonics Mitigation and Reactive Power Control

Cascaded H-Bridge Five Level Inverter for Harmonics Mitigation and Reactive Power Control Cascaded H-Bridge Five Level Inverter for Harmonics Mitigation and Reactive Power Control Prof. D.S.Chavan 1, Mukund S.Mahagaonkar 2 Assistant professor, Dept. of ELE, BVCOE, Pune, Maharashtra, India 1

More information

Harmonic Immunity And Power Factor Correction By Instantaneous Power Control Of D-STATCOM

Harmonic Immunity And Power Factor Correction By Instantaneous Power Control Of D-STATCOM Harmonic Immunity And Power Factor Correction By Instantaneous Power Control Of D-STATCOM B.Veerraju M.Tech Student (PE&ED) MIST Sathupally, Khammam Dist, India M.Lokya Assistant Professor in EEE Dept.

More information

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM N.Shakeela Begum M.Tech Student P.V.K.K Institute of Technology. Abstract This paper presents a modified instantaneous

More information

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India)

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India) ISSN: 2349-7637 (Online) RESEARCH HUB International Multidisciplinary Research Journal (RHIMRJ) Research Paper Available online at: www.rhimrj.com Modeling and Simulation of Distribution STATCOM Bhavin

More information

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE Ms. K. Kamaladevi 1, N. Mohan Murali Krishna 2 1 Asst. Professor, Department of EEE, 2 PG Scholar, Department of

More information

Enhancement of Power Quality in Distribution System Using D-Statcom

Enhancement of Power Quality in Distribution System Using D-Statcom Enhancement of Power Quality in Distribution System Using D-Statcom Ruma Deb 1, Dheeraj Pandey 2 Gyan Ganga Institute of Technology & Sciences, Tilwara Road, RGPV University, Jabalpur (M.P) INDIA 1 ruma.deb20@gmail.com,

More information

A New ISPWM Switching Technique for THD Reduction in Custom Power Devices

A New ISPWM Switching Technique for THD Reduction in Custom Power Devices A New ISPWM Switching Technique for THD Reduction in Custom Power Devices S. Esmaeili Jafarabadi, G. B. Gharehetian Deartment of Electrical Engineering, Amirkabir University of Technology, 15914 Tehran,

More information

Direct and Indirect Control Strategies of DSTATCOM Power Factor Controller

Direct and Indirect Control Strategies of DSTATCOM Power Factor Controller Direct and Indirect Control Strategies of DSTATCOM Power Factor Controller K. Sandhya*, Dr. A. Jayalaxmi**, Dr. M.P. Soni*** 3 * Research Scholar, Department of Electrical and Electronics Engineering,

More information

Implementation of SPWM Technique in D-STATCOM for mitigating Power Quality Problem - Voltage Sag and Swell

Implementation of SPWM Technique in D-STATCOM for mitigating Power Quality Problem - Voltage Sag and Swell International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869 (O) 2454-4698 (P), Volume-7, Issue-5, May 2017 Implementation of SPWM Technique in D-STATCOM for mitigating Power Quality

More information

D-STATCOM FOR VOLTAGE SAG, VOLTAGE SWELL MITIGATION USING MATLAB SIMULINK

D-STATCOM FOR VOLTAGE SAG, VOLTAGE SWELL MITIGATION USING MATLAB SIMULINK D-STATCOM FOR VOLTAGE SAG, VOLTAGE SWELL MITIGATION USING MATLAB SIMULINK Manbir Kaur 1, Prince Jindal 2 1 Research scholar, Department of Electrical Engg., BGIET, Sangrur, Punjab (India), 2 Research scholar,

More information

Simulation and Implementation of DVR for Voltage Sag Compensation

Simulation and Implementation of DVR for Voltage Sag Compensation Simulation and Implementation of DVR for Voltage Sag Compensation D. Murali Research Scholar in EEE Dept., Government College of Engineering, Salem-636 011, Tamilnadu, India. Dr. M. Rajaram Professor &

