A new method of DC power supply modelling for rapid transit railway system simulation Z.Y. Shao\ W.S. Chan", J. Allan* & B. Mellitt" Iz'rm'W, ^

Size: px
Start display at page:

Download "A new method of DC power supply modelling for rapid transit railway system simulation Z.Y. Shao\ W.S. Chan", J. Allan* & B. Mellitt" Iz'rm'W, ^"

Transcription

1 A new method of DC power supply modelling for rapid transit railway system simulation Z.Y. Shao\ W.S. Chan", J. Allan* & B. Mellitt" Iz'rm'W, ^ The University of Birmingham, UK Introduction The Multi-Train Simulator (MTS) originally developed by the University of Birmingham more than 20 years ago, with an investment in excess of 30 person years, was purchased by London Underground Limited (LUL) in 1989 [1, 2, 3]. The MTS is capable of modelling all the major electrical and mechanical subsystems on rapid transit railways including power supply, rolling stock, signalling and control systems and the interactions between these systems. Therefore, the MTS has been extensively used as a main design tool on mega engineering projects such as the Central Line modernisation project and the Jubilee Line Extension project. At the same time, a multi-stage development programme has been initiated to further develop the MTS to become an integrated railway simulation package encompassing all railway aspects. One of the important areas of the development programme was to review the existing power network solving technique and its suitability for multi-track network with interconnection between all tracks. This was with a view to develop a more versatile power network solution technique which will result in savings in computation time and memory storage. This work can form the foundation for future plans of providing real-time monitoring and control facility using what-if predictive simulation adopting parallel computing techniques. Typical LUL applications The MTS has been used in the following power system studies by LUL:

2 552 Railway Design and Management a) Northern Line substation renewal - quantitative assessment in order to assist the Northern Line project team in defining a system specification for substation design. b) Jubilee Line Extension (JLE) harmonics study - ac supply harmonic analysis. c) Jubilee Line power tender assessment - used as a design tool to verify power design calculations submitted by the tenderers. d) Central Line renewal project - used to assess dc voltage regulation due to the possible introduction of voltage controlled rectifier substations. e) Traction voltage optimisation study - used to study the relationship between energy consumption and traction voltage. Based on the amount of application work already carried out, it is important to ensure that an efficient power network solution is used. Areas considered Key areas of power network solution processes considered include: a) Circuit analysis technique - nodal or mesh. b) Optimisation of electrical network topology numbering technique. c) Matrix solver. d) Iteration. As a result of the review in the above areas a new general model for DC power feeding systems with interconnection between tracks has been established. The flexible topological approach adopted based on the concept of Current Rail Section (CRS) enables the network to be established node by node, each node being either a train, a feeder or a junction. Each current rail section refers to a unidirectional feeding section from a substation. The equivalent power conductor rail resistance between adjacent nodes can be readily derived. A node numbering method has also been established to assemble the network into a symmetrical sparse matrix. A fast sparse matrix decomposition and solving technique has also been derived. A new integration technique on checking the non-receptivity of substations and other system constraints together with the adoption of the relaxation method ensures that system stability and required accuracy are achieved. Review of existing MTS methods To fully recognise the effectiveness of the new method it will be useful to understand the existing method of solving the power network. For a two-road network shown in figure 1, substations and trains are represented by their equivalent voltage sources and resistances. This has resulted in two parallel ladder networks connected at the substations and track coupling points. As the

3 Railway Design and Management 553 interconnections are clearly defined and all the current loops are easily identified, a mesh analysis technique has been adopted. An equivalent symmetrical matrix can be derived due to the inherent feature of any ladder network. To assemble all the loop currents into its matrix form, a systematic way of numbering the current loops which reduces the band width of the matrix has been derived. Basically, the numbering of loops is carried out by alternating between up and down roads with a view to minimise the separation between two trains on up and down roads connecting to the same substation. A detailed description of this numbering method can be found in reference 4. A narrow band symmetrical matrix will result from this method with the band width solely dependent on the difference between the number of up and down road trains situated between adjacent substations. The Cholesky matrix decomposition method is then used to solve the network followed by forward and backward substitution. As with the Cholesky method, only the elements of the widest band width and all other elements in each row (see reference 4) are required to be stored for matrix manipulation, the size of the resultant matrix and hence the speed of computation is largely dependent on the maximum band width of the network considered. Disadvantages of the existing method for Multi-Track Application The main problem with the existing method is that the current loop numbering scheme which is efficient for a simple two road network can no longer be applied effectively for a multi-track network with interconnection between all tracks. This is due to the separation between trains and substations now being much wider which will result in a much wider band matrix. In most cases, the band width of the matrix is getting close to the dimension of the full matrix. Hence, the Cholesky decomposition becomes inefficient as it is only suitable for a narrow band matrix. The other disadvantage of the existing method for multi-track application is the use of the mesh analysis technique. As branches and loops from the main section of the line need to be modelled (see figure 2), it is more difficult to define all the independent loop currents. If more branches and junctions have to be considered, the advantages of using nodal analysis become more apparent, not only the nodes of the network are more easily identified but also the number of node equations becomes less than that of the mesh equations. New method of assembly power network With reference to figure 2, each node represents a connection to a substation, a train or a junction. The current entering and leaving each node can be described by using the KirchhofFs current law. The way of numbering the nodes is the key in optimising the equivalent matrix. It was found that the minimum number of elements required to be stored in the decomposed matrix can be obtained by

