Low Power Carbon Nanotube Chemical Sensor System

Size: px
Start display at page:

Download "Low Power Carbon Nanotube Chemical Sensor System"

Transcription

1 Low Power Carbon Nanotube Chemical Sensor System Taeg Sang Cho, Kyeong-Jae Lee, Jing Kong and Anantha Chandrakasan Massachusetts Institute of Technology CICC September 17 27

2 Outline Introduction Carbon nanotube chemical sensors Sensor interface design Interface chip measurement Chemical sensor system test result Conclusion

3 Motivation for using CNT Sensors NO 2 CNT-FET [Courtesy: A. Recco, J. Kong] Behaves as a resistive chemical sensor High sensitivity at room temperature No need for micro hot-plates NO 2 can be sensed without any functionalization

4 Device Count Measured CNT Characteristics R CNT Distribution Resistance (Ω) - 35 samples Δ R vs. R O (3ppm NO 2 ) Implications for the CMOS backend Wide dynamic range (1kΩ ~ 9MΩ), but only moderate resolution (1%) Sub-ppm NO 2 detection 16 bit dynamic range 6-7 bit resolution Δ R (k Ω) Interface to multiple CNT sensors for increased reliability Access to 24 CNTs R (kω) O Maximum current through a single CNT < 3 μa

5 Previous Sensor Interfaces Make resistive sensor a current source by wrapping an OPAMP to supply a constant voltage across the sensor [Malfatti et al. ISSCC6] Use a resistive DAC and ADC to gain a wide dynamic range [Grassi et al. ESSCIRC 25]

6 Architectural Concept R = D ( V ADC ) V I LSB

7 Architectural Concept R = D( V ) xr ADC RES No need for 16-bit ADC, but can let the adaptive controller determine the operating point of the interface

8 Proposed System Diagram + V headroom =.3V _ DD o o o o o o o o o o

9 Architecture Optimization Why a 1-bit ADC and a 8-bit DAC to attain 18-bit dynamic range? E SYSTEM = P ADC T ADC + P DAC T DAC + E DIGITAL Energy per Conversion (normalized) Energy Per Resistance Conversion Optimum energy can be attained with 11 bits Allocated in the ADC # of Bits Allocated in the ADC Penalty paid for using a 1-bit ADC is 17%

10 DAC Control Scheme DACNO DAC NEXT Only allow I DAC = 2 N I LSB : 4-bit representation of current. Supply the maximum current while meeting the DAC headroom constraint. Resistance can be calculated with register shift operations

11 Current Supplied ( μ A) DAC Control Scheme DAC Current Maximum current < 3 μa Resistance (Ω) Measurement resolution ( Ω) 1 x Measurement resolution accuracy better than 1% mask Resistance (Ω) Proposed control scheme 1% mask

12 DAC Calibration Use off-chip reference resistors to measure how much current is being sourced at each current level A simple multiplication can be used to calibrate the DAC nonlinearity

13 Analog CNT Multiplexer V INADC Boosting Output of Two Types of Boosting Circuit The width of pass gate transistors are made reasonably large, and the voltage is boosted when turned on, to reduce the on-resistance Output Voltage (V) Proposed Boosting Output Conventional Boosting Output time (ms)

14 Prototype Chips CNT sensors fabricated at MTL, RLE (MIT) Prototype fabricated in.18μm CMOS process Digital DAC ADC Controller.77mm 1.2mm Bootstrap Circuit 5 um

15 Performance : DAC Calibration 2 DAC Current Error in Percentage 12 Calibration Word Output Current Error (%) DAC Current Number Before Calibration After Calibration Calibration Word DAC Current Number Current linearity error is kept below 1.2% after calibration

16 Performance : Linearity and Power Resistance Error over the Measurement Range 18 Power as a Function of Sampling Rate Resistance Error (%) Power (μw) Input Resistance Measurement error is kept below 1.34% across the whole dynamic range Sampling Rate (Samples/second) Linear power scaling as sampling rate is reduced Worst case power: 32 μw

17 Comparison of interfaces Readout Resolution Resistance Range Readout Rate Power Consumption η Malfatti et al. [ISSCC6].5% > 5kΩ ~ 1GΩ Not Available 3.1 mw Grassi et al. [ESSCIRC5].14% > 1Ω ~ 2MΩ 1Hz 6 mw Frey et al [JSSC 7].2% > 3kΩ ~ 12MΩ 3kHz ~ 13mW Flammini *.5 % > 1kΩ ~ 1GΩ Depends on resis. 6 mw This work 1.32% > 1kΩ ~ 9MΩ 1.83kHz 32 μw * IEEE Transactions on Instrumentation and Measurement Nov 24 η Excluding micro-hotplate power where applicable

18 Chemical System Testing Chemical System Test Setup.1 A resistance change in CNT due to chemicals is reliably measured ΔR / R ppm 23.3 kω 35.2 kω 18.6 kω kω 34.5 kω 36.1 kω 26.1 kω 15 ppm 3 ppm NO 2 Off Time (sec)

19 Conclusion CNT sensors enable a low power chemical sensor system without micro hotplates The designed interface chip attains a wide dynamic range by automatic control scheme The full chemical sensor system is demonstrated Acknowledgements: Funding provided by MARCO IFC, Samsung Scholarship Foundation, Intel; Chip fabrication provided by National Semiconductor

