10 Secondary Surveillance Radar

Size: px
Start display at page:

Download "10 Secondary Surveillance Radar"

Transcription

1 10 Secondary Surveillance Radar As we have just noted, the primary radar element of the ATC Surveillance Radar System provides detection of suitable targets with good accuracy in bearing and range measurement but with the following limitations: Targets that are too small, are built of a poor radar reflecting material or have a poor aspect may not be detected Targets cannot be identified directly Radar energy suffers from attenuation (losses) both on the path out to the target and on the return path of the reflections To overcome these problems, a Surveillance Radar installation will often consist of both a primary radar and a secondary radar, the latter being known as a Secondary Surveillance Radar (SSR). The role of the SSR is to complement the primary radar element. Fig. RN 10.1 shows the aerials of a primary radar (the big reflector) and an SSR radar (the long, flat aerial on top) Principles SSR operates on secondary radar principles. An SSR link uses one ground-based transmitter and receiver, called the interrogator and one airborne transmitter and receiver, referred to as the ATC transponder, or simply transponder. The interrogator transmits pulse pairs. A receiver within the interrogator s beam receives these pulses and decodes them. The transponder then responds by transmitting a pulse train (many pulses in a stream) back to the interrogator. The pulse train contains information according to what the interrogator requested. All interrogations are transmitted at a frequency of 1030 MHz and all transponder responses are transmitted at a frequency of 1090 MHz. The SSR aerial consists of a radiator and reflector similar to that used in the primary radar but, because the return is much stronger than that of a primary radar reflection, it is much smaller. Fig. RN 10.1 Primary radar aerial with SSR antenna on top Secondary Surveillance Radar 10-1 Radio Navigation E5 - Final.indb :30:54

2 Fig. RN 10.2 shows the polar diagram, in the horizontal plane, for such an aerial. Side lobe Main beam Fig. RN 10.2 Polar diagram The aerial illustrated at fig. RN 10.1 is known as a large aperture aerial. Side lobes can create a problem since an aircraft s receiver, especially at closer range, will detect them and this could trigger false responses from aircraft outside the main beam. To counteract this, a process known as side lobe suppression (SLS) is introduced. Side Lobe Supression (SLS) Interrogations are sent in the form of a group of three pulses that we will identify as P1, P2 and P3, see fig. RN P1 and P3 are sent Mode P1 P 2 A Use P3 Identification 8µs P1 C P3 21µs Altitude reporting Fig. RN 10.4 SSR radar screen via the directional radar antenna, P2 via an omnidirectional aerial. The spacing between P1 and P2 is constant at 2.0 μs. Pulse P2 is used in the electronic side lobe suppression. The P1 and P3 signals in the main beam are stronger than the omnidirectional P2 pulse, but P2 is stronger than the P1 and P3 pulse received from the side lobes. If the P1 pulse is weaker than the P2 control pulse, then the P1, P3 replies are suppressed. Pulse Spacing The spacing between P1 and P3 is set at a value dependant upon the type (mode) of response required from the aeroplane transponder. There are two current modes and their applications and P1 to P3 intervals are in table RN Mode Transmission of P1 to P3 spacing A code 8 µs C pressue altitude. report 21 µs Fig. RN 10.3 Interrogation Table RN 10.1 Modes of interrogation 10-2 Secondary Surveillance Radar Radio Navigation E5 - Final.indb :30:55

3 Modes B and D are not currently in use and the conventional aeroplane transponder is designed to use only modes A and C. The pilot sets the transponder to the mode and code as instructed by ATC. If the transponder is set to the Alt RPTG OFF or on some other types ON position, the unit will respond to Mode A interrogations. If set to XPDR or on some other types ALT, the transponder will respond to Mode A and C interrogations, sending identification and automatic altitude information. Fig. RN 10.5 Boeing transponder control panel, including TCAS selection ALT RPG OFF (only code no altitude reporting) XPNDR (TCAS functions disabled) TA only (ATC transponder + TA active) TA/RA (ATC transponder +TA/RA active) A typical control panel for the airborne unit is shown in fig. RN This panel controls 2 transponders, XPDR1 or XPDR2. The modes are: Test Stand by The transponder s response will be in the form of a pulse train as shown in fig. RN It consists of two framing pulses separated by 20.3 ms. Between those two framing pulses there is a facility for up to 12 coding pulses to be transmitted. The A 12 Pulse system 4096 codes available F1 C1 A1 C2 A2 C4 A4 B1 D1 B2 D2 B4 D4 F2 Example: code 5637 Ident F1 C1 A1 C2 A4 D1 B2 D2 B4 D4 F Fig. RN 10.6 Pulse train Secondary Surveillance Radar 10-3 Radio Navigation E5 - Final.indb :30:55

4 pulses form the first digit of the four-figure code. B the second, C the third and D the fourth. Fig. RN 10.6 shows the possible arrangement of A, B, C, and D pulses for sending the digits. You will note that, for each digit, there are 8 possibilities ranging from 0 to 7. This leads to a total of 4096 selectable codes (8 4 ). The selected pulses for code 5637 are indicated on the lower part of the figure. The Mode C altitude reporting facility transmits information direct from a pressure altitude sensor (such as an encoding altimeter). The altitude information is relative to the hPa level, i.e. it is pressure altitude. change colour to attract his attention. On some radar systems, a sound alarm will be triggered together with the visible alarm. Code 7500 Unlawful interference Code 7600 Radio failure Code 7700 Emergency From time to time the ATC controller may ask you to SQUAWK IDENT. By pushing the IDENT button, the transponder is activated to transmit the additional pulse. This is shown on the radar display as a flashing target or symbol. This function, when first enabled, will continue for approximately 20 seconds. Never press the IDENT button unless you are instructed to by the air traffic controller Use of Transponder Pre-departure the transponder should be set to Standby. The test function should then be activated in order to establish the operational status of the equipment. When instructed, set the mode and code given by ATC, and when told to Squawk, set the code as appropriate. In order to avoid causing interference, do not change the code without first selecting STBY on the control panel. However modern transponders automatically revert to STBY mode for a short period of time when the code is changed. When in an abnormal situation, there are three codes that you may set to alert the controllers. These codes have their predefined meaning and, with one of these selected, a signal indicating a special condition will be triggered on the controller s screen. The aircraft symbol may 10.3 Presentation and Interpretation In general, the SSR information is presented together with the primary radar information. The difference between the two is that the primary information is very accurate in bearing and range, but doesn t consist of any other information. The secondary radar information provides reliable information that can identify every aircraft and provide altitude information. The primary radar element only provides the necessary bearing and range and the use of computer generated displays allows calculated information, such as track and ground speed, to be shown. Fig. RN 10.7 illustrates a common style of displaying combined (primary and secondary surveillance radar) information on the air traffic controller s radar screen Secondary Surveillance Radar Radio Navigation E5 - Final.indb :30:55

