Digital Fundamentals

Size: px
Start display at page:

Download "Digital Fundamentals"

Transcription

1 Digital Fundamentals Tenth Edition Floyd Chapter Pearson Education, Upper 2008 Pearson Saddle River, Education NJ All Rights Reserved

2 Objectives After completing this unit, you should be able to: 1. Explain, and provide examples of, the basic differences between digital and analog quantities. 2. Demonstrate how voltage levels are used to represent digital quantities. Describe the various parameters of a pulse (digital) waveform, including rise time, fall time, pulse width, frequency, period, and duty cycle. 4. Explain the basic logic operations of NOT, AND, and OR. 5. Describe the basic functions of the comparator, adder, code converter, encoder, decoder, multiplexer, demultiplexer, counter, and register. 6. Identify digital integrated circuits (ICs) according to their complexity and type.

3 Agenda Lecture: Chapter 1, pp Lab 1, Experiment 3: Number Systems Steps 1, 2, 3 & 4 (pg 23) in Buchla Section of Supplemental Text to Digital Fundamentals. Assignment: Complete questions 2, 4, 6, 8, 10, 12, 14, 16, 18, 22, & 24 from the Problems section of Electric Circuits Fundamentals on pp Prepare for a Quiz on Unit 1.

4 Analog Quantities Summary Most natural quantities that we see are analog and vary continuously. Analog systems can generally handle higher power than digital systems. Temperature ( F) Time of day A.M. P.M. Digital systems can process, store, and transmit data more efficiently but can only assign discrete values to each point.

5 Analog and Digital Systems Many systems use a mix of analog and digital electronics to take advantage of each technology. A typical CD player accepts digital data from the CD drive and converts it to an analog signal for amplification. CD drive Summary Digital data Digital-to-analog converter Analog reproduction of music audio signal Linear amplifier Speaker Sound waves

6 Summary Binary Digits and Logic Levels Digital electronics uses circuits that have two states, which are represented by two different voltage levels called HIGH and LOW. The voltages represent numbers in the binary system. In binary, a single number is called a bit (for binary digit). A bit can have the value of either a 0 or a 1, depending on if the voltage is HIGH or LOW. V H(max) V H(min) V L(max) V L(min) HIGH Invalid LOW

7 Digital Waveforms Summary Digital waveforms change between the LOW and HIGH levels. A positive going pulse is one that goes from a normally LOW logic level to a HIGH level and then back again. Digital waveforms are made up of a series of pulses. HIGH HIGH Rising or leading edge Falling or trailing edge Falling or leading edge Rising or trailing edge LOW LOW t 0 t 1 t 0 t 1 (a) Positive going pulse (b) Negative going pulse

8 Summary Pulse Definitions Actual pulses are not ideal but are described by the rise time, fall time, amplitude, and other characteristics. 90% Overshoot Ringing Droop Amplitude 50% t W Pulse width 10% Ringing Base line t r t f Undershoot Rise time Fall time

9 Periodic Pulse Waveforms Summary Periodic pulse waveforms are composed of pulses that repeats in a fixed interval called the period. The frequency is the rate it repeats and is measured in hertz. 1 1 f T T f The clock is a basic timing signal that is an example of a periodic wave. What is the period of a repetitive wave if f = 3.2 GHz? 1 1 T 313 ps f 3.2 GHz

10 Pulse Definitions Summary In addition to frequency and period, repetitive pulse waveforms are described by the amplitude (A), pulse width (t W ) and duty cycle. Duty cycle is the ratio of t W to T. Volts Amplitude (A) Pulse width (t W ) Period, T Time

11 Timing Diagrams Summary A timing diagram is used to show the relationship between two or more digital waveforms, Clock A B C A diagram like this can be observed directly on a logic analyzer.

12 Summary Serial and Parallel Data Data can be transmitted by either serial transfer or parallel transfer Computer t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 Modem 1 Computer 0 Printer t 0 t 1

13 Basic Logic Functions Summary True only if all input conditions are true. True only if one or more input conditions are true. Indicates the opposite condition.

14 Basic System Functions Summary And, or, and not elements can be combined to form various logic functions. A few examples are: The comparison function Two binary numbers A B Comparator A > B A = B A < B Outputs Basic arithmetic functions Adder Two binary numbers Carry in A B C in Σ C out Sum Carry out

15 Basic System Functions Summary HIGH 9 Encoder The encoding function / Calculator keypad Binary code for 9 used for storage and/or computation The decoding function Decoder Binary input 7-segment display

16 Basic System Functions Summary The data selection function A B Multiplexer t 1 Data from A to D Data from B to E Data from C to F Data from A to D t 1 t 2 t 3 t 1 Demultiplexer t 1 D E t 2 t 2 C t 3 t 3 F Switching sequence control input Switching sequence control input

17 Basic System Functions The counting function Summary Counter Parallel output lines Binary code for 1 Binary code for 2 Binary code for 3 Binary code for 4 Binary code for 5 Input pulses Sequence of binary codes that represent the number of input pulses counted. and other functions such as code conversion and storage.

18 Basic System Functions Summary One type of storage function is the shift register, that moves and stores data each time it is clocked. Serial bits on input line Initially, the register contains only invalid data or all zeros as shown here First bit (1) is shifted serially into the register. Second bit (0) is shifted serially into register and first bit is shifted right. Third bit (1) is shifted into register and the first and second bits are shifted right. Fourth bit (0) is shifted into register and the first, second, and third bits are shifted right. The register now stores all four bits and is full.