The Design of a Low Power Carbon Nanotube Chemical Sensor System

The Design of a Low Power Carbon Nanotube Chemical Sensor System 7.2 The Design of a Low Power Carbon Nanotube Chemical Sensor System Taeg Sang Cho, Kyeong-jae Lee, Jing Kong, Anantha P. Chandrakasan Massachusetts Institute of Technology Cambridge, MA, 2139 USA {taegsang,

More information

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 2, FEBRUARY

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 2, FEBRUARY IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 2, FEBRUARY 2009 659 A 32-W 1.83-kS/s Carbon Nanotube Chemical Sensor System Taeg Sang Cho, Student Member, IEEE, Kyeong-Jae Lee, Student Member, IEEE,

More information

Integrated Microsystems Laboratory. Franco Maloberti

Integrated Microsystems Laboratory. Franco Maloberti University of Pavia Integrated Microsystems Laboratory Power Efficient Data Convertes Franco Maloberti franco.maloberti@unipv.it OUTLINE Introduction Managing the noise power budget Challenges of State-of-the-art

More information

Taeg Sang Cho. B.S. in Electrical Engineering and Computer Science Korea Advanced Institute of Science and Technology, at the.

Taeg Sang Cho. B.S. in Electrical Engineering and Computer Science Korea Advanced Institute of Science and Technology, at the. An Energy Efficient CMOS Interface to Carbon Nanotube Sensor Arrays by Taeg Sang Cho B.S. in Electrical Engineering and Computer Science Korea Advanced Institute of Science and Technology, 2005 Submitted

More information

Low Power Design of Successive Approximation Registers

Low Power Design of Successive Approximation Registers Low Power Design of Successive Approximation Registers Rabeeh Majidi ECE Department, Worcester Polytechnic Institute, Worcester MA USA rabeehm@ece.wpi.edu Abstract: This paper presents low power design

More information

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5 20.5 An Ultra-Low Power 2.4GHz RF Transceiver for Wireless Sensor Networks in 0.13µm CMOS with 400mV Supply and an Integrated Passive RX Front-End Ben W. Cook, Axel D. Berny, Alyosha Molnar, Steven Lanzisera,

More information

A 12b 50MS/s 2.1mW SAR ADC with redundancy and digital background calibration

A 12b 50MS/s 2.1mW SAR ADC with redundancy and digital background calibration A b 5MS/s.mW SAR ADC with redundancy and digital background calibration The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As

More information

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4 ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4 25.4 A 1.8V 14b 10MS/s Pipelined ADC in 0.18µm CMOS with 99dB SFDR Yun Chiu, Paul R. Gray, Borivoje Nikolic University of California, Berkeley,

More information

A Two- Bit- per- Cycle Successive- Approximation ADC with Background Offset Calibration

A Two- Bit- per- Cycle Successive- Approximation ADC with Background Offset Calibration M. Casubolo, M. Grassi, A. Lombardi, F. Maloberti, P. Malcovati: "A Two-Bit-per- Cycle Successive-Approximation ADC with Background Calibration"; 15th IEEE Int. Conf. on Electronics, Circuits and Systems,

More information

A 4b/cycle Flash-assisted SAR ADC with Comparator Speed-boosting Technique

A 4b/cycle Flash-assisted SAR ADC with Comparator Speed-boosting Technique JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.18, NO.2, APRIL, 2018 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2018.18.2.281 ISSN(Online) 2233-4866 A 4b/cycle Flash-assisted SAR ADC with

More information

A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers

A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers James Lin, Daehwa Paik, Seungjong Lee, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology, Japan Matsuzawa & Okada

More information

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong Research and Development Activities in RF and Analog IC Design Howard Luong Analog Research Laboratory Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

Publication [P3] By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Publication [P3] By choosing to view this document, you agree to all provisions of the copyright laws protecting it. Publication [P3] Copyright c 2006 IEEE. Reprinted, with permission, from Proceedings of IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 5-9 Feb. 2006, pp. 488 489. This

More information

A 35 fj 10b 160 MS/s Pipelined- SAR ADC with Decoupled Flip- Around MDAC and Self- Embedded Offset Cancellation

A 35 fj 10b 160 MS/s Pipelined- SAR ADC with Decoupled Flip- Around MDAC and Self- Embedded Offset Cancellation Y. Zu, C.- H. Chan, S.- W. Sin, S.- P. U, R.P. Martins, F. Maloberti: "A 35 fj 10b 160 MS/s Pipelined-SAR ADC with Decoupled Flip-Around MDAC and Self- Embedded Offset Cancellation"; IEEE Asian Solid-

More information

A 19-bit column-parallel folding-integration/cyclic cascaded ADC with a pre-charging technique for CMOS image sensors

A 19-bit column-parallel folding-integration/cyclic cascaded ADC with a pre-charging technique for CMOS image sensors LETTER IEICE Electronics Express, Vol.14, No.2, 1 12 A 19-bit column-parallel folding-integration/cyclic cascaded ADC with a pre-charging technique for CMOS image sensors Tongxi Wang a), Min-Woong Seo

More information

A 10-Gb/s Multiphase Clock and Data Recovery Circuit with a Rotational Bang-Bang Phase Detector

A 10-Gb/s Multiphase Clock and Data Recovery Circuit with a Rotational Bang-Bang Phase Detector JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.3, JUNE, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.3.287 ISSN(Online) 2233-4866 A 10-Gb/s Multiphase Clock and Data Recovery

More information

ANALOG-TO-DIGITAL CONVERTER FOR INPUT VOLTAGE MEASUREMENTS IN LOW- POWER DIGITALLY CONTROLLED SWITCH-MODE POWER SUPPLY CONVERTERS