More information

Performance of DVR under various Fault conditions in Electrical Distribution System

Performance of DVR under various Fault conditions in Electrical Distribution System IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 1 (Nov. - Dec. 2013), PP 06-12 Performance of DVR under various Fault conditions

More information

SIMULATION VERIFICATION OF DYNAMIC VOLTAGE RESTORER USING HYSTERESIS BAND VOLTAGE CONTROL

SIMULATION VERIFICATION OF DYNAMIC VOLTAGE RESTORER USING HYSTERESIS BAND VOLTAGE CONTROL SIMULATION VERIFICATION OF DYNAMIC VOLTAGE RESTORER USING HYSTERESIS BAND VOLTAGE CONTROL 1 R V D Rama Rao*, 2 Dr.Subhransu Sekhar Dash, Assoc. Professor, Narasaraopeta Engineering College, Narasaraopet

More information

Mitigating Voltage Sag Using Dynamic Voltage Restorer

Mitigating Voltage Sag Using Dynamic Voltage Restorer Mitigating Voltage Sag Using Dynamic Voltage Restorer Sumit A. Borakhade 1, R.S. Pote 2 1 (M.E Scholar Electrical Engineering, S.S.G.M.C.E. / S.G.B.A.U. Amravati, India) 2 (Associate Professor, Electrical

More information

SIMULATION OF DSTATCOM FOR POWER FACTOR IMPROVEMENT

SIMULATION OF DSTATCOM FOR POWER FACTOR IMPROVEMENT International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN(P): 2250-155X; ISSN(E): 2278-943X Vol. 7, Issue 2, Apr 2017, 23-28 TJPRC Pvt. Ltd. SIMULATION OF DSTATCOM FOR POWER

More information

Compare Stability Management in Power System Using 48- Pulse Inverter, D-STATCOM and Space Vector Modulation Based STATCOM

Compare Stability Management in Power System Using 48- Pulse Inverter, D-STATCOM and Space Vector Modulation Based STATCOM Ramchandra Sahu et al. 2019, 7:1 ISSN (Online): 2348-4098 ISSN (Print): 2395-4752 International Journal of Science, Engineering and Technology An Open Access Journal Compare Stability Management in Power

More information

ISSN Vol.03,Issue.11, December-2015, Pages:

ISSN Vol.03,Issue.11, December-2015, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.03,Issue.11, December-2015, Pages:2020-2026 Power Quality Improvement using BESS Based Dynamic Voltage Restorer B. ABHINETHRI 1, K. SABITHA 2 1 PG Scholar, Dr. K.V. Subba

More information

OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT

OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT Harshkumar Sharma 1, Gajendra Patel 2 1 PG Scholar, Electrical Department, SPCE, Visnagar, Gujarat, India 2 Assistant

More information

A NOVEL APPROACH TO ENHANCE THE POWER QUALITY USING CMLI BASED CUSTOM POWER DEVICES

A NOVEL APPROACH TO ENHANCE THE POWER QUALITY USING CMLI BASED CUSTOM POWER DEVICES A NOVEL APPROACH TO ENHANCE THE POWER QUALITY USING CMLI BASED CUSTOM POWER DEVICES 1 M. KAVITHA, 2 A. SREEKANTH REDDY & 3 D. MOHAN REDDY Department of Computational Engineering, RGUKT, RK Valley, Kadapa

More information

Unit.2-Voltage Sag. D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203

Unit.2-Voltage Sag. D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203 Unit.2-Voltage Sag D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203 13/09/2012 Unit.2 Voltage sag 1 Unit-2 -Voltage Sag Mitigation Using

More information

ISSN: [Yadav* et al., 6(5): May, 2017] Impact Factor: 4.116

ISSN: [Yadav* et al., 6(5): May, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY STABILITY ENHANCEMENT IN POWER SYSTEM USING SPACE VECTOR MODULATION BASED STATCOM VIA MATLAB Nishant Kumar Yadav*, Dharmendra

More information

Modeling and Simulation of SRF and P-Q based Control DSTATCOM

Modeling and Simulation of SRF and P-Q based Control DSTATCOM International Journal of Engineering Research and Development ISSN: 2278-067X, Volume 1, Issue 10 (June 2012), PP.65-71 www.ijerd.com Modeling and Simulation of SRF and P-Q based Control DSTATCOM Kasimvali.