4 554 Railway Design and Management starting the nodal equations from the branch with the least number of trains between two substations followed by the branch with next least number of trains and so on. The node numbering scheme is clearly shown in figure 2. By arranging the resultant nodal equations in matrix form, an equivalent resistance matrix representation can be established as shown in figure 3. As the matrix is symmetrical about the diagonal elements, only the bottom left half needs to be stored. Furthermore, with the customised sparse matrix using the L-U factorisation technique developed in-house, only the non-zero elements below the diagonal elements (the asterisks shown in figure 3) will be decomposed and stored into a one dimensional matrix array as highlighted in figure 3. With this node numbering scheme, the number of elements to be stored is always equal to the maximum number of trains and substations which is useful for checking if the optimised storage has been achieved. As only the non-zero elements are required to be decomposed to a one dimensional matrix, this has resulted in further reduction in memory storage and hence computation time compared with the existing Cholesky method. This technique has been applied to a complex network such as the Northern Line shown in Figure 4. Necessity for iterative process It can be shown that under normal conditions, the solution in each update obtained by solving the power network once is sufficiently accurate after satisfying other non-linear constraints of the system, eg. receptivity of the substation and over voltage and under voltage trains. This has been the case for the existing MTS. However, with the requirements of interfacing the dc network with the 22/1 IkV ac network, it is necessary to consider an outer iteration process which has been incorporated in the network solution to achieve the required accuracy of the solution. The criteria used for convergence test is the Voltage mismatch' which is the same as that used commonly in load flow analysis. The accuracy test is performed by comparing the nodal voltages as successive integration until the required accuracy is achieved. System stability When regenerative braking is considered in the simulation, limit cycle oscillation might occur in the system. This is because there are insufficient motoring trains to absorb the energy regenerated. Since non-inverting traction substations are used, the traction voltage could be raised above the maximum limited voltage level, should there be no proper functional over-voltage controller equipment on board the regenerating train. For the purpose of simulation, an ideal over-voltage controller is assumed to be installed on each train. It assumes that each regenerative braking train is capable

5 Railway Design and Management 555 of dissipating part or all of its kinetic energy for a desirable braking profile should the traction voltage reach the specified voltage limit. The traction voltage at the regenerative braking train position can stay constant at the maximum level as long as the regenerative braking train has enough energy to return back to the network. In dealing with non-receptive substations, the existing method models the substation off state by an equivalent large resistance of 1000Q in series with the substation no load voltage. LUL utilise a four-rail system with positive and negative power rail. Each pole of the system is earthed via one bleed resistor at each substation which has resulted in two resistors connected in series between the positive and negative traction conductors with the middle point earthed. This feature enables a better representation of a nonreceptive substation model for simulation. If the substation is simply modelled as a huge resistance, the whole system turns too stiff if an iteration process is used. The simulation will be prolonged due to difficulty in the iteration process. This problem can be solved by a sectional relaxation based method together with the use of thefiniteleakage resistance as described above. Assuming 300(1 is the value of bleeding resistance referred to each substation, at the maximum voltage limit (for example, at 790V) the bleeding current will be 2.6 Amperes. This figure is used as tolerable negative current for each substation. So the internal resistance can be simply specified as ( )72.6 = 46Q with the substation no-load voltage staying at 670V when the substation becomes non-receptive Since the regenerative braking trains are clamped to a maximum voltage limit, the bleeding current can be maintained at this small value. Example of Simulation An example of the output graphic facilities on the section north of Camden Town of the Northern Line is shown in figure 5. The network consists of three DC sections and fourteen substations with maximum 76 trains on the sections. The simulation was carried out on a SUN IPX-Workstation and the computation time for an hour simulation was twelve minutes which is approximately one-sixth of the time achieved by the previous MTS. Conclusions a) A new method of dc power supply modelling and network solution has been presented for older metro lines with complex junctions and loops, such as LUL. b) The key features of the new model can be summarised as: nodal based method optimised node numbering scheme

6 556 Railway Design and Management (iii) (iv) in-house customised sparse matrix solver new iteration technique c) It was found that the new method is more efficient for the type of application considered. One sixth of the original computation time was achieved for the case on north of Camden Town of the Northern Line considered. d) It is planned to extend this method to include the use of parallel computing techniques so that real time simulation on the whole LUL network can be achieved. References Mellitt, B, Goodman, C.J. & Arthurton, RIM 'Simulator for studying Operational and Power Supply Conditions in Rapid Transit Railways', Proc. IEE, Vol. 125, 4, pp , Allan, J, Chan, W.S., Mellitt, B, Anderson, P. & Chaing, J.P. 'Developments in Multi-Train Simulation by London Underground Limited and Hong Kong Mass Transit Railway Corporation', International Conference on Computer Aided Design and Manufacture and Operations in the Railway and other advanced Mass Transit Systems, CompRail '92, August Allan, J., Digby, G, Chan, W.S. & McCormick, H.J. 'Cost Conscious Design of Power Supply Equipment using a Simulator', IEE Colloquium on Cost Effective Industrial Simulation, June Rambukwella, N.B., Mellitt, B, Goodman, C.J. & Mouneimne, Z.S. Traction Equipment Modelling and the Power Network Solution for DC supplied Traction Power Systems studies', IEE International Conference on Electric Railway Systems for a new century', pp , Figure 1: Loop numbering scheme for two road network

7 Railway Design and Management <D rm Figure 2: An example of the new node assigning scheme * Figure 3: Equivalent sparse matrix of power network shown in Figure 2

8 558 Railway Design and Management SUBSTATION LAYOUT FOR NORTHERN LINE DC 5 DC 4 Figure 4: Power network for existing Northern Line LONDON UNDERGROUND LTD Figure 5: Example of MTS output

First characteristic harmonic component of output ripple on dc railway rectifiers

First characteristic harmonic component of output ripple on dc railway rectifiers First characteristic harmonic component of output ripple on dc railway rectifiers J. Allan, J. H. Jin & K. Payne ^ The University ofbirmingham, UK. ^London Underground Limited, UK. Abstract A research

More information

Lecture # 4 Network Analysis

Lecture # 4 Network Analysis CPEN 206 Linear Circuits Lecture # 4 Network Analysis Dr. Godfrey A. Mills Email: gmills@ug.edu.gh Phone: 026-907-3163 February 22, 2016 Course TA David S. Tamakloe 1 What is Network Technique o Network

More information

What is Mesh Analysis?