ANALOG-TO-DIGITAL CONVERTER FOR INPUT VOLTAGE MEASUREMENTS IN LOW- POWER DIGITALLY CONTROLLED SWITCH-MODE POWER SUPPLY CONVERTERS ANALOG-TO-DIGITAL CONVERTER FOR INPUT VOLTAGE MEASUREMENTS IN LOW- POWER DIGITALLY CONTROLLED SWITCH-MODE POWER SUPPLY CONVERTERS Aleksandar Radić, S. M. Ahsanuzzaman, Amir Parayandeh, and Aleksandar Prodić

More information

RECENTLY, low-voltage and low-power circuit design

RECENTLY, low-voltage and low-power circuit design IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 55, NO. 4, APRIL 2008 319 A Programmable 0.8-V 10-bit 60-MS/s 19.2-mW 0.13-m CMOS ADC Operating Down to 0.5 V Hee-Cheol Choi, Young-Ju

More information

Opportunities and Challenges in Ultra Low Voltage CMOS. Rajeevan Amirtharajah University of California, Davis

Opportunities and Challenges in Ultra Low Voltage CMOS. Rajeevan Amirtharajah University of California, Davis Opportunities and Challenges in Ultra Low Voltage CMOS Rajeevan Amirtharajah University of California, Davis Opportunities for Ultra Low Voltage Battery Operated and Mobile Systems Wireless sensors RFID

More information

EE247 Lecture 23. Advanced calibration techniques. Compensating inter-stage amplifier non-linearity Calibration via parallel & slow ADC

EE247 Lecture 23. Advanced calibration techniques. Compensating inter-stage amplifier non-linearity Calibration via parallel & slow ADC EE247 Lecture 23 Pipelined ADCs Combining the bits Stage implementation Circuits Noise budgeting Advanced calibration techniques Compensating inter-stage amplifier non-linearity Calibration via parallel

More information

A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique

A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique 1 A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique Masaya Miyahara and Akira Matsuzawa Tokyo Institute of Technology, Japan 2 Outline Motivation Design Concept

More information

A 400 MHz 4.5 nw 63.8 dbm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector

A 400 MHz 4.5 nw 63.8 dbm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector A 400 MHz 4.5 nw 63.8 dbm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector Po-Han Peter Wang, Haowei Jiang, Li Gao, Pinar Sen, Young-Han Kim, Gabriel M. Rebeiz, Patrick P.

More information

ELG3336: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs)

ELG3336: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs) ELG3336: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs) Digital Output Dout 111 110 101 100 011 010 001 000 ΔV, V LSB V ref 8 V FSR 4 V 8 ref 7 V 8 ref Analog Input

More information

Tae-Kwang Jang. Electrical Engineering, University of Michigan

Tae-Kwang Jang. Electrical Engineering, University of Michigan Education Tae-Kwang Jang Electrical Engineering, University of Michigan E-Mail: tkjang@umich.edu Ph.D. in Electrical Engineering, University of Michigan September 2013 November 2017 Dissertation title:

More information

A 23 nw CMOS ULP Temperature Sensor Operational from 0.2 V

A 23 nw CMOS ULP Temperature Sensor Operational from 0.2 V A 23 nw CMOS ULP Temperature Sensor Operational from 0.2 V Divya Akella Kamakshi 1, Aatmesh Shrivastava 2, and Benton H. Calhoun 1 1 Dept. of Electrical Engineering, University of Virginia, Charlottesville,

More information

An RF-Powered Temperature Sensor Designed for Biomedical Applications

An RF-Powered Temperature Sensor Designed for Biomedical Applications An RF-Powered Temperature Sensor Designed for Biomedical Applications Gustavo Campos Martins, Fernando Rangel de Sousa GRF, UFSC September 4, 2013 Gustavo C. Martins (GRF, UFSC) RF-Powered Temperature

More information

Ultra Low Power, High resolution ADC for Biomedical Applications

Ultra Low Power, High resolution ADC for Biomedical Applications Ultra Low Power, High resolution ADC for Biomedical Applications L. Hiremath, V. Mallapur, A. Stojcevski, J. Singh, H.P. Le, A. Zayegh Faculty of Science Engineering & Technology Victoria University, P.O.BOX

More information

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.3

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.3 ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.3 25.3 A 96dB SFDR 50MS/s Digitally Enhanced CMOS Pipeline A/D Converter K. Nair, R. Harjani University of Minnesota, Minneapolis, MN Analog-to-digital

More information

Power (mw) DNL/INL (LSB) 200k / / /

Power (mw) DNL/INL (LSB) 200k / / / 동부하이텍공정 IP LIST 2010. 07. 25 서강대학교집적회로설계연구실 IP fsample (MS/s) VDD (V) Power (mw) / (LSB) Area (mm 2 ) Process (um) Comments [1] 12-bit ADC [2] 12-bit ADC [3] 10-bit ADC [4] 15-bit ADC [5] 13-bit ADC 200k

More information

ELG4139: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs)

ELG4139: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs) ELG4139: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs) Digital Output Dout 111 110 101 100 011 010 001 000 ΔV, V LSB V ref 8 V FS 4 V 8 ref 7 V 8 ref Analog Input V

More information

A 1.2V 8 BIT SAR ANALOG TO DIGITAL CONVERTER IN 90NM CMOS

A 1.2V 8 BIT SAR ANALOG TO DIGITAL CONVERTER IN 90NM CMOS A 1.2V 8 BIT SAR ANALOG TO DIGITAL CONVERTER IN 90NM CMOS Shruti Gatade 1, M. Nagabhushan 2, Manjunath.R 3 1,3 Student, Department of ECE, M S Ramaiah Institute of Technology, Bangalore (India) 2 Assistant

