IT is well known that the boost converter topology is highly

Size: px
Start display at page:

Download "IT is well known that the boost converter topology is highly"

Transcription

1 320 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 2, MARCH 2006 Analysis and Design of a Low-Stress Buck-Boost Converter in Universal-Input PFC Applications Jingquan Chen, Member, IEEE, Dragan Maksimović, Member, IEEE, and Robert W. Erickson, Fellow, IEEE Abstract In converters for power-factor-correction (PFC), the universal-input capability, i.e., the ability to operate from any ac line voltage world-wide, comes with a heavy penalty in terms of component stresses and losses, and with restrictions on the dc output voltage. In this paper, we propose a new two-switch topology, boost-interleaved buck-boost (BoIBB) converter, which can offer significant performance improvements over single-switch buck-boost converters (including flyback, SEPIC, or Cuk topologies) or other two-switch buck-boost converters in universal-input PFC applications. The paper presents an analysis of the converter operation and component stresses, as well as design guidelines. High efficiency (over 93%) throughout the universal-input ac line voltage range is demonstrated on an experimental 100-W, 200-V dc output, universal-input BOIBB PFC rectifier. Index Terms Boost-interleaved buck-boost (BoIBB) converter, power-factor-correction (PFC), root-mean-square (RMS). I. INTRODUCTION IT is well known that the boost converter topology is highly effective in power factor correction (PFC) rectifier applications, provided that the dc output voltage is close to, but slightly greater than, the peak ac line voltage [1]. In universal-input applications, with the root-mean-square (RMS) input line voltage in the V range, the output voltage of the boost converter has to be set to about 400 V. At low line (90 V ), the switch conduction losses are high because the input RMS current has the largest value, and because the largest step-up conversion is required. The inductor has to be oversized for the large RMS current at low line input, and for the highest volt seconds applied throughout the input-line range. As a result, a boost converter designed for universal-input PFC applications is heavily oversized compared to a converter designed for a narrow range of input ac line voltages. Furthermore, because of the large energy storage filter capacitor at the output, the boost converter has the inrush current problem that can only be mitigated using additional components. In universal-input PFC applications, the capability of providing both step-up and step-down conversion is attractive because the output dc voltage can be set to any value. However, conventional single-switch buck-boost topologies, including the buck-boost, flyback, SEPIC, and Cuk converters, have greatly Manuscript received July 25, 2002; revised October 10, This paper was presented in part at IEEE APEC 01. Recommended for publishing by Associate Editor Y.-F. Liu. J. Chen is with the FyreStorm Inc., Sunnyvale, CA USA ( jingquan.chen@ieee.org). D. Maksimović and R. W. Erickson are with the Colorado Power Electronics Center, Department of Electrical and Computer Engineering, University of Colorado, Boulder, CO USA. Digital Object Identifier /TPEL increased component stresses and component sizes compared to the boost converter [2] [6]. In general, if their conversion characteristics meet the input/output specifications, the boost converter (for voltage step-up) or the buck converter (for voltage step-down) feature the smallest component stresses. This is a result of the direct energy transfer path from the input to the output in one of the switching subintervals in these two converter topologies. The boost and the buck converters require the minimum indirect energy delivery and therefore have the minimum component stresses for a given voltage conversion ratio. Based on this observation, it is of interest to investigate buck-boost converter topologies with two independently controllabe switches that can operate as boost (for voltage step-up) or as buck (for voltage step-down) converters during portions of an ac line cycle. Fig. 1 shows (a) the standard buck-boost converter and the two well-known two-switch buck-boost configurations, (b) the buck-cascaded buck-boost (BuCBB) converter, and (c) the boost-cascaded buck-boost (BoCBB) converter. When the two active switches are operated independently, the two-switch converters can achieve buck or boost operation with minimum indirect energy processing. As a result, at the expense of additional switches and controls, the two-switch buck-boost topologies can offer reduced component stresses. It has been shown that a number of other two-switch buck-boost configurations can be constructed. In [7], complete families of two-switch buck-boost converters that can achieve minimum indirect energy delivery have been generated through the synthesis method based on the equivalent ac and dc circuits [8]. A comparison of the two-switch buck-boost converter topologies in terms of the switch and the inductor stresses can be found in [7]. In particular, the boost-interleaved buck-boost (BoIBB) converter shown in Fig. 2 has been identified as a configuration with potentials for significantly smaller switch stresses compared to the more conventional cascaded buck-boost converters of Fig. 1(b) and (c), and with lower conduction losses and reduced inductor stresses compared to the boost converter. In power factor correction applications, further advantages of this configuration include the ability to choose the output dc voltage arbitrarily, and the absence of the inrush current problem. The purpose of this paper is to present a detailed analysis of the operation and the component stresses in the BoIBB converter, as well as design guidelines and practical implementation techniques in universal-input PFC applications. Operating modes and basic steady-state characteristics of this converter are described in Section II. Operation of the BoIBB converter as a PFC rectifier together with an analysis of the switch and /$ IEEE

2 CHEN et al.: ANALYSIS AND DESIGN OF A LOW-STRESS BUCK-BOOST CONVERTER 321 Fig. 1. (a) Standard buck-boost converter, (b) the buck-cascaded buck-boost (BuCBB) converter, and (c) the boost-cascaded buck-boost (BoCBB) converter. Fig. 2. Boost-interleaved buck-boost (BoIBB) converter. inductor stresses and conduction losses are discussed in Section III, in comparison with the converters shown in Fig. 1. Section IV describes an experimental 100-W, 200-V dc output, universal-input BoIBB PFC rectifier, with experimental results shown over the universal-input ac line voltage range. II. OPERATING MODES AND STEADY-STATE CHARACTERISTICS OF THE BOOST-INTERLEAVED BUCK-BOOST CONVERTER The proposed boost-interleaved buck-boost (BoIBB) converter with two controllable switches is shown in Fig. 2. In contrast to the cascaded topologies, such as the converters of Fig. 1(b) and (c), where the buck and the boost converter are simply connected in series, in the BoIBB converter the boost switch cell ( and ) is effectively interleaved with the buck switch cell ( and ). Let and be the duty ratios of the switches and, respectively. In continuous conduction mode (CCM), the volt second balance relations for the two inductors yield the overall dc voltage conversion ratio for the BoIBB converter (1) Fig. 3. Operating modes of the BoIBB converter: (a) boost and (b) buck. If is always on, 1, 1 1, and the converter operates in the boost mode, which is shown in Fig. 3(a). The average voltage across is zero. In this mode, the input current is divided through and. If is always off, 0,, the converter operates in the buck mode, as shown in Fig. 3(b). and form a lowfrequency filter. The average current through and is zero and the voltage across is equal to the difference between the input and the output voltage. The inductor in the buck mode has the same role as the inductor in the simple buck converter. The basic steady-state results for the two modes of operation are summarized in Table I.