More information

29 Level H- Bridge VSC for HVDC Application

29 Level H- Bridge VSC for HVDC Application 29 Level H- Bridge VSC for HVDC Application Syamdev.C.S 1, Asha Anu Kurian 2 PG Scholar, SAINTGITS College of Engineering, Kottayam, Kerala, India 1 Assistant Professor, SAINTGITS College of Engineering,

More information

International Journal of Research (IJR) e-issn: , p- ISSN: X Volume 2, Issue 09, September 2015

International Journal of Research (IJR) e-issn: , p- ISSN: X Volume 2, Issue 09, September 2015 A Novel Multi Level Converter Unified Power-Quality (MC- UPQC) Conditioning System on Line Loading, Losses, and Voltage Stability of Radial Distribution Systems Abstract: Popuri Krishna Chaitanya* 1 ;Tajuddin

More information

A Voltage Controlled D-STATCOM for Power Quality Improvement with DVR

A Voltage Controlled D-STATCOM for Power Quality Improvement with DVR A Voltage Controlled D-STATCOM for Power Quality Improvement with DVR Rongali. Shiva Kumar P.G Student Scholar, Department of Electrical & Electronics Engineering, Gokul Group Of Institutions Abstract:

More information

Development and Simulation of Dynamic Voltage Restorer for Voltage SAG Mitigation using Matrix Converter

Development and Simulation of Dynamic Voltage Restorer for Voltage SAG Mitigation using Matrix Converter Development and Simulation of Dynamic Voltage Restorer for Voltage SAG Mitigation using Matrix Converter Mahesh Ahuja 1, B.Anjanee Kumar 2 Student (M.E), Power Electronics, RITEE, Raipur, India 1 Assistant

More information

Application of Fuzzy Logic Controller in UPFC to Mitigate THD in Power System

Application of Fuzzy Logic Controller in UPFC to Mitigate THD in Power System International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 9, Issue 8 (January 2014), PP. 25-33 Application of Fuzzy Logic Controller in UPFC

More information

ISSN Vol.07,Issue.21, December-2015, Pages:

ISSN Vol.07,Issue.21, December-2015, Pages: ISSN 2348 2370 Vol.07,Issue.21, December-2015, Pages:4128-4132 www.ijatir.org Mitigation of Multi Sag/Swell using DVR with Hysteresis Voltage Control DAKOJU H V V S S N MURTHY 1, V. KAMARAJU 2 1 PG Scholar,

More information

Improvement in Power Quality of Distribution System Using STATCOM

Improvement in Power Quality of Distribution System Using STATCOM Improvement in Power Quality of Distribution System Using STATCOM 1 Pushpa Chakravarty, 2 Dr. A.K. Sharma 1 M.E. Scholar, Depart. of Electrical Engineering, Jabalpur Engineering College, Jabalpur, India.

More information

Multi Level Inverter Based Active Power Filter for Harmonic Reduction

Multi Level Inverter Based Active Power Filter for Harmonic Reduction Multi Level Inverter Based Active Power Filter for Harmonic Reduction K Siva Gopi Raju Department of Electrical and Electronics Engineering, Andhra University, Visakhapatnam, Andhra Pradesh 530003, India.