What is Mesh Analysis? Introduction: What is Mesh Analysis? Mesh Analysis is a technique for the rigourous solution of many electrical circuits. With this method, the user can systematically find sufficient and necessary equations

More information

Time-domain electric circuit simulation packages designed for power systems

Time-domain electric circuit simulation packages designed for power systems Evaluation of rail track impedance and capacitance using the electromagnetic transients program R.J. Hill" & S.R. McKay* "School of Electonic and Electrical Engineering, University of Bath, Claverton Down,

More information

Chapter 8. Constant Current Sources

Chapter 8. Constant Current Sources Chapter 8 Methods of Analysis Constant Current Sources Maintains same current in branch of circuit Doesn t matter how components are connected external to the source Direction of current source indicates

More information

1 Introduction General Background The New Computer Environment Transmission System Developments Theoretical Models and Computer Programs

1 Introduction General Background The New Computer Environment Transmission System Developments Theoretical Models and Computer Programs Modeling Techniques in Power Systems 1 General Background The New Computer Environment Transmission System Developments Theoretical Models and Computer Programs 2 Transmission Systems Linear Transformation

More information

CHAPTER 4. Techniques of Circuit Analysis

CHAPTER 4. Techniques of Circuit Analysis CHAPTER 4 Techniques of Circuit Analysis 4.1 Terminology Planar circuits those circuits that can be drawn on a plane with no crossing branches. Figure 4.1 (a) A planar circuit. (b) The same circuit redrawn

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Invited Paper Modelling and simulation of electric railway traction, track signalling and power systems R.J. Hill School of Electronic and Electrical Engineering, University CWerZom Dotmz, BofA #^42 7,47,

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Invited Paper Models and tools for simulation and analysis of metrorail transit systems R. Minciardi", S. Savio& & G. Scmtto^ e Universitd degli Studi di Genova, Via air Opera Pia, 13-16145 Genova, Italy

More information

Modern Concepts of Energy Control Technology through VVVF Propulsion Drive

Modern Concepts of Energy Control Technology through VVVF Propulsion Drive Modern Concepts of Energy Control Technology through VVVF Propulsion Drive Satoru OZAKI, Fuji Electric Systems Co., Ltd. Ken-ichi URUGA, Toyo Denki Seizo K.K. Dr. D.P. Bhatt, Autometers Alliance Ltd ABSTRACT

More information

AS the power distribution networks become more and more

AS the power distribution networks become more and more IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 21, NO. 1, FEBRUARY 2006 153 A Unified Three-Phase Transformer Model for Distribution Load Flow Calculations Peng Xiao, Student Member, IEEE, David C. Yu, Member,

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK UNIT I BASIC CIRCUITS ANALYSIS PART A (2-MARKS)

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK UNIT I BASIC CIRCUITS ANALYSIS PART A (2-MARKS) KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK YEAR / SEM : I / II SUBJECT CODE & NAME : EE 1151 CIRCUIT THEORY UNIT I BASIC CIRCUITS ANALYSIS PART A (2-MARKS)

More information

ELEC Transmission i and

ELEC Transmission i and ELEC-1104 Lecture 5: Transmission i and Distribution ib ti Power System Layout Transmission and Distribution The transmission system is to transmit a large amount of energy from the power stations s to

More information

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1. Problem 1.24 The plot in Fig. P1.24 displays the cumulative charge q(t) that has entered a certain device up to time t. Sketch a plot of the corresponding current i(t). q 20 C 0 1 2 3 4 5 t (s) 20 C Figure

More information

Unit-1(A) Circuit Analysis Techniques

Unit-1(A) Circuit Analysis Techniques Unit-1(A Circuit Analysis Techniques Basic Terms used in a Circuit 1. Node :- It is a point in a circuit where two or more circuit elements are connected together. 2. Branch :- It is that part of a network

More information

An efficient power flow algorithm for distribution systems with polynomial load

An efficient power flow algorithm for distribution systems with polynomial load An efficient power flow algorithm for distribution systems with polynomial load Jianwei Liu, M. M. A. Salama and R. R. Mansour Department of Electrical and Computer Engineering, University of Waterloo,

More information

Electrification Infrastructure Reducing Whole Life Cost

Electrification Infrastructure Reducing Whole Life Cost Electrification Infrastructure Reducing Whole Life Cost DC Stray Currents Martin Sigrist Thameslink Programme 28-Oct-14 / 1 Overview Objective How are Stray Currents produced Impact of Stray Current Controlling

More information

Performance Analysis of Three-Phase Four-Leg Voltage Source Converter

Performance Analysis of Three-Phase Four-Leg Voltage Source Converter International Journal of Science, Engineering and Technology Research (IJSETR) Volume 6, Issue 8, August 217, ISSN: 2278-7798 Performance Analysis of Three-Phase Four-Leg Voltage Source Converter Z.Harish,

More information

Chapter 3: Resistive Network Analysis Instructor Notes

Chapter 3: Resistive Network Analysis Instructor Notes Chapter 3: Resistive Network Analysis Instructor Notes Chapter 3 presents the principal topics in the analysis of resistive (DC) circuits The presentation of node voltage and mesh current analysis is supported

More information

1. Introduction 1.1 Motivation and Objectives

1. Introduction 1.1 Motivation and Objectives 1. Introduction 1.1 Motivation and Objectives Today, the analysis and design of complex power electronic systems such as motor drives is usually done using a modern simulation software which can provide

More information

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg.