3 322 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 2, MARCH 2006 TABLE I STEADY-STATE RESULTS FOR THE BOIBB CONVERTER IN THE BOOST AND THE BUCK MODES OF OPERATION III. OPERATION OF THE BOIBB CONVERTER AS AN IDEAL RECTIFIER In this section, we analyze operation of the BoIBB converter as an ideal PFC rectifier. Expressions for the switch and the inductor RMS currents, and the volt-seconds applied to the inductors are derived, so that conduction losses and magnetic sizes can be evaluated. We also compare the total switch and inductor RMS currents of the BoIBB converter with the three converters shown in Fig. 1. In PFC rectifier applications, the rectified input voltage is In an ideal PFC rectifier, the output voltage is regulated at a constant value, and that the input current is proportional to the input voltage where the emulated resistance is constant for a given output power. Fig. 4(a) shows the waveforms of the input and the output voltage in one half of a line period, for the case when the dc output voltage is chosen to be lower than the peak of the input voltage. The converter operates in the boost or the buck modes according to the condition of the input voltage and the output dc voltage, as shown in Fig. 4(b). In Section V, we show that the switchover between the boost and buck modes can be accomplished automatically using a relatively simple PWM controller, without the need to compare the input and the output voltage to facilitate the mode switching. Since the input voltage waveform is periodic with the period of 2 (half line cycle) and symmetric with respect to 4, the analysis can be restricted to the time interval [0 4]. Operation in continuous conduction mode (CCM) is assumed. A. Analysis of Stresses 1) Boost Mode: In the time interval 0, as shown in Fig. 4, the input voltage is lower than the output voltage, and the converter operates in the boost mode: the boost switch cell is active, while the buck cell is inactive ( is always on). In the case when the output voltage is higher than the peak of the input voltage, the converter operates in the boost mode always. In this case, the results of this section still apply. One only needs to replace with 4. The converter switching frequency is much higher than the ac line frequency. (2) (3) Fig. 4. (a) Waveforms of the rectified input voltage v (t) and the dc output voltage V and (b) duty ratios of the boost and the buck cells in the BoIBB converter operated as an ideal PFC rectifier. Therefore, we can assume quasi steady-state operation, which means that the switch duty ratios as functions of time can be found from the steady-state dc conversion results in Section II The average inductor currents in a switching period are When is conducting, its current is the sum of the two inductor currents, while conducts the same current as. In the buck mode, is always off, and the current through equals a small current ripple. Therefore, the total RMS currents of and can be found from (4) and (5), and (6) and (7), shown at the bottom of the next page. The volt seconds applied to and during a switching period are the same as the volt-seconds applied to the inductor in a simple boost converter, and are given by where is the switching period. 2) Buck Mode: In the time interval [ 4], where is the line period, the instantaneous input voltage is greater than the output voltage, and the converter operates in the buck mode: the buck cell is active and the boost cell is inactive ( is always off). and form a low frequency filter between the input (4) (5) (8)

4 CHEN et al.: ANALYSIS AND DESIGN OF A LOW-STRESS BUCK-BOOST CONVERTER 323 and the output, and have insignificant effects in quasi steadystate operation. The duty ratios of and can be expressed as: TABLE II COMPARISON OF COMPONENTRMS CURRENTS AT LOW LINE (120 VRMS) AND HIGH LINE (240 VRMS) FOR A PFC RECTIFIER WITH THE DC OUTPUT VOLTAGE V = 200 V AND THE OUTPUT POWER P = 100 W (9) The average inductor currents in a switching period are (10) Both and are conducting currents in both boost and buck modes, and the RMS currents are found from (4), (5), and (10) as (11) and (12), shown at the bottom of the page. The volt seconds applied to during a switching period are the same as the volt-seconds applied to the inductor in the buck converter The volt seconds applied to buck mode. (13) are approximately zero in the B. Comparison of Stresses It is of interest to compare the switch and inductor RMS currents of the BoIBB converter to the three converters of Fig. 1, in PFC applications. We assume that the two-switch BuCBB and BoCBB converters are operated in the same way as the BoIBB converter, with the switch and duty cycles shown in Fig. 4. In the BoCBB converter of Fig. 1(c), the energy storage is at the output. Equations (14) (16), shown at the bottom of the next page, summarize the results for the standard buck-boost converter of Fig. 1(a), the BuCBB converter of Fig. 1(b), and the BoCBB converter of Fig. 1(c), respectively. As an example, Table II compares the component RMS currents in a 100-W BoIBB PFC rectifier with the dc output voltage 200 V, to the RMS currents in the three converters of Fig. 1 for the low ac line input (120 Vrms) and the high ac line input (240 Vrms). At the low-line input, in this example, the two-switch buckboost converters always operate in the boost mode. According to (6) (7) (11) (12)

5 324 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 2, MARCH 2006 (6), (15) and (16), the RMS current of the switch in this mode is the same for all three two-switch configurations. The RMS currents for the switch, which always stays on in the boost mode, are different. In the BoIBB and the BoCBB, the switch conducts the inductor current. In the BuCBB, conducts the inductor current, which is significantly higher at the low-line input. At low line, the rms currents in the BoCBB, which is equal to the dc load current, is somewhat lower than in the BoIBB due to the filtering action of. For the high-line input, the three two-switch buck-boost converters operate in either the boost mode or the buck mode during different portions of a line cycle. In the buck mode, according to (11), (15), and (16), the switch has the same RMS current in all three two-switch converters. The switch currents in the boost mode are different, with the BoIBB having the lowest RMS current stress at high line. In the boost mode, the two inductors in the BoIBB share the input current, which is not the case in other two-switch buck-boost converters. Furthermore, in the buck mode, conducts zero dc current in the BoIBB converter. As a result, in the example of Table II, the BoIBB has the lowest total RMS inductor current. In the example of Table II, it can be observed that the component RMS current stresses in the two-switch converters are significantly smaller than in the standard buck-boost converter. However, the standard buck-boost converter has only one inductor and only one transistor switch. Let us assume that the on-resistance of the transistor switch in the standard buck-boost converter is two times lower that the on-resistance of and in the two-switch buck-boost converters. Similarly, let us assume that the inductor series resistance in the standard buckboost and the BuCBB is two times smaller than the series resistances of and in the BoCBB or BoIBB. Under these assumptions, Fig. 5 shows the switch and inductor conduction losses normalized to the losses in the standard buck-boost, as functions of the conversion ratio. At high line, i.e.,atlow, the BoIBB switch conduction losses are the lowest of the three two-switch configurations. At low line, i.e., for, the switch conduction losses in the BoIBB are somewhat higher than in the BoCBB, but lower than in the standard buckboost. It should be noted that the switch voltage stresses in the two-switch converters are lower than in the standard buck-boost, resulting in an even more favorable comparison in terms of the transistor switch utilization in the BoIBB and the BoCBB compared to the standard buck-boost converter. The BuCBB converter has higher RMS current stresses because the buck switch has to conduct the input current in both buck and boost modes. The inductor conduction losses in the BoIBB and the BuCBB are substantially smaller than in the standard buck-boost both at low line and at high line. Furthermore, volt seconds applied to the inductors are significantly smaller than in the conventional buck-boost converter, leading to reduced size of the magnetics. Notice, however, that the BuCBB advantages in terms of the inductor utilization are offset in part by the penalties in the switch conduction losses. In conclusion, the BoIBB converter features the most favorable results for the switch conduction losses and the inductor RMS current stresses over the universal-input voltage range. IV. DESIGN CONSIDERATIONS In this section, we address some of the design considerations related to the selection of,,, and the dc output voltage in the BoIBB converter. (14) (15) (16)