More information

New Detection of Voltage Sag Based on Phase Angle Analysis

New Detection of Voltage Sag Based on Phase Angle Analysis Australian Journal of Basic and Applied Sciences, 5(7): 405-419, 2011 ISSN 1991-8178 New Detection of Voltage Sag Based on Phase Angle Analysis 1 Muhamad Mansor, 2 Nasrudin Abd. Rahim 1 Department of Electrical

More information

Available online at ScienceDirect. Procedia Technology 21 (2015 ) SMART GRID Technologies, August 6-8, 2015

Available online at   ScienceDirect. Procedia Technology 21 (2015 ) SMART GRID Technologies, August 6-8, 2015 Available online at www.sciencedirect.com ScienceDirect Procedia Technology 21 (2015 ) 310 316 SMART GRID Technologies, August 6-8, 2015 A Zig-Zag Transformer and Three-leg VSC based DSTATCOM for a Diesel

More information

Voltage Sags in Distribution Systems with Induction Motor Loads Fed by Power Converters and Voltage Mitigation using DVR and D-STATCOM

Voltage Sags in Distribution Systems with Induction Motor Loads Fed by Power Converters and Voltage Mitigation using DVR and D-STATCOM International Journal of Electrical Engineering. ISSN 0974-2158 Volume 5, Number 7 (2012), pp. 889-902 International Research Publication House http://www.irphouse.com Voltage Sags in Distribution Systems

More information

Power Quality Enhancement using Voltage Source Converter based DSTATCOM

Power Quality Enhancement using Voltage Source Converter based DSTATCOM International Journal of Electrical Electronics Computers & Mechanical Engineering (IJEECM) ISSN: 2278-2808 Volume 2 Issue 6 ǁ Dec. 2015. IJEECM journal of Electrical Engineering (ijeecm-jee) Power Quality

More information

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side 1 Jaykant Vishwakarma, 2 Dr. Arvind Kumar Sharma 1 PG Student, High voltage and Power system, Jabalpur

More information

IMPROVING POWER QUALITY AND ENHANCING THE LIFE OF POWER EQUIPMENT, IN RAILWAY TSSs

IMPROVING POWER QUALITY AND ENHANCING THE LIFE OF POWER EQUIPMENT, IN RAILWAY TSSs IMPROVING POWER QUALITY AND ENHANCING THE LIFE OF POWER EQUIPMENT, IN RAILWAY TSSs Mr. P. Biswas, ABB ABSTRACT The Indian Railways employ single phase 25 kv Traction sub-station (TSS) for supplying power

More information

A DYNAMIC VOLTAGE RESTORER (DVR) BASED MITIGATION SCHEME FOR VOLTAGE SAG AND SWELL

A DYNAMIC VOLTAGE RESTORER (DVR) BASED MITIGATION SCHEME FOR VOLTAGE SAG AND SWELL A DYNAMIC VOLTAGE RESTORER (DVR) BASED MITIGATION SCHEME FOR VOLTAGE SAG AND SWELL Saravanan.R 1, Hariharan.M 2 1 PG Scholar, Department OF ECE, 2 PG Scholar, Department of ECE 1, 2 Sri Krishna College

More information

Voltage Sag and Swell Mitigation Using Dynamic Voltage Restore (DVR)

Voltage Sag and Swell Mitigation Using Dynamic Voltage Restore (DVR) Voltage Sag and Swell Mitigation Using Dynamic Voltage Restore (DVR) Mr. A. S. Patil Mr. S. K. Patil Department of Electrical Engg. Department of Electrical Engg. I. C. R. E. Gargoti I. C. R. E. Gargoti

More information

STATCOM WITH POD CONTROLLER FOR REACTIVE POWER COMPENSATION Vijai Jairaj 1, Vishnu.J 2 and Sreenath.N.R 3

STATCOM WITH POD CONTROLLER FOR REACTIVE POWER COMPENSATION Vijai Jairaj 1, Vishnu.J 2 and Sreenath.N.R 3 STATCOM WITH POD CONTROLLER FOR REACTIVE POWER COMPENSATION Vijai Jairaj 1, Vishnu.J 2 and Sreenath.N.R 3 1 PG Student [Electrical Machines], Department of EEE, Sree Buddha College of Engineering Pattoor,