5 Flight level or altitude in hundreds of feet Radar blip Aircraft call sign SK Arrow indicates climb (or descent) Squawk code Ground speed in tens of knots differentiate between them and will see only one confused return Operation of Mode S (Selective Addressing) This is a development of the basic SSR. The Mode S ground interrogators and airborne transponders are fully compatible with the conventional Mode A and C units. However, Mode S units working together have much greater capabilities. Fig. RN 10.7 Information on the radar screen 10.4 Limitations Since all SSR units operate at the same frequency, this can result in an aeroplane s response to one interrogator being detected by other ground units. Such responses will be out of synchronisation and will cause random responses to appear. This is called Fruiting (FRUIT= False Replies Unsynchronised to Interrogator Transmission). Electronic circuits are employed (de-fruiters) to remove this effect but they do not remove all random responses and the situation becomes worse as traffic density increases. Another problem is known as garbling. This occurs when targets are close to one another; e.g. in a holding pattern or progressing along an airway one above the other. If they are in the interrogation beam at the same time and are close to one another within 1.7 NM, the ground interrogator will be unable to The Mode S interrogator and transponder, see fig. RN 10.8 and fig. RN 10.9, operate on the same frequency as standard SSR. The initial part of the interrogation signal is such that the standard SSR modes will be recognised by the normal airborne transponder unit. The second part of the Mode S interrogator signal consists of a message of up to 112 data bits within which 24 bits are allocated to aircraft address. This permits the controller to interrogate a specific aircraft. The 24 bits allocated are sufficient to provide for over 16 million individual addresses, which is thought to be sufficient for the registration of all aircraft in the world. In order to detect further Mode S transponders, a special feature known as SSR/Mode S ALL CALL is broadcast at intervals. Normal SSR transponders respond to this in Mode A or C (dependent on the P1/P3 relationship). Mode S transponders will recognise the special character of the ALL CALL interrogation as a roll call request and will transmit a response which will include the aircraft s identity/address along with details of the capability of the relevant on board equipment. Secondary Surveillance Radar 10-5 Radio Navigation E5 - Final.indb :30:55

6 Fig. RN 10.8 Mode S transponder designed for light aircraft use The interrogation is different for the kind of call that is made. For an mode A/C only all call a P1, P2, P3 and short P4 pulse are sent by the interrogator to mode S receivers. For an mode A/C/S all call a longer P4 pulse is sent. The length of P4 is important for the kind of all call. The altitude echo function in the surveillance interrogation is intended to indicate (to the pilot) the flight level that ATC is being given by the aeroplane s transponder. Comm A and Comm C can be used to send longer messages by breaking the messages up into suitably sized blocks and transmitting on successive cycles. Comm D, from the airborne transponder, has a similar capability. Comm D cannot be used for position update, as the messages contain no altitude information. The increased use of Mode S will have the following benefits over standard SSR: Elimination of synchronous garbling Elimination of fruiting Increased traffic capacity Improved safety In addition, the ability to send messages will allow for a reduction of congestion on the current R/T communication frequencies. Transmitted data will be presented to the pilot on a CDU either integral with the Mode S transponder or on the FMS screen. Mode S information, transponder to transponder, can also be integrated with the airborne Traffic Alert and Collision Avoidance system allowing the systems of conflicting aircraft to communicate and resolve convergent situations. Fig. RN 10.9 State of the art digital Mode S transponder for general aviation Secondary Surveillance Radar Radio Navigation E5 - Final.indb :30:56

7 ATC Services Mode S data link can serve as a back up to many ATC services that are provided today by VHF voice communications. This data link back up will improve system safety by reducing communications-related errors within the ATC system. Many types of messages are potential candidates for data link back up and other ATC services. These include: Flight identification, altitude clearance confirmation Take-off clearance confirmation New communication frequency for sector hand-over Pilot acknowledgement of ATC clearance Transmission to the ground of aircraft flight parameters, and Minimum safe altitude warning. There are two steps in interrogation: Elementary Surveillance (ELS) Enhanced Surveillance (EHS). The difference is that EHS extracts further aircraft parameters known as Downlink Airborne Parameters (DAPs). ELS foresees in the use of the unique address of the aircraft and its identity. It also enables to read out the altitude in 25 ft vertical resolution. Transponder capability and air to ground flight status. These parameters are the ELS-DAPs. Mode S on Airports Modern airports are equipped with a mode S surface movement system. Aircraft operators should ensure that the mode S transponders are able to operate when the aircraft is on the ground according to ICAO specifications (Annex 10, volume IV, and ). Pilots shall select the assigned mode A (squawk) code and activate the mode S transponder: From request of push-back or taxi whichever is earlier After landing, continuously until the aircraft is fully parked on stand. The transponder shall be deactivated immediately after parking. Activation of the mode S transponder means selecting AUTO mode, ON, XPNDR, or the equivalent according to specific installation. Selection of the STAND-BY mode will NOT activate the mode S transponder. Depending on the hardware configuration, selecting ON could overrule the required suppression of SSR replies and mode S all-call replies when the transponder is on the ground. Whenever the aircraft is capable of reporting aircraft identification (i.e. call sign used in flight), the aircraft s identification should be entered before the activation of the transponder. Pilots must use the ICAO defined format for entry of the aircraft identification. To ensure that the performance of systems based on SSR frequencies (including airborne TCAS units and SSR radars) is not compromised, TCAS should not be selected before receiving the clearance to line up. It should then be deselected after vacating the runway. For aircraft taxiing without flight plan, mode A code 1000 should be selected. Secondary Surveillance Radar 10-7 Radio Navigation E5 - Final.indb :30:56

8 QUESTIONS 1 Long range surveillance radar may typically use a frequency of: a) 1000 MHz b) 600 MHz c) 3000 MHz d) 10 GHz 2 In ATC SSR how many codes/modes are currently in use, excluding Mode S? a) 4096 codes/2 modes b) 1028 codes/2 modes c) 4096 codes/4 modes d) 1028 codes/2 modes 3 Why does the aircraft transponder system not respond to its own transmissions when reflected from the ground? a) Different frequencies are used 60 MHz apart b) Pulse repetition frequency changed c) The transponder system does reply to its own reflected signals, but these responses are rejected by the transponder system at the site d) The aircraft signal is not reflected 4 What frequency does an SSR interrogator transmit on? a) 1030 MHz b) 1030 khz c) 1000 MHz d) MHz 10-8 Secondary Surveillance Radar Radio Navigation E5 - Final.indb :30:56