6 CHEN et al.: ANALYSIS AND DESIGN OF A LOW-STRESS BUCK-BOOST CONVERTER 325 Combining (17) (19) and using the results for from (4) yields the CCM condition (20), the CCM condi- Defining tion in the boost mode becomes (21) In order to operate in CCM throughout the line cycle, and under all input voltages and output power levels, from (21) we have (22) where is the emulated input resistance for the largest ac input voltage, and the lowest load power. 2) Buck Mode: In the buck mode, only the inductor current ripple is relevant for operation in CCM. The CCM condition can be derived from where which yields (23) (24) (25) The right-hand side expression in (25) has a maximum that depends on the ratio of the peak input voltage and the output voltage. For 1.5 V, we have Fig. 5. Comparison of (a) the total switch conduction losses in the two-switch converters normalized to the buck-boost converter, (I + I )=(I =2) and (b) the inductor conduction losses in the two-switch converters normalized to the buck-boost converter, (I + I )=(I =2). and for 1.5 V, we have (26) A. Conditions for CCM Operation The inductor current ripples are affected by the choice of and. In this section we derive conditions for operation in continuous conduction mode (CCM). 1) Boost Mode: In the boost mode, when the diode is on, it conducts the sum of and. Therefore, the CCM condition can be written as (17) where and are the peak inductor current ripples (18) (19) (27) From (25) (27), the conditions for CCM operation throughout the line cycle are if if. (28) The results of this section can be used to select the inductance values to achieve CCM operation over the entire line cycle, or over a desired portion of the line cycle, and over desired ranges of input voltages and loads. B. Selection of We select the capacitance so that the input voltage variations do not affect the output voltage or the input current through the, path when the converter operates in the buck mode,

7 326 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 2, MARCH 2006 i.e., so that the natural resonant frequency of and is well above twice the line frequency (29) The value of also affects the capacitor voltage ripple in the boost mode. The peak-to-peak capacitor voltage ripple can be found as (30) where is the output power. The ripple in (30) has the maximum value when (31) when. The worst case is at the maximum power and the minimum input line voltage. Finally, it should be noted that there is no need for to act as a low-frequency energy storage element. As a result, the value selected according to (29) or (30), or according to the capacitor RMS current stress, is typically much smaller compared to the energy-storage capacitance. C. Selection of the dc Output Voltage Compared to a boost PFC rectifier, an advantage of the BoIBB converter is that the output dc voltage does not have to be greater than the peak ac line voltage. For universal-input operation, is in the range from approximately 125 V to approximately 370 V. If, for example, we select the dc output voltage 200 V, the ratio varies from 0.54 at high line to 1.6 at low line. In this range, according to the results of Fig. 5, the component stresses in the BoIBB are significantly lower compared to the standard buck-boost converter. However, for PFC applications where a low dc output voltage (e.g., 0.5) is required, the BoIBB converter may not be the best solution, as shown by the stress analysis and the comparison in Fig. 5. V. EXPERIMENTAL RESULTS An experimental prototype (Fig. 6) has been built to verify feasibility and performance of the BoIBB converter. In our experimental setup, 4 mh, 4 mh, 2.25 F, 150 F, and the switching frequency is 100 KHz. The dc output voltage is set to 200 V. and are International Rectifier IRF840 [500-V, 8-A metal-oxide semiconductor field-effect transistors (MOSFETs)] and and are Philips Semiconductor BYM26C (600-V, 2.4-A ultra-fast diodes). A. Controller Implementation In the experimental prototype shown in Fig. 6, the input current shaping and the output voltage regulation are achieved using a standard average current-mode PFC controller chip (UC3854 [9]). The input voltage, the input current and the output voltage are sensed and scaled to the proper levels following the usual practices with the UC3854 average current mode controller. To achieve proper operation of the switches and in the boost and the buck modes, the pulse-width Fig. 6. Experimental BoIBB rectifier (L = 4 mh, L = 4 mh, C = 2.25 F, C = 150 F, f = 100 KHz, V = 200 V). Fig. 7. Dual PWM generator using TL1451. modulator (PWM) in UC3854 is not used. Instead, the output of the average current-mode compensator on the UC3854 chip is fed to a dual PWM chip (TL1451 [10]) to produce the switch control signals with the duty ratios and. These signals are then sent to a high and low side gate driver (IR2110 [11]) to control the high-side buck switch and the low-side boost switch. Fig. 7 shows a diagram of the TL1451 dual PWM generator controlled by the voltage, which is generated by the average current-loop compensator. TL1451 uses two dead-time comparators, such that it is possible to generate two independently controlled PWM signals. The two comparators compare the control inputs and to the same triangle modulation signal. As a result, the two PWM signals are synchronized. The triangle waveform has a valley of 1.45 V and a peak of 2.05 V. The duty cycle of the output PWM signal can be expressed as (32) where 600 mv, and is or. The two amplifiers, which are included in the TL1451 chip

8 CHEN et al.: ANALYSIS AND DESIGN OF A LOW-STRESS BUCK-BOOST CONVERTER 327 Fig. 8. Output duty ratios as functions of v (t). for the purpose of constructing voltage-loop compensators, are used for level-shifting of the control signal to achieve the desired duty-cycle modulation according to Fig. 4 Fig. 9. v (t) (solid curve) and v (t) (dashed curve) during one half of a line cycle. (33) We assign PWM channel 1 to control the boost switch and channel 2 to the buck switch. The buck/boost mode transition occurs when the boost switch is completely off while the buck switch is fully on, or when and. In order to have a smooth mode transition, these two conditions should occur at the same time, which can be accomplished by designing the circuit according to the following: (34) (35) Another consideration in the selection of the two offset voltages is to ensure that falls into the proper output range of UC3854. If we define or equivalently (36) (37) the output duty cycles and as functions of the control voltage can be expressed as and (38) (39) The results in (38) and (39) are plotted in Fig. 8. In quasi steady-state operation, (solid curve) as a function of time is shown in Fig. 9 for one half of an ac line cycle. Notice that the BoIBB converter operates in the boost mode when and in the buck mode when. The transition between the boost mode and the buck mode occurs at. The experimental Fig. 10. Rectified input voltage v (t) (top) and the ac portion of the control voltage v (t) (bottom): (a) low-line input (120 Vrms) and (b) high-line input (240 Vrms). Ch2: 100 V/div, Ch3: 500 mv/div.

9 328 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 2, MARCH 2006 Fig. 12. Efficiency of the experimental BoIBB PFC rectifier as a function of the input line voltage. The efficiency is 93.8% and the total current harmonic distortion is 4.6%. Fig. 12 shows the rectifier efficiency as a function of the input line RMS voltage. In contrast to conventional PFC rectifiers where the efficiency is significantly lower at low line, the efficiency remains greater than 93% throughout the line voltage range (90 Vrms 264 Vrms). VI. CONCLUSION A new two-switch topology, named boost-interleaved buck-boost (BoIBB) converter, is proposed for universal-input PFC applications. A comparison with conventional buck-boost or two-switch buck-boost converters shows that the BoIBB converter has advantages of lower switch voltage stresses, potentials for lower switch and inductor conduction losses, and reduced size of the magnetics. Experimental results are provided to verify the validity of the new topology. High efficiency (over 93% throughout the whole ac line voltage range), and low current harmonic distortion at both high and low line inputs are demonstrated. REFERENCES Fig. 11. Rectified input voltage v (t) (top) and the input ac line current i (t): (a) 120-V low-line input and (b) 240-V high-line input. Ch2: 100 V/div, Ch4: 0.5 A/div. results of are reported in Fig. 10, which correspond well to the ideal waveforms in Fig. 9. B. Experimental Results Experimental waveforms are shown in Fig. 11. The output power is 100 W. In Fig. 11(a), the input line voltage has a lowline RMS value of 120 Vrms and the converter operates in the boost mode always. The efficiency is 93.7% and the total current harmonic distortion is 1.9%. The waveforms of Fig. 11(b) are for the high-line input (240 Vrms). The converter operates in the boost or the buck modes in different parts of the line period. [1] R. W. Erickson and D. Maksimović, Fundamentals of Power Electronics, 2nd ed. Norwell, MA: Kluwer, [2] R. Watson, G. C. Hua, and F. C. Lee, Characterization of an active clamp flyback topology for power factor correction applications, IEEE Trans. Power Electron., vol. 11, no. 1, pp , Jan [3] M. Brkovic and S. Cuk, Input current shaping using Cuk converter, in Proc. Intelec, 1992, pp [4] R. Erickson, M. Madigan, and S. Singer, Design of a simple high power factor rectifier based on the flyback converter, in Proc. IEEE Applied Power Electron. Conf., 1990, pp [5] R. Zane and D. Maksimović, Nonlinear-Carrier control for high-powerfactor rectifiers based on up-down switching converters, IEEE Trans. Power Electron., vol. 13, no. 2, pp , Mar [6] D. S. L. Simonetti, J. Sebastian, F. s. dos Reis, and J. Uceda, Design criteria for SEPIC and Cuk converters as power factor prerequlators in discontinuous conduction mode, in Proc. IEEE IECON, 1992, pp [7] J. Chen, D. Maksimović, and R. Erickson, Buck-Boost PWM converters having two independently controlled switches, in Proc. IEEE Power Electron. Specialists Conf., 2001, pp [8] D. Zhou, Synthesis of PWM dc-to-dc power converters, Ph.D. dissertation, California Inst. Technol., Pasadena, [9] UC 3854 Datasheet, Tech. Rep., Texas Instruments, [10] TL1451A Datasheet, Tech. Rep., Texas Instruments, [11] IR2110 Datasheet, Tech. Rep., International Rectifier, 2005.