More information

Low Cost Instrumentation Amplifier AD622

Low Cost Instrumentation Amplifier AD622 a FEATURES Easy to Use Low Cost Solution Higher Performance than Two or Three Op Amp Design Unity Gain with No External Resistor Optional Gains with One External Resistor (Gain Range 2 to ) Wide Power

More information

Precision, Low-Power, 6-Pin SOT23 Temperature Sensors and Voltage References

Precision, Low-Power, 6-Pin SOT23 Temperature Sensors and Voltage References 19-2457; Rev 2; 11/03 Precision, Low-Power, 6-Pin SOT23 General Description The are precise, low-power analog temperature sensors combined with a precision voltage reference. They are ideal for applications

More information

Proposing. An Interpolated Pipeline ADC

Proposing. An Interpolated Pipeline ADC Proposing An Interpolated Pipeline ADC Akira Matsuzawa Tokyo Institute of Technology, Japan Matsuzawa & Okada Lab. Background 38GHz long range mm-wave system Role of long range mm-wave Current Optical

More information

High Precision 10 V IC Reference AD581

High Precision 10 V IC Reference AD581 High Precision 0 V IC Reference FEATURES Laser trimmed to high accuracy 0.000 V ±5 mv (L and U models) Trimmed temperature coefficient 5 ppm/ C maximum, 0 C to 70 C (L model) 0 ppm/ C maximum, 55 C to

More information

A rad-hard 8-channel 12-bit resolution ADC for slow control applications in the LHC environment

A rad-hard 8-channel 12-bit resolution ADC for slow control applications in the LHC environment A rad-hard 8-channel 12-bit resolution ADC for slow control applications in the LHC environment G. Magazzù 1,A.Marchioro 2,P.Moreira 2 1 INFN-PISA, Via Livornese 1291 56018 S.Piero a Grado (Pisa), Italy

More information

The Mixed Signal Optimum Energy Point: Voltage and Parallelism

The Mixed Signal Optimum Energy Point: Voltage and Parallelism 14. The Mixed Signal Optimum Energy Point: Voltage and Parallelism Brian P. Ginsburg Texas Instruments Dallas, TX bginzz@ti.com Anantha P. Chandrakasan Massachusetts Institute of Technology Cambridge,

More information

A/D Conversion and Filtering for Ultra Low Power Radios. Dejan Radjen Yasser Sherazi. Advanced Digital IC Design. Contents. Why is this important?

A/D Conversion and Filtering for Ultra Low Power Radios. Dejan Radjen Yasser Sherazi. Advanced Digital IC Design. Contents. Why is this important? 1 Advanced Digital IC Design A/D Conversion and Filtering for Ultra Low Power Radios Dejan Radjen Yasser Sherazi Contents A/D Conversion A/D Converters Introduction ΔΣ modulator for Ultra Low Power Radios

More information

Practical Information

Practical Information EE241 - Spring 2013 Advanced Digital Integrated Circuits MW 2-3:30pm 540A/B Cory Practical Information Instructor: Borivoje Nikolić 509 Cory Hall, 3-9297, bora@eecs Office hours: M 11-12, W 3:30pm-4:30pm

More information

None Operational Amplifier (OPA) Based: Design of Analogous Bandgap Reference Voltage

None Operational Amplifier (OPA) Based: Design of Analogous Bandgap Reference Voltage Article None Operational Amplifier (OPA) Based: Design of Analogous Bandgap Reference Voltage Hao-Ping Chan 1 and Yu-Cherng Hung 2, * 1 Department of Electronic Engineering, National Chin-Yi University

More information

Wirelessly Powered Sensor Transponder for UHF RFID

Wirelessly Powered Sensor Transponder for UHF RFID Wirelessly Powered Sensor Transponder for UHF RFID In: Proceedings of Transducers & Eurosensors 07 Conference. Lyon, France, June 10 14, 2007, pp. 73 76. 2007 IEEE. Reprinted with permission from the publisher.

More information

A New Capacitive Sensing Circuit using Modified Charge Transfer Scheme

A New Capacitive Sensing Circuit using Modified Charge Transfer Scheme 78 Hyeopgoo eo : A NEW CAPACITIVE CIRCUIT USING MODIFIED CHARGE TRANSFER SCHEME A New Capacitive Sensing Circuit using Modified Charge Transfer Scheme Hyeopgoo eo, Member, KIMICS Abstract This paper proposes

More information

A 14-bit 2.5 GS/s DAC based on Multi-Clock Synchronization. Hegang Hou*, Zongmin Wang, Ying Kong, Xinmang Peng, Haitao Guan, Jinhao Wang, Yan Ren

A 14-bit 2.5 GS/s DAC based on Multi-Clock Synchronization. Hegang Hou*, Zongmin Wang, Ying Kong, Xinmang Peng, Haitao Guan, Jinhao Wang, Yan Ren Joint International Mechanical, Electronic and Information Technology Conference (JIMET 2015) A 14-bit 2.5 GS/s based on Multi-Clock Synchronization Hegang Hou*, Zongmin Wang, Ying Kong, Xinmang Peng,

More information

SUCCESSIVE approximation register (SAR) analog-todigital

SUCCESSIVE approximation register (SAR) analog-todigital 426 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 62, NO. 5, MAY 2015 A Novel Hybrid Radix-/Radix-2 SAR ADC With Fast Convergence and Low Hardware Complexity Manzur Rahman, Arindam