9 5 An SSR antenna polar diagram: a) Shows the polarization of the signal from the antenna b) Shows how efficiently the antenna receives or transmits in different directions c) Shows how efficient an antenna is at high latitudes d) Is always shown in the vertical plane 6 A primary radar serving as Terminal Approach Surveillance Radar (TAR): a) Will be able to provide continuous glide slope correction to an approaching aircraft b) Is well suited to give a picture of the ground traffic along taxiways and runways c) Will have an aerial speed of rotation of about 2 3 RPM d) Provides guidance in azimuth only 7 The advantage of the use of slotted antennas in modern radar technology is to: a) simultaneously transmit weather and mapping beams b) virtually eliminate lateral lobes and, as a consequence, concentrate more energy in the main beam c) have a wide beam and as a consequence better target detection d) eliminate the need for azimuth slaving 8 Complete the following statement. Aircraft Surface movement Radar operates on frequencies in the: (i)... band employing an antenna that rotates at approximately (ii)... revolutions per minute; it is (iii)... possible to determine the type of aircraft from the return on the radar screen. a) (i) SHF (ii) 10 (iii) always b) (i) EHF (ii) 30 (iii) never c) (i) SHF (ii) 60 (iii) sometimes d) (i) EHF (ii) 100 (iii) never The answers can be found at the end of the book. Secondary Surveillance Radar 10-9 Radio Navigation E5 - Final.indb :30:56

10 Intentionally blank Radio Navigation E5 - Final.indb :30:56

11 Traffic-alert and Collision Avoidance System (TCAS)

11 Traffic-alert and Collision Avoidance System (TCAS) 11 Traffic-alert and Collision Avoidance System (TCAS) INSTRUMENTATION 11.1 Introduction In the early nineties the American FAA stated that civil aircraft flying in US airspace were equipped with a Traffic-alert

More information

Copyrighted Material - Taylor & Francis

Copyrighted Material - Taylor & Francis 22 Traffic Alert and Collision Avoidance System II (TCAS II) Steve Henely Rockwell Collins 22. Introduction...22-22.2 Components...22-2 22.3 Surveillance...22-3 22. Protected Airspace...22-3 22. Collision

More information

AT01 AIRPLANE FLIGHT MANUAL

AT01 AIRPLANE FLIGHT MANUAL Table of Contents Supplement AVE12 1. Section 1 General AVE12 3 2. Section 2 Operating Limitations AVE12 3 3. Section 3 Emergency Procedures AVE12 3 4. Section 4 Normal Procedures AVE12 4 5. Section 5

More information

Mode S Skills 101. OK, so you ve got four basic surveillance skills, you ve got the: ATCRBS Skills Mode S Skills TCAS Skills ADS-B skills

Mode S Skills 101. OK, so you ve got four basic surveillance skills, you ve got the: ATCRBS Skills Mode S Skills TCAS Skills ADS-B skills Mode S Skills 101 OK, so you ve got four basic surveillance skills, you ve got the: ATCRBS Skills Mode S Skills TCAS Skills ADS-B skills Fisher Fisher Slide 1 853D ELECTRONIC SYSTEMS GROUP MODE S 101 Prepared

More information

NAVIGATION (2) RADIO NAVIGATION

NAVIGATION (2) RADIO NAVIGATION 1 An aircraft is "homing" to a radio beacon whilst maintaining a relative bearing of zero. If the magnetic heading decreases, the aircraft is experiencing: A left drift B right drift C a wind from the

More information

Pilot s Operating Handbook Supplement AS-21

Pilot s Operating Handbook Supplement AS-21 SECTION 9 Pilot s Operating Handbook Supplement Mode S Transponder GARMIN GTX 335 / GTX 345 This supplement is applicable and must be inserted into Section 9 of the POH when a GARMIN GTX 335 or GTX 345

More information

TCAS Functioning and Enhancements

TCAS Functioning and Enhancements TCAS Functioning and Enhancements Sathyan Murugan SASTRA University Tirumalaisamudram, Thanjavur - 613 402. Tamil Nadu, India. Aniruth A.Oblah KLN College of Engineering Pottapalayam 630611, Sivagangai

More information

AIRPLANE FLIGHT MANUAL AQUILA AT01. Date of Issue A.01 Initial Issue (minor change MB-AT ) all March

AIRPLANE FLIGHT MANUAL AQUILA AT01. Date of Issue A.01 Initial Issue (minor change MB-AT ) all March 0.1 LIST OF REVISIONS AND AMENDMENTS Revision Reason for Amendment/Revision Affected Pages Date of Issue A.01 Initial Issue (minor change MB-AT01-00297) all 2009 19. March 0.2 LIST OF EFFECTIVE PAGES Page

More information

Exam questions: AE3-295-II

Exam questions: AE3-295-II Exam questions: AE3-295-II 1. NAVIGATION SYSTEMS (30 points) In this question we consider the DME radio beacon. [a] What does the acronym DME stand for? (3 points) DME stand for Distance Measuring Equipment

More information

A Review of Vulnerabilities of ADS-B

A Review of Vulnerabilities of ADS-B A Review of Vulnerabilities of ADS-B S. Sudha Rani 1, R. Hemalatha 2 Post Graduate Student, Dept. of ECE, Osmania University, 1 Asst. Professor, Dept. of ECE, Osmania University 2 Email: ssrani.me.ou@gmail.com

More information

Communication and Navigation Systems for Aviation

Communication and Navigation Systems for Aviation Higher National Unit Specification General information for centres Unit title: Communication and Navigation Systems for Aviation Unit code: F0M3 35 Unit purpose: This Unit is designed to allow candidates

More information

Modular Test Approaches for SSR Signal Analysis in IFF Applications

Modular Test Approaches for SSR Signal Analysis in IFF Applications Modular Test Approaches for SSR Signal Analysis in IFF Applications Military radar applications call for highly specialized test equipment Radar signal analysis applications require highly specialized

More information

Use of Satellite-based Technologies to Enhance safety and efficiency in ATC and Airport Operation

Use of Satellite-based Technologies to Enhance safety and efficiency in ATC and Airport Operation Use of Satellite-based Technologies to Enhance safety and efficiency in ATC and Airport Operation Presented by Felix Tsao Senior Electronics Engineer Civil Aviation Department 26 May 2017 1 Briefing on

More information

Introduction to: Radio Navigational Aids

Introduction to: Radio Navigational Aids Introduction to: Radio Navigational Aids 1 Lecture Topics Basic Principles Radio Directional Finding (RDF) Radio Beacons Distance Measuring Equipment (DME) Instrument Landing System (ILS) Microwave Landing

More information

ICAO SARPS AND GUIDANCE DOCUMENTS ON SURVEILLANCE SYSTEMS

ICAO SARPS AND GUIDANCE DOCUMENTS ON SURVEILLANCE SYSTEMS ICAO SARPS AND GUIDANCE DOCUMENTS ON SURVEILLANCE SYSTEMS MEETING/WORKSHOP ON AUTOMATIC DEPENDENT SURVEILLANCE BROADCAST (ADS B) IMPLEMENTATION (ADS B/IMP) (Lima, Peru, 13 to 16 November 2017) ONOFRIO