10 CHEN et al.: ANALYSIS AND DESIGN OF A LOW-STRESS BUCK-BOOST CONVERTER 329 Jingquan Chen (M 02) received the B.S. degree in electrical engineering from Tsinghua University, Beijing, China, in 1995, the M.S. degree in power electronics from the Chinese Academy of Sciences, Beijing, in 1998, and the Ph.D. degree in electrical engineering from the University of Colorado, Boulder, in From 2002 to 2003, he was a Senior Member of Research Staff at Philips Research, Briarcliff Manor, NY. Since 2003, he has been with FyreStorm, Inc., Sunnyvale, CA, where he is currently a Principal Engineer in the Advanced Research and Development Group. His current research interests include synthesis, modeling, and the digital control of switching power converters. Dragan Maksimović (M 89) received the B.S. and M.S. degrees in electrical engineering from the University of Belgrade, Belgrade, Yugoslavia, in 1984 and 1986, respectively, and the Ph.D. degree from the California Institute of Technology, Pasadena, in From 1989 to 1992, he was with the University of Belgrade. Since 1992, he has been with the Department of Electrical and Computer Engineering, University of Colorado, where he is currently an Associate Professor and Co-Director of the Colorado Power Electronics Center (CoPEC). His current research interests include power electronics for low-power, portable systems, digital control techniques, and mixed-signal integrated circuit design for power management applications. Dr. Maksimović received the NSF CAREER Award and a Power Electronics Society TRANSACTIONS Prize Paper Award in Robert W. Erickson (F 00) received the B.S., M.S., and Ph.D. degrees in electrical engineering from the California Institute of Technology, Pasadena, in 1978, 1980, and 1982, respectively. Since 1982, he has been a member of the Faculty of Electrical and Computer Engineering, University of Colorado, Boulder, where he is currently Professor and Chairman. He established and co-directs the Colorado Power Electronics Center, which is helping the industry in low-harmonic rectifiers, dc dc converters for battery-powered systems, and magnetics modeling for multiple-output converters. He is the author of the textbook Fundamentals of Power Electronics, now in its second edition. He is the author of approximately 60 journal and conference papers in the area of power electronics. Dr. Erickson received the IEEE Power Electronics Society Transactions Prize Paper Award, for the paper Nonlinear Carrier Control for High-Power-Factor Boost Rectifier in 1996.

Predictive Digital Current Programmed Control

Predictive Digital Current Programmed Control IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 18, NO. 1, JANUARY 2003 411 Predictive Digital Current Programmed Control Jingquan Chen, Member, IEEE, Aleksandar Prodić, Student Member, IEEE, Robert W. Erickson,

More information

Reduction of Voltage Stresses in Buck-Boost-Type Power Factor Correctors Operating in Boundary Conduction Mode

Reduction of Voltage Stresses in Buck-Boost-Type Power Factor Correctors Operating in Boundary Conduction Mode Reduction of oltage Stresses in Buck-Boost-Type Power Factor Correctors Operating in Boundary Conduction Mode ars Petersen Institute of Electric Power Engineering Technical University of Denmark Building

More information

Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss

Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 49, NO. 1, FEBRUARY 2002 165 Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss Hang-Seok Choi, Student Member, IEEE,

More information

466 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY A Single-Switch Flyback-Current-Fed DC DC Converter

466 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY A Single-Switch Flyback-Current-Fed DC DC Converter 466 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY 1998 A Single-Switch Flyback-Current-Fed DC DC Converter Peter Mantovanelli Barbosa, Member, IEEE, and Ivo Barbi, Senior Member, IEEE Abstract

More information

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor 770 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 48, NO. 4, AUGUST 2001 A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor Chang-Shiarn Lin, Member, IEEE, and Chern-Lin

More information

MODERN switching power converters require many features

MODERN switching power converters require many features IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 1, JANUARY 2004 87 A Parallel-Connected Single Phase Power Factor Correction Approach With Improved Efficiency Sangsun Kim, Member, IEEE, and Prasad

More information

PARALLELING of converter power stages is a wellknown

PARALLELING of converter power stages is a wellknown 690 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 4, JULY 1998 Analysis and Evaluation of Interleaving Techniques in Forward Converters Michael T. Zhang, Member, IEEE, Milan M. Jovanović, Senior

More information

A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation

A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 6, NOVEMBER 2001 745 A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation René Torrico-Bascopé, Member, IEEE, and

More information

GENERALLY, a single-inductor, single-switch boost

GENERALLY, a single-inductor, single-switch boost IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 1, JANUARY 2004 169 New Two-Inductor Boost Converter With Auxiliary Transformer Yungtaek Jang, Senior Member, IEEE, Milan M. Jovanović, Fellow, IEEE

More information

OWING TO THE growing concern regarding harmonic

OWING TO THE growing concern regarding harmonic IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 4, AUGUST 1999 749 Integrated High-Quality Rectifier Regulators Michael T. Madigan, Member, IEEE, Robert W. Erickson, Senior Member, IEEE, and

More information

THE converter usually employed for single-phase power

THE converter usually employed for single-phase power 82 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 1, FEBRUARY 1999 A New ZVS Semiresonant High Power Factor Rectifier with Reduced Conduction Losses Alexandre Ferrari de Souza, Member, IEEE,

More information

NOWADAYS, it is not enough to increase the power

NOWADAYS, it is not enough to increase the power IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 44, NO. 5, OCTOBER 1997 597 An Integrated Battery Charger/Discharger with Power-Factor Correction Carlos Aguilar, Student Member, IEEE, Francisco Canales,

More information

WITH THE development of high brightness light emitting

WITH THE development of high brightness light emitting 1410 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 3, MAY 2008 Quasi-Active Power Factor Correction Circuit for HB LED Driver Kening Zhou, Jian Guo Zhang, Subbaraya Yuvarajan, Senior Member, IEEE,