19 Summary Integrated Circuits Cutaway view of DIP (Dual-In-line Pins) chip: Chip Plastic case Pins The TTL series, available as DIPs are popular for laboratory experiments with logic.

20 Integrated Circuits Summary An example of laboratory prototyping is shown. The circuit is wired using DIP chips and tested. In this case, testing can be done by a computer connected to the system. DIP chips

21 Summary Integrated Circuits DIP chips and surface mount chips Pin 1 Dual in-line package Small outline IC (SOIC)

22 Summary Integrated Circuits Other surface mount packages: End view End view End view SOIC PLCC LCCC

23 Summary Assignment: Read Section (1-6) Programmable Logic Devices

24 Summary Test and Measurement Instruments The front panel controls for a general-purpose oscilloscope can be divided into four major groups. VERTICAL CH 1 CH 2 BOTH HORIZONTAL TRIGGER SLOPE Ð + POSITION POSITION POSITION LEVEL VOLTS/DIV VOLTS/DIV SEC/DIV SOURCE CH 1 CH 2 5 V 2 mv COUPLING AC-DC-GND 5 V 2 mv COUPLING AC-DC-GND 5 s 5 ns EXT LINE TRIG COUP DC AC DISPLAY PROBE COMP 5 V CH 1 CH 2 EXT TRIG INTENSITY

25 Ch 1 Ch 2 Vertical section Signal coupling AC DC GND Amp Summary Conversion/storage (Digital scopes only) Test and Measurement Instruments AC DC GND Volts/Di v Vertical position Amp For measuring digital signals, use DC coupling Conversion/storage (Digital scopes only) Digital only Analog only Display section Intensity Trigger section Horizontal section External trigger External trigger coupling Power supply AC DC Trigger source Ch 1 Ext Line AC Ch 2 DC to all sec tions Trigger level and slope Trigger circuits Sec /Div Time base Horizontal position Control and process (Digital scopes only) Normally, trigger on the slower of two waveforms when comparing signals.

26 Summary Test and Measurement Instruments The logic analyzer can display multiple channels of digital information or show data in tabular form.

27 Summary Test and Measurement Instruments OFF 0.01 V V Hz The DMM can make three basic electrical measurements. Voltage Resistance Current 10 A A 40 m A Fused V mv Range Autorange Touch/Hold 1 s 1 s V COM In digital work, DMMs are useful for checking power supply voltages, verifying resistors, testing continuity, and occasionally making other measurements.

28 Programmable Logic Summary Programmable logic devices (PLDs) are an alternative to fixed function devices. The logic can be programmed for a specific purpose. In general, they cost less and use less board space that fixed function devices. A PAL device is a form of PLD that uses a combination of a programmable AND array and a fixed OR array: Programmable AND array Fixed OR array and output logic

29 Selected Key Terms Analog Digital Binary Bit Pulse Being continuous or having continuous values. Related to digits or discrete quantities; having a set of discrete values. Having two values or states; describes a number system that has a base of two and utilizes 1 and 0 as its digits. A binary digit, which can be a 1 or a 0. A sudden change from one level to another, followed after a time, called the pulse width, by a sudden change back to the original level.

30 Selected Key Terms Clock Gate NOT AND A basic timing signal in a digital system; a periodic waveform used to synchronize actions. A logic circuit that performs a basic logic operations such as AND or OR. A basic logic function that performs inversion. A basic logic operation in which a true (HIGH) output occurs only when all input conditions are true (HIGH). OR A basic logic operation in which a true (HIGH) output occurs when when one or more of the input conditions are true (HIGH).

31 Selected Key Terms Fixed-function logic Programmable logic A category of digital integrated circuits having functions that cannot be altered. A category of digital integrated circuits capable of being programmed to perform specified functions.

32 Agenda Lecture: Chapter 1, pp Lab 1, Experiment 3: Number Systems Steps 1, 2, 3 & 4 (pg 23) in Buchla Section of Supplemental Text to Digital Fundamentals. Assignment: Complete questions 2, 4, 6, 8, 10, 12, 14, 16, 18, 22, & 24 from the Problems section of Electric Circuits Fundamentals on pp Prepare for a Quiz on Unit 1.

Digital Fundamentals 8/25/2016. Summary. Summary. Floyd. Chapter 1. Analog Quantities

Digital Fundamentals 8/25/2016. Summary. Summary. Floyd. Chapter 1. Analog Quantities 8/25/206 Digital Fundamentals Tenth Edition Floyd Chapter Analog Quantities Most natural quantities that we see are analog and vary continuously. Analog systems can generally handle higher power than digital

More information

Dr. Cahit Karakuş ANALOG SİNYALLER

Dr. Cahit Karakuş ANALOG SİNYALLER Dr. Cahit Karakuş ANALOG SİNYALLER Sinusoidal Waveform Mathematically it is represented as: Sinusoidal Waveform Unit of measurement for horizontal axis can be time, degrees or radians. Sinusoidal Waveform

More information

Digital Logic ircuits Circuits Fundamentals I Fundamentals I

Digital Logic ircuits Circuits Fundamentals I Fundamentals I Digital Logic Circuits Fundamentals I Fundamentals I 1 Digital and Analog Quantities Electronic circuits can be divided into two categories. Digital Electronics : deals with discrete values (= sampled