More information

RADAR CHAPTER 3 RADAR

RADAR CHAPTER 3 RADAR RADAR CHAPTER 3 RADAR RDF becomes Radar 1. As World War II approached, scientists and the military were keen to find a method of detecting aircraft outside the normal range of eyes and ears. They found

More information

GOVERNMENT OF INDIA OFFICE OF DIRECTOR GENERAL OF CIVIL AVIATION TECHNICAL CENTRE, OPP SAFDARJANG AIRPORT, NEW DELHI

GOVERNMENT OF INDIA OFFICE OF DIRECTOR GENERAL OF CIVIL AVIATION TECHNICAL CENTRE, OPP SAFDARJANG AIRPORT, NEW DELHI GOVERNMENT OF INDIA OFFICE OF DIRECTOR GENERAL OF CIVIL AVIATION TECHNICAL CENTRE, OPP SAFDARJANG AIRPORT, NEW DELHI CIVIL AVIATION REQUIREMENTS SECTION 9 AIR SPACE AND AIR TRAFFIC MANAGEMENT SERIES 'D',

More information

MANUFACTURER S DATA SECTION ROTORCRAFT FLIGHT MANUAL SUPPLEMENT

MANUFACTURER S DATA SECTION ROTORCRAFT FLIGHT MANUAL SUPPLEMENT MANUFACTURER S DATA SECTION OF ROTORCRAFT FLIGHT MANUAL SUPPLEMENT TO THE SIKORSKY S-76A ROTORCRAFT FLIGHT MANUAL Aircraft Serial Number: Aircraft Registration Number: This supplement must be attached

More information

Reducing Test Flights Using Simulated Targets and a Carefully Chosen Set-up

Reducing Test Flights Using Simulated Targets and a Carefully Chosen Set-up Reducing Test Flights Using Simulated Targets and a Carefully Chosen Set-up Edition: 001 Date: 18-FEB-09 Status: Released DOCUMENT DESCRIPTION Document Title Reducing Test Flights: Using Simulated Targets

More information

EE Chapter 14 Communication and Navigation Systems

EE Chapter 14 Communication and Navigation Systems EE 2145230 Chapter 14 Communication and Navigation Systems Two way radio communication with air traffic controllers and tower operators is necessary. Aviation electronics or avionics: Avionic systems cover

More information

RECORD OF REVISIONS. Revisions to this Supplement are recorded in the following table.

RECORD OF REVISIONS. Revisions to this Supplement are recorded in the following table. Supplement D42L AFM RECORD OF REVISIONS Revisions to this Supplement are recorded in the following table. New or amended text will be indicated by a bold black vertical line in the left hand margin of

More information

EVOLUTION OF AERONAUTICAL SURVEILLANCE

EVOLUTION OF AERONAUTICAL SURVEILLANCE EVOLUTION OF AERONAUTICAL SURVEILLANCE By: M. Paydar ICAO December 2010 Aeronautical Surveillance Airborne Surveillance Identification Position (at what time?) Additional info (e.g. velocity) Ground Surveillance

More information

INTERNATIONAL STANDARDS AND RECOMMENDED PRACTICES

INTERNATIONAL STANDARDS AND RECOMMENDED PRACTICES Annex or Recommended Practice Chapter 1 Definition INTERNATIONAL STANDARDS AND RECOMMENDED PRACTICES CHAPTER 1. DEFINITIONS N1.All references to Radio Regulations are to the Radio Regulations published

More information

ADS-B Introduction Greg Dunstone

ADS-B Introduction Greg Dunstone ADS-B Introduction Greg Dunstone Surveillance Program Lead, Airservices Australia SURVEILLANCE Basics Primary and Secondary radar Why do we need Surveillance? Why surveillance? Improved safety Reduced

More information

ADS-B and WFP Operators. Safety Advantages Security Concerns. Thomas Anthony Director U.S.C. Aviation Safety and Security Program ADS-B

ADS-B and WFP Operators. Safety Advantages Security Concerns. Thomas Anthony Director U.S.C. Aviation Safety and Security Program ADS-B ADS-B and WFP Operators Safety Advantages Security Concerns Thomas Anthony Director U.S.C. Aviation Safety and Security Program ADS-B How can ADS-B be useful for Humanitarian Air Operation? Are there security

More information

2. Radar receives and processes this request, and forwards it to Ground Datalink Processor (in our case named GRATIS)

2. Radar receives and processes this request, and forwards it to Ground Datalink Processor (in our case named GRATIS) 1 Short Description The Traffic Information Service (TIS) provides information to the cockpit via data link that is similar to VFR radar traffic advisories normally received over voice radio. TIS is intended

More information

SURVEILLANCE MONITORING OF PARALLEL PRECISION APPROACHES IN A FREE FLIGHT ENVIRONMENT. Carl Evers Dan Hicok Rannoch Corporation

SURVEILLANCE MONITORING OF PARALLEL PRECISION APPROACHES IN A FREE FLIGHT ENVIRONMENT. Carl Evers Dan Hicok Rannoch Corporation SURVEILLANCE MONITORING OF PARALLEL PRECISION APPROACHES IN A FREE FLIGHT ENVIRONMENT Carl Evers (cevers@rannoch.com), Dan Hicok Rannoch Corporation Gene Wong Federal Aviation Administration (FAA) ABSTRACT

More information

Examples of RF Transmissions in Europe

Examples of RF Transmissions in Europe Examples of RF Transmissions in Europe Surveillance/MICA Workshop Jérôme Bodart 26-28 February 2019 RF Measurements EUROCONTROL has the necessary equipment to performed RF measurements 1030 and 1090MHz

More information

AIRCRAFT AVIONIC SYSTEMS

AIRCRAFT AVIONIC SYSTEMS AIRCRAFT AVIONIC SYSTEMS B-777 cockpit Package C:\Documents and ettings\administrato Course Outline Radio wave propagation Aircraft Navigation Systems - Very High Omni-range (VOR) system - Instrument Landing

More information

Impact of ATC transponder transmission to onboard GPS-L5 signal environment

Impact of ATC transponder transmission to onboard GPS-L5 signal environment SCRSP-WG IP-A10 18 May 2006 SURVEILLANCE AND CONFLICT RESOLUTION SYSTEMS PANEL (SCRSP) TENTH MEETING WG-A Montreal, May, 2006 WG-A Agenda Item 9 Any Other Bussiness Impact of ATC transponder transmission

More information

KMD 550/850. Traffic Avoidance Function (TCAS/TAS/TIS) Pilot s Guide Addendum. Multi-Function Display. For Software Version 01/13 or later

KMD 550/850. Traffic Avoidance Function (TCAS/TAS/TIS) Pilot s Guide Addendum. Multi-Function Display. For Software Version 01/13 or later N B KMD 550/850 Multi-Function Display Traffic Avoidance Function (TCAS/TAS/TIS) Pilot s Guide Addendum For Software Version 01/13 or later Revision 3 Jun/2004 006-18238-0000 The information contained

More information

Monitoring Pulse Based Navigation Signals in Flight

Monitoring Pulse Based Navigation Signals in Flight Monitoring Pulse Based Navigation Signals in Flight Rolf Seide Senior Manager Competence Center Flight Inspection Systems Aerodata AG Herrmann-Blenk-Strasse 36 D-38108 Braunschweig Fax: +49 531 2359 222

More information

Technical Standard Order

Technical Standard Order Department of Transportation Federal Aviation Administration Aircraft Certification Service Washington, DC TSO-C74c Date: 2/20/73 Technical Standard Order Subject: TSO-C74c, AIRBORNE ATC TRANSPONDER EQUIPMENT

More information

An advisory circular may also include technical information that is relevant to the standards or requirements.