More information

THE TWO TRANSFORMER active reset circuits presented

THE TWO TRANSFORMER active reset circuits presented 698 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 44, NO. 8, AUGUST 1997 A Family of ZVS-PWM Active-Clamping DC-to-DC Converters: Synthesis, Analysis, Design, and

More information

THREE-PHASE converters are used to handle large powers

THREE-PHASE converters are used to handle large powers IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO. 6, NOVEMBER 1999 1149 Resonant-Boost-Input Three-Phase Power Factor Corrector Da Feng Weng, Member, IEEE and S. Yuvarajan, Senior Member, IEEE Abstract

More information

Fundamentals of Power Electronics

Fundamentals of Power Electronics Fundamentals of Power Electronics SECOND EDITION Robert W. Erickson Dragan Maksimovic University of Colorado Boulder, Colorado Preface 1 Introduction 1 1.1 Introduction to Power Processing 1 1.2 Several

More information

THE classical solution of ac dc rectification using a fullwave

THE classical solution of ac dc rectification using a fullwave 630 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 44, NO. 5, OCTOBER 1997 The Discontinuous Conduction Mode Sepic and Ćuk Power Factor Preregulators: Analysis and Design Domingos Sávio Lyrio Simonetti,

More information

A HIGH RELIABILITY SINGLE-PHASE BOOST RECTIFIER SYSTEM FOR DIFFERENT LOAD VARIATIONS. Prasanna Srikanth Polisetty

A HIGH RELIABILITY SINGLE-PHASE BOOST RECTIFIER SYSTEM FOR DIFFERENT LOAD VARIATIONS. Prasanna Srikanth Polisetty GRT A HIGH RELIABILITY SINGLE-PHASE BOOST RECTIFIER SYSTEM FOR DIFFERENT LOAD VARIATIONS Prasanna Srikanth Polisetty Department of Electrical and Electronics Engineering, Newton s College of Engineering

More information

IN THE high power isolated dc/dc applications, full bridge

IN THE high power isolated dc/dc applications, full bridge 354 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 2, MARCH 2006 A Novel Zero-Current-Transition Full Bridge DC/DC Converter Junming Zhang, Xiaogao Xie, Xinke Wu, Guoliang Wu, and Zhaoming Qian,

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 6.3.5. Boost-derived isolated converters A wide variety of boost-derived isolated dc-dc converters

More information

IN high-voltage/low-current applications, such as TV-

IN high-voltage/low-current applications, such as TV- IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO. 1, JANUARY 1999 177 A Three-Switch High-Voltage Converter Dongyan Zhou, Member, IEEE, Andzrej Pietkiewicz, and Slobodan Ćuk, Fellow, IEEE Abstract A

More information

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India Design and Development of Single Phase Bridgeless Three Stage Interleaved Boost Converter with Fuzzy Logic Control System M.Pradeep kumar 1, M.Ramesh kannan 2 1 Student Department of EEE (M.E-PED), 2 Assitant

More information

IN A CONTINUING effort to decrease power consumption

IN A CONTINUING effort to decrease power consumption 184 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO. 1, JANUARY 1999 Forward-Flyback Converter with Current-Doubler Rectifier: Analysis, Design, and Evaluation Results Laszlo Huber, Member, IEEE, and

More information

S. General Topological Properties of Switching Structures, IEEE Power Electronics Specialists Conference, 1979 Record, pp , June 1979.

S. General Topological Properties of Switching Structures, IEEE Power Electronics Specialists Conference, 1979 Record, pp , June 1979. Problems 179 [22] [23] [24] [25] [26] [27] [28] [29] [30] J. N. PARK and T. R. ZALOUM, A Dual Mode Forward/Flyback Converter, IEEE Power Electronics Specialists Conference, 1982 Record, pp. 3-13, June

More information

THE HARMONIC content of the line current drawn from

THE HARMONIC content of the line current drawn from 476 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY 1998 Single-Stage Single-Switch Input-Current-Shaping Technique with Fast-Output-Voltage Regulation Laszlo Huber, Member, IEEE, and Milan

More information

A New Quadratic Boost Converter with PFC Applications

A New Quadratic Boost Converter with PFC Applications Proceedings of the th WSEAS International Conference on CICUITS, uliagmeni, Athens, Greece, July -, 6 (pp3-8) A New Quadratic Boost Converter with PFC Applications DAN LASCU, MIHAELA LASCU, IOAN LIE, MIHAIL

More information

IN recent years, the development of high power isolated bidirectional

IN recent years, the development of high power isolated bidirectional IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 2, MARCH 2008 813 A ZVS Bidirectional DC DC Converter With Phase-Shift Plus PWM Control Scheme Huafeng Xiao and Shaojun Xie, Member, IEEE Abstract The

More information

Linear Peak Current Mode Controlled Non-inverting Buck-Boost Power-Factor-Correction Converter

Linear Peak Current Mode Controlled Non-inverting Buck-Boost Power-Factor-Correction Converter Linear Peak Current Mode Controlled Non-inverting Buck-Boost Power-Factor-Correction Converter Mr.S.Naganjaneyulu M-Tech Student Scholar Department of Electrical & Electronics Engineering, VRS&YRN College

More information

Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage

Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage Ajeesh P R 1, Prof. Dinto Mathew 2, Prof. Sera Mathew 3 1 PG Scholar, 2,3 Professors, Department of Electrical and Electronics Engineering,

More information

Transformerless Buck-Boost Converter with Positive Output Voltage and Feedback

Transformerless Buck-Boost Converter with Positive Output Voltage and Feedback Transformerless Buck-Boost Converter with Positive Output Voltage and Feedback Aleena Paul K PG Student Electrical and Electronics Engineering Mar Athanasius College of Engineering Kerala, India Babu Paul

More information

A Novel Concept in Integrating PFC and DC/DC Converters *

A Novel Concept in Integrating PFC and DC/DC Converters * A Novel Concept in Integrating PFC and DC/DC Converters * Pit-Leong Wong and Fred C. Lee Center for Power Electronics Systems The Bradley Department of Electrical and Computer Engineering Virginia Polytechnic

More information

1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside

1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside Highlights of the Chapter 4 1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside voltage. Some industry-generated papers recommend

More information

Advances in Averaged Switch Modeling

Advances in Averaged Switch Modeling Advances in Averaged Switch Modeling Robert W. Erickson Power Electronics Group University of Colorado Boulder, Colorado USA 80309-0425 rwe@boulder.colorado.edu http://ece-www.colorado.edu/~pwrelect 1

More information

Performance Improvement of Bridgeless Cuk Converter Using Hysteresis Controller

Performance Improvement of Bridgeless Cuk Converter Using Hysteresis Controller International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 1 (2013), pp. 1-10 International Research Publication House http://www.irphouse.com Performance Improvement of Bridgeless

More information

THE CONVENTIONAL voltage source inverter (VSI)

THE CONVENTIONAL voltage source inverter (VSI) 134 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO. 1, JANUARY 1999 A Boost DC AC Converter: Analysis, Design, and Experimentation Ramón O. Cáceres, Member, IEEE, and Ivo Barbi, Senior Member, IEEE

More information

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS CHAPTER 3. SINGLE-STAGE PFC TOPOLOG GENERALIATION AND VARIATIONS 3.1. INTRODUCTION The original DCM S 2 PFC topology offers a simple integration of the DCM boost rectifier and the PWM DC/DC converter.