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg. Aligarh College of Engineering & Technology (College Code: 19) Electrical Engg. (EE-11/21) Unit-I DC Network Theory 1. Distinguish the following terms: (a) Active and passive elements (b) Linearity and

More information

POWER FACTOR IMPROVEMENT USING CURRENT SOURCE RECTIFIER WITH BATTERY CHARGING CAPABILITY IN REGENERATIVE MODE OF SRM

POWER FACTOR IMPROVEMENT USING CURRENT SOURCE RECTIFIER WITH BATTERY CHARGING CAPABILITY IN REGENERATIVE MODE OF SRM POWER FACTOR IMPROVEMENT USING CURRENT SOURCE RECTIFIER WITH BATTERY CHARGING CAPABILITY IN REGENERATIVE MODE OF SRM M.Rajesh 1, M.Sunil Kumar 2 1 P.G.Student, 2 Asst.Prof, Dept.of Eee, D.V.R & Dr.H.S

More information

3. Voltage and Current laws

3. Voltage and Current laws 1 3. Voltage and Current laws 3.1 Node, Branches, and loops A branch represents a single element such as a voltage source or a resistor A node is the point of the connection between two or more elements

More information

POWER- SWITCHING CONVERTERS Medium and High Power

POWER- SWITCHING CONVERTERS Medium and High Power POWER- SWITCHING CONVERTERS Medium and High Power By Dorin O. Neacsu Taylor &. Francis Taylor & Francis Group Boca Raton London New York CRC is an imprint of the Taylor & Francis Group, an informa business

More information

IMPLEMENTATION OF NETWORK RECONFIGURATION TECHNIQUE FOR LOSS MINIMIZATION ON A 11KV DISTRIBUTION SYSTEM OF MRS SHIMOGA-A CASE STUDY

IMPLEMENTATION OF NETWORK RECONFIGURATION TECHNIQUE FOR LOSS MINIMIZATION ON A 11KV DISTRIBUTION SYSTEM OF MRS SHIMOGA-A CASE STUDY IMPLEMENTATION OF NETWORK RECONFIGURATION TECHNIQUE FOR LOSS MINIMIZATION ON A 11KV DISTRIBUTION SYSTEM OF MRS SHIMOGA-A CASE STUDY PROJECT REFERENCE NO. : 37S0848 COLLEGE : PES INSTITUTE OF TECHNOLOGY

More information

EMERGING distributed generation technologies make it

EMERGING distributed generation technologies make it IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 20, NO. 4, NOVEMBER 2005 1757 Fault Analysis on Distribution Feeders With Distributed Generators Mesut E. Baran, Member, IEEE, and Ismail El-Markaby, Student Member,

More information

Ferroresonance Experience in UK: Simulations and Measurements

Ferroresonance Experience in UK: Simulations and Measurements Ferroresonance Experience in UK: Simulations and Measurements Zia Emin BSc MSc PhD AMIEE zia.emin@uk.ngrid.com Yu Kwong Tong PhD CEng MIEE kwong.tong@uk.ngrid.com National Grid Company Kelvin Avenue, Surrey

More information

Fatima Michael college of Engineering and Technology

Fatima Michael college of Engineering and Technology Fatima Michael college of Engineering and Technology DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2303 TRANSMISSION AND DISTRIBUTION SEM: V Question bank UNIT I INTRODUCTION 1. What is the electric

More information

E Typical Application and Component Selection AN 0179 Jan 25, 2017

E Typical Application and Component Selection AN 0179 Jan 25, 2017 1 Typical Application and Component Selection 1.1 Step-down Converter and Control System Understanding buck converter and control scheme is essential for proper dimensioning of external components. E522.41

More information

Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method

Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 16, NO. 1, MARCH 2001 55 Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method S. L. Ho and W. N. Fu Abstract

More information

DC protection calculations an acceptable approach

DC protection calculations an acceptable approach Computers in Railways XI 425 DC protection calculations an acceptable approach R. Leach, D. Tregay & M. Berova Parsons Brinckerhoff Ltd, UK Abstract As a consequence of substantial changes to the railway

More information

DESIGN CONSIDERATIONS AND PERFORMANCE REQUIREMENTS FOR HIGH SPEED DRIVER AMPLIFIERS. Nils Nazoa, Consultant Engineer LA Techniques Ltd

DESIGN CONSIDERATIONS AND PERFORMANCE REQUIREMENTS FOR HIGH SPEED DRIVER AMPLIFIERS. Nils Nazoa, Consultant Engineer LA Techniques Ltd DESIGN CONSIDERATIONS AND PERFORMANCE REQUIREMENTS FOR HIGH SPEED DRIVER AMPLIFIERS Nils Nazoa, Consultant Engineer LA Techniques Ltd 1. INTRODUCTION The requirements for high speed driver amplifiers present

More information

Reducing Total Harmonic Distortion with Variable Frequency Drives

Reducing Total Harmonic Distortion with Variable Frequency Drives Reducing Total Harmonic Distortion with Variable Frequency Drives Low Harmonic Technology in Optidrive Eco Overview Overview Both AC line chokes and DC link chokes have historically been used with Variable

More information

A Matlab / Simulink Based Tool for Power Electronic Circuits

A Matlab / Simulink Based Tool for Power Electronic Circuits A Matlab / Simulink Based Tool for Power Electronic Circuits Abdulatif A M Shaban International Science Index, Electrical and Computer Engineering wasetorg/publication/2520 Abstract Transient simulation

More information

SOLID-STATE TRANSFORMERS

SOLID-STATE TRANSFORMERS SOLID-STATE TRANSFORMERS Mrs. K. S. Gadgil 1 1 Asst Professor, Department of Electrical Engineering, AISSMS IOIT, Maharashtra, India ABSTRACT Solid State Transformer (SST) has been regarded as one of the

More information

INVESTIGATING THE BENEFITS OF MESHING REAL UK LV NETWORKS

INVESTIGATING THE BENEFITS OF MESHING REAL UK LV NETWORKS INVESTIGATING THE BENEFITS OF MESHING REAL UK LV NETWORKS Muhammed S. AYDIN Alejandro NAVARRO Espinosa Luis F. OCHOA The University of Manchester UK The University of Manchester UK The University of Manchester

More information

Electronics Interview Questions

Electronics Interview Questions Electronics Interview Questions 1. What is Electronic? The study and use of electrical devices that operate by controlling the flow of electrons or other electrically charged particles. 2. What is communication?