More information

BEE 2233 Digital Electronics. Chapter 1: Introduction

BEE 2233 Digital Electronics. Chapter 1: Introduction BEE 2233 Digital Electronics Chapter 1: Introduction Learning Outcomes Understand the basic concept of digital and analog quantities. Differentiate the digital and analog systems. Compare the advantages

More information

Aim. Lecture 1: Overview Digital Concepts. Objectives. 15 Lectures

Aim. Lecture 1: Overview Digital Concepts. Objectives. 15 Lectures Aim Lecture 1: Overview Digital Concepts to give a first course in digital electronics providing you with both the knowledge and skills required to design simple digital circuits and preparing you for

More information

EE19D Digital Electronics. Lecture 1: General Introduction

EE19D Digital Electronics. Lecture 1: General Introduction EE19D Digital Electronics Lecture 1: General Introduction 1 What are we going to discuss? Some Definitions Digital and Analog Quantities Binary Digits, Logic Levels and Digital Waveforms Introduction to

More information

Digital Fundamentals. Introductory Digital Concepts

Digital Fundamentals. Introductory Digital Concepts Digital Fundamentals Introductory Digital Concepts Objectives Explain the basic differences between digital and analog quantities Show how voltage levels are used to represent digital quantities Describe

More information

PC-OSCILLOSCOPE PCS500. Analog and digital circuit sections. Description of the operation

PC-OSCILLOSCOPE PCS500. Analog and digital circuit sections. Description of the operation PC-OSCILLOSCOPE PCS500 Analog and digital circuit sections Description of the operation Operation of the analog section This description concerns only channel 1 (CH1) input stages. The operation of CH2

More information

Lecture 2. Digital Basics

Lecture 2. Digital Basics Lecture Digital Basics Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/teaching/de1_ee/ E-mail: p.cheung@imperial.ac.uk Lecture Slide

More information

Getting Started. MSO/DPO Series Oscilloscopes. Basic Concepts

Getting Started. MSO/DPO Series Oscilloscopes. Basic Concepts Getting Started MSO/DPO Series Oscilloscopes Basic Concepts 001-1523-00 Getting Started 1.1 Getting Started What is an oscilloscope? An oscilloscope is a device that draws a graph of an electrical signal.

More information

Cornerstone Electronics Technology and Robotics Week 21 Electricity & Electronics Section 10.5, Oscilloscope

Cornerstone Electronics Technology and Robotics Week 21 Electricity & Electronics Section 10.5, Oscilloscope Cornerstone Electronics Technology and Robotics Week 21 Electricity & Electronics Section 10.5, Oscilloscope Field trip to Deerhaven Generation Plant: Administration: o Prayer o Turn in quiz Electricity

More information

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope.

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope. The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a digital oscilloscope. THEORY The oscilloscope, or scope for short, is a device for drawing

More information

Experiment # 1 Introduction to Lab Equipment

Experiment # 1 Introduction to Lab Equipment Experiment # 1 Introduction to Lab Equipment 1. Synopsis: In this introductory lab, we will review the basic concepts of digital logic design and learn how to use the equipment available in the laboratory.

More information

DIGITAL COMMUNICATIONS LAB

DIGITAL COMMUNICATIONS LAB DIGITAL COMMUNICATIONS LAB List of Experiments: 1. PCM Generation and Detection. 2. Differential Pulse Code modulation. 3. Delta modulation. 4. Time Division Multiplexing of 2band Limited Signals. 5. Frequency

More information

Multiple Instrument Station Module

Multiple Instrument Station Module Multiple Instrument Station Module Digital Storage Oscilloscope Vertical Channels Sampling rate Bandwidth Coupling Input impedance Vertical sensitivity Vertical resolution Max. input voltage Horizontal

More information

IES Digital Mock Test

IES Digital Mock Test . The circuit given below work as IES Digital Mock Test - 4 Logic A B C x y z (a) Binary to Gray code converter (c) Binary to ECESS- converter (b) Gray code to Binary converter (d) ECESS- To Gray code

More information

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam MIDTERM EXAMINATION 2011 (October-November) Q-21 Draw function table of a half adder circuit? (2) Answer: - Page

More information

CHW 261: Logic Design

CHW 261: Logic Design CHW 6: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed4 http://bu.edu.eg/staff/ahmedshalaby4# Slide Copyright 6 by Pearson Education, Inc. Upper Saddle

More information

Specifications for DS1000CA Series

Specifications for DS1000CA Series Revised December, 2009 RIGOL Specifications for DS1000CA Series All specifications apply to the DS1000CA Series Oscilloscopes unless noted otherwise. To meet these specifications, two conditions must first

More information

Chapter 5 : Specifications

Chapter 5 : Specifications Chapter 5 : Specifications All specifications apply to the DS1000B Series Oscilloscopes and a probe with the Attenuation switch set to 10X unless noted otherwise. To meet these specifications, two conditions

More information

CONTENTS Sl. No. Experiment Page No

CONTENTS Sl. No. Experiment Page No CONTENTS Sl. No. Experiment Page No 1a Given a 4-variable logic expression, simplify it using Entered Variable Map and realize the simplified logic expression using 8:1 multiplexer IC. 2a 3a 4a 5a 6a 1b

More information

Appendix A: Specifications

Appendix A: Specifications All specifications apply to the TDS 200-Series Digital Oscilloscopes and a P2100 probe with the Attenuation switch set to 10X unless noted otherwise. To meet specifications, two conditions must first be

More information

EE 210 Lab Exercise #4 D/A & A/D Converters

EE 210 Lab Exercise #4 D/A & A/D Converters EE 210 Lab Exercise #4 D/A & A/D Converters Introduction This lab deals with simple resistive circuits to perform Digital-to-Analog (D/A) conversion. We also introduce the use of a basic Analog-to-Digital

More information

RIGOL Data Sheet. DS1000E, DS1000D Series Digital Oscilloscopes DS1102E, DS1052E, DS1102D, DS1052D. Product Overview. Easy to Use Design.