More information

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 4, JULY

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 4, JULY IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 4, JULY 2008 1649 Open-Loop Control Methods for Interleaved DCM/CCM Boundary Boost PFC Converters Laszlo Huber, Member, IEEE, Brian T. Irving, and Milan

More information

High Frequency Electronic Ballast Provides Line Frequency Lamp Current

High Frequency Electronic Ballast Provides Line Frequency Lamp Current IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 5, SEPTEMBER 2001 667 High Frequency Electronic Ballast Provides Line Frequency Lamp Current Enrico Santi, Member, IEEE, Zhe Zhang, Member, IEEE, and

More information

Department of EEE, SCAD College of Engineering and Technology, Tirunelveli, India, #

Department of EEE, SCAD College of Engineering and Technology, Tirunelveli, India, # IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY CURRENT BALANCING IN MULTIPHASE CONVERTER BASED ON INTERLEAVING TECHNIQUE USING FUZZY LOGIC C. Dhanalakshmi *, A. Saravanan, R.

More information

Analysis, Design, Modeling, Simulation and Development of Single-Switch AC-DC Converters for Power Factor and Efficiency Improvement

Analysis, Design, Modeling, Simulation and Development of Single-Switch AC-DC Converters for Power Factor and Efficiency Improvement Analysis, Design, Modeling, Simulation and Development of Single-Switch 51 JPE 8-1-5 Analysis, Design, Modeling, Simulation and Development of Single-Switch AC-DC Converters for Power Factor and Efficiency

More information

Webpage: Volume 3, Issue IV, April 2015 ISSN

Webpage:  Volume 3, Issue IV, April 2015 ISSN CLOSED LOOP CONTROLLED BRIDGELESS PFC BOOST CONVERTER FED DC DRIVE Manju Dabas Kadyan 1, Jyoti Dabass 2 1 Rattan Institute of Technology & Management, Department of Electrical Engg., Palwal-121102, Haryana,

More information

Conventional Single-Switch Forward Converter Design

Conventional Single-Switch Forward Converter Design Maxim > Design Support > Technical Documents > Application Notes > Amplifier and Comparator Circuits > APP 3983 Maxim > Design Support > Technical Documents > Application Notes > Power-Supply Circuits

More information

Design of a Wide Input Range DC-DC Converter Suitable for Lead-Acid Battery Charging

Design of a Wide Input Range DC-DC Converter Suitable for Lead-Acid Battery Charging ENGINEER - Vol. XXXXIV, No. 04, pp, [47-53], 2011 The Institution of Engineers, Sri Lanka Design of a Wide Input Range DC-DC Converter Suitable for Lead-Acid Battery Charging M.W.D.R. Nayanasiri and J.A.K.S.Jayasinghe,

More information

A Novel Single Phase Soft Switched PFC Converter

A Novel Single Phase Soft Switched PFC Converter J Electr Eng Technol Vol. 9, No. 5: 1592-1601, 2014 http://dx.doi.org/10.5370/jeet.2014.9.5.1592 ISSN(Print) 1975-0102 ISSN(Online) 2093-7423 A Novel Single Phase Soft Switched PFC Converter Nihan ALTINTAŞ

More information

Digital Combination of Buck and Boost Converters to Control a Positive Buck Boost Converter and Improve the Output Transients

Digital Combination of Buck and Boost Converters to Control a Positive Buck Boost Converter and Improve the Output Transients Digital Combination of Buck and Boost Converters to Control a Positive Buck Boost Converter and Improve the Output Transients Shruthi Prabhu 1 1 Electrical & Electronics Department, VTU K.V.G College of

More information

Mechatronics, Electrical Power, and Vehicular Technology

Mechatronics, Electrical Power, and Vehicular Technology Mechatronics, Electrical Power, and Vehicular Technology 04 (2013) 75-80 Mechatronics, Electrical Power, and Vehicular Technology e-issn:2088-6985 p-issn: 2087-3379 Accreditation Number: 432/Akred-LIPI/P2MI-LIPI/04/2012

More information

Input Current Shaping and Efficiency Improvement of A Three Phase Rectifier by Buck-Boost Regulator

Input Current Shaping and Efficiency Improvement of A Three Phase Rectifier by Buck-Boost Regulator Journal of Electrical Engineering The Institution of Engineers, Bangladesh Vol. EE 37, No. II, December, 211 Input Current Shaping and Efficiency Improvement of A Three Phase Rectifier by Buck-Boost Regulator

More information

A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions

A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 5, SEPTEMBER 2001 603 A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions

More information

Design and Simulation of Synchronous Buck Converter for Microprocessor Applications

Design and Simulation of Synchronous Buck Converter for Microprocessor Applications Design and Simulation of Synchronous Buck Converter for Microprocessor Applications Lakshmi M Shankreppagol 1 1 Department of EEE, SDMCET,Dharwad, India Abstract: The power requirements for the microprocessor

More information

THE GROWTH of the portable electronics industry has

THE GROWTH of the portable electronics industry has IEEE POWER ELECTRONICS LETTERS 1 A Constant-Frequency Method for Improving Light-Load Efficiency in Synchronous Buck Converters Michael D. Mulligan, Bill Broach, and Thomas H. Lee Abstract The low-voltage

More information

Design and Implementation of Bridge PFC Boost Converter

Design and Implementation of Bridge PFC Boost Converter IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 5 Ver. III (Sep - Oct 2016), PP 01-07 www.iosrjournals.org Design and Implementation

More information

Coupled Inductor Based Single Phase CUK Rectifier Module for Active Power Factor Correction

Coupled Inductor Based Single Phase CUK Rectifier Module for Active Power Factor Correction Bonfring International Journal of Power Systems and Integrated Circuits, Vol. 3, No. 3, September 2013 22 Coupled Inductor Based Single Phase CUK Rectifier Module for Active Power Factor Correction Jidhun

More information

Analysis, Design and Development of a Single Switch Flyback Buck-Boost AC-DC Converter for Low Power Battery Charging Applications

Analysis, Design and Development of a Single Switch Flyback Buck-Boost AC-DC Converter for Low Power Battery Charging Applications 318 Journal of Power Electronics, Vol. 7, No. 4, October 007 JPE 7-4-7 Analysis, Design and Development of a Single Switch Flyback Buck-Boost AC-DC Converter for Low Power Battery Charging Applications

More information

THE USE OF power-factor preregulators (PFP s), also

THE USE OF power-factor preregulators (PFP s), also IEEE TRANSACTIONS ON POWER ELECTRONICS, OL. 12, NO. 6, NOEMBER 1997 1007 Improving Dynamic Response of Power-Factor Preregulators by Using Two-Input High-Efficient Postregulators Javier Sebastián, Member,

More information

POWERED electronic equipment with high-frequency inverters

POWERED electronic equipment with high-frequency inverters IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 2, FEBRUARY 2006 115 A Novel Single-Stage Power-Factor-Correction Circuit With High-Frequency Resonant Energy Tank for DC-Link

More information

CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER

CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER 17 CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER 2.1 GENERAL Designing an efficient DC to DC buck-boost converter is very much important for many real-time

More information

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Current Rebuilding Concept Applied to Boost CCM for PF Correction Current Rebuilding Concept Applied to Boost CCM for PF Correction Sindhu.K.S 1, B. Devi Vighneshwari 2 1, 2 Department of Electrical & Electronics Engineering, The Oxford College of Engineering, Bangalore-560068,

More information

AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR

AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR Naci GENC 1, Ires ISKENDER 1 1 Gazi University, Faculty of Engineering and Architecture, Department of Electrical

More information

Buck-Boost Converters for Portable Systems Michael Day and Bill Johns

Buck-Boost Converters for Portable Systems Michael Day and Bill Johns Buck-Boost Converters for Portable Systems Michael Day and Bill Johns ABSTRACT This topic presents several solutions to a typical problem encountered by many designers of portable power how to produce