More information

WDBR Series Application Note. Resistors. BI Technologies IRC Welwyn

WDBR Series Application Note. Resistors. BI Technologies IRC Welwyn WDBR Series Resistors Background Information The WDBR range of thick film planar power resistors on steel, offers high pulse withstand capability, compact footprint and low profile, to many demanding applications

More information

CMOS Schmitt Trigger A Uniquely Versatile Design Component

CMOS Schmitt Trigger A Uniquely Versatile Design Component CMOS Schmitt Trigger A Uniquely Versatile Design Component INTRODUCTION The Schmitt trigger has found many applications in numerous circuits, both analog and digital. The versatility of a TTL Schmitt is

More information

B. Gurudatt, S. Seetharamu, P. S. Sampathkumaran and Vikram Krishna

B. Gurudatt, S. Seetharamu, P. S. Sampathkumaran and Vikram Krishna , June 30 - July 2, 2010, London, U.K. Implementation of Ansys Parametric Design Language for the Determination of Critical Speeds of a Fluid Film Bearing-Supported Multi-Sectioned Rotor with Residual

More information

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No.1 - RESISTOR NETWORKS

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No.1 - RESISTOR NETWORKS EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No.1 - RESISTOR NETWORKS NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted is

More information

J Project Methods. V (%) Network with high generation and low load. Network with low generation and high load

J Project Methods. V (%) Network with high generation and low load. Network with low generation and high load J Project Methods Background The management of voltage is a growing concern with the integration of low carbon technologies, particularly distributed generation (DG), within electricity networks. The issue

More information

DESIGN OF A 45 CIRCUIT DUCT BANK

DESIGN OF A 45 CIRCUIT DUCT BANK DESIGN OF A 45 CIRCUIT DUCT BANK Mark COATES, ERA Technology Ltd, (UK), mark.coates@era.co.uk Liam G O SULLIVAN, EDF Energy Networks, (UK), liam.o sullivan@edfenergy.com ABSTRACT Bankside power station

More information

DUAL BRIDGE LLC RESONANT CONVERTER WITH FREQUENCY ADAPTIVE PHASE-SHIFT MODULATION CONTROL FOR WIDE VOLTAGE GAIN RANGE

DUAL BRIDGE LLC RESONANT CONVERTER WITH FREQUENCY ADAPTIVE PHASE-SHIFT MODULATION CONTROL FOR WIDE VOLTAGE GAIN RANGE DUAL BRIDGE LLC RESONANT CONVERTER WITH FREQUENCY ADAPTIVE PHASE-SHIFT MODULATION CONTROL FOR WIDE VOLTAGE GAIN RANGE S M SHOWYBUL ISLAM SHAKIB ELECTRICAL ENGINEERING UNIVERSITI OF MALAYA KUALA LUMPUR,

More information

Hybrid PWM switching scheme for a three level neutral point clamped inverter

Hybrid PWM switching scheme for a three level neutral point clamped inverter Hybrid PWM switching scheme for a three level neutral point clamped inverter Sarath A N, Pradeep C NSS College of Engineering, Akathethara, Palakkad. sarathisme@gmail.com, cherukadp@gmail.com Abstract-

More information

DISTRIBUTION SYSTEM ANALYSIS

DISTRIBUTION SYSTEM ANALYSIS Politecnico di Torino Dipartimento di Ingegneria Elettrica DISTRIBUTION SYSTEM ANALYSIS Prof. Gianfranco Chicco Lecture at the Technical University Gh. Asachi, Iaşi, Romania 5 October Copyright Gianfranco

More information

Designing CMOS folded-cascode operational amplifier with flicker noise minimisation

Designing CMOS folded-cascode operational amplifier with flicker noise minimisation Microelectronics Journal 32 (200) 69 73 Short Communication Designing CMOS folded-cascode operational amplifier with flicker noise minimisation P.K. Chan*, L.S. Ng, L. Siek, K.T. Lau Microelectronics Journal

More information

Appendix D Fault Levels

Appendix D Fault Levels Appendix D Fault Levels Page 1 Electricity Ten Year Statement November 2013 D.1 Short Circuit Currents Short Circuit Currents Three phase to earth and single phase to earth short circuit current analyses

More information

An Audio Frequency Model of a 2x25 kv Traction Line for High Speed Railway Systems

An Audio Frequency Model of a 2x25 kv Traction Line for High Speed Railway Systems An Audio Frequency Model of a 2x25 kv Traction Line for High Speed Railway Systems RICHARD BARTONI Railway Engineer Corso Italia, 83 00100 Rome ITALY bartoni@gtaroma1.191.it REGINA LAMEDICA Full Professor

More information

Type of loads Active load torque: - Passive load torque :-

Type of loads Active load torque: - Passive load torque :- Type of loads Active load torque: - Active torques continues to act in the same direction irrespective of the direction of the drive. e.g. gravitational force or deformation in elastic bodies. Passive

More information

Testing and Stabilizing Feedback Loops in Today s Power Supplies

Testing and Stabilizing Feedback Loops in Today s Power Supplies Keywords Venable, frequency response analyzer, impedance, injection transformer, oscillator, feedback loop, Bode Plot, power supply design, open loop transfer function, voltage loop gain, error amplifier,

More information

TAMING THE POWER ABB Review series

TAMING THE POWER ABB Review series TAMING THE POWER ABB Review series 54 ABB review 3 15 Beating oscillations Advanced active damping methods in medium-voltage power converters control electrical oscillations PETER AL HOKAYEM, SILVIA MASTELLONE,

More information

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS 66 CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS INTRODUCTION The use of electronic controllers in the electric power supply system has become very common. These electronic

More information

Uncontrolled When Printed

Uncontrolled When Printed Briefing Note Document Title: GSM-R Train Radio Systems Document No: Issue: Issue 1 Issue 1 Subject Committee(s): The primary Subject Committees are Operations and Train Control & Communications. The Standards