RIGOL Data Sheet. DS1000E, DS1000D Series Digital Oscilloscopes DS1102E, DS1052E, DS1102D, DS1052D. Product Overview. Easy to Use Design. RIGOL Data Sheet DS1000E, DS1000D Series Digital Oscilloscopes DS1102E, DS1052E, DS1102D, DS1052D Product Overview The DS1000E, DS1000D series instruments are economical, high-performance digital oscilloscopes.

More information

Analog-to-Digital Converter (ADC) And Digital-to-Analog Converter (DAC)

Analog-to-Digital Converter (ADC) And Digital-to-Analog Converter (DAC) 1 Analog-to-Digital Converter (ADC) And Digital-to-Analog Converter (DAC) 2 1. DAC In an electronic circuit, a combination of high voltage (+5V) and low voltage (0V) is usually used to represent a binary

More information

Experiment 5 The Oscilloscope

Experiment 5 The Oscilloscope Experiment 5 The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a cathode ray oscilloscope. THEORY The oscilloscope, or scope for short, is

More information

Analog Arts SL987 SL957 SL937 SL917 Product Specifications [1]

Analog Arts SL987 SL957 SL937 SL917 Product Specifications [1] www.analogarts.com Analog Arts SL987 SL957 SL937 SL917 Product Specifications [1] 1. These models include: an oscilloscope, a spectrum analyzer, a data recorder, a frequency & phase meter, an arbitrary

More information

CHAPTER 6 DIGITAL INSTRUMENTS

CHAPTER 6 DIGITAL INSTRUMENTS CHAPTER 6 DIGITAL INSTRUMENTS 1 LECTURE CONTENTS 6.1 Logic Gates 6.2 Digital Instruments 6.3 Analog to Digital Converter 6.4 Electronic Counter 6.6 Digital Multimeters 2 6.1 Logic Gates 3 AND Gate The

More information

Digital Fundamentals

Digital Fundamentals Digital Fundamentals Tenth Edition Floyd Chapter 3 28 Pearson Education 29 Pearson Education, Upper Saddle River, NJ 7458. ll Rights Reserved The Inverter The inverter performs the oolean NOT operation.

More information

EE 421L Digital Electronics Laboratory. Laboratory Exercise #9 ADC and DAC

EE 421L Digital Electronics Laboratory. Laboratory Exercise #9 ADC and DAC EE 421L Digital Electronics Laboratory Laboratory Exercise #9 ADC and DAC Department of Electrical and Computer Engineering University of Nevada, at Las Vegas Objective: The purpose of this laboratory

More information

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 4 Alternating Current Measurement Equipment: Supplies: Oscilloscope, Function Generator. Filament Transformer. A sine wave A.C. signal has three basic properties:

More information

Analog Arts SF990 SF880 SF830 Product Specifications

Analog Arts SF990 SF880 SF830 Product Specifications 1 www.analogarts.com Analog Arts SF990 SF880 SF830 Product Specifications Analog Arts reserves the right to change, modify, add or delete portions of any one of its specifications at any time, without

More information

Introduction to Basic Laboratory Instruments

Introduction to Basic Laboratory Instruments Introduction to Contents: 1. Objectives... 2 2. Laboratory Safety... 2 3.... 2 4. Using a DC Power Supply... 2 5. Using a Function Generator... 3 5.1 Turn on the Instrument... 3 5.2 Setting Signal Type...

More information

LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM. 2012/ODD/III/ECE/DE/LM Page No. 1

LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM. 2012/ODD/III/ECE/DE/LM Page No. 1 LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM K-Map for SUM: K-Map for CARRY: SUM = A B + AB CARRY = AB 22/ODD/III/ECE/DE/LM Page No. EXPT NO: DATE : DESIGN OF ADDER AND SUBTRACTOR AIM: To design

More information

Model 305 Synchronous Countdown System

Model 305 Synchronous Countdown System Model 305 Synchronous Countdown System Introduction: The Model 305 pre-settable countdown electronics is a high-speed synchronous divider that generates an electronic trigger pulse, locked in time with

More information

ENGR 1110: Introduction to Engineering Lab 7 Pulse Width Modulation (PWM)

ENGR 1110: Introduction to Engineering Lab 7 Pulse Width Modulation (PWM) ENGR 1110: Introduction to Engineering Lab 7 Pulse Width Modulation (PWM) Supplies Needed Motor control board, Transmitter (with good batteries), Receiver Equipment Used Oscilloscope, Function Generator,

More information

DS 6000 Specifications

DS 6000 Specifications DS 6000 Specifications All the specifications are guaranteed except the parameters marked with Typical and the oscilloscope needs to operate for more than 30 minutes under the specified operation temperature.