An advisory circular may also include technical information that is relevant to the standards or requirements. Advisory Circular AC91-24 Automatic Dependent Surveillance Broadcast (ADS-B) Systems Revision 0 24 July 2018 General Civil Aviation Authority advisory circulars contain guidance and information about standards,

More information

2. ETSO 2C40c#3 VHF Omni-directional Ranging (VOR) Equipment

2. ETSO 2C40c#3 VHF Omni-directional Ranging (VOR) Equipment Deviation request #96 for an ETSO approval for CS-ETSO applicable to Airborne VHF Omni-directional Ranging (VOR) Equipment (ETSO-2C40c) Consultation Paper 1. Introductory note The hereby presented deviation

More information

Introduction. Traffic Symbology. System Description SECTION 12 ADDITIONAL FEATURES

Introduction. Traffic Symbology. System Description SECTION 12 ADDITIONAL FEATURES 12.2 Traffic Advisory Systems (TAS) Introduction All information in this section pertains to the display and control of the Garmin GNS 430/GTS 800 interface. NOTE: This section assumes the user has experience

More information

AE4-393: Avionics Exam Solutions

AE4-393: Avionics Exam Solutions AE4-393: Avionics Exam Solutions 2008-01-30 1. AVIONICS GENERAL a) WAAS: Wide Area Augmentation System: an air navigation aid developed by the Federal Aviation Administration to augment the Global Positioning

More information

Sense and Avoid: Analysis of Sensor Design Factors for Optimal Deconfliction

Sense and Avoid: Analysis of Sensor Design Factors for Optimal Deconfliction Sense and Avoid: Analysis of Sensor Design Factors for Optimal Deconfliction Basically, we want this: For these: Background: UAVs Weight Mid-Sized UAVs The Big Ones Small UAVs MAVs The area of study for

More information

Regulations. Aeronautical Radio Service

Regulations. Aeronautical Radio Service Regulations Aeronautical Radio Service Version 1.0 Issue Date: 30 December 2009 Copyright 2009 Telecommunications Regulatory Authority (TRA). All rights reserved. P O Box 26662, Abu Dhabi, United Arab

More information

[EN 105] Evaluation Results of Airport Surface Multilateration

[EN 105] Evaluation Results of Airport Surface Multilateration ENRI Int. Workshop on ATM/CNS. Tokyo, Japan. (EIWAC 2010) [EN 105] Evaluation Results of Airport Surface Multilateration (EIWAC 2010) + H. Miyazaki*, T. Koga**, E. Ueda*, Y. Kakubari*, S. Nihei* *Communication,

More information

AIR ROUTE SURVEILLANCE 3D RADAR

AIR ROUTE SURVEILLANCE 3D RADAR AIR TRAFFIC MANAGEMENT AIR ROUTE SURVEILLANCE 3D RADAR Supplying ATM systems around the world for more than 30 years indracompany.com ARSR-10D3 AIR ROUTE SURVEILLANCE 3D RADAR ARSR 3D & MSSR Antenna Medium

More information

AIR SURVEILLANCE FOR SMART LANDING FACILITIES IN THE SMALL AIRCRAFT TRANSPORATION SYSTEM. By Eric J. Shea

AIR SURVEILLANCE FOR SMART LANDING FACILITIES IN THE SMALL AIRCRAFT TRANSPORATION SYSTEM. By Eric J. Shea AIR SURVEILLANCE FOR SMART LANDING FACILITIES IN THE SMALL AIRCRAFT TRANSPORATION SYSTEM By Eric J. Shea Thesis submitted to the Faculty of Virginia Polytechnic Institute and State University (Virginia

More information

THE CIVIL AVIATION ACT (NO 21 OF 2013) REGULATIONS DRAFT CIVIL AVIATION (SURVEILLANCE AND COLLISION AVOIDANCE SYSTEMS) REGULATIONS, 2017.

THE CIVIL AVIATION ACT (NO 21 OF 2013) REGULATIONS DRAFT CIVIL AVIATION (SURVEILLANCE AND COLLISION AVOIDANCE SYSTEMS) REGULATIONS, 2017. LEGAL NOTICE. THE CIVIL AVIATION ACT (NO 21 OF 2013) REGULATIONS DRAFT CIVIL AVIATION (SURVEILLANCE AND COLLISION AVOIDANCE SYSTEMS) REGULATIONS, 2017. ARRANGEMENT OF REGULATIONS Regulation PART I PRELIMINARY

More information

FCI Technology Investigations: L band Compatibility Criteria and Interference Scenarios Study

FCI Technology Investigations: L band Compatibility Criteria and Interference Scenarios Study FCI Technology Investigations: L band Compatibility Criteria and Interference Scenarios Study Deliverable C3: Compatibility criteria and test specification for SSR systems Edition Number 1.0 Edition Date

More information

Organización de Aviación Civil Internacional. Международная организация гражданской авиации. Ref.: AN 7/ /78 27 November 2015

Organización de Aviación Civil Internacional. Международная организация гражданской авиации. Ref.: AN 7/ /78 27 November 2015 International Civil Aviation Organization Organisation de l aviation civile internationale Organización de Aviación Civil Internacional Международная организация гражданской авиации Tel.: +1 514-954-8219

More information

GTX 320A. Mode A/C Transponder. pilot s guide

GTX 320A. Mode A/C Transponder. pilot s guide GTX 320A Mode A/C Transponder pilot s guide 2000 GARMIN Corporation GARMIN International, Inc. 1200 East 151 st Street, Olathe, Kansas 66062, U.S.A. Tel. 913/397.8200 or 800/800.1020 Fax 913/397.8282 GARMIN

More information

TRANSMITTAL NOTE NEW EDITIONS OF ANNEXES TO THE CONVENTION ON INTERNATIONAL CIVIL AVIATION

TRANSMITTAL NOTE NEW EDITIONS OF ANNEXES TO THE CONVENTION ON INTERNATIONAL CIVIL AVIATION TRANSMITTAL NOTE NEW EDITIONS OF ANNEXES TO THE CONVENTION ON INTERNATIONAL CIVIL AVIATION It has come to our attention that when a new edition of an Annex is published, users have been discarding, along