More information

5 1 2 NAGASAKI Yusaku, EGUCHI Makoto, KOSEKI Takafumi:

5 1 2 NAGASAKI Yusaku, EGUCHI Makoto, KOSEKI Takafumi: 13 5. 5 1 5 1 1,, : 20 15 NAGASAKI Yusaku, EGUCHI Makoto, KOSEKI Takafumi: Application of graph theory to scheduling of train operation 2003 Technical Meeting on Transportation and Electric Railway, IEE

More information

Transactions on Engineering Sciences vol WIT Press, ISSN

Transactions on Engineering Sciences vol WIT Press,   ISSN Efficient analysis of high frequency electronic circuits by combining LE-FDTD method with static solutions L.Cecchi, F. Alimenti, P. Ciampolini, L. Roselli, P. Mezzanotte and R. Sorrentino Institute of

More information

-SQA-SCOTTISH QUALIFICATIONS AUTHORITY NATIONAL CERTIFICATE MODULE: UNIT SPECIFICATION GENERAL INFORMATION. -Module Number Session

-SQA-SCOTTISH QUALIFICATIONS AUTHORITY NATIONAL CERTIFICATE MODULE: UNIT SPECIFICATION GENERAL INFORMATION. -Module Number Session SQASCOTTISH QUALIFICATIONS AUTHORITY NATIONAL CERTIFICATE MODULE: UNIT SPECIFICATION GENERAL INFORMATION Module Number 2150206 Session199697 Superclass XL Title APPLIED ELECTRONICS 1 DESCRIPTION GENERAL

More information

Electrical Power Systems

Electrical Power Systems Electrical Power Systems CONCEPT, THEORY AND PRACTICE SECOND EDITION SUBIR RAY Professor MVJ College of Engineering Bangalore PHI Learning Pfcte tofm Delhi-110092 2014 Preface xv Preface to the First Edition

More information

BICMOS Technology and Fabrication

BICMOS Technology and Fabrication 12-1 BICMOS Technology and Fabrication 12-2 Combines Bipolar and CMOS transistors in a single integrated circuit By retaining benefits of bipolar and CMOS, BiCMOS is able to achieve VLSI circuits with

More information

AVERAGE CURRENT MODE CONTROL IN POWER ELECTRONIC CONVERTERS ANALOG VERSUS DIGITAL. K. D. Purton * and R. P. Lisner**

AVERAGE CURRENT MODE CONTROL IN POWER ELECTRONIC CONVERTERS ANALOG VERSUS DIGITAL. K. D. Purton * and R. P. Lisner** AVERAGE CURRENT MODE CONTROL IN POWER ELECTRONIC CONVERTERS ANALOG VERSUS DIGITAL Abstract K. D. Purton * and R. P. Lisner** *Department of Electrical and Computer System Engineering, Monash University,

More information

DC-DC converters represent a challenging field for sophisticated

DC-DC converters represent a challenging field for sophisticated 222 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 7, NO. 2, MARCH 1999 Design of a Robust Voltage Controller for a Buck-Boost Converter Using -Synthesis Simone Buso, Member, IEEE Abstract This

More information

Series-Parallel Circuits

Series-Parallel Circuits Series-Parallel Circuits INTRODUCTION A series-parallel configuration is one that is formed by a combination of series and parallel elements. A complex configuration is one in which none of the elements

More information

Electric Circuits II Three-Phase Circuits. Dr. Firas Obeidat

Electric Circuits II Three-Phase Circuits. Dr. Firas Obeidat Electric Circuits II Three-Phase Circuits Dr. Firas Obeidat 1 Table of Contents 1 Balanced Three-Phase Voltages 2 Balanced Wye-Wye Connection 3 Balanced Wye-Delta Connection 4 Balanced Delta-Delta Connection

More information

WDBR Series (RoHS compliant)

WDBR Series (RoHS compliant) WDBR Series (RoHS compliant) This new range of thick film planar power resistors on steel, offering high pulse withstand capability, compact footprint and low profile, to many demanding applications including

More information

Enhancement of Fault Current and Overvoltage by Active Type superconducting fault current limiter (SFCL) in Renewable Distributed Generation (DG)

Enhancement of Fault Current and Overvoltage by Active Type superconducting fault current limiter (SFCL) in Renewable Distributed Generation (DG) Enhancement of Fault Current and Overvoltage by Active Type superconducting fault current limiter (SFCL) in Renewable Distributed Generation (DG) PATTI.RANADHEER Assistant Professor, E.E.E., PACE Institute

More information

DESIGN AND ANALYSIS OF FEEDBACK CONTROLLERS FOR A DC BUCK-BOOST CONVERTER

DESIGN AND ANALYSIS OF FEEDBACK CONTROLLERS FOR A DC BUCK-BOOST CONVERTER DESIGN AND ANALYSIS OF FEEDBACK CONTROLLERS FOR A DC BUCK-BOOST CONVERTER Murdoch University: The Murdoch School of Engineering & Information Technology Author: Jason Chan Supervisors: Martina Calais &

More information

Prelab 4 Millman s and Reciprocity Theorems

Prelab 4 Millman s and Reciprocity Theorems Prelab 4 Millman s and Reciprocity Theorems I. For the circuit in figure (4-7a) and figure (4-7b) : a) Calculate : - The voltage across the terminals A- B with the 1kΩ resistor connected. - The current

More information

Objective of the Lecture

Objective of the Lecture Objective of the Lecture Present Kirchhoff s Current and Voltage Laws. Chapter 5.6 and Chapter 6.3 Principles of Electric Circuits Chapter4.6 and Chapter 5.5 Electronics Fundamentals or Electric Circuit

More information

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 58 CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 4.1 INTRODUCTION Conventional voltage source inverter requires high switching frequency PWM technique to obtain a quality output