More information

IN APPLICATIONS where nonisolation, step-down conversion

IN APPLICATIONS where nonisolation, step-down conversion 3664 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 8, AUGUST 2012 Interleaved Buck Converter Having Low Switching Losses and Improved Step-Down Conversion Ratio Il-Oun Lee, Student Member, IEEE,

More information

SINGLE-STAGE HIGH-POWER-FACTOR SELF-OSCILLATING ELECTRONIC BALLAST FOR FLUORESCENT LAMPS WITH SOFT START

SINGLE-STAGE HIGH-POWER-FACTOR SELF-OSCILLATING ELECTRONIC BALLAST FOR FLUORESCENT LAMPS WITH SOFT START SINGLE-STAGE HIGH-POWER-FACTOR SELF-OSCILLATING ELECTRONIC BALLAST FOR FLUORESCENT S WITH SOFT START Abstract: In this paper a new solution to implement and control a single-stage electronic ballast based

More information

A Quadratic Buck Converter with Lossless Commutation

A Quadratic Buck Converter with Lossless Commutation 264 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 47, NO. 2, APRIL 2000 A Quadratic Buck Converter with Lossless Commutation Vincius Miranda Pacheco, Acrísio José do Nascimento, Jr., Valdeir José Farias,

More information

Adaptive Off-Time Control for Variable-Frequency, Soft-Switched Flyback Converter at Light Loads

Adaptive Off-Time Control for Variable-Frequency, Soft-Switched Flyback Converter at Light Loads 596 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 17, NO. 4, JULY 2002 Adaptive Off-Time Control for Variable-Frequency, Soft-Switched Flyback Converter at Light Loads Yuri Panov and Milan M. Jovanović,

More information

Chapter 6: Converter circuits

Chapter 6: Converter circuits Chapter 6. Converter Circuits 6.1. Circuit manipulations 6.2. A short list of converters 6.3. Transformer isolation 6.4. Converter evaluation and design 6.5. Summary of key points Where do the boost, buck-boost,

More information

New Controller Strategy for Two Switch Dc Voltage Regulator

New Controller Strategy for Two Switch Dc Voltage Regulator New Controller Strategy for Two Switch Dc Voltage Regulator R. Sakthivel, M. Arun Assistant Professor, Dept. of Electrical Engineering, Annamalai University, Chidambaram, India Assistant Professor, Dept.

More information

MOST electrical systems in the telecommunications field

MOST electrical systems in the telecommunications field IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 2, APRIL 1999 261 A Single-Stage Zero-Voltage Zero-Current-Switched Full-Bridge DC Power Supply with Extended Load Power Range Praveen K. Jain,

More information

Fig.1. A Block Diagram of dc-dc Converter System

Fig.1. A Block Diagram of dc-dc Converter System ANALYSIS AND SIMULATION OF BUCK SWITCH MODE DC TO DC POWER REGULATOR G. C. Diyoke Department of Electrical and Electronics Engineering Michael Okpara University of Agriculture, Umudike Umuahia, Abia State

More information

Single Phase Single Stage Power Factor Correction Converter with Phase Shift PWM Technique

Single Phase Single Stage Power Factor Correction Converter with Phase Shift PWM Technique Single Phase Single Stage Power Factor Correction Converter with Phase Shift PWM Technique G.KAVIARASAN 1, M.G ANAND 2 1 PG Scholar, Department of Power Electronics and Drives THE KAVERY ENGINEERNG COLLEGE,salem

More information

Neuro Fuzzy Control Single Stage Single Phase AC-DC Converter for High Power factor

Neuro Fuzzy Control Single Stage Single Phase AC-DC Converter for High Power factor Neuro Fuzzy Control Single Stage Single Phase AC-DC Converter for High Power factor S. Lakshmi Devi M.Tech(PE),Department of EEE, Prakasam Engineering College,Kandukur,A.P K. Sudheer Assoc. Professor,

More information

TO LIMIT degradation in power quality caused by nonlinear

TO LIMIT degradation in power quality caused by nonlinear 1152 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 6, NOVEMBER 1998 Optimal Current Programming in Three-Phase High-Power-Factor Rectifier Based on Two Boost Converters Predrag Pejović, Member,

More information

A Predictive Control Strategy for Power Factor Correction

A Predictive Control Strategy for Power Factor Correction IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 6 (Nov. - Dec. 2013), PP 07-13 A Predictive Control Strategy for Power Factor Correction

More information

International Journal of Advance Engineering and Research Development. Analysis of Power Factor Control Technique for CUK Converter

International Journal of Advance Engineering and Research Development. Analysis of Power Factor Control Technique for CUK Converter Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 5, May -2017 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Analysis

More information

CURRENT-FED dc dc converters have recently seen resurgence

CURRENT-FED dc dc converters have recently seen resurgence IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 22, NO. 2, MARCH 2007 461 Current-Fed Dual-Bridge DC DC Converter Wei Song, Member, IEEE, and Brad Lehman, Member, IEEE Abstract A new isolated current-fed

More information

Digital Control Techniques for Efficiency Improvements in Single-Phase Boost Power Factor Correction Rectifiers

Digital Control Techniques for Efficiency Improvements in Single-Phase Boost Power Factor Correction Rectifiers University of Colorado, Boulder CU Scholar Electrical, Computer & Energy Engineering Graduate Theses & Dissertations Electrical, Computer & Energy Engineering Spring 1-1-2010 Digital Control Techniques

More information

Narasimharaju. Balaraju *1, B.Venkateswarlu *2

Narasimharaju. Balaraju *1, B.Venkateswarlu *2 Narasimharaju.Balaraju*, et al, [IJRSAE]TM Volume 2, Issue 8, pp:, OCTOBER 2014. A New Design and Development of Step-Down Transformerless Single Stage Single Switch AC/DC Converter Narasimharaju. Balaraju

More information

Design Considerations for VRM Transient Response Based on the Output Impedance

Design Considerations for VRM Transient Response Based on the Output Impedance 1270 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 18, NO. 6, NOVEMBER 2003 Design Considerations for VRM Transient Response Based on the Output Impedance Kaiwei Yao, Student Member, IEEE, Ming Xu, Member,

More information

Power quality improvement and ripple cancellation in zeta converters

Power quality improvement and ripple cancellation in zeta converters Power quality improvement and ripple cancellation in zeta converters Mariamma John 1, Jois.K.George 2 1 Student, Kottayam Institute of Technology and Science, Chengalam, Kottayam, India 2Assistant Professor,

More information

Photovoltaic Controller with CCW Voltage Multiplier Applied To Transformerless High Step-Up DC DC Converter

Photovoltaic Controller with CCW Voltage Multiplier Applied To Transformerless High Step-Up DC DC Converter Photovoltaic Controller with CCW Voltage Multiplier Applied To Transformerless High Step-Up DC DC Converter Elezabeth Skaria 1, Beena M. Varghese 2, Elizabeth Paul 3 PG Student, Mar Athanasius College

More information

Power Factor Corrected Zeta Converter Based Switched Mode Power Supply

Power Factor Corrected Zeta Converter Based Switched Mode Power Supply Power Factor Corrected Zeta Converter Based Switched Mode Power Supply Reshma Shabi 1, Dhanya B Nair 2 M-Tech Power Electronics, EEE, ICET Mulavoor, Kerala 1 Asst. Professor, EEE, ICET Mulavoor, Kerala