More information

International Civil Aviation Organization

International Civil Aviation Organization Doc 9688 AN/952 Manual on Mode S Specific Services Approved by the Secretary General and published under his authority Second Edition 2004 International Civil Aviation Organization AMENDMENTS Amendments

More information

GTS 8XX Series. Pilot s Guide Traffic Advisory System

GTS 8XX Series. Pilot s Guide Traffic Advisory System GTS 8XX Series Pilot s Guide Traffic Advisory System 2009 Garmin Ltd. or its subsidiaries. All rights reserved. Garmin International, Inc., 1200 East 151st Street, Olathe, KS 66062, U.S.A. Tel: 913/397.8200

More information

SURVEILLANCE SYSTEMS. Operational Improvement and Cost Savings, from Airport Surface to Airspace

SURVEILLANCE SYSTEMS. Operational Improvement and Cost Savings, from Airport Surface to Airspace SURVEILLANCE SYSTEMS Operational Improvement and Cost Savings, from Airport Surface to Airspace Sergio Martins Director, Air Traffic Management - Latin America 2 AGENDA Airport Surface Solutions A-SMGCS

More information

Automatic Dependent Surveillance -ADS-B

Automatic Dependent Surveillance -ADS-B ASECNA Workshop on ADS-B (Dakar, Senegal, 22 to 23 July 2014) Automatic Dependent Surveillance -ADS-B Presented by FX SALAMBANGA Regional Officer, CNS WACAF OUTLINE I Definition II Principles III Architecture

More information

THE CIVIL AVIATION ACT, (CAP. 80) ARRANGEMENT OF REGULATIONS PART I PRELIMINARY PROVISIONS PART II GENERAL REQUIREMENTS

THE CIVIL AVIATION ACT, (CAP. 80) ARRANGEMENT OF REGULATIONS PART I PRELIMINARY PROVISIONS PART II GENERAL REQUIREMENTS GOVERNMENT NOTICE NO. 72 published on 24/02/2017 THE CIVIL AVIATION ACT, (CAP. 80) THE CIVIL AVIATION (SURVEILLANCE AND COLLISION AVOIDANCE SYSTEMS) REGULATIONS, 2017 1. Citation 2. Interpretation 3. Application

More information

DEVELOPMENT OF MOBILE PASSIVE SECONDARY SURVEILLANCE RADAR

DEVELOPMENT OF MOBILE PASSIVE SECONDARY SURVEILLANCE RADAR 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES DEVELOPMENT OF MOBILE PASSIVE SECONDARY SURVEILLANCE RADAR Kakuichi Shiomi*, Atsushi Senoguchi* and Shuji Aoyama** *Electronic Navigation Research

More information

TEPZZ A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G01S 7/40 ( ) G01S 13/78 (2006.

TEPZZ A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G01S 7/40 ( ) G01S 13/78 (2006. (19) TEPZZ 8789A_T (11) EP 2 87 89 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 08.04.201 Bulletin 201/1 (1) Int Cl.: G01S 7/40 (2006.01) G01S 13/78 (2006.01) (21) Application number:

More information

Ron Turner Technical Lead for Surface Systems. Syracuse, NY. Sensis Air Traffic Systems - 1

Ron Turner Technical Lead for Surface Systems. Syracuse, NY. Sensis Air Traffic Systems - 1 Multilateration Technology Overview Ron Turner Technical Lead for Surface Systems Sensis Corporation Syracuse, NY Sensis Air Traffic Systems - 1 Presentation Agenda Multilateration Overview Transponder

More information

ICAO Handbook on Radio Frequency Spectrum Requirements for Civil Aviation Vol. I - ICAO Spectrum Strategy Vol. II - Frequency Planning

ICAO Handbook on Radio Frequency Spectrum Requirements for Civil Aviation Vol. I - ICAO Spectrum Strategy Vol. II - Frequency Planning ICAO Handbook on Radio Frequency Spectrum Requirements for Civil Aviation Vol. I - ICAO Spectrum Strategy Vol. II - Frequency Planning 100 khz 200 khz 300 khz 400 khz 600 khz 800 khz 1 MHz 2 MHz 3 MHz

More information

STRATUS ES/ESG PILOT S GUIDE

STRATUS ES/ESG PILOT S GUIDE STRATUS ES/ESG PILOT S GUIDE COPYRIGHT INFORMATION 2015-2017 Appareo Systems, LLC. All rights reserved. Stratus ES/ESG Pilot s Guide. All content within is copyrighted by Appareo Systems, LLC, and may

More information

RADIO NAVIGATION

RADIO NAVIGATION details and associated Learning Objectives ATPL CPL ATPL/ ATPL CPL 062 00 00 00 RADIO NAVIGATION 062 01 00 00 BASIC RADIO PROPAGATION THEORY 062 01 01 00 Basic principles 062 01 01 01 Electromagnetic waves

More information

NAVIGATION INSTRUMENTS - BASICS

NAVIGATION INSTRUMENTS - BASICS NAVIGATION INSTRUMENTS - BASICS 1. Introduction Several radio-navigation instruments equip the different airplanes available in our flight simulators software. The type of instrument that can be found

More information

Clarification. Mode S Transponder. in an Airport/A-SMGCS Environment

Clarification. Mode S Transponder. in an Airport/A-SMGCS Environment EUROPEAN ORGANISATION FOR THE SAFETY OF AIR NAVIGATION EUROCONTROL Clarification Mode S Transponder in an Airport/A-SMGCS Environment MODES/SYS/002 Edition : 1.1 Edition Date : 3 May 2005 Status : Released

More information

Aeronautical Telecommunications

Aeronautical Telecommunications International Standards and Recommended Practices Annex 10 to the Convention on International Civil Aviation Aeronautical Telecommunications Volume IV Surveillance and Collision Avoidance Systems This

More information

RECOMMENDATION ITU-R M.1639 *

RECOMMENDATION ITU-R M.1639 * Rec. ITU-R M.1639 1 RECOMMENDATION ITU-R M.1639 * Protection criterion for the aeronautical radionavigation service with respect to aggregate emissions from space stations in the radionavigation-satellite

More information

Guidance Material for ILS requirements in RSA

Guidance Material for ILS requirements in RSA Guidance Material for ILS requirements in RSA General:- Controlled airspace required with appropriate procedures. Control Tower to have clear and unobstructed view of the complete runway complex. ATC to

More information

Sigma-Tek 1U Radio Control Panel Operator s Manual

Sigma-Tek 1U Radio Control Panel Operator s Manual Sigma-Tek 1U619-001 Radio Control Panel Operator s Manual 86M069 TABLE OF CONTENTS 1.0 GENERAL...1 1.1 DESCRIPTION...1 1.2 THEORY OF OPERATION...2 2.0 VHF COMMUNICATION MODULES...7 2.1 OPERATING PROCEDURE...8

More information

KGX 150/130 ADS -B Certified Transceivers & Receivers

KGX 150/130 ADS -B Certified Transceivers & Receivers BendixKing By Honeywell 9201 -B San Mateo Blvd. NE Albuquerque, NM 87113 U.S.A. CAGE: 6PC31 Telephone: 1-505 -903-6148 Telephone: 1-855 -250-7027 (Toll Free in U.S.A.) Web site: http://www.bendixking.com

More information

KTA970/ KMH980. Pilot s Guide. B Traffic Alert and Collision Avoidance System/ Multi-Hazard Awareness System. Rev.