More information

Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method

Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method Vol.2, Issue.3, May-June 2012 pp-682-686 ISSN: 2249-6645 Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method C. Prakash 1, N. Suparna 2 1 PG Scholar,

More information

Multilevel Inverter Based Statcom For Power System Load Balancing System

Multilevel Inverter Based Statcom For Power System Load Balancing System IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735 PP 36-43 www.iosrjournals.org Multilevel Inverter Based Statcom For Power System Load Balancing

More information

DIGITAL SIMULATION OF MULTILEVEL INVERTER BASED STATCOM

DIGITAL SIMULATION OF MULTILEVEL INVERTER BASED STATCOM DIGITAL SIMULATION OF MULTILEVEL INVERTER BASED STATCOM G.SUNDAR, S.RAMAREDDY Research Scholar, Bharath University Chenna Professor Jerusalam College of Engg. Chennai ABSTRACT This paper deals with simulation

More information

APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD

APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD A. F. Huweg, S. M. Bashi MIEEE, N. Mariun SMIEEE Universiti Putra Malaysia - Malaysia norman@eng.upm.edu.my

More information

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads Ponananthi.V, Rajesh Kumar. B Final year PG student, Department of Power Systems Engineering, M.Kumarasamy College of

More information

High Voltage DC Transmission 2

High Voltage DC Transmission 2 High Voltage DC Transmission 2 1.0 Introduction Interconnecting HVDC within an AC system requires conversion from AC to DC and inversion from DC to AC. We refer to the circuits which provide conversion

More information

Key terms: Voltage, Phase Angle, FACTS, Multilevel Converter, Power Quality, STATCOM.

Key terms: Voltage, Phase Angle, FACTS, Multilevel Converter, Power Quality, STATCOM. Modeling and Analysis of Multi Level Voltage Source Inverter Based Statcom for Improving Power Quality *P.UPENDRA KUMAR, **J.ANAND KUMAR, **K.MANOHAR, **T.M.MANOHAR, **CH.S.K.CHAITANYA *Associate.Professor,

More information

Design and Simulation of Fuzzy Logic controller for DSTATCOM In Power System

Design and Simulation of Fuzzy Logic controller for DSTATCOM In Power System Design and Simulation of Fuzzy Logic controller for DSTATCOM In Power System Anju Gupta Department of Electrical and Electronics Engg. YMCA University of Science and Technology anjugupta112@gmail.com P.

More information

Cascaded Two Level Electrical Converter-Based Multilevel STATCOM for High Power Utilization

Cascaded Two Level Electrical Converter-Based Multilevel STATCOM for High Power Utilization Cascaded Two Level Electrical Converter-Based Multilevel STATCOM for High Power Utilization D.Nagaraju M.Tech-PE, Vidya Bharathi Institute of Technology, T.S, India. L.Ramesh Associate Professor, Vidya

More information

Modified Three-Phase Four-Wire UPQC Topology with Reduced DC-Link Voltage Rating

Modified Three-Phase Four-Wire UPQC Topology with Reduced DC-Link Voltage Rating Modified Three-Phase Four-Wire UPQC Topology with Reduced DC-Link Voltage Rating P.Ankineedu Prasad 1, N.Venkateswarlu 2. V.Ramesh 3, L.V.Narasimharao 4 Assistant Professor 12 & Professor 4& Research Scholar

More information

ISSN: ; e-issn

ISSN: ; e-issn 834 VOLTAGE SAG AND SWELL MITIGATION USING CUSTOM POWER DEVICE JYOTHILAL NAYAK BHAROTHU 1 Asst.professor & Head, Department of Electrical & Electronics Engineering, Columbia Institute of Engineering &