More information

A 12-bit 100kS/s SAR ADC for Biomedical Applications. Sung-Chan Rho 1 and Shin-Il Lim 2. Seoul, Korea. Abstract

A 12-bit 100kS/s SAR ADC for Biomedical Applications. Sung-Chan Rho 1 and Shin-Il Lim 2. Seoul, Korea. Abstract , pp.17-22 http://dx.doi.org/10.14257/ijunesst.2016.9.8.02 A 12-bit 100kS/s SAR ADC for Biomedical Applications Sung-Chan Rho 1 and Shin-Il Lim 2 1 Department of Electronics and Computer Engineering, Seokyeong

More information

EE247 Lecture 22. Figures of merit (FOM) and trends for ADCs How to use/not use FOM. EECS 247 Lecture 22: Data Converters 2004 H. K.

EE247 Lecture 22. Figures of merit (FOM) and trends for ADCs How to use/not use FOM. EECS 247 Lecture 22: Data Converters 2004 H. K. EE247 Lecture 22 Pipelined ADCs Combining the bits Stage implementation Circuits Noise budgeting Figures of merit (FOM) and trends for ADCs How to use/not use FOM Oversampled ADCs EECS 247 Lecture 22:

More information

Accurate Sub-1 V CMOS Bandgap Voltage Reference with PSRR of -118 db

Accurate Sub-1 V CMOS Bandgap Voltage Reference with PSRR of -118 db JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.4, AUGUST, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.4.528 ISSN(Online) 2233-4866 Accurate Sub-1 V CMOS Bandgap Voltage

More information

A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping

A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

CMOS 8-Bit Buffered Multiplying DAC AD7524

CMOS 8-Bit Buffered Multiplying DAC AD7524 a FEATURES Microprocessor Compatible (6800, 8085, Z80, Etc.) TTL/ CMOS Compatible Inputs On-Chip Data Latches Endpoint Linearity Low Power Consumption Monotonicity Guaranteed (Full Temperature Range) Latch

More information

Dynamically Reconfigurable Sensor Electronics Concept, Architecture, First Measurement Results, and Perspective

Dynamically Reconfigurable Sensor Electronics Concept, Architecture, First Measurement Results, and Perspective Institute of Integrated Sensor Systems Dept. of Electrical Engineering and Information Technology Dynamically Reconfigurable Sensor Electronics Concept, Architecture, First Measurement Results, and Perspective

More information

Summary Last Lecture

Summary Last Lecture EE247 Lecture 23 Converters Techniques to reduce flash complexity Interpolating (continued) Folding Multi-Step s Two-Step flash Pipelined s EECS 247 Lecture 23: Data Converters 26 H.K. Page Summary Last

More information

MICROELECTRONIC CIRCUIT DESIGN Third Edition

MICROELECTRONIC CIRCUIT DESIGN Third Edition MICROELECTRONIC CIRCUIT DESIGN Third Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 1/25/08 Chapter 1 1.3 1.52 years, 5.06 years 1.5 1.95 years, 6.46 years 1.8 113

More information

CAPACITOR mismatch is a major source of missing codes

CAPACITOR mismatch is a major source of missing codes 1626 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 7, JULY 2008 An 11-Bit 45 MS/s Pipelined ADC With Rapid Calibration of DAC Errors in a Multibit Pipeline Stage Imran Ahmed, Student Member, IEEE,

More information

ADVANCES in CMOS technology have led to aggressive

ADVANCES in CMOS technology have led to aggressive 1972 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 9, SEPTEMBER 2005 A 0.8-V Accurately Tuned Linear Continuous-Time Filter Gowtham Vemulapalli, Pavan Kumar Hanumolu, Student Member, IEEE, Youn-Jae

More information

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 Lecture 5: Termination, TX Driver, & Multiplexer Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements

More information

DESIGN OF LOW POWER SAR ADC FOR ECG USING 45nm CMOS TECHNOLOGY

DESIGN OF LOW POWER SAR ADC FOR ECG USING 45nm CMOS TECHNOLOGY DESIGN OF LOW POWER SAR ADC FOR ECG USING 45nm CMOS TECHNOLOGY Silpa Kesav 1, K.S.Nayanathara 2 and B.K. Madhavi 3 1,2 (ECE, CVR College of Engineering, Hyderabad, India) 3 (ECE, Sridevi Women s Engineering

More information

2.7 V to 5.5 V, 350 ksps, 10-Bit 4-/8-Channel Sampling ADCs AD7811/AD7812

2.7 V to 5.5 V, 350 ksps, 10-Bit 4-/8-Channel Sampling ADCs AD7811/AD7812 a FEATURES 10-Bit ADC with 2.3 s Conversion Time The AD7811 has Four Single-Ended Inputs that Can Be Configured as Three Pseudo Differential Inputs with Respect to a Common, or as Two Independent Pseudo

More information

1.25 V Micropower, Precision Shunt Voltage Reference ADR1581

1.25 V Micropower, Precision Shunt Voltage Reference ADR1581 .25 V Micropower, Precision Shunt Voltage Reference ADR58 FEATURES Wide operating range: 6 μa to ma Initial accuracy: ±.2% maximum Temperature drift: ±5 ppm/ C maximum Output impedance:.5 Ω maximum Wideband

More information

AD MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS Programmable Gain Instrumentation Amplifier. Preliminary Technical Data FEATURES