More information

A COMPARITIVE STUDY OF THREE LEVEL INVERTER USING VARIOUS TOPOLOGIES

A COMPARITIVE STUDY OF THREE LEVEL INVERTER USING VARIOUS TOPOLOGIES A COMPARITIVE STUDY OF THREE LEVEL INVERTER USING VARIOUS TOPOLOGIES Swathy C S 1, Jincy Mariam James 2 and Sherin Rachel chacko 3 1 Assistant Professor, Dept. of EEE, Sree Buddha College of Engineering

More information

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 47 CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 4.1 INTRODUCTION Passive filters are used to minimize the harmonic components present in the stator voltage and current of the BLDC motor. Based on the design,

More information

Feeder Protection Challenges with High Penetration of Inverter Based Distributed Generation

Feeder Protection Challenges with High Penetration of Inverter Based Distributed Generation Feeder Protection Challenges with High Penetration of Inverter Based Distributed Generation Harag Margossian 1, Florin Capitanescu 2, Juergen Sachau 3 Interdisciplinary Centre for Security, Reliability

More information

Appendix. RF Transient Simulator. Page 1

Appendix. RF Transient Simulator. Page 1 Appendix RF Transient Simulator Page 1 RF Transient/Convolution Simulation This simulator can be used to solve problems associated with circuit simulation, when the signal and waveforms involved are modulated

More information

AMERICAN PUBLIC TRANSIT ASSOCIATION 2003 RAIL TRANSIT CONFERENCE. Cable Rating Considerations for Direct Current Traction Power Systems

AMERICAN PUBLIC TRANSIT ASSOCIATION 2003 RAIL TRANSIT CONFERENCE. Cable Rating Considerations for Direct Current Traction Power Systems AMERICAN PUBLIC TRANSIT ASSOCIATION 2003 RAIL TRANSIT CONFERENCE June 9, 2003 Rating Considerations for R. W. Benjamin Stell. P.E Manager of Power Systems The HNTB Companies 1 Burlington Woods Burlington,

More information

Unit 4: Block Diagram Reduction. Block Diagram Reduction. Cascade Form Parallel Form Feedback Form Moving Blocks Example

Unit 4: Block Diagram Reduction. Block Diagram Reduction. Cascade Form Parallel Form Feedback Form Moving Blocks Example Engineering 5821: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland February 15, 2010 1 1 Subsystems are represented in block diagrams as blocks, each representing

More information

The Evolution of Waveform Relaxation for Circuit and Electromagnetic Solvers

The Evolution of Waveform Relaxation for Circuit and Electromagnetic Solvers The Evolution of Waveform Relaxation for Circuit and Electromagnetic Solvers Albert Ruehli, Missouri S&T EMC Laboratory, University of Science & Technology, Rolla, MO with contributions by Giulio Antonini,

More information

Continuous- Time Active Filter Design

Continuous- Time Active Filter Design Continuous- Time Active Filter Design T. Deliyannis Yichuang Sun J.K. Fidler CRC Press Boca Raton London New York Washington, D.C. Contents Chapter 1 Filter Fundamentals 1.1 Introduction 1 1.2 Filter Characterization

More information

NTT DOCOMO Technical Journal. Method for Measuring Base Station Antenna Radiation Characteristics in Anechoic Chamber. 1.

NTT DOCOMO Technical Journal. Method for Measuring Base Station Antenna Radiation Characteristics in Anechoic Chamber. 1. Base Station Antenna Directivity Gain Method for Measuring Base Station Antenna Radiation Characteristics in Anechoic Chamber Base station antennas tend to be long compared to the wavelengths at which

More information

CHAPTER 6 DIGITAL CIRCUIT DESIGN USING SINGLE ELECTRON TRANSISTOR LOGIC

CHAPTER 6 DIGITAL CIRCUIT DESIGN USING SINGLE ELECTRON TRANSISTOR LOGIC 94 CHAPTER 6 DIGITAL CIRCUIT DESIGN USING SINGLE ELECTRON TRANSISTOR LOGIC 6.1 INTRODUCTION The semiconductor digital circuits began with the Resistor Diode Logic (RDL) which was smaller in size, faster

More information

change (PABX) systems. There must, however, be isolation between and the higher voltage, transientprone

change (PABX) systems. There must, however, be isolation between and the higher voltage, transientprone Ring Detection with the HCPL-00 Optocoupler Application Note 0 Introduction The field of telecommunications has reached the point where the efficient control of voice channels is essential. People in business

More information

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Current Rebuilding Concept Applied to Boost CCM for PF Correction Current Rebuilding Concept Applied to Boost CCM for PF Correction Sindhu.K.S 1, B. Devi Vighneshwari 2 1, 2 Department of Electrical & Electronics Engineering, The Oxford College of Engineering, Bangalore-560068,

More information

Analogue Electronic Systems

Analogue Electronic Systems Unit 47: Unit code Analogue Electronic Systems F/615/1515 Unit level 5 Credit value 15 Introduction Analogue electronic systems are still widely used for a variety of very important applications and this

More information

Control of buck-boost chopper type AC voltage regulator

Control of buck-boost chopper type AC voltage regulator International Journal of Research in Advanced Engineering and Technology ISSN: 2455-0876; Impact Factor: RJIF 5.44 www.engineeringresearchjournal.com Volume 2; Issue 3; May 2016; Page No. 52-56 Control

More information

Design of a Regenerative Receiver for the Short-Wave Bands A Tutorial and Design Guide for Experimental Work. Part I

Design of a Regenerative Receiver for the Short-Wave Bands A Tutorial and Design Guide for Experimental Work. Part I Design of a Regenerative Receiver for the Short-Wave Bands A Tutorial and Design Guide for Experimental Work Part I Ramón Vargas Patrón rvargas@inictel-uni.edu.pe INICTEL-UNI Regenerative Receivers remain