More information

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N. COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.Booma 2 Electrical and Electronics engineering, M.E., Power and

More information

DYNAMIC VOLTAGE RESTORER USING THREE PHASE AC-AC CONVERTER

DYNAMIC VOLTAGE RESTORER USING THREE PHASE AC-AC CONVERTER DYNAMIC VOLTAGE RESTORER USING THREE PHASE AC-AC CONVERTER 1 V.JAYALAKSHMI, 2 DR.N.O.GUNASEKHAR 1 Research Scholar, Bharath University, Chennai, Tamil Nadu, India. 2 Professor, Eswari Engineering College,

More information

MODELLING & SIMULATION OF ACTIVE SHUNT FILTER FOR COMPENSATION OF SYSTEM HARMONICS

MODELLING & SIMULATION OF ACTIVE SHUNT FILTER FOR COMPENSATION OF SYSTEM HARMONICS JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY Journal of Electrical Engineering & Technology (JEET) (JEET) ISSN 2347-422X (Print), ISSN JEET I A E M E ISSN 2347-422X (Print) ISSN 2347-4238 (Online) Volume

More information

SIMULATION OF D-Q CONTROL SYSTEM FOR A UNIFIED POWER FLOW CONTROLLER

SIMULATION OF D-Q CONTROL SYSTEM FOR A UNIFIED POWER FLOW CONTROLLER SIMULATION OF D-Q CONTROL SYSTEM FOR A UNIFIED POWER FLOW CONTROLLER S. Tara Kalyani 1 and G. Tulasiram Das 1 1 Department of Electrical Engineering, Jawaharlal Nehru Technological University, Hyderabad,

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 1787 Performance analysis of D-STATCOM with Consideration of Power Factor Correction M.Bala krishna Naik 1 I.Murali

More information

A CONTROL TECHNIQUE FOR INSTANT MITIGATION OF VOLTAGE SAG/SWELL BY DYNAMIC VOLTAGE RESTORER

A CONTROL TECHNIQUE FOR INSTANT MITIGATION OF VOLTAGE SAG/SWELL BY DYNAMIC VOLTAGE RESTORER A CONTROL TECHNIQUE FOR INSTANT MITIGATION OF VOLTAGE SAG/SWELL BY DYNAMIC VOLTAGE RESTORER ABRARKHAN I. PATHAN 1, PROF. S. S. VANAMANE 2 1,2 Department Electrical Engineering, Walchand college of Engineering,

More information

Design and Simulation of DVR Used For Voltage Sag Mitigation at Distribution Side

Design and Simulation of DVR Used For Voltage Sag Mitigation at Distribution Side Design and Simulation of DVR Used For Voltage Sag Mitigation at Distribution Side Jaykant Vishwakarma 1, Dr. Arvind Kumar Sharma 2 1 PG Student, High voltage and Power system, Jabalpur Engineering College,

More information

THREE PHASE CONTROL FOR PWM-SWITCHED AUTOTRANSFORMER VOLTAGE-SAG COMPENSATOR BASED ON PHASE ANGLE ANALYSIS

THREE PHASE CONTROL FOR PWM-SWITCHED AUTOTRANSFORMER VOLTAGE-SAG COMPENSATOR BASED ON PHASE ANGLE ANALYSIS THREE PHASE CONTROL FOR PWM-SWITCHED AUTOTRANSFORMER VOLTAGE-SAG COMPENSATOR BASED ON PHASE ANGLE ANALYSIS MUHAMAD MANSOR 1, NASRUDIN ABD. RAHIM 2 1 Dept. Of Electrical Power, College Of Engineering, Universiti

More information

Protection from Voltage Sags and Swells by Using FACTS Controller

Protection from Voltage Sags and Swells by Using FACTS Controller Protection from Voltage Sags and Swells by Using FACTS Controller M.R.Mohanraj 1, V.P.Suresh 2, G.Syed Zabiyullah 3 Assistant Professor, Department of Electrical and Electronics Engineering, Excel College