AD MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS Programmable Gain Instrumentation Amplifier. Preliminary Technical Data FEATURES Preliminary Technical Data 0 MHz, 20 V/μs, G =, 0, 00, 000 i CMOS Programmable Gain Instrumentation Amplifier FEATURES Small package: 0-lead MSOP Programmable gains:, 0, 00, 000 Digital or pin-programmable

More information

DIGITALLY controlled and area-efficient calibration circuits

DIGITALLY controlled and area-efficient calibration circuits 246 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 5, MAY 2005 A Low-Voltage 10-Bit CMOS DAC in 0.01-mm 2 Die Area Brandon Greenley, Raymond Veith, Dong-Young Chang, and Un-Ku

More information

A DRY ELECTRODE LOW POWER CMOS EEG ACQUISITION SOC FOR SEIZURE DETECTION

A DRY ELECTRODE LOW POWER CMOS EEG ACQUISITION SOC FOR SEIZURE DETECTION A DRY ELECTRODE LOW POWER CMOS EEG ACQUISITION SOC FOR SEIZURE DETECTION TEAM 6: MATTHIEU DURBEC, VALENTIN BERANGER, KARIM ELOUELDRHIRI ECE 6414 SPRING 2017 OUTLINE Project motivation Design overview Body-Electrode

More information

Design And Implementation of Pulse-Based Low Power 5-Bit Flash Adc In Time-Domain

Design And Implementation of Pulse-Based Low Power 5-Bit Flash Adc In Time-Domain IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 13, Issue 3, Ver. I (May. - June. 2018), PP 55-60 www.iosrjournals.org Design And Implementation

More information

EE247 Lecture 23. EECS 247 Lecture 23 Pipelined ADCs 2008 H.K. Page 1. Pipeline ADC Block Diagram DAC ADC. V res2. Stage 2 B 2.

EE247 Lecture 23. EECS 247 Lecture 23 Pipelined ADCs 2008 H.K. Page 1. Pipeline ADC Block Diagram DAC ADC. V res2. Stage 2 B 2. EE247 Lecture 23 Pipelined ADCs (continued) Effect gain stage, sub-dac non-idealities on overall ADC performance Digital calibration (continued) Correction for inter-stage gain nonlinearity Implementation

More information

Selecting and Using High-Precision Digital-to-Analog Converters

Selecting and Using High-Precision Digital-to-Analog Converters Selecting and Using High-Precision Digital-to-Analog Converters Chad Steward DAC Design Section Leader Linear Technology Corporation Many applications, including precision instrumentation, industrial automation,

More information

PG Scholar, Electronics (VLSI Design), PEC University of Technology, Chandigarh, India

PG Scholar, Electronics (VLSI Design), PEC University of Technology, Chandigarh, India A Low Power 4 Bit Successive Approximation Analog-To-Digital Converter Using 180nm Technology Jasbir Kaur 1, Praveen Kumar 2 1 Assistant Professor, ECE Department, PEC University of Technology, Chandigarh,

More information

2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS

2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS 2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS November 30 - December 3, 2008 Venetian Macao Resort-Hotel Macao, China IEEE Catalog Number: CFP08APC-USB ISBN: 978-1-4244-2342-2 Library of Congress:

More information

A single-slope 80MS/s ADC using two-step time-to-digital conversion

A single-slope 80MS/s ADC using two-step time-to-digital conversion A single-slope 80MS/s ADC using two-step time-to-digital conversion The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Conversion Rate Improvement of SAR ADC with Digital Error Correction

Conversion Rate Improvement of SAR ADC with Digital Error Correction Conversion Rate Improvement of SAR ADC with Digital Error Correction Shintaro SHIMOKURA, Masao HOA, Nan ZHAO, Yosuke AKAHASHI, Haruo KOBAYASHI Department of Information Network Eng., Musashi Institute

More information

L10: Analog Building Blocks (OpAmps,, A/D, D/A)

L10: Analog Building Blocks (OpAmps,, A/D, D/A) L10: Analog Building Blocks (OpAmps,, A/D, D/A) Acknowledgement: Materials in this lecture are courtesy of the following sources and are used with permission. Dave Wentzloff 1 Introduction to Operational

More information

ECE 6770 FINAL PROJECT

ECE 6770 FINAL PROJECT ECE 6770 FINAL PROJECT POINT TO POINT COMMUNICATION SYSTEM Submitted By: Omkar Iyer (Omkar_iyer82@yahoo.com) Vamsi K. Mudarapu (m_vamsi_krishna@yahoo.com) MOTIVATION Often in the real world we have situations

More information

Research Article Design a Bioamplifier with High CMRR

Research Article Design a Bioamplifier with High CMRR VLSI Design Volume 2013, Article ID 210265, 5 pages http://dx.doi.org/10.1155/2013/210265 Research Article Design a Bioamplifier with High CMRR Yu-Ming Hsiao, Miin-Shyue Shiau, Kuen-Han Li, Jing-Jhong

More information

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier Hyunui Lee, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology, Japan Outline Background Body voltage controlled

More information

A 6-bit Subranging ADC using Single CDAC Interpolation

A 6-bit Subranging ADC using Single CDAC Interpolation A 6-bit Subranging ADC using Single CDAC Interpolation Hyunui Lee, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology, Japan Outline Background Interpolation techniques 6-bit, 500 MS/s

More information

Design of an Amplifier for Sensor Interfaces

Design of an Amplifier for Sensor Interfaces Design of an Amplifier for Sensor Interfaces Anurag Mangla Electrical and Electronics Engineering anurag.mangla@epfl.ch Supervised by Dr. Marc Pastre Prof. Maher Kayal Outline Introduction Need for high