More information

AC LAB ECE-D ecestudy.wordpress.com

AC LAB ECE-D ecestudy.wordpress.com PART B EXPERIMENT NO: 1 AIM: PULSE AMPLITUDE MODULATION (PAM) & DEMODULATION DATE: To study Pulse Amplitude modulation and demodulation process with relevant waveforms. APPARATUS: 1. Pulse amplitude modulation

More information

EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

Electric Circuit II Lab Manual Session #1

Electric Circuit II Lab Manual Session #1 Department of Electrical Engineering Electric Circuit II Lab Manual Session #1 Subject Lecturer Dr. Yasser Hegazy Name:-------------------------------------------------- Group:--------------------------------------------------

More information

Using Circuits, Signals and Instruments

Using Circuits, Signals and Instruments Using Circuits, Signals and Instruments To be ignorant of one s ignorance is the malady of the ignorant. A. B. Alcott (1799-1888) Some knowledge of electrical and electronic technology is essential for

More information

Introduction to Oscilloscopes Instructor s Guide

Introduction to Oscilloscopes Instructor s Guide Introduction to Oscilloscopes A collection of lab exercises to introduce you to the basic controls of a digital oscilloscope in order to make common electronic measurements. Revision 1.0 Page 1 of 25 Copyright

More information

Experiment 5: Basic Digital Logic Circuits

Experiment 5: Basic Digital Logic Circuits ELEC 2010 Laboratory Manual Experiment 5 In-Lab Procedure Page 1 of 5 Experiment 5: Basic Digital Logic Circuits In-Lab Procedure and Report (30 points) Before starting the procedure, record the table

More information

Physics 323. Experiment # 1 - Oscilloscope and Breadboard

Physics 323. Experiment # 1 - Oscilloscope and Breadboard Physics 323 Experiment # 1 - Oscilloscope and Breadboard Introduction In order to familiarise yourself with the laboratory equipment, a few simple experiments are to be performed. References: XYZ s of

More information

Data Sheet. Digital Storage Oscilloscope. Features & Benefits. Applications. Ease-of-Use Feature DSO5202BMT DSO5102BMT DSO5062BMT

Data Sheet. Digital Storage Oscilloscope. Features & Benefits. Applications. Ease-of-Use Feature DSO5202BMT DSO5102BMT DSO5062BMT Data Sheet Digital Storage Oscilloscope DSO5202BMT DSO5102BMT DSO5062BMT Features & Benefits 200/100/60MHz Bandwidths 1GSa/s Real Time Sample Rate 2M Memory Depth Trigger mode: Edge, Pulse Width, Video,

More information

Digital Fundamentals 9/4/2017. Summary. Summary. Floyd. Chapter 3. The Inverter

Digital Fundamentals 9/4/2017. Summary. Summary. Floyd. Chapter 3. The Inverter Digital Fundamentals Tenth Edition Floyd Chapter 3 29 Pearson Education, Upper 28 Pearson Saddle River, Education NJ 7458. ll Rights Reserved The Inverter The inverter performs the oolean NOT operation.

More information

Name EET 1131 Lab #2 Oscilloscope and Multisim

Name EET 1131 Lab #2 Oscilloscope and Multisim Name EET 1131 Lab #2 Oscilloscope and Multisim Section 1. Oscilloscope Introduction Equipment and Components Safety glasses Logic probe ETS-7000 Digital-Analog Training System Fluke 45 Digital Multimeter

More information

Name: Class: Date: 1. As more electronic systems have been designed using digital technology, devices have become smaller and less powerful.

Name: Class: Date: 1. As more electronic systems have been designed using digital technology, devices have become smaller and less powerful. Name: Class: Date: DE Midterm Review 2 True/False Indicate whether the statement is true or false. 1. As more electronic systems have been designed using digital technology, devices have become smaller

More information

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING (Regulation 2013) EE 6311 LINEAR AND DIGITAL INTEGRATED CIRCUITS LAB MANUAL 1 SYLLABUS OBJECTIVES: Working Practice in simulators / CAD Tools / Experiment

More information

N acquisitions, all channels simultaneously, N is selectable from 4, 16, 64, and 128 Inputs

N acquisitions, all channels simultaneously, N is selectable from 4, 16, 64, and 128 Inputs With compliments All specifications apply to the TDS 200-Series Digital Real-Time Oscilloscope with a P2100 probe with the Attenuation switch set to 10X unless noted otherwise. To meet specifications,

More information

DS1000B Series Digital Oscilloscopes

DS1000B Series Digital Oscilloscopes Product Overview DS1000B series oscilloscopes are designed with four analog channels and 1 external trigger channel, which can capture multi-channel signal simultaneously and meet industrial needs. The

More information

74F5074 Synchronizing dual D-type flip-flop/clock driver

74F5074 Synchronizing dual D-type flip-flop/clock driver INTEGRATED CIRCUITS Synchronizing dual D-type flip-flop/clock driver 1990 Sep 14 IC15 Data Handbook FEATURES Metastable immune characteristics Output skew guaranteed less than 1.5ns High source current

More information

Chapter 5: Signal conversion

Chapter 5: Signal conversion Chapter 5: Signal conversion Learning Objectives: At the end of this topic you will be able to: explain the need for signal conversion between analogue and digital form in communications and microprocessors

More information

6.111 Lecture # 15. Operational Amplifiers. Uses of Op Amps

6.111 Lecture # 15. Operational Amplifiers. Uses of Op Amps 6.111 Lecture # 15 Operational Amplifiers Parameter Ideal '741 '357 Int Gain A Infinity 200,000/f(Hz) 20x10^6/f(Hz) Uses of Op Amps Analog uses employ negative feedback to drive + input to (nearly) the

More information

University of Pennsylvania. Department of Electrical and Systems Engineering. ESE Undergraduate Laboratory. Analog to Digital Converter