More information

A Five Level DSTATCOM for Compensation of Reactive Power and Harmonics

A Five Level DSTATCOM for Compensation of Reactive Power and Harmonics International Journal of Engineering Research and Development ISSN: 2278-067X, Volume 1, Issue 11 (July 2012), PP. 23-29 www.ijerd.com A Five Level DSTATCOM for Compensation of Reactive Power and Harmonics

More information

ICCCES Application of D-STATCOM for load compensation with non-stiff sources

ICCCES Application of D-STATCOM for load compensation with non-stiff sources Application of D-STATCOM for load compensation with non-stiff sources 1 Shubhangi Dhole, 2 S.S.Gurav, 3 Vinayak Patil, 4 Pushkraj Kharatmal, 5 Magdum Ranjit 1 Dept of Electrical Engg. AMGOI, VATHAR TERF

More information

Control of buck-boost chopper type AC voltage regulator

Control of buck-boost chopper type AC voltage regulator International Journal of Research in Advanced Engineering and Technology ISSN: 2455-0876; Impact Factor: RJIF 5.44 www.engineeringresearchjournal.com Volume 2; Issue 3; May 2016; Page No. 52-56 Control

More information

IJCSIET--International Journal of Computer Science information and Engg., Technologies ISSN

IJCSIET--International Journal of Computer Science information and Engg., Technologies ISSN A novel control strategy for Mitigation of Inrush currents in Load Transformers using Series Voltage source Converter Pulijala Pandu Ranga Rao *1, VenuGopal Reddy Bodha *2 #1 PG student, Power Electronics

More information

Multifunctional Dynamic Voltage Restorer Using Matrix Converter Resmi. S, Reshmi. V, Joffie Jacob Amal Jyothi College of Engineering, Kanjirappally

Multifunctional Dynamic Voltage Restorer Using Matrix Converter Resmi. S, Reshmi. V, Joffie Jacob Amal Jyothi College of Engineering, Kanjirappally Multifunctional Dynamic Voltage Restorer Using Matrix Converter Resmi. S, Reshmi. V, Joffie Jacob Amal Jyothi College of Engineering, Kanjirappally Abstract Power Quality (PQ) has become a critical issue

More information

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System 1 G.Balasundaram, 2 Dr.S.Arumugam, 3 C.Dinakaran 1 Research Scholar - Department of EEE, St.

More information

A Voltage Controlled Dstatcom for Power Quality Improvement

A Voltage Controlled Dstatcom for Power Quality Improvement IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 6 Ver. I (Nov Dec. 2015), PP 27-34 www.iosrjournals.org A Voltage Controlled Dstatcom

More information

A Novel Cascaded Multilevel Inverter Using A Single DC Source

A Novel Cascaded Multilevel Inverter Using A Single DC Source A Novel Cascaded Multilevel Inverter Using A Single DC Source Nimmy Charles 1, Femy P.H 2 P.G. Student, Department of EEE, KMEA Engineering College, Cochin, Kerala, India 1 Associate Professor, Department

More information

Downloaded from

Downloaded from Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 330 Power Quality Improvement Using UPQC Chandrashekhar Reddy S Assoc.Professor, Dept.of Electrical

More information

Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System

Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System G. Laxminarayana 1, S. Raja Shekhar 2 1, 2 Aurora s Engineering College, Bhongir, India Abstract: In this

More information

Power Quality Improvement of Distribution Network for Non-Linear Loads using Inductive Active Filtering Method Suresh Reddy D 1 Chidananda G Yajaman 2

Power Quality Improvement of Distribution Network for Non-Linear Loads using Inductive Active Filtering Method Suresh Reddy D 1 Chidananda G Yajaman 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online): 2321-0613 Power Quality Improvement of Distribution Network for Non-Linear Loads using Inductive

More information