More information

NINTH INTERNATIONAL CONGRESS ON SOUND AND VIBRATION, ICSV9 ACTIVE VIBRATION ISOLATION OF DIESEL ENGINES IN SHIPS

NINTH INTERNATIONAL CONGRESS ON SOUND AND VIBRATION, ICSV9 ACTIVE VIBRATION ISOLATION OF DIESEL ENGINES IN SHIPS Page number: 1 NINTH INTERNATIONAL CONGRESS ON SOUND AND VIBRATION, ICSV9 ACTIVE VIBRATION ISOLATION OF DIESEL ENGINES IN SHIPS Xun Li, Ben S. Cazzolato and Colin H. Hansen Department of Mechanical Engineering,

More information

Load Compensation at a Reduced DC Link Voltage by Using DSTATCOM with Non-Stiff Source

Load Compensation at a Reduced DC Link Voltage by Using DSTATCOM with Non-Stiff Source International Journal of Emerging Engineering Research and Technology Volume 2, Issue 3, June 2014, PP 220-229 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Load Compensation at a Reduced DC Link Voltage

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note Introduction to Electrical Circuit Analysis

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note Introduction to Electrical Circuit Analysis EECS 16A Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 11 11.1 Introduction to Electrical Circuit Analysis Our ultimate goal is to design systems that solve people s problems.

More information

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK June 2018 Authorized for Distribution by the New York State Education Department This test design and framework document is designed

More information

Application Note 1024

Application Note 1024 HCPL-00 Ring Detection with the HCPL-00 Optocoupler Application Note 0 Introduction The field of telecommunications has reached the point where the efficient control of voice channels is essential. People

More information

PH213 Chapter 26 solutions

PH213 Chapter 26 solutions PH213 Chapter 26 solutions 26.6. IDENTIFY: The potential drop is the same across the resistors in parallel, and the current into the parallel combination is the same as the current through the 45.0-Ω resistor.

More information

Variable Frequency AC Source

Variable Frequency AC Source Variable Frequency AC Source Functional Description and Complete System Block Diagram Students: Kevin Lemke Matthew Pasternak Advisor: Steve Gutschlag Date: October 21, 2013 1 Introduction: Variable frequency

More information

FAULT CURRENT LIMITER SURGE PROTECTION DEVICE FOR THE POWER GRID BASED UPON ZERO POWER CONSUMPTION CERAMIC FERRITE PERMANENT MAGNETS

FAULT CURRENT LIMITER SURGE PROTECTION DEVICE FOR THE POWER GRID BASED UPON ZERO POWER CONSUMPTION CERAMIC FERRITE PERMANENT MAGNETS FAULT CURRENT LIMITER SURGE PROTECTION DEVICE FOR THE POWER GRID BASED UPON ZERO POWER CONSUMPTION CERAMIC FERRITE PERMANENT MAGNETS Jeremy HALL Wolfson Centre for Magnetics, Cardiff University UK halljp@cf.ac.uk

More information

Voltage Controller for Radial Distribution Networks with Distributed Generation

Voltage Controller for Radial Distribution Networks with Distributed Generation International Journal of Scientific and Research Publications, Volume 4, Issue 3, March 2014 1 Voltage Controller for Radial Distribution Networks with Distributed Generation Christopher Kigen *, Dr. Nicodemus

More information

ACTIVE POWER CONTROL WITH UNDEAD-BAND VOLTAGE & FREQUENCY DROOP APPLIED TO A MESHED DC GRID TEST SYSTEM

ACTIVE POWER CONTROL WITH UNDEAD-BAND VOLTAGE & FREQUENCY DROOP APPLIED TO A MESHED DC GRID TEST SYSTEM ACTIVE POWER CONTROL WITH UNDEAD-BAND VOLTAGE & FREQUENCY DROOP APPLIED TO A MESHED DC GRID TEST SYSTEM Til Kristian Vrana a, Lorenzo Zeni b, Olav Bjarte Fosso a a Norwegian University of Science and Technology,

More information

Testing Firing Pulse Controls for a VSC Based HVDC Scheme with a Real Time Timestep < 3 µs

Testing Firing Pulse Controls for a VSC Based HVDC Scheme with a Real Time Timestep < 3 µs Testing Firing Pulse Controls for a VSC Based HVDC Scheme with a Real Time Timestep < 3 µs P.A. Forsyth, T.L. Maguire, D. Shearer, D. Rydmell T I. ABSTRACT Under Sea DC Cable HE paper deals with the difficulties

More information

Systematical measurement errors

Systematical measurement errors Systematical measurement errors Along the lines of the rule formulated by Schrödinger that a system can influenced even by observing, an EUT can be influenced by a normal measurements. If the measurement

More information

Simulation of Acquisition behavior of Second-order Analog Phase-locked Loop using Phase Error Process

Simulation of Acquisition behavior of Second-order Analog Phase-locked Loop using Phase Error Process International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 7, Number 2 (2014), pp. 93-106 International Research Publication House http://www.irphouse.com Simulation of Acquisition

More information

Common-emitter amplifier, no feedback, with reference waveforms for comparison.

Common-emitter amplifier, no feedback, with reference waveforms for comparison. Feedback If some percentage of an amplifier's output signal is connected to the input, so that the amplifier amplifies part of its own output signal, we have what is known as feedback. Feedback comes in

More information

CHAPTER 3. Instrumentation Amplifier (IA) Background. 3.1 Introduction. 3.2 Instrumentation Amplifier Architecture and Configurations

CHAPTER 3. Instrumentation Amplifier (IA) Background. 3.1 Introduction. 3.2 Instrumentation Amplifier Architecture and Configurations CHAPTER 3 Instrumentation Amplifier (IA) Background 3.1 Introduction The IAs are key circuits in many sensor readout systems where, there is a need to amplify small differential signals in the presence

More information

21.1 Resistors in Series and Parallel

21.1 Resistors in Series and Parallel 808 Chapter 21 Circuits and DC Instruments Explain why batteries in a flashlight gradually lose power and the light dims over time. Describe what happens to a graph of the voltage across a capacitor over

More information