University of Pennsylvania. Department of Electrical and Systems Engineering. ESE Undergraduate Laboratory. Analog to Digital Converter University of Pennsylvania Department of Electrical and Systems Engineering ESE Undergraduate Laboratory Analog to Digital Converter PURPOSE The purpose of this lab is to design and build a simple Digital-to-Analog

More information

i Intelligent Digitize Emulated Achievement Lab

i Intelligent Digitize Emulated Achievement Lab Electronics Circuits Equipment Intelligent Digitize Emulated Achievement Lab intelligent digitize emulated achievement lab is a digitized-based training system, which utilizes integrated Hardware Platform,

More information

Name EGR 2131 Lab #2 Logic Gates and Boolean Algebra Objectives Equipment and Components Part 1: Reading Pin Diagrams 7400 (TOP VIEW)

Name EGR 2131 Lab #2 Logic Gates and Boolean Algebra Objectives Equipment and Components Part 1: Reading Pin Diagrams 7400 (TOP VIEW) Name EGR 23 Lab #2 Logic Gates and Boolean Algebra Objectives ) Become familiar with common logic-gate chips and their pin numbers. 2) Using breadboarded chips, investigate the behavior of NOT (Inverter),

More information

UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering. EEC 180A DIGITAL SYSTEMS I Winter 2015

UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering. EEC 180A DIGITAL SYSTEMS I Winter 2015 UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering EEC 180A DIGITAL SYSTEMS I Winter 2015 LAB 2: INTRODUCTION TO LAB INSTRUMENTS The purpose of this lab is to introduce the

More information

74F50729 Synchronizing dual D-type flip-flop with edge-triggered set and reset with metastable immune characteristics

74F50729 Synchronizing dual D-type flip-flop with edge-triggered set and reset with metastable immune characteristics INTEGRATED CIRCUITS Synchronizing dual D-type flip-flop with edge-triggered set and reset with metastable immune characteristics 1990 Sep 14 IC15 Data Handbook FEATURES Metastable immune characteristics

More information

Step Response of RC Circuits

Step Response of RC Circuits EE 233 Laboratory-1 Step Response of RC Circuits 1 Objectives Measure the internal resistance of a signal source (eg an arbitrary waveform generator) Measure the output waveform of simple RC circuits excited

More information

R & D Electronics DIGITAL IC TRAINER. Model : DE-150. Feature: Object: Specification:

R & D Electronics DIGITAL IC TRAINER. Model : DE-150. Feature: Object: Specification: DIGITAL IC TRAINER Model : DE-150 Object: To Study the Operation of Digital Logic ICs TTL and CMOS. To Study the All Gates, Flip-Flops, Counters etc. To Study the both the basic and advance digital electronics

More information

Unit level 4 Credit value 15. Introduction. Learning Outcomes

Unit level 4 Credit value 15. Introduction. Learning Outcomes Unit 20: Unit code Digital Principles T/615/1494 Unit level 4 Credit value 15 Introduction While the broad field of electronics covers many aspects, it is digital electronics which now has the greatest

More information

Sonoma State University Department of Engineering Science Spring 2017

Sonoma State University Department of Engineering Science Spring 2017 EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 4 Introduction to AC Measurements (I) AC signals, Function Generators and Oscilloscopes Function Generator (AC) Battery

More information

Combinational logic: Breadboard adders

Combinational logic: Breadboard adders ! ENEE 245: Digital Circuits & Systems Lab Lab 1 Combinational logic: Breadboard adders ENEE 245: Digital Circuits and Systems Laboratory Lab 1 Objectives The objectives of this laboratory are the following:

More information

Experiment # (3) PCM Modulator

Experiment # (3) PCM Modulator Islamic University of Gaza Faculty of Engineering Electrical Department Experiment # (3) PCM Modulator Digital Communications Lab. Prepared by: Eng. Mohammed K. Abu Foul Experiment Objectives: 1. To understand

More information

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization The University of Jordan Mechatronics Engineering Department Electronics Lab.(0908322) Experiment 1: Lab Equipment Familiarization Objectives To be familiar with the main blocks of the oscilloscope and

More information

Microprocessor & Interfacing Lecture Programmable Interval Timer

Microprocessor & Interfacing Lecture Programmable Interval Timer Microprocessor & Interfacing Lecture 30 8254 Programmable Interval Timer P A R U L B A N S A L A S S T P R O F E S S O R E C S D E P A R T M E N T D R O N A C H A R Y A C O L L E G E O F E N G I N E E

More information

2 Oscilloscope Familiarization

2 Oscilloscope Familiarization Lab 2 Oscilloscope Familiarization What You Need To Know: Voltages and currents in an electronic circuit as in a CD player, mobile phone or TV set vary in time. Throughout the course you will investigate

More information

Octal Sample-and-Hold with Multiplexed Input SMP18

Octal Sample-and-Hold with Multiplexed Input SMP18 a FEATURES High Speed Version of SMP Internal Hold Capacitors Low Droop Rate TTL/CMOS Compatible Logic Inputs Single or Dual Supply Operation Break-Before-Make Channel Addressing Compatible With CD Pinout

More information

Department of Electronics & Telecommunication Engg. LAB MANUAL. B.Tech V Semester [ ] (Branch: ETE)