More information

Novel Soft-Switching DC DC Converter with Full ZVS-Range and Reduced Filter Requirement Part I: Regulated-Output Applications

Novel Soft-Switching DC DC Converter with Full ZVS-Range and Reduced Filter Requirement Part I: Regulated-Output Applications 184 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 2, MARCH 2001 Novel Soft-Switching DC DC Converter with Full ZVS-Range and Reduced Filter Requirement Part I: Regulated-Output Applications Rajapandian

More information

Stability and Dynamic Performance of Current-Sharing Control for Paralleled Voltage Regulator Modules

Stability and Dynamic Performance of Current-Sharing Control for Paralleled Voltage Regulator Modules 172 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 17, NO. 2, MARCH 2002 Stability Dynamic Performance of Current-Sharing Control for Paralleled Voltage Regulator Modules Yuri Panov Milan M. Jovanović, Fellow,

More information

A Unique SEPIC converter based Power Factor Correction method with a DCM Detection Technique

A Unique SEPIC converter based Power Factor Correction method with a DCM Detection Technique IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 4 Ver. III (Jul. Aug. 2016), PP 01-06 www.iosrjournals.org A Unique SEPIC converter

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 18.5 RMS values of rectifier waveforms Doubly-modulated transistor current waveform, boost rectifier:

More information

NEW microprocessor technologies demand lower and lower

NEW microprocessor technologies demand lower and lower IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 41, NO. 5, SEPTEMBER/OCTOBER 2005 1307 New Self-Driven Synchronous Rectification System for Converters With a Symmetrically Driven Transformer Arturo Fernández,

More information

Double Boost SEPIC AC-DC Converter

Double Boost SEPIC AC-DC Converter Double Boost SEPIC AC-DC Converter Sona P 1, Kavitha Issac 2, Beena M Varghese 3 1 Student, Electrical and Electronics Engineering, Mar Athanasius College of Engineering, Kerala, India 2 Asst. Professor,

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

CONTENTS. Chapter 1. Introduction to Power Conversion 1. Basso_FM.qxd 11/20/07 8:39 PM Page v. Foreword xiii Preface xv Nomenclature

CONTENTS. Chapter 1. Introduction to Power Conversion 1. Basso_FM.qxd 11/20/07 8:39 PM Page v. Foreword xiii Preface xv Nomenclature Basso_FM.qxd 11/20/07 8:39 PM Page v Foreword xiii Preface xv Nomenclature xvii Chapter 1. Introduction to Power Conversion 1 1.1. Do You Really Need to Simulate? / 1 1.2. What You Will Find in the Following

More information

Power Factor Correction of LED Drivers with Third Port Energy Storage

Power Factor Correction of LED Drivers with Third Port Energy Storage Power Factor Correction of LED Drivers with Third Port Energy Storage Saeed Anwar Mohamed O. Badawy Yilmaz Sozer sa98@zips.uakron.edu mob4@zips.uakron.edu ys@uakron.edu Electrical and Computer Engineering

More information

HIGH RELIABILITY AND EFFICIENCY OF GRID-CONNECTED PHOTOVOLTAIC SYSTEMS USING SINGLE-PHASETRANSFORMERLESS INVERTER. Abstract

HIGH RELIABILITY AND EFFICIENCY OF GRID-CONNECTED PHOTOVOLTAIC SYSTEMS USING SINGLE-PHASETRANSFORMERLESS INVERTER. Abstract HIGH RELIABILITY AND EFFICIENCY OF GRID-CONNECTED PHOTOVOLTAIC SYSTEMS USING SINGLE-PHASETRANSFORMERLESS INVERTER E.RAVI TEJA 1, B.PRUDVI KUMAR REDDY 2 1 Assistant Professor, Dept of EEE, Dr.K.V Subba

More information

A Novel High-Performance Utility-Interactive Photovoltaic Inverter System

A Novel High-Performance Utility-Interactive Photovoltaic Inverter System 704 IEEE TRANSACTIONS ON POWER ELECTRONICS, OL. 18, NO. 2, MARCH 2003 A Novel High-Performance Utility-Interactive Photovoltaic Inverter System Toshihisa Shimizu, Senior Member, IEEE, Osamu Hashimoto,

More information

A New Single-Phase PFC Rectifier (TOKUSADA Rectifier ) with Wide Output Voltage Control Range and High Efficiency

A New Single-Phase PFC Rectifier (TOKUSADA Rectifier ) with Wide Output Voltage Control Range and High Efficiency A New Single-Phase PFC Rectifier (TOKUSADA Rectifier ) with Wide Output Voltage Control Range and High Efficiency Yasuyuki Nishida & Takeshi Kondou Nihon University Tokusada, Tamura-cho, Kouriyama, JAPAN

More information

A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation

A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation 638 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation A. K.

More information

Design Considerations for 12-V/1.5-V, 50-A Voltage Regulator Modules

Design Considerations for 12-V/1.5-V, 50-A Voltage Regulator Modules 776 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 6, NOVEMBER 2001 Design Considerations for 12-V/1.5-V, 50-A Voltage Regulator Modules Yuri Panov and Milan M. Jovanović, Fellow, IEEE Abstract The

More information

A NOVEL BUCK-BOOST INVERTER FOR PHOTOVOLTAIC SYSTEMS

A NOVEL BUCK-BOOST INVERTER FOR PHOTOVOLTAIC SYSTEMS A NOVE BUCK-BOOST INVERTER FOR PHOTOVOTAIC SYSTEMS iuchen Chang, Zhumin iu, Yaosuo Xue and Zhenhong Guo Dept. of Elec. & Comp. Eng., University of New Brunswick, Fredericton, NB, Canada Phone: (506) 447-345,

More information

TYPICALLY, a two-stage microinverter includes (a) the

TYPICALLY, a two-stage microinverter includes (a) the 3688 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 33, NO. 5, MAY 2018 Letters Reconfigurable LLC Topology With Squeezed Frequency Span for High-Voltage Bus-Based Photovoltaic Systems Ming Shang, Haoyu

More information

New Efficient Bridgeless Cuk Rectifiers for PFC Application on d.c machine

New Efficient Bridgeless Cuk Rectifiers for PFC Application on d.c machine International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 9, Issue 1 (November 2013), PP. 15-21 New Efficient Bridgeless Cuk Rectifiers for

More information

ZVT Buck Converter with Synchronous Rectifier

ZVT Buck Converter with Synchronous Rectifier IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 8 February 217 ISSN (online): 2349-784X ZVT Buck Converter with Synchronous Rectifier Preenu Paul Assistant Professor Department

More information

A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter

A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter Woo-Young Choi 1, Wen-Song Yu, and Jih-Sheng (Jason) Lai Virginia Polytechnic Institute and State University Future Energy Electronics Center

More information

Development of a Switched-Capacitor DC DC Converter with Bidirectional Power Flow

Development of a Switched-Capacitor DC DC Converter with Bidirectional Power Flow IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 9, SEPTEMBER 2000 383 Development of a Switched-Capacitor DC DC Converter with Bidirectional Power Flow Henry

More information

A New Interleaved Three-Phase Single-Stage PFC AC-DC Converter with Flying Capacitor

A New Interleaved Three-Phase Single-Stage PFC AC-DC Converter with Flying Capacitor A New Interleaved Three-Phase Single-Stage PFC AC-DC Converter with Flying Capacitor Mehdi Narimani, Member, IEEE, Gerry Moschopoulos, Senior Member, IEEE mnariman@uwo.ca, gmoschop@uwo.ca Abstract A new

More information