KTA970/ KMH980. Pilot s Guide. B Traffic Alert and Collision Avoidance System/ Multi-Hazard Awareness System. Rev. N Pilot s Guide KTA970/ KMH980 B Traffic Alert and Collision Avoidance System/ Multi-Hazard Awareness System Rev. 3 The information contained in this manual is for reference use only. If any information

More information

RECOMMENDATION ITU-R SA.1624 *

RECOMMENDATION ITU-R SA.1624 * Rec. ITU-R SA.1624 1 RECOMMENDATION ITU-R SA.1624 * Sharing between the Earth exploration-satellite (passive) and airborne altimeters in the aeronautical radionavigation service in the band 4 200-4 400

More information

Radar Theory for Area/Approach Radar Controllers

Radar Theory for Area/Approach Radar Controllers ZULFIQAR ALI MIRANI Radar Theory for Area/Approach Radar Controllers Info: neoindus@gmail.com Radar Theory For Area /Approach Controller ZULFIQAR ALI MIRANI Senior Electronics Engineer Civil Aviation Authority

More information

Learning Objectives 062 Radio Navigation

Learning Objectives 062 Radio Navigation Learning Objectives 062 Radio Navigation Syllabus 060 00 00 00 NAVIGATION 062 00 00 00 RADIO NAVIGATION 062 01 00 00 BASIC RADIO PROPAGATION THEORY 062 01 01 00 Basic principles 062 01 01 01 Electromagnetic

More information

Advisory Circular. U.S. Department of Transportation Federal Aviation Administration

Advisory Circular. U.S. Department of Transportation Federal Aviation Administration U.S. Department of Transportation Federal Aviation Administration Advisory Circular Subject: Airworthiness Approval of Automatic Date: 11/07/12 AC No: 20-165A Dependent Surveillance - Broadcast (ADS-B)

More information

Evaluation Results of Multilateration at Narita International Airport

Evaluation Results of Multilateration at Narita International Airport Evaluation Results of Multilateration at Narita International Airport Hiromi Miyazaki, Tadashi Koga, Eisuke Ueda, Izumi Yamada, Yasuyuki Kakubari and Shiro Nihei Electronic Navigation Research Institute

More information

AN/APN-242 Color Weather & Navigation Radar

AN/APN-242 Color Weather & Navigation Radar AN/APN-242 Color Weather & Navigation Radar Form, Fit and Function Replacement for the APN-59 Radar Previous Configuration: APN-59 Antenna Stabilization Data Generator Antenna Subsystem Radar Receiver

More information

The Impact of Choice of Roofing Material on Navaids Wave Polarization

The Impact of Choice of Roofing Material on Navaids Wave Polarization The Impact of Choice of Roofing Material on Navaids Wave Polarization Robert J. Omusonga Directorate of Air Navigation Services, East African School of Aviation, P.O Box 93939-80100, Mombasa, Kenya Email:

More information

ADS-B 1090ES Extraction

ADS-B 1090ES Extraction User Manual Edition: 004 Date: 16-Aug-16 Status: Released Issue DOCUMENT CHARACTERISTICS General User Manual Edition: 004 Edition Date: 16-August-2016 Status: Released Issue Keywords: ADS-B, 1090ES, ARF800,

More information

GTS Traffic Systems. Pilot s Guide

GTS Traffic Systems. Pilot s Guide GTS Traffic Systems Pilot s Guide 2014 Garmin Ltd. or its subsidiaries. All rights reserved. Garmin International, Inc., 1200 East 151st Street, Olathe, KS 66062, U.S.A. Tel: 913/397.8200 Fax: 913/397.8282

More information

APPENDIX C VISUAL AND NAVIGATIONAL AIDS

APPENDIX C VISUAL AND NAVIGATIONAL AIDS VISUAL AND NAVIGATIONAL AIDS APPENDIX C VISUAL AND NAVIGATIONAL AIDS An integral part of the airport system is the visual and navigational aids provided to assist pilots in navigating both on the airfield

More information

WRC19 Preparatory Workshop

WRC19 Preparatory Workshop ICAO Doc 9718 Handbook on Radio Frequency Spectrum Requirements for Civil Aviation Vol. I - ICAO Spectrum Strategy Vol. II - Frequency Planning 100 khz 200 khz 300 khz 400 khz 600 khz 800 khz 1 MHz 2 MHz

More information

DEVELOPMENT OF PASSIVE SURVEILLANCE RADAR

DEVELOPMENT OF PASSIVE SURVEILLANCE RADAR DEVELOPMENT OF PASSIVE SURVEILLANCE RADAR Kakuichi Shiomi* and Shuji Aoyama** *Electronic Navigation Research Institute, Japan **IRT Corporation, Japan Keywords: Radar, Passive Radar, Passive Surveillance

More information

ICAO AFI/MID ASBU IMPLEMENTATION WORKSHOP. Cairo, November 2015

ICAO AFI/MID ASBU IMPLEMENTATION WORKSHOP. Cairo, November 2015 ICAO AFI/MID ASBU IMPLEMENTATION WORKSHOP Cairo, 23-26 November 2015 1 2 List of Contents Why ASBU? ASBU Module ( B0-SURF ). A-SMGCS Functions. A-SMGCS Implementation Levels. How does A-SMGCS work? A-SMGCS

More information

RECOMMENDATION ITU-R M * Technical characteristics for search and rescue radar transponders

RECOMMENDATION ITU-R M * Technical characteristics for search and rescue radar transponders Rec. ITU-R M.628-4 1 RECOMMENDATION ITU-R M.628-4 * Technical characteristics for search and rescue radar transponders (Questions ITU-R 28/8 and ITU-R 45/8) (1986-1990-1992-1994-2006) Scope This Recommendation

More information

Microair Avionics Pty Ltd Airport Drive Bundaberg Queensland 4670 Australia Tel: Fax:

Microair Avionics Pty Ltd Airport Drive Bundaberg Queensland 4670 Australia Tel: Fax: Microair Avionics Pty Ltd Airport Drive Bundaberg Queensland 4670 Australia Tel: +61 7 41 553048 Fax: +61 7 41 553049 e-mail: support@microair.com.au About This Document Microair Avionics have developed

More information

Recommendation ITU-R F.1571 (05/2002)

Recommendation ITU-R F.1571 (05/2002) Recommendation ITU-R F.1571 (05/2002) Mitigation techniques for use in reducing the potential for interference between airborne stations in the radionavigation service and stations in the fixed service