Department of Electronics & Telecommunication Engg. LAB MANUAL. B.Tech V Semester [ ] (Branch: ETE) Department of Electronics & Telecommunication Engg. LAB MANUAL SUBJECT:-DIGITAL COMMUNICATION SYSTEM [BTEC-501] B.Tech V Semester [2013-14] (Branch: ETE) KCT COLLEGE OF ENGG & TECH., FATEHGARH PUNJAB TECHNICAL

More information

Laboratory 4. Bandwidth, Filters, and Diodes

Laboratory 4. Bandwidth, Filters, and Diodes Laboratory 4 Bandwidth, Filters, and Diodes Required Components: k resistor 0. F capacitor N94 small-signal diode LED 4. Objectives In the previous laboratory exercise you examined the effects of input

More information

ENGINEERING TRIPOS PART II A ELECTRICAL AND INFORMATION ENGINEERING TEACHING LABORATORY EXPERIMENT 3B2-B DIGITAL INTEGRATED CIRCUITS

ENGINEERING TRIPOS PART II A ELECTRICAL AND INFORMATION ENGINEERING TEACHING LABORATORY EXPERIMENT 3B2-B DIGITAL INTEGRATED CIRCUITS ENGINEERING TRIPOS PART II A ELECTRICAL AND INFORMATION ENGINEERING TEACHING LABORATORY EXPERIMENT 3B2-B DIGITAL INTEGRATED CIRCUITS OBJECTIVES : 1. To interpret data sheets supplied by the manufacturers

More information

4. Digital Measurement of Electrical Quantities

4. Digital Measurement of Electrical Quantities 4.1. Concept of Digital Systems Concept A digital system is a combination of devices designed for manipulating physical quantities or information represented in digital from, i.e. they can take only discrete

More information

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits Table of Contents: Pre-Lab Assignment 2 Background 2 National Instruments MyDAQ 2 Resistors 3 Capacitors

More information

ENGR 210 Lab 12: Analog to Digital Conversion

ENGR 210 Lab 12: Analog to Digital Conversion ENGR 210 Lab 12: Analog to Digital Conversion In this lab you will investigate the operation and quantization effects of an A/D and D/A converter. A. BACKGROUND 1. LED Displays We have been using LEDs

More information

SRV ENGINEERING COLLEGE SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI

SRV ENGINEERING COLLEGE SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI 6489 (Approved By AICTE,Newdelhi Affiliated To ANNA UNIVERSITY::Chennai) CS 62 DIGITAL ELECTRONICS LAB (REGULATION-23) LAB MANUAL DEPARTMENT OF

More information

Exercise 1: Circuit Block Familiarization

Exercise 1: Circuit Block Familiarization Exercise 1: Circuit Block Familiarization EXERCISE OBJECTIVE When you have completed this exercise, you will be able to locate and identify the circuit blocks and components on the DIGITAL LOGIC FUNDAMENTALS

More information

Contents. CALIBRATION PROCEDURE NI PXIe-6555/6556. ni.com/manuals

Contents. CALIBRATION PROCEDURE NI PXIe-6555/6556. ni.com/manuals CALIBRATION PROCEDURE NI PXIe-6555/6556 Français Deutsch ni.com/manuals This document contains the verification and adjustment procedures for the NI PXIe-6555 (NI 6555) and NI PXIe-6556 (NI 6556) 200 MHz

More information

LIST OF EXPERIMENTS. KCTCET/ /Odd/3rd/ETE/CSE/LM

LIST OF EXPERIMENTS. KCTCET/ /Odd/3rd/ETE/CSE/LM LIST OF EXPERIMENTS. Study of logic gates. 2. Design and implementation of adders and subtractors using logic gates. 3. Design and implementation of code converters using logic gates. 4. Design and implementation

More information

Basic Logic Circuits

Basic Logic Circuits Basic Logic Circuits Required knowledge Measurement of static characteristics of nonlinear circuits. Measurement of current consumption. Measurement of dynamic properties of electrical circuits. Definitions

More information

Signal Characteristics

Signal Characteristics Data Transmission The successful transmission of data depends upon two factors:» The quality of the transmission signal» The characteristics of the transmission medium Some type of transmission medium

More information

DIGITAL ELECTRONICS: LOGIC AND CLOCKS

DIGITAL ELECTRONICS: LOGIC AND CLOCKS DIGITL ELECTRONICS: LOGIC ND CLOCKS L 9 INTRO: INTRODUCTION TO DISCRETE DIGITL LOGIC, MEMORY, ND CLOCKS GOLS In this experiment, we will learn about the most basic elements of digital electronics, from

More information

JEFFERSON COLLEGE COURSE SYLLABUS ETC255 INTRODUCTION TO DIGITAL CIRCUITS. 6 Credit Hours. Prepared by: Dennis Eimer

JEFFERSON COLLEGE COURSE SYLLABUS ETC255 INTRODUCTION TO DIGITAL CIRCUITS. 6 Credit Hours. Prepared by: Dennis Eimer JEFFERSON COLLEGE COURSE SYLLABUS ETC255 INTRODUCTION TO DIGITAL CIRCUITS 6 Credit Hours Prepared by: Dennis Eimer Revised Date: August, 2007 By Dennis Eimer Division of Technology Dr. John Keck, Dean

More information

EE ELECTRICAL ENGINEERING AND INSTRUMENTATION

EE ELECTRICAL ENGINEERING AND INSTRUMENTATION EE6352 - ELECTRICAL ENGINEERING AND INSTRUMENTATION UNIT V ANALOG AND DIGITAL INSTRUMENTS Digital Voltmeter (DVM) It is a device used for measuring the magnitude of DC voltages. AC voltages can be measured