More information

A 3MPixel Multi-Aperture Image Sensor with 0.7µm Pixels in 0.11µm CMOS

A 3MPixel Multi-Aperture Image Sensor with 0.7µm Pixels in 0.11µm CMOS A 3MPixel Multi-Aperture Image Sensor with 0.7µm Pixels in 0.11µm CMOS Keith Fife, Abbas El Gamal, H.-S. Philip Wong Stanford University, Stanford, CA Outline Introduction Chip Architecture Detailed Operation

More information

A VCO-Based ADC Employing a Multi- Phase Noise-Shaping Beat Frequency Quantizer for Direct Sampling of Sub-1mV Input Signals

A VCO-Based ADC Employing a Multi- Phase Noise-Shaping Beat Frequency Quantizer for Direct Sampling of Sub-1mV Input Signals A VCO-Based ADC Employing a Multi- Phase Noise-Shaping Beat Frequency Quantizer for Direct Sampling of Sub-1mV Input Signals Bongjin Kim, Somnath Kundu, Seokkyun Ko and Chris H. Kim University of Minnesota,

More information

Isolated Industrial Current Loop Using the IL300 Linear

Isolated Industrial Current Loop Using the IL300 Linear VISHAY SEMICONDUCTORS www.vishay.com Optocouplers and Solid-State Relays Application Note Isolated Industrial Current Loop Using the IL Linear INTRODUCTION Programmable logic controllers (PLC) were once

More information

A Low Power Analog Front End Capable of Monitoring Knee Movements to Detect Injury

A Low Power Analog Front End Capable of Monitoring Knee Movements to Detect Injury A Low Power Analog Front End Capable of Monitoring Knee Movements to Detect Injury Garren Boggs, Hua Chen, Sridhar Sivapurapu ECE 6414 Final Presentation Outline Motivation System Overview Analog Front

More information

Implementing a 5-bit Folding and Interpolating Analog to Digital Converter

Implementing a 5-bit Folding and Interpolating Analog to Digital Converter Implementing a 5-bit Folding and Interpolating Analog to Digital Converter Zachary A Pfeffer (pfefferz@colorado.edu) Department of Electrical and Computer Engineering University of Colorado, Boulder CO

More information

A CMOS Image Sensor with Ultra Wide Dynamic Range Floating-Point Pixel-Level ADC

A CMOS Image Sensor with Ultra Wide Dynamic Range Floating-Point Pixel-Level ADC A 640 512 CMOS Image Sensor with Ultra Wide Dynamic Range Floating-Point Pixel-Level ADC David X.D. Yang, Abbas El Gamal, Boyd Fowler, and Hui Tian Information Systems Laboratory Electrical Engineering

More information

Practical Information

Practical Information EE241 - Spring 2010 Advanced Digital Integrated Circuits TuTh 3:30-5pm 293 Cory Practical Information Instructor: Borivoje Nikolić 550B Cory Hall, 3-9297, bora@eecs Office hours: M 10:30am-12pm Reader:

More information

Another way to implement a folding ADC

Another way to implement a folding ADC Another way to implement a folding ADC J. Van Valburg and R. van de Plassche, An 8-b 650 MHz Folding ADC, IEEE JSSC, vol 27, #12, pp. 1662-6, Dec 1992 Coupled Differential Pair J. Van Valburg and R. van

More information

20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS. Masum Hossain & Tony Chan Carusone University of Toronto

20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS. Masum Hossain & Tony Chan Carusone University of Toronto 20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS Masum Hossain & Tony Chan Carusone University of Toronto masum@eecg.utoronto.ca Motivation Data Rx3 Rx2 D-FF D-FF Rx1 D-FF Clock Clock

More information

A 130mW 100MS/s Pipelined ADC with 69dB SNDR Enabled by Digital Harmonic Distortion Correction. Andrea Panigada, Ian Galton

A 130mW 100MS/s Pipelined ADC with 69dB SNDR Enabled by Digital Harmonic Distortion Correction. Andrea Panigada, Ian Galton A 130mW 100MS/s Pipelined ADC with 69dB SNDR Enabled by Digital Harmonic Distortion Correction Andrea Panigada, Ian Galton University of California at San Diego, La Jolla, CA INTEGRATED SIGNAL PROCESSING

More information

Design and Implementation of High-Speed CMOS Clock and Data Recovery Circuit for Optical Interconnection Applications. Seong-Jun Song. Dec.

Design and Implementation of High-Speed CMOS Clock and Data Recovery Circuit for Optical Interconnection Applications. Seong-Jun Song. Dec. MS Thesis esign and Implementation of High-Speed CMOS Clock and ata Recovery Circuit for Optical Interconnection Applications Seong-Jun Song ec. 20, 2002 oratory, epartment of Electrical Engineering and

More information

Continuous Wave Laser Average Power Controller ADN2830

Continuous Wave Laser Average Power Controller ADN2830 a FEATURES Bias Current Range 4 ma to 200 ma Monitor Photodiode Current 50 A to 1200 A Closed-Loop Control of Average Power Laser and Laser Alarms Automatic Laser Shutdown, Full Current Parameter Monitoring

More information

A Novel Low Power Profile for Mixed-Signal Design of SARADC

A Novel Low Power Profile for Mixed-Signal Design of SARADC Electrical and Electronic Engineering 2012, 2(2): 82-87 DOI: 10.5923/j.eee.20120202.15 A Novel Low Power Profile for Mixed-Signal Design of SARADC Saeed Roshani 1,*, Sobhan Roshani 1, Mohammad B. Ghaznavi