More information

FLARM and PowerFLARM: Past, Present and Future. FLARM Technology GmbH, Baar

FLARM and PowerFLARM: Past, Present and Future. FLARM Technology GmbH, Baar FLARM and PowerFLARM: Past, Present and Future FLARM Technology GmbH, Baar Thermal airways in Germany Berlin Düsseldorf Köln Frankfurt Nürnberg Stuttgart München What we see (1) http://www.youtube.com/watch?v=vjg698u2mvo

More information

WILLIAM P WITZIG Date: :55:37-04'00'

WILLIAM P WITZIG Date: :55:37-04'00' FAA Approved Airplane Flight Manual Supplement For Airplanes listed in AML with Avidyne AXP340 Transponder p/n 200-00247-XXX or Avidyne AXP322 Transponder p/n 200-00269-XXX in Make and Model Airplane Registration

More information

Ref.: AN 7/ /29 27 March 2018

Ref.: AN 7/ /29 27 March 2018 International Civil Aviation Organization Organisation de l aviation civile internationale Organización de Aviación Civil Internacional Международная организация гражданской авиации Tel.: +1 514-954-8219

More information

RECOMMENDATION ITU-R M.1830

RECOMMENDATION ITU-R M.1830 Rec. ITU-R M.1830 1 RECOMMENDATION ITU-R M.1830 Technical characteristics and protection criteria of aeronautical radionavigation service systems in the 645-862 MHz frequency band (2007) Scope This Recommendation

More information

Botswana Radio Frequency Plan, Published on 16 April TABLE OF CONTENTS

Botswana Radio Frequency Plan, Published on 16 April TABLE OF CONTENTS , 2004 Radio Frequency Plan, 2004 Published on 16 April 2004 TABLE OF CONTENTS Part 1 PRELIMINARY 1 Introduction 2 Definitions 3 Interpretation of Table of Frequency Allocations Part II TABLE OF FREQUENCY

More information

COMPARISON OF SURVEILLANCE TECHNOLOGIES ICAO

COMPARISON OF SURVEILLANCE TECHNOLOGIES ICAO COMPARISON OF SURVEILLANCE TECHNOLOGIES By: M. Paydar ICAO ICAO Seminar on the Implementation of Aeronautical Surveillance and Automation Systems in the SAM Region (San Carlos de Bariloche, Argentina,

More information

Fundamental Concepts of Radar

Fundamental Concepts of Radar Fundamental Concepts of Radar Dr Clive Alabaster & Dr Evan Hughes White Horse Radar Limited Contents Basic concepts of radar Detection Performance Target parameters measurable by a radar Primary/secondary

More information

400/500 Series GTS 8XX Interface. Pilot s Guide Addendum

400/500 Series GTS 8XX Interface. Pilot s Guide Addendum 400/500 Series GTS 8XX Interface Pilot s Guide Addendum Copyright 2010 Garmin Ltd. or its subsidiaries. All rights reserved. This manual reflects the operation of Software version 5.03 or later for 4XX

More information

RF 1090 MHZ BAND LOAD MODEL

RF 1090 MHZ BAND LOAD MODEL RF 1090 MHZ BAND LOAD MODEL Tomáš Lipták 1, Stanislav Pleninger 2 Summary: Nowadays, the load of 1090 MHz frequency represents a key factor determining the quality of surveillance application in terms

More information

CIVIL AVIATION REQUIREMENTS SECTION 4 - AERODROME STANDARDS & AIR TRAFFIC SERVICES SERIES 'D', PART II 12 TH JULY 2006 EFFECTIVE: FORTHWITH

CIVIL AVIATION REQUIREMENTS SECTION 4 - AERODROME STANDARDS & AIR TRAFFIC SERVICES SERIES 'D', PART II 12 TH JULY 2006 EFFECTIVE: FORTHWITH GOVERNMENT OF INDIA OFFICE OF DIRECTOR GENERAL OF CIVIL AVIATION TECHNICAL CENTRE, OPP SAFDARJANG AIRPORT, NEW DELHI CIVIL AVIATION REQUIREMENTS SECTION 4 AERODROME STANDARDS & AIR TRAFFIC SERVICES SERIES

More information

VOR/DME APPROACH WITH A320

VOR/DME APPROACH WITH A320 1. Introduction VOR/DME APPROACH WITH A320 This documentation presents an example of a VOR/DME approach performed with an Airbus 320 at LFRS runway 21. This type of approach is a non-precision approach

More information

New spectrum for audio PMSE. Further details on approach to modelling and sharing in the band MHz

New spectrum for audio PMSE. Further details on approach to modelling and sharing in the band MHz New spectrum for audio PMSE Further details on approach to modelling and sharing in the band 960-1164 MHz Consultation update Publication date: 08 January 2016 About this document In response to our consultation

More information

RADIO SYSTEM DESCRIPTION The radio system consists of the following equipment:

RADIO SYSTEM DESCRIPTION The radio system consists of the following equipment: COMMUNICATION SYSTEM RADIO SYSTEM DESCRIPTION The radio system consists of the following equipment: Radio tuning function located in MFD s Dual CDU s (for tuning - shared with FMS) Two VHF communication

More information

Integration of surveillance in the ACC automation system

Integration of surveillance in the ACC automation system Integration of surveillance in the ACC automation system ICAO Seminar on the Implementation of Aeronautical Surveillance and Automation Systems in the SAM Region San Carlos de Bariloche 6-8 Decembre 2010

More information

Technical Standard Order

Technical Standard Order Department of Transportation Federal Aviation Administration Aircraft Certification Service Washington, DC TSO-C147 Date: 4/6/98 Technical Standard Order Subject: TSO-C147, TRAFFIC ADVISORY SYSTEM (TAS)

More information

An Introduction to Airline Communication Types

An Introduction to Airline Communication Types AN INTEL COMPANY An Introduction to Airline Communication Types By Chip Downing, Senior Director, Aerospace & Defense WHEN IT MATTERS, IT RUNS ON WIND RIVER EXECUTIVE SUMMARY Today s global airliners use

More information

Report ITU-R M (11/2017)

Report ITU-R M (11/2017) Report ITU-R M.2413-0 (11/2017) Reception of automatic dependent surveillance broadcast via satellite and compatibility studies with incumbent systems in the frequency band 1 087.7-1 092.3 MHz M Series

More information

SURVEILLANCE DATA EXCHANGE. Part 18 : Category 019. Multilateration System Status Messages

SURVEILLANCE DATA EXCHANGE. Part 18 : Category 019. Multilateration System Status Messages EUROPEAN ORGANISATION FOR THE SAFETY OF AIR NAVIGATION E U R O C O N T R O L EUROCONTROL STANDARD DOCUMENT FOR SURVEILLANCE DATA EXCHANGE Part 18 : Category 019 Multilateration System Status Messages Edition

More information