More information

Agilent 33522A Function Arbitrary Waveform Generator. Tektronix TDS 3012B Oscilloscope

Agilent 33522A Function Arbitrary Waveform Generator. Tektronix TDS 3012B Oscilloscope Agilent 33522A Function/Arbitrary Waveform Generator and Tektronix TDS 3012B Oscilloscope Agilent 33522A Function Arbitrary Waveform Generator The signal source for this lab is the Agilent 33522A Function

More information

5 TIPS FOR GETTING THE MOST OUT OF Your Function Generator

5 TIPS FOR GETTING THE MOST OUT OF Your Function Generator 5 TIPS FOR GETTING THE MOST OUT OF Your Function Generator Introduction Modern function/waveform generators are extremely versatile, going well beyond the basic sine, square, and ramp waveforms. Function

More information

Electronics. Digital Electronics

Electronics. Digital Electronics Electronics Digital Electronics Introduction Unlike a linear, or analogue circuit which contains signals that are constantly changing from one value to another, such as amplitude or frequency, digital

More information

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation EECE208 INTRO To ELECTRICAL ENG LAB Dr. Charles Kim LAB 2. Instrumentation Objectives A brief description of the equipment (Oscilloscope, Function Generator, Power Supply, and Digital Multimeter) and its

More information

Schmitt Trigger Inputs, Decoders

Schmitt Trigger Inputs, Decoders Schmitt Trigger, Decoders Page 1 Schmitt Trigger Inputs, Decoders TTL Switching In this lab we study the switching of TTL devices. To do that we begin with a source that is unusual for logic circuits,

More information

Laboratory Equipment Instruction Manual 2011

Laboratory Equipment Instruction Manual 2011 University of Toronto Department of Electrical and Computer Engineering Instrumentation Laboratory GB341 Laboratory Equipment Instruction Manual 2011 Page 1. Wires and Cables A-2 2. Protoboard A-3 3. DC

More information

UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering. ECE 2A & 2B Laboratory Equipment Information

UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering. ECE 2A & 2B Laboratory Equipment Information UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering ECE 2A & 2B Laboratory Equipment Information Table of Contents Digital Multi-Meter (DMM)... 1 Features... 1 Using

More information

Dedan Kimathi University of technology. Department of Electrical and Electronic Engineering. EEE2406: Instrumentation. Lab 2

Dedan Kimathi University of technology. Department of Electrical and Electronic Engineering. EEE2406: Instrumentation. Lab 2 Dedan Kimathi University of technology Department of Electrical and Electronic Engineering EEE2406: Instrumentation Lab 2 Title: Analogue to Digital Conversion October 2, 2015 1 Analogue to Digital Conversion

More information

P a g e 1 ST985. TDR Cable Analyzer Instruction Manual. Analog Arts Inc.

P a g e 1 ST985. TDR Cable Analyzer Instruction Manual. Analog Arts Inc. P a g e 1 ST985 TDR Cable Analyzer Instruction Manual Analog Arts Inc. www.analogarts.com P a g e 2 Contents Software Installation... 4 Specifications... 4 Handling Precautions... 4 Operation Instruction...

More information

Digital Electronic Concepts

Digital Electronic Concepts Western Technical College 10662137 Digital Electronic Concepts Course Outcome Summary Course Information Description Career Cluster Instructional Level Total Credits 4.00 Total Hours 108.00 This course

More information

UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING. Electrical Engineering Science. Laboratory Manual

UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING. Electrical Engineering Science. Laboratory Manual UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING Electrical Engineering Science Laboratory Manual Table of Contents Experiment #1 OHM S LAW... 3 Experiment # 2 SERIES AND PARALLEL CIRCUITS... 8

More information

INTRODUCTION TO COMMUNICATION SYSTEMS LABORATORY IV. Binary Pulse Amplitude Modulation and Pulse Code Modulation

INTRODUCTION TO COMMUNICATION SYSTEMS LABORATORY IV. Binary Pulse Amplitude Modulation and Pulse Code Modulation INTRODUCTION TO COMMUNICATION SYSTEMS Introduction: LABORATORY IV Binary Pulse Amplitude Modulation and Pulse Code Modulation In this lab we will explore some of the elementary characteristics of binary

More information

EECE 143 Lecture 0: Intro to Digital Laboratory

EECE 143 Lecture 0: Intro to Digital Laboratory EECE 143 Lecture 0: Intro to Digital Laboratory Syllabus * Class Notes Laboratory Equipment Experiment 0 * Experiment 1 Introduction Instructor Information: Mr. J. Christopher Perez Room: Haggerty Engineering,

More information

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016 Analog I/O ECE 153B Sensor & Peripheral Interface Design Introduction Anytime we need to monitor or control analog signals with a digital system, we require analogto-digital (ADC) and digital-to-analog

More information

Practical 2P12 Semiconductor Devices

Practical 2P12 Semiconductor Devices Practical 2P12 Semiconductor Devices What you should learn from this practical Science This practical illustrates some points from the lecture courses on Semiconductor Materials and Semiconductor Devices

More information

Macroblcok MBI5042 Application Note-VB.01-EN

Macroblcok MBI5042 Application Note-VB.01-EN MBI5042 Application Note (The article is suitable for the IC whose version code is B and datasheet version is VB.0X) Forward MBI5042 uses the embedded PWM signal to control grayscale output and LED current.

More information