More information

12-Bit Successive-Approximation Integrated Circuit ADC ADADC80

12-Bit Successive-Approximation Integrated Circuit ADC ADADC80 2-Bit Successive-Approximation Integrated Circuit ADC FEATURES True 2-bit operation: maximum nonlinearity ±.2% Low gain temperature coefficient (TC): ±3 ppm/ C maximum Low power: 8 mw Fast conversion time:

More information

Sensorless Digital Peak Current Controller for Low-Power DC-DC SMPS Based on a Bi-Directional Delay Line

Sensorless Digital Peak Current Controller for Low-Power DC-DC SMPS Based on a Bi-Directional Delay Line Sensorless Digital Peak Current Controller for Low-Power DC-DC SMPS Based on a Bi-Directional Delay Line Olivier Trescases, Amir Parayandeh, Aleksandar Prodić, Wai Tung Ng ECE Department, University of

More information

1.5 bit-per-stage 8-bit Pipelined CMOS A/D Converter for Neuromophic Vision Processor

1.5 bit-per-stage 8-bit Pipelined CMOS A/D Converter for Neuromophic Vision Processor 1.5 bit-per-stage 8-bit Pipelined CMOS A/D Converter for Neuromophic Vision Processor Yilei Li, Li Du 09212020027@fudan.edu.cn Abstract- Neuromorphic vision processor is an electronic implementation of

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-1857; Rev ; 11/ EVALUATION KIT AVAILABLE General Description The low-power, 8-bit, dual-channel, analog-to-digital converters (ADCs) feature an internal track/hold (T/H) voltage reference (/), clock,

More information

10-Bit, Low-Power, Rail-to-Rail Voltage-Output Serial DAC in SOT23

10-Bit, Low-Power, Rail-to-Rail Voltage-Output Serial DAC in SOT23 19-195; Rev 1; 1/4 1-Bit, Low-Power, Rail-to-Rail General Description The is a small footprint, low-power, 1-bit digital-to-analog converter (DAC) that operates from a single +.7V to +5.5V supply. The

More information

A fully autonomous power management interface for frequency upconverting harvesters using load decoupling and inductor sharing

A fully autonomous power management interface for frequency upconverting harvesters using load decoupling and inductor sharing Journal of Physics: Conference Series PAPER OPEN ACCESS A fully autonomous power management interface for frequency upconverting harvesters using load decoupling and inductor sharing To cite this article:

More information

A Current-Measurement Front-End with 160dB Dynamic Range and 7ppm INL

A Current-Measurement Front-End with 160dB Dynamic Range and 7ppm INL A Current-Measurement Front-End with 160dB Dynamic Range and 7ppm INL Chung-Lun Hsu and Drew A. Hall University of California, San Diego, La Jolla, CA, USA International Solid-State Circuits Conference

More information

+5 V Fixed, Adjustable Low-Dropout Linear Voltage Regulator ADP3367*

+5 V Fixed, Adjustable Low-Dropout Linear Voltage Regulator ADP3367* a FEATURES Low Dropout: 50 mv @ 200 ma Low Dropout: 300 mv @ 300 ma Low Power CMOS: 7 A Quiescent Current Shutdown Mode: 0.2 A Quiescent Current 300 ma Output Current Guaranteed Pin Compatible with MAX667

More information

Low-Power VLSI. Seong-Ook Jung VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering

Low-Power VLSI. Seong-Ook Jung VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering Low-Power VLSI Seong-Ook Jung 2013. 5. 27. sjung@yonsei.ac.kr VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering Contents 1. Introduction 2. Power classification & Power performance

More information

12-Bit, Low-Power, Dual, Voltage-Output DAC with Serial Interface

12-Bit, Low-Power, Dual, Voltage-Output DAC with Serial Interface 19-2124; Rev 2; 7/3 12-Bit, Low-Power, Dual, Voltage-Output General Description The dual,12-bit, low-power, buffered voltageoutput, digital-to-analog converter (DAC) is packaged in a space-saving 8-pin

More information

A Design of Sigma-Delta ADC Using OTA

A Design of Sigma-Delta ADC Using OTA RESEARCH ARTICLE OPEN ACCESS A Design of Sigma-Delta ADC Using OTA Miss. Niveditha Yadav M 1, Mr. Yaseen Basha 2, Dr. Venkatesh kumar H 3 1 Department of ECE, PG Student, NCET/VTU, and Bengaluru, India

More information

620 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 3, MARCH /$ IEEE

620 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 3, MARCH /$ IEEE 620 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 3, MARCH 2010 A 12 bit 50 MS/s CMOS Nyquist A/D Converter With a Fully Differential Class-AB Switched Op-Amp Young-Ju Kim, Hee-Cheol Choi, Gil-Cho

More information

Discipline Electro-Technical Calibration Issue Date Certificate Number C-0556 Valid Until Last Amended on - Page 1 of 7

Discipline Electro-Technical Calibration Issue Date Certificate Number C-0556 Valid Until Last Amended on - Page 1 of 7 SAC (ISRO)-TIMCD-Calibration, Space Applications Centre, Last Amended on - Page 1 of 7 SOURCE 1. DC VOLTAGE $ 10 V 4.0 µv Using DC Reference Standard Fluke /734A(732B) 100 mv to 1V 0.66 µv to 4 µv Using

More information